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Supplementary Video Legends 

Supplementary Video 1. Synchronised Liquid-Phase TEM Video Showing the Lattice 
Vibration inside a Large-Scale Hexagonal Superlattice Formed by Triangular Nanoprisms. 
On the left, the automatically tracked centre positions of the columns (green dots) are overlaid 
onto the original video and the Voronoi cell is constructed from the central positions. The Voronoi 
cell is coloured by its number of edges: white for six, blue for less than six, and red for more than 
six. The original liquid-phase video is captured at 1.3 fps and only one frame of each two 
successive frames is shown. The video is played at 6.5 fps, 10 times faster than real time. The 
electron dose rate was 8.9 e–·Å–2·s–1. Scale bar: 200 nm. 

Supplementary Video 2. Liquid-phase TEM Video of Individual Prisms Moving on the SiNx 
Substrate and the Stacking Process of a Pair of Prisms. 
Two individual prisms are highlighted by the red and blue arrow before they stack together. The 
original liquid-phase TEM video is captured at 1.3 fps and every successive 5 frames are averaged 
to enhance the contrast of the nanoparticles. The video is played at 5.2 fps, 20 times faster than 
real time. The electron dose rate was 3.7 e–·Å–2·s–1. Scale bar: 100 nm. 

Supplementary Video 3. MC Simulation of Hexagonal Superlattice Formation from 1472 
Triangular Prisms. 
The simulation starts from an initial configuration of 64 columns (M = 23 prisms per column) 
organised on a 2D square lattice inside a rectangular simulation box with Lz = 25t0 and reaches the 
equilibrium state where the columns are packed on a hexagonal lattice after ~107 MC cycles. The 
2D column packing fraction ϕ"# is 0.386, and the ionic strength I is 0.5 M. The video (100 frames) 
is produced from 2×107 MC cycles (107 equilibration cycles followed by 107 production cycles). 
The prisms are coloured according to the squared modulus of the local bond orientational order 
parameter $ψ&'$

".   

Supplementary Video 4. “On-and-off” Liquid-Phase TEM Video Showing the Disassembly 
and Reassembly of the Lattice when the Electron Beam is Turned off or on. 
The imaging region is near the corner of the liquid cell holder, where the silicon part of the window 
can be seen as the black blocks at the upper left and lower left. The stationary boundary is 
highlighted by the red dotted line to show the same region was continuously monitored. The 
original liquid-phase video is captured at 1.3 fps and only one frame of each two successive frames 
is shown. The video is played at 6.5 fps, 10 times faster than real time. The electron dose rate was 
7.0 e–·Å–2·s–1. Scale bar: 200 nm. 

Supplementary Video 5. Single-Column MC Simulation Showing the Fluctuation of Prism 
Orientations Inside a Column. 
The column consists of M = 23 prisms with equal spacing confined by Lz = 25t0, at an ionic strength 
I = 0.5 M. The video (101 frames) is produced from 1.01×107 MC cycles including 105 
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equilibration cycles (the system reaches equilibrium very quickly) followed by 107 production 
cycles, and a frame is obtained every 105 MC cycles. 

Supplementary Video 6. Synchronised Liquid-Phase TEM Video Showing the Formation of 
a Large-Scale Superlattice. 
On the left, the automatic tracked particles positions are overlaid onto the TEM image coloured 
following the same colour coding as used in Figure 2g–i (main text). On the right, we show the 
synchronised 2D structure-density histogram ($ψ(&'$

", 𝜌' ) for all the columns inside one TEM 
image. The original liquid-phase video is captured at 1.3 fps and only one frame of every two 
successive frames is shown. The video is played at 6.5 fps, 10 times real time. The electron dose 
rate was 7.0 e–·Å-2·s-1. Scale bar: 200 nm. 

Supplementary Video 7. MC Simulation of the Formation of Side-by-Side Aggregates from 
576 Triangular Prisms. 
The simulation starts from an initial configuration of 64 columns (M = 9 prisms per column) 
organised on a 2D square lattice inside a rectangular simulation box with Lz = 10t0. The system 
slowly evolves to the state with side-by-side aggregations being formed due to the strong side-by-
side attraction between columns. The 2D packing fraction ϕ"# is 0.386, and the ionic strength I is 
3.0 M. The video (100 frames) is produced from 2×107 MC cycles, and a frame is obtained every 
2×105 MC cycles. 

Supplementary Video 8. Liquid-Phase TEM Video Showing the Crystallisation of Gold 
Concave Nanocubes into Simple Cubic Superlattices. 
The liquid-phase TEM video is captured at 10 fps and only one of every 4 successive frames is 
used. The video is played at 5 fps, 2 times real time. The electron dose rate is 27.1 e–·Å–2·s–1. Scale 
bar: 300 nm. 

