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Dynamics and structure of colloidal aggregates
under microchannel flow†

Ming Han, a Jonathan K. Whitmer b and Erik Luijten *bcd

The kinetics of colloidal gels under narrow confinement are of widespread practical relevance, with

applications ranging from flow in biological systems to 3D printing. Although the properties of such gels

under uniform shear have received considerable attention, the effects of strongly nonuniform shear are

far less understood. Motivated by the possibilities offered by recent advances in nano- and microfluidics,

we explore the generic phase behavior and dynamics of attractive colloids subject to microchannel flow,

using mesoscale particle-based hydrodynamic simulations. Whereas moderate shear strengths result in

shear-assisted crystallization, high shear strengths overwhelm the attractions and lead to melting of the

clusters. Within the transition region between these two regimes, we discover remarkable dynamics of

the colloidal aggregates. Shear-induced surface melting of the aggregates, in conjunction with the

Plateau–Rayleigh instability and size-dependent cluster velocities, leads to a cyclic process in which

elongated threads of colloidal aggregates break up and reform, resulting in large crystallites. These

insights offer new possibilities for the control of colloidal dynamics and aggregation under confinement.

1 Introduction

Colloidal gelation plays an important role in the creation of
wide classes of materials, resulting in stable nonequilibrium
aggregates of (sub)micron-sized particles that may be deformed
by modest stress. The mechanical properties of such gels are
related to their internal structure. Small clusters formed during
the early stages of colloidal aggregation already lack the mobility
to efficiently adjust their positions. As a result, they become
dynamically arrested and percolate in disordered, loose
networks1 that are firm in a quiescent environment but floppy
under shear. Colloidal gels have attracted considerable attention
as a model system for kinetic arrest;1–4 gelation has been
exploited to generate porous patterns for tissue engineering
scaffolds5 and to synthesize gel-based ink for three-dimensional
(3D) printing.6 Moreover, when exposed to external driving forces,
these gels can display a variety of remarkable behaviors, both in
morphology and in dynamics. Examples include shear-induced
aggregation,7 crystallization8 and melting9 as well as shear
thinning10,11 and thickening.12 Most of these phenomena have

been studied separately under ideal conditions, with uniform
shear and localized particle motion, typically induced by the
relative motion of two parallel boundaries. However, in many
realistic applications colloidal gels are driven by a flow through
confined geometries, necessarily coupling nonuniform shear
and directional hydrodynamic forces.

One ubiquitous example is the flow of colloidal dispersions
through a microchannel, as realized in the transport of red
blood cells in a microcapillary13 and the pumping of ink for 3D
printing through a slot channel.6,14 This has motivated recent
attempts to explore the diffusion of individual colloids subject
to a channel flow.15,16 Developments in nano- and micro-
fluidics17–20 and in particular corresponding applications in
particle assembly21–23 further reinforce the need to understand
aggregation of (sub)microscopic particles driven within narrow
confinements. Nonuniformity of shear effects exerted by flow is
established at length scales comparable to the channel cross-
section. In macroscopic channels, colloidal clusters are typically
small compared to this scale and hence different clusters
experience different shear strengths depending on their location
within the channel. By contrast, clusters within a (sub)microchannel
can have sizes comparable to the channel cross-section and thus
different shear forces are exerted simultaneously on each individual
cluster. Meanwhile, the global flow causes additional rheological
effects on the aggregates, including jamming, merging, and
densification.24 Conversely, the presence of clusters leads to
considerable disturbances of the flow profile. This rich combination
of factors makes the behavior of attractive colloids under micro-
channel flow an interesting topic of practical relevance, which we
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pursue here via mesoscale particle-based hydrodynamic simulations.
We find that the colloids, which display gel-like behavior under
resting conditions,25 undergo shear-assisted crystallization.
Remarkably, not only does the degree of ordering depend
sensitively on the flow conditions, but the order is also attained
through a cyclic process in which colloidal aggregates repeatedly
break up and merge again.

This paper is organized as follows. First, we provide a
detailed description of our simulation model in Section 2. After
demonstrating the nonuniform shear of a microchannel flow in
Section 3.1, we discuss its effect on the phase behavior of a
colloidal gel in Section 3.2. In Sections 3.3 and 3.4, we show
that the nonuniform shear also leads to a unique rheology as
well as the Plateau–Rayleigh instability for colloidal aggregates.
Lastly, we conclude the paper with a brief summary in Section 4.