Supplementary Video 9. Liquid-phase TEM Video Showing the Crystallisation of 
Nanospheres into Face-Centred Cubic Superlattices. 
The liquid-phase TEM video is captured at 8 fps and played at 8 fps in real time. The electron 
dose rate is 11.9 e–·Å–2·s–1. Scale bar: 300 nm.  
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Supplementary Notes 
 
Supplementary Note 1. Synthesis and preparation of gold nanoparticles for liquid-phase 
transmission electron microscopy (TEM) imaging 
 
1.1. Synthesis of gold nanoparticles 

1.1.1. Triangular nanoprism synthesis 
The gold triangular nanoprisms used in our experiments are synthesised via a seeded growth 
method according to the literature1-3. First, a gold nanoparticle seed solution is prepared by rapidly 
mixing an aqueous solution of HAuCl4 (250 μL, 10 mM), sodium citrate (500 μL, 10 mM) and ice 
cold NaBH4 (300 μL, 10 mM) sequentially with 18.95 mL of water in a 50 mL Erlenmeyer flask 
and stirred at 1150 rpm for 1 min. The addition of the NaBH4 solution should be quick to obtain 
small and monodisperse gold seeds. The seed solution is incubated at 40–45 °C for 15 min before 
use for the growth of gold triangular nanoprisms and then cooled down to room temperature. Note 
that the gold seed formation requires thoroughly washed glassware and stir bars to avoid the 
formation of large seeds as black sediments.  
Gold triangular nanoprisms are then grown from the gold seeds (usually good within two hours 
after preparation). Aqueous solutions of HAuCl4 (250 μL, 10 mM), NaOH (50 μL, 100 mM), 
ascorbic acid (50 μL, 100 mM) and the as-synthesised gold seed solution (22 μL) are sequentially 
added into 9 mL of 50 mM CTAB solution containing 50 μM of NaI in a 20 mL scintillation vial. 
The solution is hand-shaken for 1 s after each addition and the mixture is left undisturbed for 
30 min. The colour of the solution gradually changes from clear to purple, indicating the formation 
of triangular nanoprisms along with spherical impurities. Purification of the product solution to 
get rid of the spherical particle impurities is performed according to the literature2-5. The purple 
solution is transferred to a 15 mL centrifuge tube and 0.9 mL of 2 M NaCl is added. After the 
solution is mixed well, it is left undisturbed for 2 h to induce face-to-face stacking of triangular 
nanoprisms due to screening of electrostatic repulsion. This solution is centrifuged twice 
(1st round: 4900 rpm for 30 s; 2nd round: 1350 rpm for 5 s). Immediately after each centrifugation, 
the supernatant containing unassembled spherical impurities is removed as much as possible using 
a micropipette, because even a tiny amount of supernatant would increase the amount of spherical 
impurities in the final product solution. After the 2nd round of centrifugation, several drops of water 
are first added to the sediments to redisperse the product in solution and 9 mL of 50 mM CTAB is 
added to keep the prisms stable. Successful purification yields gold triangular nanoprisms with 
minimal spherical impurities (Supplementary Figure 1).  

 
1.1.2. Concave nanocube synthesis 
The gold concave nanocubes are synthesised following a modified universal seeded growth6. This 
synthesis includes (i) preparation of gold nanorods, (ii) etching the nanorods into spherical seeds 
and (iii) growth of spherical seeds into concave nanocubes. 
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The gold nanorods are synthesised following literature procedures6,7. First, a gold nanorod seed 
solution is prepared by rapidly mixing an aqueous solution of HAuCl4 (125 μL, 10 mM), CTAB 
(5 mL, 100 mM) and ice-cold NaBH4 (300 μL, 10 mM) sequentially in a 20 mL vial and stirred at 
1150 rpm for 1 min. The nanorod seed solution is incubated at 30 °C for 30 min before use. Next, 
to grow gold nanorods from seeds, aqueous solutions of HAuCl4 (10 mM, 20 mL), AgNO3 
(10 mM, 3.6 mL), L-ascorbic acid (100 mM, 2.28 mL) and 480 µL seed are added in sequence to 
400 mL CTAB solution (100 mM in water) in a 1 L Erlenmeyer flask at 30 °C. This growth 
solution is left undisturbed for 2 h at 30 °C, and then centrifuged twice (8000 rpm for 15 min each 
round). The resultant sediment is redispersed using 50 mM CTAB and a UV-Vis extinction 
spectrum is collected using a Scinco S-4100 PDA spectrophotometer. The desired gold nanorod 
dimension and concentration (tuned by the CTAB solution volume) are evaluated based on the 
presence of a surface plasmon resonance band at 704 nm with an extinction of 2. 
Next, spherical seeds are obtained by etching of the gold nanorods following reductive growth and 
oxidative etching. Aqueous HAuCl4 solution (10 mM, 928 µL) is added to 103.1 mL gold nanorod 
solution in a 250 mL Erlenmeyer flask and stirred at 200 rpm at 40 °C for 4 h to induce the etching. 
The solution is then centrifuged twice (1st round: 11000 rpm for 45 min; 2nd round: 11000 rpm for 
30 min). The sediment is redispersed using 100 mM CPC to achieve the desired seed concentration 
with an extinction of 1 at 524 nm in the UV-Vis extinction spectrum. To improve monodispersity 
of the spherical seeds, aqueous solutions of CPC (10 mM, 56.67 mL), HAuCl4 (10 mM, 992 µL), 
L-ascorbic acid (100 mM, 12.75 mL) and 17 mL spherical seed solution are added in sequence to 
a 125 mL Erlenmeyer flask under 300 rpm stirring at 40 °C. This reductive growth reaction is 
continued for 15 min without stirring and then the solution is centrifuged twice (10000 rpm for 
10 min each). The sediment of reductive grown nanoparticles is redispersed using 50 mM CTAB 
to achieve the desired concentration with an extinction of 1 at 539 nm in the UV-Vis extinction 
spectrum. The next round of oxidative etching to spherical seeds is done by adding aqueous 
HAuCl4 solution (10 mM, 426 µL) to 71.04 mL of the grown nanoparticle solution in a 125 mL 
Erlenmeyer flask and is stirred at 200 rpm at 40 °C for 4 h. The improved spherical seeds are 
obtained by centrifuging the reaction solution twice (11000 rpm for 30 min each) and dispersing 
the sediment in 100 mM CPC to achieve the desired spherical seed concentration with an extinction 
of 1 at 524 nm in the UV-Vis extinction spectrum.  
Finally, concave gold nanocubes are grown from the spherical seeds prepared above6. Aqueous 
solutions of CPC (100 mM, 5 mL), HCl (1 M, 250 µL), HAuCl4 (10 mM, 250 µL), AgNO3 (10 
mM, 62.5 µL), L-ascorbic acid (100 mM, 47.5 µL) and 620 µL of the spherical seed solution are 
added in sequence to a 20 mL vial at room temperature. The reaction is left undisturbed for 2 hours 
and then the solution is centrifuged twice (3000 rpm for 5 min each). The gold concave nanocubes 
are obtained by redispersing the sediment in 50 mM CTAB with an extinction of ~0.8 at 637 nm 
in the UV-Vis extinction spectrum. TEM imaging shows high monodispersity (Supplementary 
Figure 2a).  
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1.1.3. Nanosphere synthesis 
The gold nanosphere synthesis follows the same universal seed method as described in 
Supplementary Note 1.1.2. The improved spherical seeds described in Supplementary Note 1.1.2 
undergo one more reductive growth and oxidative etching cycle to achieve even higher 
monodispersity. After this step, the seed solution obtained is diluted using 100 mM CPC to achieve 
the desired concentration with an extinction of 1 at 524 nm in the UV-Vis spectrum. In the next 
growth and etching round, aqueous solutions of CPC (10 mM, 80 mL), HAuCl4 (10 mM, 1.4 mL), 
L-ascorbic acid (100 mM, 18 mL) and 4.3 mL of this diluted seed solution are added in sequence 
to a 125 mL Erlenmeyer flask under 300 rpm stirring at 40 °C. The growth is continued for 15 min 
without stirring and then the solution is centrifuged twice (4500 rpm for 10 min each). The 
sediment is redispersed using 50 mM CTAB to achieve the desired concentration of with an 
extinction of 2 at 574 nm in the UV-Vis spectrum. Next, 46.29 mL of this solution is mixed with 
HAuCl4 (10 mM, 138.86 µL) in a 125 mL Erlenmeyer flask and stirred at 200 rpm at 40 °C for 4 
h. The nanospheres used for liquid-phase TEM are obtained by centrifuging the solution twice 
(4500 rpm for 8 min each) and redispersing the sediment in 100 mM CPC. The solution has a final 
nanosphere concentration with an extinction of ~1 at 541 nm in UV-Vis extinction spectrum. TEM 
imaging shows high uniformity (Supplementary Figure 2b). 
 
1.2. Thiol modification and sample solution preparation for liquid-phase TEM imaging 
The gold nanoparticles synthesised (gold nanoprisms, concave cubes and spheres) undergo ligand 
exchange with carboxylate-terminated thiols (HS(CH2)11(OC2H4)6OCH2COOH) following a 
literature method1,8. The thiol ligands stabilise the nanoparticle suspension in the absence of free 
ligands in solution. In addition, the ligand exchange helps achieve good resolution for the liquid-
phase TEM imaging, whereas stabilisation of the nanoparticles via highly concentrated free CTAB 
ligands could lower the contrast when imaging nanoparticles in liquid9.  
Specifically, for the nanoprisms, the purified solution in 50 mM CTAB is centrifuged twice to 
decrease the concentration of free CTAB molecules (1st round: 8800 rpm for 8 min; 2nd round: 
6600 rpm for 8 min). After the 1st round of centrifugation, supernatant is removed and the 
remaining liquid with sediments (~50 µL) is mixed with 8.95 mL of water. After the 2nd round of 
centrifugation, supernatant is removed and remaining liquid with sediments (~50 µL) is mixed 
with 3.00 mL of water. An aqueous solution of thiol molecules (44.26 µL, 7.93 mM) is added to 
the prism solution and incubated for 30 min. After that, the solution is sonicated for 5 s and 0.538 
mL of 1 M pH = 8 phosphate buffer solution (PBS, composed of 0.07 M sodium phosphate 
monobasic monohydrate and 0.93 M sodium phosphate dibasic anhydrous) is gently added to the 
solution and left undisturbed overnight. The final solution contains 100 μM of thiol molecules and 
0.15 M of pH = 8 PBS, where the PBS solution is present to screen the electrostatic repulsion of 
deprotonated thiol ligands and to facilitate efficient coating of the gold prism surface. During ~15 h 
of incubation, the prisms not only are fully covered by thiols but also begin to assemble face-to-
face stacked and form into black sediments. Just prior to use for liquid-phase TEM, we dilute this 
solution to a PBS concentration of 0.0345 M, so that the prisms remain individual prisms.  
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For the gold concave nanocubes, 7.5 mL concave nanocube solution obtained in Supplementary 
Note 1.1.2 is centrifuged twice at 3000 rpm for 8 min each time. The sediment is redispersed in 
3 mL water, added with 44.26 μL of 7.93 mM aqueous thiol solution and incubated for 30 min to 
start the ligand exchange. Next the solution is sonicated for 5 s, added with 0.344 mL 1 M PBS 
and left undisturbed overnight to complete the ligand exchange. In this process, the concave 
nanocubes concentrate to sediments at the bottom. The sediment is then diluted by water as the 
stock solution for liquid-phase TEM imaging (24 μL of the sediment diluted in 200 μL water). 
For the gold nanospheres, a 7.5 mL nanosphere solution is centrifuged twice at 4400 rpm for 8 min 
each time. The sediment is redispersed in 3 mL water, 44.26 μL of 7.93 mM aqueous thiol solution 
is added and the sample is incubated for 30 min to start the ligand exchange. Next, the solution is 
sonicated for 5 s, 0.344 mL 1 M PBS is added and the sample is left undisturbed overnight to 
complete the ligand exchange. In this process, the nanospheres sediment to the bottom. The 
sediment is then diluted by water as the stock solution for liquid-phase TEM imaging (28 μL of 
the sediment diluted in 400 μL water). 