2 Method and model

We employ molecular dynamics (MD) simulations to model a
colloidal suspension being pumped through a narrow channel.
The suspension contains monodisperse colloids with diameter
sc and volume fraction fc = 0.054. The colloids interact via
strong short-range attractions mediated by nonabsorbing polymers,
whose presence is implicitly modeled by an Asakura–Oosawa (AO)
potential26,27 between the colloids,

UAOðrÞ ¼ � kBTfp
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where fp is the volume fraction of the implicit polymers and z
denotes the size ratio between the polymers and the colloids. To
avoid discontinuity in forces, the AO potential is rounded with a
quadratic function near the colloidal surface,28

UattðrÞ ¼
Bðr� sÞ2 þ C; 0 � ro ð1þ azÞsc

UAOðrÞ ð1þ azÞsc � r � ð1þ zÞsc
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with parameter a = 0.1. The constants B and C are set to maintain
the continuity of both Uatt and its first derivative at the crossover
point rm = (1 + az)sc,

B ¼
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C = UAO(rm) � Ba2z2sc
2. (4)

The excluded-volume effect of the colloids is implemented
by a soft-core repulsion,

UrepðrÞ ¼ kBT
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r
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; r � ð1þ zÞsc; (5)

which has the advantage that it permits direct force calculations
(unlike the hard-core potential typically employed in Monte
Carlo simulations). In our system, z = 0.072 and fp = 0.45 are

chosen, yielding an overall interaction with range Drc = zsc o
0.1sc and strength Eb = �8kBT. This ensures the system resides
within the coexistence region and therefore crystallization
would occur if the system could attain equilibrium. Given its
short-ranged nature, the precise form of the interaction is
immaterial to the phase behavior.1,29

The colloids are embedded in a solvent with kinematic

viscosity n B 4sc
2/t (where t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcsc2=kBT

p
is the colloidal

diffusion time, mc the colloidal mass). The entire suspension is
pumped by a pressure gradient through a narrow channel of
cross-sectional dimensions W � W, with W ranging from 4sc to
15sc. Periodic boundary conditions are applied on the inlet and
the outlet. A long channel of length L = 80sc, containing 132 to
1850 colloids (depending on W), is employed to avoid artifacts
due to the periodicity.

To include both thermal and hydrodynamic effects, we
couple our system to a multi-particle collision30 (MPC) hydro-
dynamic solver with Andersen thermostat. The system is divided
into a 3D grid with resolution Nx� Ny� Nz, with Nx = Ny = 4(W/sc)
and Nz = 4(L/sc), for a total of 81 920 to 1 152 000 cells. Each cubic
cell (linear size a0) on average contains five point-like fluid
particles with mass m = 0.004mc, which exchange momentum
with nearby colloids. This yields a solvent comprised of
4.096 � 105 to 5.76 � 106 fluid particles. The pressure gradient
is implemented via a constant force acting on each fluid particle.
To avoid spurious (additional) depletion forces induced by the
fluid particles, we set sc = 4.3a0 whereas the colloid-fluid radius is
set to scf = 2a0, as suggested by previous work on colloidal
gelation.31,32 The MD time step is set to 2 � 10�4t and the fluid
collision step size to 2 � 10�2t. The mass density of the fluid
particles rf gives rise to a dynamic viscosity m = rfnB 5.12mc/tsc.
All hydrodynamic surfaces, i.e., channel walls and colloidal
surfaces, impose stick boundary conditions on the fluid and
are treated via the bounce-back approach.33 The colloid-wall and
fluid-wall interactions are modeled by purely repulsive shifted-
truncated Lennard-Jones potentials. The Reynolds number
Re = U0W/n (where U0 is the flow velocity at the centerline and
W the channel width) characterizing the channel flow ranges
from 10�3 to 10. All runs are performed for 2 � 107 MD steps
(4000t), and repeated 30-fold for each flow strength.

3 Results
3.1 Shear flow

In the absence of dispersed particles, the microchannel flow
U(x,y) decays from its maximum U0 at the center to zero at the
channel walls (Fig. 1a) whereas the opposite occurs to the
resultant shear rate _g (Fig. 1b). This resembles the parabolic
profile characteristic of Poiseuille flow,34,35 albeit distorted
near the walls owing to the square cross-section.