 
1.3. Nanoparticle characterisation 
A JEOL 2100 Cryo TEM with a LaB6 emitter at 200 kV is used to characterise the morphology of 
the purified gold nanoprisms, concave nanocubes and nanospheres obtained in Supplementary 
Note 1.1. Using the prism system as an example, an aliquot of the prism solution (1 mL) is 
centrifuged at 7600 rpm twice for 2 min. A drop of the concentrated solution (10 µL) is placed on 
a TEM grid and dried before imaging. Supplementary Figure 1a shows a typical TEM image of 
the nanoprisms and their size distribution. The prism side length is found to be (100.5 ± 9.5) nm, 
based on the measurements of 118 triangular prisms. Similarly, from TEM images (Supplementary 
Figure 2), the gold concave nanocubes are measured to be 62.0 ± 4.6 nm in edge length and the 
gold nanospheres are 76.0 ± 2.2 nm in diameter. 
 

Supplementary Note 2. Liquid-phase TEM imaging 
For the gold triangular nanoprisms, the liquid-phase TEM imaging is carried out on a JEOL 2100 
Cryo TEM with a LaB6 emitter at 200 kV using the Protochips Poseidon 210 liquid flow holder. 
The TEM movies are captured by a Gatan Ultrascan charge-coupled device (CCD) camera with a 
0.1 s exposure time per frame at a rate of 1.3 frames per seconds (fps). In a typical experiment, an 
aliquot of prepared nanoprism solution (see Supplementary Note 1.2, in 0.0345 M pH = 8 PBS) is 
micropipetted onto a SiNx chip pretreated with oxygen plasma (window: 550 µm × 20 µm, 150 
nm spacer flow echip, Protochips), which is then assembled with another SiNx chip (window: 550 
µm × 20 µm) in a Protochips Poseidon 210 liquid flow TEM holder. The SiNx chips are pretreated 
at a medium RF level for 45 s using a Harrick PDC-23G basic plasma cleaner to render them clean 
and hydrophilic. We only use the quiescent state of the holder, not the flow state. For most of the 
imaging, we look at the corner of the window area, where we expect the smallest SiNx membrane 
bowing induced by the high vacuum inside the TEM10.  
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During the liquid-phase TEM imaging of a nanoprism sample, the electron dose rates are kept 
ultra-low (3.7–8.9 e– ·Å– 2·s– 1), which we verified in our previous work to be low enough to avoid 
beam-induced ligand stripping or reactions of the nanoparticles (more details in Supplementary 
Note 5)1,4. At this range, we expect the electron beam to increase the ionic strength of the solution 
through radiolysis reactions. In contrast, a dose rate of 14.8 e–·Å–2·s–1 or higher is shown to induce 
a too high ionic strength and drive the formation of kinetically trapped disordered aggregates, as 
shown in a typical TEM image (Supplementary Figure 4a). Specifically, the dose rates are 
controlled by electron beam size, magnification and spot size (3 on JEOL 2100 Cryo TEM). Dose 
rates are calculated using the total pixel intensity of an acquired TEM image at the same beam 
conditions as those in liquid-phase TEM imaging, but without samples via: Dose rate (e–·Å–2·s–1) 
= Total pixel intensity/(Acquired area × Exposure time × conversion factor). Each electron hitting 
the detector gives rise to a pixel intensity of 3.472, based on our Faraday cup calibration of the 
TEM at beam dose rates below 20 e–·Å–2·s–1, matching the dose rate range of our experiments.  
For the gold concave cubes and nanospheres, liquid-phase TEM imaging is performed on a Hitachi 
9500 TEM with a LaB6 emitter at 200 kV and a liquid flow TEM holder (Hummingbird Scientific, 
model number: 1400-057). The liquid-phase TEM movies are captured by a Gatan Orius fiber-
optically coupled CCD camera with an exposure time of 0.1 s at a rate of 10 or 8 fps. In a typical 
experiment of concave nanocubes, 5 μL concave cube solution prepared as described in 
Supplementary Note 1.2 is mixed with 1.36 μL of PBS (0.15 M) to achieve a final PBS 
concentration of 0.04 M. Then 0.1 μL of this solution is placed on the bottom chip (window: 50 
μm × 200 μm × 50 nm, 250 nm spacer, Hummingbird Scientific) and assembled with another top 
chip (window: 30 μm × 650 μm × 50 nm, Hummingbird Scientific), both pretreated by oxygen 
plasma. After the chip assembly, we flow the same concentration of PBS (0.04 M) through the 
liquid flow holder for 2 hours at 5 μL/min to ensure that the whole liquid chamber reaches this 
PBS concentration, followed by flowing water at 5 μL/min for 10 to 35 min until dispersed concave 
nanocubes are observed. The crystallisation of dispersed concave nanocubes into simple cubic 
superlattices is triggered by flowing 0.04 M PBS solution at 5 μL/min for ~10 min and imaged at 
the quiescent stage at a dose rate of 27.1 e–·Å–2·s–1. In a typical experiment on nanospheres, 1.8 
μL nanosphere solution prepared in Supplementary Note 1.2 is mixed with 0.19 μL of PBS (1 M) 
to achieve a PBS concentration of 0.1 M. Then 0.1 μL of this solution is placed on the bottom chip 
and assembled with another top chip (the same chips as used for the concave cubes). After the chip 
assembly, we flow the same concentration of PBS (0.1 M) through the liquid flow holder for 2 
hours at 5 μL/min to ensure that the entire liquid chamber reaches this PBS concentration. Next, 
we flow water into the system at 5 μL/min for about 15 min and image the system at the quiescent 
stage for a dose rate of 11.9 e–·Å–2·s–1. During this process, the effective ionic strength increase 
induced by the beam triggers the dispersed nanosphere crystallisation into closely packed 
superlattices. Note that the dose rates for both systems are still within the regime that does not 
involve complications due to ligand stripping or nanoparticle reaction.  
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Supplementary Note 3. TEM image processing procedure to identify the projected contour 
of stacked prisms  
The original TEM movies are saved in .dm3 format (the format in Digital Micrograph, the movie 
capturing software of our TEM camera). The open-source software ImageJ is used to open the 
.dm3 files55. For this contour analysis, we first used the built-in “Enhance Contrast” tool in ImageJ 
(0.3%, normalised) to enhance the movie contrast. The processed movie is then converted to image 
series in .tif format for further analysis using our customised Matlab image processing codes. 
Specifically, for prisms with added projected contours (main text Figure 1e,g), we follow the 
processing method shown below. For two prisms stacked in a misaligned manner, the image 
contrast is further enhanced by averaging over neighbouring frames in the same movie 
(Supplementary Figure 5a). To do that, the central positions of the two stacked prisms are first 
measured using a circumscribed circle to fit the three tips of the darker prism; the orientations of 
the same prism are measured from the direction of one edge during movement. We repeat the same 
procedure for 22 frames of a span of 47 frames in a continuous TEM movie (Supplementary Video 
2). We show 5 typical frames in Supplementary Figure 5a. Second, these images are repositioned 
by setting the measured centre of the prism as the centre of the image and rotated to keep the sides 
of the prism aligned in all frames. Finally, the images after repositioning and rotation are averaged 
to enhance contrast and decrease noise (see final image III, Supplementary Figure 5a). The image 
of the short column (main text Figure 1f) is averaged over 5 selected frames in a different TEM 
movie, with alignment and rotation of the images according to the position and orientation of the 
columns. These final averaged images are used as the inputs for contour finding and labelling.  
The contour-finding and labelling process is shown in Supplementary Figure 5b,c, and the 
parameters for contour finding are listed in Supplementary Table 3. The image of two stacked 
prisms is enlarged in Supplementary Figure 5b to show their shape more clearly. The image 
background is first calculated using the Matlab built-in function imopen.m, using disks with sizes 
listed in Supplementary Table 3. This background is then subtracted from the input image. A 2D 
Fourier transformation of the image is calculated using the Matlab built-in functions fft2.m and 
fftshift.m. A circular low-pass filter is then applied to the Fourier transform by only keeping the 
information below the spatial threshold frequency listed in Supplementary Table 3. After filtering, 
the image is binarised using a single-intensity threshold. In the binarised image, the intensity 
values are reversed to render the originally dark prisms white, to facilitate contour finding. The 
Matlab built-in function imfill.m is then applied to fill in holes in the white regions of the binarised 
image. The projection contour of the prisms is calculated from the binarised images based on the 
strong intensity change at shape contours using the built-in Matlab function bwtraceboundary.m. 
Contour smoothing is achieved by averaging neighbouring points on the rough contour. 
A smoothing factor, which is the number of neighbouring points used in averaging, is used to 
control the level of smoothing. The smoothed contour is used as the final output contour shown in 
Figure 1e (main text). The same process is applied for the contour finding and labelling in 
Figure 1g (main text) as shown in Supplementary Figure 5c. 
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Supplementary Note 4. Literature summary of the sluggish nanoparticle motions in previous 
liquid-phase TEM work  
Maintaining the fast motion of nanoparticles under the liquid-phase TEM is a key experimental 
advancement which enables the crystallisation of individual nanoparticles into superlattices 
instead of the irregular aggregates observed previously. In our work, the nanoparticles can 
dynamically arrange and rearrange their positions during crystallisation. Such fast motions are 
crucial to annealing defects and the formation of a crystal (main text Figure 1h), avoiding kinetic 
trapping into irregular aggregates. We track the trajectories of 18 liquid-like columns 
(Supplementary Figure 3a) and compute the diffusivity (247 nm2/s) based on the mean squared 
displacement (MSD) versus time (Supplementary Figure 3b). Because of the high area fraction 
(~0.8) of the liquid-like columns, their diffusivity is lowered to less than 10% of that of a free 
column in solution11,12. Therefore, the diffusivity of a single column is estimated to be about 
2470 nm2/s, two orders of magnitude smaller than the predicted diffusivity based on Brownian 
motion. In contrast, in previous liquid-phase TEM work (Supplementary Table 1), nanoparticle 
motions have been found to be 5 to 9 orders of magnitude slower than the predicted diffusivity 
over a wide range of nanoparticle composition and size. In Supplementary Table 1 we survey 
earlier liquid-phase TEM (not scanning transmission electron microscopy (STEM)) work in which 
nanoparticle diffusivity is measured experimentally.  