The shear exerted by this flow results in an effective force Fs

that tends to separate any two bonded colloids, imparting them
with a potential energy Es = FsDrc. Specifically, for a local shear
rate _g, two bonded colloids (assuming their bond vector to be
aligned perpendicular to the channel axis) are driven by flows
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with velocity difference DU B _gsc. The resulting difference in
hydrodynamic forces leads to an effective separation force
Fs B cdDU (with drag coefficient cd = 3pm0sc for a spherical
particle, where m0 is the fluid viscosity). We parametrize the
competition between the global shear forces and the colloidal
attractions by the ratio d � hEsi/Eb. Since the average magnitude
of the shear rate h _gi is approximately 2U0/W (due to the symmetry
of the channel flow), we estimate d as hEsi/Eb = hFsiDrc/Eb =
6pm0U0sc

2Drc/WEb. A similar definition has been proposed in the
study of the pre-shear effects on colloidal gels.36

3.2 Phase behavior

To study the influence of shear on ordering and crystallization,
we explore a wide range of flow strengths, with d spanning over
three decades. In thermal equilibrium, strongly attractive colloids
often crystallize into polymorphic patterns comprised of hexagonal
close-packed (HCP) and face-centered cubic (FCC) structures,37

due to their marginal difference in free energy. Thus, when
determining the degree of crystallization, we take into account
both structures, which we identify by computing the bond order
parameters38,39 q4 and w4 for each colloid i,
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, with Nb(i) the

number of nearest neighbors of colloid i, Y4m(y,f) the spherical
harmonics and y(rij) and f(rij) the polar angles of the bond
vector rij = ri � rj. Once the system has reached a steady state,
we record a histogram of (q4,w4) and compute the extent of
crystallization fcrystal from the cumulative weight of the values
corresponding to FCC and HCP domains.

Fig. 2 summarizes the degree of ordering as a function of
global shear strength. In the quiescent case, owing to strong
short-range attractions,40 colloids form gel-like clusters with
only small crystal nuclei, resulting in a low degree of ordering,
fcrystal E 17%. Application of weak shear (d t 10�2) barely
affects the colloidal aggregates. As d is increased to 10�1, shear
effects start to overcome the kinetic arrest and assist crystallization,
leading to a more ordered system. Consistent with this, the system
displays a concomitant decrease in the internal energy E. Once d
exceeds 1, i.e., hEsi 4 |Eb|, the shear forces are sufficiently
strong to not merely rearrange colloidal pairs, but to fully break
colloidal bonds. Such shear-induced crystallization and melting
are expected.8,9 However, rather than displaying a discrete
transition as observed in an oscillatory shearing system,9 here
the system exhibits a melting range, 1 t d t 2. This can be
attributed to the nonuniformity of the shear shown in Fig. 1b:
weak at the center but strong near the walls. As a consequence,
within the melting range, clusters crystallize at their core but
melt at their surfaces. One may further understand this regime
by appealing to the particle Péclet number,

Pe ¼ cdU0sc
2kBT

¼ d
2

Eb

kBT

W

Drc
; (8)

which characterizes advection of colloidal particles relative to
diffusion. Free particles near the surface of a cluster will exhibit
a velocity O(U0) relative to the aggregate. For d in this regime, Pe
is O(102). Thus, once shear has loosened the more weakly
coordinated surface particles, advection denies them sufficient
time to relax to the crystalline minimum energy state. Based
upon this mechanism, we hypothesize that the nonuniform
shear also causes a dependence of the shear-induced melting on
the channel width, where wider channels require a stronger
global shear strength to fully melt colloidal aggregates. Indeed,
setting the threshold for full melting at fcrystal(dc) = 1%, we find

Fig. 1 Profiles of Poiseuille flow and resultant shear rate in a square
channel. (a) Cross-sectional distribution of the flow speed U, normalized
by the maximum speed U0 at the channel centerline. (b) Cross-sectional
distribution of the resultant shear rate _g = |rxyU|, where rxy denotes the
gradient within the plane of the channel cross-section. Fig. 2 Ordering and melting under shear flow. The crystal fraction fcrystal