 
Supplementary Note 5. Evaluation of beam-induced effects on the nanoparticle system 

Here, we evaluate in detail electron-beam effects on the crystallisation behaviour of nanoparticles 
in the systems studied. 

 
5.1. Evaluation of beam-induced pH effects on the surface charge density of nanoprisms 

The surface charge density of the prisms arises from deprotonated –COO- ligands on the prism 
surface (main text Figure 1a). The ratio of negatively charged (–COO-) and neutral (–COOH) 
ligands on the prisms is calculated for different pH conditions using the Henderson–Hasselbalch 
equation, pH = p𝐾/ + log 4

[67]
[96]

: , where [A<]  and [HA]  are the molar concentrations of 
–COO- and –COOH ligands on the prism surface at equilibrium, respectively. The –COOH ligand 
has an acid dissociation constant (p𝐾/) around 3.5–3.7, as specified by the manufacturer, and we 
use 3.5 in the calculation. At the initial pH = 8, we perform zeta-potential measurements of the 
nanoprisms using a Malvern Zetasizer and obtain a surface charge density σ = -0.048 C/m2, 
calculated from the measured prism mobility µ  following σ = µνκ,	where ν  is the dynamic 
viscosity of the solution and k–1 the electrostatic screening length of the solution1,22. As shown in 
Supplementary Figure 4b, the prism surface charge density stays constant when the pH is larger 
than 5 (97–100% of the –COOH functional groups are deprotonated). Note that the initial PBS 
solution (0.0345 M, pH = 8) has a buffering capability that can keep the final pH above 5 for up 
to 0.0325 M of additional H+ possibly generated during the TEM imaging (Supplementary 
Figure 4c). There is a monotonic relationship between H+ generated in liquid-phase TEM via 
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radiolysis of water and electron-beam dose rates23. Even at a dose rate of 
~109 Gy/s = 224 e– ·Å– 2·s– 1, higher than the dose rates we used, the H+ generated by radiolysis is 
still three orders of magnitude lower than 0.0325 M23. Therefore, we expect the carboxylic acid 
functional group of ligands on the prism surface to remain completely deprotonated and the prism 
surface charge density to remain constant during liquid-phase TEM imaging, consistent with our 
previous work1,4. 

 
5.2. Beam-induced ionic strength increase at low dose rates 
Under electron beam irradiation, radiolysis of pure water gives rise to radiolysis products, 
including charged species (e.g., e-, H+, OH-, HO2-, O-, O2-, and O3-)23, which increase the ionic 
strength. In our previous work1, we showed using the calibration between liquid-phase TEM and 
small-angle X-ray scattering that at low dose rates the effective ionic strength increases 
monotonically with beam dose rate, for PBS buffer solution of the same composition. We use those 
results as a working curve and derive the final ionic strength to be about 0.45–0.75 M at our 
imaging conditions. These final ionic strengths are consistent with the parameters used in our 
simulation, which reproduce our experimental results (see main text and Supplementary Note 11). 
This agreement shows that the illumination beam, at low dose rate conditions, does not alter the 
fundamental nature of nanoparticle interactions. For example, ligands are shown to stay intact on 
the prism surfaces because the gap of two ligand layer thickness is still maintained between 
adjacent prisms even when the net attraction pushes them into physical contact, as shown in our 
previous work on nanoparticle self-assembly studies at low dose rates1,4. Note that when the dose 
rates are higher than 300 e– ·Å– 2·s– 1, the prisms are observed to coalesce1 and alter their shape 
fundamentally, possibly due to desorption of passivating ligands. 
 

5.3. Literature survey on beam dose rate dependent electron-beam effects in liquid-phase TEM 
Here, we survey and compile previously observed radiation effects in liquid-phase TEM work at 
different dose rates and show that the beam effects in our work detailed in Supplementary Notes 
5.1 and 5.2 are consistent with these observations (Supplementary Table 2, updated from Table S1 
of Ref. 1). The literature survey is summarised in Supplementary Figure 4d in the form of a scatter 
plot that illustrates the appearance of three distinct dose rate regimes. We focus on studies 
performed in a SiNx-based liquid-phase TEM and do not consider STEM or graphene-based liquid 
cell TEM studies because of possible differences in beam radiation and energy dissipation16,24-26. 
Studies that did not report dose rate values are not included. The precise boundary of the low-dose 
regime can shift given different solvents, ligands and nanoparticles, although the general trend of 
electron-beam effects that increase with dose rate is consistent with what has been shown below 
in our literature survey. 
 
In the first regime (green area, Supplementary Figure 4d, < ~1 e–·Å– 2·s– 1), Kelly et al.27,28 and 
Evans et al.29 primarily performed biological imaging with minimal beam effects. This is also the 
regime where we did not detect a change in the nanoprism system (the leftmost data point in 
Figure 5 of Ref. 1). The second regime (red area, Supplementary Figure 4d, 1–90 e–·Å– 2·s– 1) 
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matches with our discussion that visible nanoparticle reactions do not occur (with one exception 
discussed below) but the liquid environment affects nanoparticle interactions. Within this regime, 
Keskin et al.30 reported beam-induced electrostatic screening that allows nanoparticles to approach 
each other closely and assemble due to DNA base pairing. In electrochemistry studies, a simple 
redox event at a Pt electrode was examined at a dose rate of ~1 e– ·Å– 2·s– 1 in a SiNx cell patterned 
with electrodes31. Although there was no visible change of the electrode, a shift in the redox 
potentials occurred in the presence of the electron beam. There are two references32,33 where 
nanoparticle growth was observed at 42 e–·Å– 2·s– 1 and 46 e–·Å– 2·s– 1. Yet even in the first work, 
no nanoparticle reaction was observed at dose rates below 30 e–·Å– 2·s– 1, which is the range of 
electron beam dose rates used in our experiments (prisms: 3.7‒14.8 e–·Å– 2·s– 1; concave cubes: 
27.1 e–·Å– 2·s– 1; spheres: 11.9 e–·Å– 2·s– 1). The third regime (yellow area, Supplementary 
Figure 4d, > 100 e–·Å– 2·s– 1) is the dose rate used in most previous liquid phase TEM work, where 
chemical reactions triggered by the electron beam have been consistently observed. In this regime, 
the accumulated radiolysis products change the redox environment of the liquid and induce the 
growth, coalescence and sometimes etching (depending on solution composition) of nanoparticles 
in the presence of metallic precursors. Notably, at dose rates higher than 1000 e– ·Å– 2·s– 1, where 
we observed fusing of prisms due to the possible beam-induced removal of surface ligands 
(Figure 5 of Ref. 1 at 3400 e– ·Å– 2·s– 1), previous experiments also showed abrupt changes of the 
structure and dynamics of nanoparticles. For example, Wu et al.34 reported the deposition of gold 
onto Pt seed nanoparticles at 300 e– ·Å– 2·s– 1 and fractal growth of gold dendrites at 1500 
e– ·Å– 2·s– 1. Tang et al.35 reported the electron-beam-induced growth of Au nanocrystals as well as 
coalescence at 1675–1836 e– ·Å– 2·s– 1. Wu et al.36 reported the growth of Au nanocrystals and 
formation of multi-twinned decahedral nanostructures at 6250 e– ·Å– 2·s– 1. It is speculated in these 
studies34-36 that electron-beam effects can go beyond changing the liquid redox environment and 
also have the potential to induce surface ligand damage or even rearrange the atoms inside 
nanoparticles. 
 
In all liquid-phase TEM work listed in Supplementary Table 2, electron-beam-induced plasmonic 
force were not observed, not even in several direct quantitative force mapping experiments9,18,37. 
Although plasmonic forces have been shown to displace metallic nanoparticles in previous STEM 
work38-40, this effect was reportedly observed as not playing a role in TEM systems even when- an 
electron dose rate of ~1000 e– ·Å– 2·s– 1, two orders of magnitude higher than our experimental 
conditions, was used41. This is ascribed due the fact that in TEM the electron beam uniformly 
illuminates a large sample area instead of the focused beam used in STEM, and that generally 
smaller dose rates are used than in STEM work where plasmonic force effects were observed18,41,42. 
In addition, even in STEM it has been reported, based upon comparison of experimental 
observations before and after the liquid inside a liquid cell was dried, that plasmonic force effects 
are only important when particles reside in vacuum and not when they reside in a liquid43. 
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Supplementary Note 6. TEM movie analysis to identify the nonclassical crystallisation 
pathways 

 
6.1. Vertical growth of columns 
The vertical growth of columns is observed and captured at two levels. As shown in Figure 1d–g 
(main text), we capture and analyse the step-wise stacking and rounding of the projection contour 
on the single-column level. In addition, we capture the large-scale stacking process from prisms 
sitting on the SiNx substrate to fully grown columns (Supplementary Figure 6). Over time, the 
projections of prisms continue to decrease in intensity, an indication of more prisms stacking onto 
the bottom ones. According to the Beer’s absorption law often used for TEM image-contrast 
analysis56,57, the contrast is given by 

𝐶CDE = ln G
𝐼I/JKL
𝐼MN

O = 𝑛/JQRσSLQTT𝑡	, (S1) 

where 𝐶CDE is the normalised TEM contrast, 𝐼I/JKL is the intensity measured from the areas where 
the electron beam only passes through water and the SiNx window, 𝐼MN is the intensity measured 
from the nearby areas of the same liquid chamber with nanoparticles, 𝑛/JQR is the number of atoms 
(gold for our system) per unit volume, which remains the same for the TEM movie captured 
without changing experimental conditions (e.g., same exposure time, magnification, etc.), σSLQTT 
is the absorption cross-section and 𝑡 is the thickness of the materials. Under the assumption that 
there is no additional contribution from the nanoprisms being in a strong diffraction condition, the 
measured image intensity of a single column under TEM is thus 

𝐼MN = 𝐼I/JKLe<[\]^_`ab^ccd	, (S2) 
which depends monotonically on the thickness 𝑡. The gradual shift of intensities towards a lower 
value shows that the thickness of stacked columns (i.e., number of prisms inside the columns) 
increases over time (Supplementary Figure 6b,c). This relation also implies that the two 
neighbouring columns tracked in Supplementary Figure 6c, although they started from different 
intensity values, i.e., different numbers of stacked prisms, stabilised at equal column heights, 
consistent with the manner in which we designed the simulation. The evened-out column heights 
are likely due to the fact that the self-assembly occurs in a sealed chamber with limited thickness. 
 