(solid red curve) of a colloidal suspension in a channel with 6 � 6sc
2 cross-

section is shown as a function of the competition between global shear
and colloidal attraction, characterized by d. Moderate shear forces assist
the crystallization, nearly doubling fcrystal for d = 1 compared to the
quiescent state (d = 0). However, stronger flow results in shear-induced
melting for 1 t d t 2. The dashed blue curve represents the corres-
ponding variation in the internal energy E per colloid. Inset: Dependence
of the complete melting point dc on the channel width on a log–log scale.
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that dc increases with channel width W (inset of Fig. 2). This
trend will eventually stop for macroscopic channels, where the
shear will be uniform on the scale of the colloidal aggregates.
Lastly, we note that crystallization can also be induced by
variation of the shear frequency in a system of attractive colloids
with oscillatory shear41 or by shearing purely repulsive colloids
at high packing fraction.42

3.3 Rheology and structural evolution

When the flow is strong enough to alter phase behavior at d 4
0.3, the coupling of its nonuniform shear and narrow confine-
ment has a strong effect on the dynamics and structural
evolution of colloidal aggregates. This is illustrated by the
cross-sectional particle distribution for different channels prior
to any substantial crystallization (Fig. 3). In a wider channel,
clusters initially are much smaller than the channel width and
are pulled away from the channel center by lift forces induced
by the nonuniform shear (Fig. 3b). This lateral motion, first
observed by Segré and Silberberg,43 has been widely studied
in Poiseuille flow at large Reynolds numbers,44–46 but recently
also has found application in microfluidics47 with Reynolds
numbers down to Re = 0.04. By contrast, in a narrow channel
(Fig. 3a) clusters readily reach sizes comparable to the channel
cross-section and are pushed back to the center by wall effects.
A similar focusing phenomenon, although driven by inertia-elastic
effects instead, has also been reported for viscoelastic fluids.48 A
side effect of the focusing of the colloids is that the geometry of the
channel barely affects their behavior. More interestingly, we find
that the focusing contributes to a rather remarkable mechanism
through which colloidal clusters attain an ordered structure in the
phase transition region 1 t d t 2.

To illustrate this, Fig. 4 shows the evolution of the system at
flow strength d = 1.4 (marked by the dot-dashed vertical line in
Fig. 2). Starting from a random uniform dispersion, colloids
aggregate into droplets. These droplets are focused around the
centerline and tend to concatenate into threads, provided that
the channel is sufficiently narrow, W t 10sc (for wider channels,
the clusters tend to rotate along the wall). Upon elongation of
these threads by the shear flow, they evolve into chains of

‘‘packets’’ that then continue to break up into ‘‘droplets’’. Sub-
sequently, these droplets then merge again into threads. Such
break-ups and mergers last for many (20–50) cycles, until close-
packed crystals with dimensions up to the size of the channel
cross-section emerge and strongly disturb the flow (Movie S1,
ESI†). Why and how does the dynamics of aggregates lead to their
final crystallization? To answer this question, we need to consider
the colloidal dynamics within individual aggregates as well as the
collective dynamics of droplets.

Fig. 5 summarizes the rheology of colloidal aggregates
before their final crystallization. Clusters experience hydro-
dynamic flow forces that propel them forward at their center,
but exert an oppositely oriented drag at their surfaces. This is
illustrated by the sign reversal of F(r), the component of the net
hydrodynamic force along the channel axis (solid line in Fig. 5a),
which is calculated from the rate of momentum transfer between
fluid particles and colloids. Like conventional liquids, clusters
continuously deform under shear, as demonstrated by the non-
uniform velocity distribution V(r) (dashed line). Interestingly,
these liquid-like clusters simultaneously display both dilatant
and pseudoplastic behaviors. Fig. 5b shows the dependence of
their effective viscosity m on local shear rate _g. At the surfaces of the
cluster, where _g is large, melting takes place and shear thinning
results, with a power-law behavior m p _g�0.6. In contrast, at the

Fig. 3 Particle distribution prior to crystallization. Profiles of local particle
density r normalized by the global density r0 for two different channel
widths W = 6sc (a) and W = 12sc (b), respectively. The results are obtained
prior to any substantial crystallization and are representative for a wide
span of flow strengths with d 4 0.3, corresponding to Reynolds number
Re 4 0.22. The white bands (r = r0) mark the transition regions from
concentrated to depleted domains, relative to the global density.

Fig. 4 Evolution of colloidal aggregates under flow. Flow direction is
indicated by the arrow, times are marked above the columns. Colloids
residing in the gas, liquid, and crystal states are marked in white, yellow,
and red, respectively. (a) Initially, the strong attractions cause colloids to
aggregate and form droplets. The shear flow elongates these droplets
along the channel axis. (b) The relative motion of the droplets causes them
to concatenate into a thread structure. (c) As these threads are further
elongated, they evolve into a chain of ‘‘packets’’. (d) The chains of
connected packets break up again into droplets, but of more regular
shapes. The events in panels (b–d) happen in short order. The pressure
gradient is such that a pure fluid system has a fluid flow velocity U0 E
10.2sc/t at the centerline. (e) After tens of break-merge cycles (t = 2000t
shown here), faceted close-packed crystals arise.
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cluster core, where _g is relatively small, the colloids undergo shear
thickening by forming compact microstructures that will initiate
crystal nucleation. Although a suspension of attractive colloids
typically does not undergo shear thickening,49 the induced crystal
nuclei here resemble hydroclusters in a suspension of repulsive
particles,49 which form under large shear and cause common
thickening effects.

The shear-induced deformation leads to an increase in surface
area that is counteracted by the surface tension G arising from
interparticle attractions. For water, with G B 10�1 J m�2,
this competition results in the Plateau–Rayleigh instability,50

breaking up a long thread into droplets. Via experiments on
falling granular streams it has been demonstrated51 that for
inviscid flow even an extremely small surface tension (G t
10�7 J m�2) is enough to induce this instability. Estimating
surface tension as |Eb|/sc

2 (see ref. 52), for colloids of size
0.1–1 mm we obtain GB 10�8–10�6 J m�2, see ref. 53. A difference,
however, is that in the system studied here, the colloids are
embedded in a significantly more viscous medium than air.
Whereas analytical treatment of this case is far more involved
(see ref. 54 for an overview of related work in the context of liquid
jets embedded in a second liquid), we observe that Rayleigh’s
original treatment,50 which relies solely on a static description, still
applies. Interestingly, for driven colloidal particles, albeit without
attraction, the related Rayleigh–Taylor instability has been
observed as well.55

3.4 Plateau–Rayleigh instability

To verify the mechanism underlying the instability of the
colloidal threads, we characterize the geometry of the aggre-
gates both before and after the break-up events. Prior to such
an event, the thread exhibits variations in its radius (Fig. 4c). In
the Plateau–Rayleigh instability, long-wavelength fluctuations

(kR0 o 1, where k is the wave number and R0 the average thread
radius) are unstable due to pressure differences56 and cause the
thread to break up in individual droplets with characteristic
size determined by the fastest-growing wave mode.50 For the
system examined here, the surface tension driving the break-up
of the colloidal threads into clusters arises from the colloidal
attractions. To confirm the quantitative applicability of Rayleigh’s
argument to the colloidal streams, we extract the elongated
threads from the simulations and decompose their radius profile
R(z) into wave modes. The resulting spectrum (Fig. 6a) not only
confirms that the majority of the wave numbers lie in the regime
kR0 o 1, but also shows that the dominant wave number kR0 E
0.7 coincides with the well-known dispersion relation,50,54 which
predicts a maximum at kR0 E 0.697. Once the break-up into
colloidal aggregates has occurred, we accumulate a joint histogram
of their length l and diameter w (Fig. 6b). All cluster aspect ratios
obey the stability criterion l/w o p, demonstrating that all modes
with kR0 o 1 indeed have disappeared.

Subsequently, aggregates of different sizes acquire different
velocities, as small clusters are mainly transported by the fast
flow near the channel center. This causes the small clusters
to ‘‘catch up’’ with the large clusters and is responsible for the
re-merging into long threads, which restarts the cycle. This
cyclic behavior induced by the Plateau–Rayleigh instability
relies on the molten surfaces of the aggregates, and terminates
when large crystals emerge (Movie S1, ESI†). The number of the
cycles is determined by the competition between shear flow and
particle attractions. It increases from 0 at d E 1, the onset of
surface melting, to infinity at d E 2, where crystals can no
longer form.

Thus, the entire process can be summarized as follows:
nonuniform shear melts the surface of gel-like clusters but
gradually crystallizes their cores. Colloids in the molten surface
layer energetically adjust their positions and either join the

Fig. 5 Rheology of aggregates. (a) Radial distribution of hydrodynamic
forces and colloidal velocities. Clusters are deformed by forces F(r) exerted
by the fluid, shown here (solid blue curve) as a function of the distance r to
the center of the channel. The dotted black line marks F = 0 to highlight
the sign reversal of the net force. The forces push the aggregate cores
(small r) and pull their surfaces (large r). This results in nonuniform colloidal
velocities V (dashed pink curve, normalized by the free-channel flow
velocity U0 at the center line). (b) Non-Newtonian properties of colloidal
aggregates. Normalized effective viscosity m of the aggregates is shown
as a function of local shear rate _g = dV/dr. The viscosity is calculated as
m = S/_g, where S is the local shear stress (1/sc)dF/dr. The aggregates undergo
shear thickening at their cores (pink-shaded region) with low _g whereas shear
thinning at their surfaces (cyan-shaded region) with high _g. The shear thinning
displays a power-law behavior with exponent around �0.6.

Fig. 6 Plateau–Rayleigh instability. (a) Spectrum reflecting the prevalence
of wave numbers in elongated colloidal threads prior to rupture. Notably,
the dominant wave number kR0 (with R0 the average thread radius)
coincides with the fastest growing fluctuation predicted by the Rayleigh
dispersion relation. The fitted spline is a guide to the eye. (b) Distribution of
cluster widths w and lengths l after break-up, confined by the spherical
limit (aspect ratio l/w = 1) and the stability criterion l/w = p. For each
cluster, the squared eigenvalues of its gyration tensor are calculated, l1

2 r
l2

2 r l3
2. The length and width of the cluster are defined as l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5l32=3

p
and w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 l12 þ l22ð Þ=6

p
. The contour lines (from outer to inner) correspond

to probability densities Reaction conditions: 5.0, 0.08 and 0.12, respectively.
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crystalline core by forming enough neighbor bonds to resist the
shear or simply flow past the core. Owing to the Plateau–Rayleigh
instability, these mobile colloids can detach from the crystallized
core and be collected in droplets. Thanks to the focusing effects
induced by the narrow channel, droplets concatenate and reassem-
ble colloids for further crystal growth. This cyclic process of breaking
and merging eventually produces crystals up to the channel size
(Fig. 4d), even though global shear is strong enough to disrupt
individual colloidal bonds. We find that this picture generally holds
as long as the colloidal volume fraction is less than 10%; at higher
volume fractions we only observe continuous threads of colloids.

4 Summary

In conclusion, employing molecular dynamics simulations
coupled to an explicit hydrodynamic solver, we have examined
the phase behavior and dynamics of attractive colloids exposed
to shear flow within a microchannel. For moderate flow
strengths, the shear aids the colloids in overcoming kinetic
arrest, thereby enhancing the crystalline order of the aggregates.
Conversely, high shear strengths completely disrupt the colloidal
ordering. Strikingly, in the transition regime a cyclic effect that
relies on a combination of nonuniform shear and the Plateau–
Rayleigh instability results in large crystalline aggregates.

These findings should be testable in microfluidic experiments.
One could pump a dilute suspension of micron-sized colloids
through a B10 mm-wide opening. To introduce an 8kBT attraction,
polymers with volume fraction 0.45 and radius of gyration 35 nm
would need to be added. Then, upon gradual increase of the
pumping pressure, one would observe a transition from shear-
induced crystallization to melting at flow speed U0 = O(102) mm s�1.
Within the transition regime, we predict observation of the cyclic
process leading to the final crystallization.

The phase and dynamic behavior of the system can also be
altered by varying the colloidal interactions. A decrease of the
interaction range Drc or an increase in the magnitude of the
interaction strength DEb makes aggregates harder to melt.
However, low values of DEb result in a weak surface tension,
which eventually might suppress the Plateau–Rayleigh instabil-
ity as well as the cyclic dynamics.

Beyond the fundamental relevance for the fluid mechanics
of confined colloidal suspensions, the insights derived from
this prototypical system apply to a wide variety of contexts,
including the pumping of colloidal inks, microfluidics-based
manufacturing set-ups and the capillary flow of aggregating
entities in biological systems.
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