6.2. Tracking of single columns in the crystallisation movies  
A customised Matlab code is used to de-noise the raw TEM images and identify the single-column 
positions in each frame of the liquid-phase TEM movies. The detailed column-tracking procedure 
is shown in Supplementary Figure 7 using one image of Supplementary Video 4 as an example; 
we perform the same analysis for other crystallisation movies (Supplementary Videos 4 and 6) and 
the large-scale hexagonal lattice (Supplementary Video 1) using the same parameters, as they have 
the same magnification. In these movies, 1 pixel corresponds to 2.6 nm. First, we de-noise the 
TEM image using an algorithm established previously in single-particle tracking for optical 
microscopy movies (bpass.m function in the codes provided in Ref. 13), which sharpens the 
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column contours. We use 1 pixel and 30 pixels as the spatial wavelength cutoffs, which are the 
input parameters for this function. Next, using the built-in Matlab circle-finding function 
(imfindcircles.m, with threshold and sensitivity set to 0.01 and 0.95, respectively), as columns 
have circular projections, we identify the columns from the processed images and track the position 
of each column from the centroids of the fitted circles. The columns identified via the circle fitting 
have a range of 12 to 20 pixels in diameter. A correction to the tracked column positions is applied 
when the centroid positions of two columns are closer than 22.84 pixels (59.4 nm), as this is not 
physically possible given the dimension of columns. These identifications occur due to the fast 
motion of columns within single exposure time, which results in elongated columnar projections 
that are identified as two separate columns. For these cases, the intensity values at the centroid of 
the two columns are compared and the column with the lower centroid intensity on the filtered 
image is deleted. The column-tracking error was less than 4.0 pixels. 

 
6.3. Structural characterisation of an ordered hexagonal lattice 

We calculate the centre-to-centre distances 𝑟 of all pairs of neighbouring columns from positions 
of columns tracked in an ordered lattice (Supplementary Figure 8a) based on the method detailed 
in Supplementary Note 6.2, obtaining (115 ± 6) nm (full distribution in Supplementary Figure 8b). 
This centre-to-centre distance is consistent with the value (115.5 nm) predicted for a hexagonal 
lattice from columns in physical contact (assuming 100 nm for the prism side length and the 
circumscribed circle of stacked prisms as the column diameter, see Supplementary Figure 8c). In 
contrast, if the same-sized prisms pack into aligned columns and further crystallise into a 
honeycomb lattice via side-by-side arrangements, the expected centre-to-centre distance of 
neighbouring columns is calculated to be much smaller, only 57.7 nm (Supplementary Figure 8d). 
 

6.4. Identification of column phases 
The determination of the different states of columns during the crystallisation to the final 
hexagonal lattice is performed on the liquid-phase TEM movies covering the assembly process 
from dilute, individual prisms to large-scale ordered crystals. The analysis workflow is 
summarised in Supplementary Figure 9a. For each TEM frame in one TEM movie, the positions 
of individual columns are first tracked following the methods described in Supplementary Note 6.2 
(Supplementary Figure 9b). Next, based on the tracked column positions, we perform the Voronoi 
cell analysis and compute the local density of individual columns ρ', defined as the inverse of the 
Voronoi cell area containing column 𝑗 (Supplementary Figure 9c). 
Independently, we also characterise the local hexagonal positional order at the single-column level 
in each frame of a movie. We first compute the radial distribution function 𝑔(𝑟) based on all the 
column positions (Supplementary Figure 9d), employing a standard method to account for the 
limited viewing area size by applying a periodic boundary correction58. From the first minimum 
after the first peak of 𝑔(𝑟)  we define the threshold 𝑟S  as the nearest-neighbour bond length. 
Supplementary Figure 9e shows the corresponding bond network for a typical liquid-phase TEM 
image. Based on this bond network, we compute the six-fold local bond orientational order 
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parameter for each column, ψ&' =
j
kl
∑ exp	(6𝑖β'r)
kl
rsj , where 𝑍'  is the number of nearest 

neighbours of column 𝑗, the summation runs over all nearest neighbours and β'r  is the angle 
between the bond that links column 𝑗 and its 𝑘th neighbour and an arbitrarily chosen reference 
axis. The squared modulus $ψ&'$

"  (Supplementary Figure 9f) is used to characterise the local 
positional order of an individual column at a given time, eliminating the dependence on the choice 
of reference axis59,60.  
We use these order parameters to classify individual columns. From the local density distribution, 
we determine a threshold local density ρS = 0.5ρy, where 𝜌y = 8.66×10–5 nm–2 is the density of a 
perfect hexagonal lattice with centre-to-centre distance 115.5 nm (cf. Supplementary Note 6.3, 
Supplementary Figure 8). We define a column as “gas-like” when ρ' < ρS . “Liquid-like” and 
“solid-like” columns, which have comparable local density, are distinguished by their local 
structure order. Since $ψ&'$

" only considers the structural order within the first neighbour shell of 
column 𝑗, it is insufficient for this purpose59. To differentiate solid and liquid phases we employ 
the solid bond number ξ'61-63, which characterises how many neighbours belong to a similar solid-
like structure. To obtain ξ' we define 𝑆'r = Re(ψ&'ψ&r∗ ), following 2D colloidal studies64. We 
compute 𝑆'r for each bond for each frame of Supplementary Video 6 (Supplementary Figure 9g). 
The distribution of 𝑆'r  shows two distinct peaks (Supplementary Figure 9h), which we use to 
define a threshold 𝑆'r,S = 0.5 to determine whether two connected neighbours belong to a similar 
structure. The solid bond number ξ'  then follows as ξ' = ∑ H(𝑆'r − 𝑆'r,S)

kl
rsj , where H is the 

Heaviside function (Supplementary Figure 9i). Following previous studies on colloidal phase 
transitions63,65, a threshold value ξS = 4 is adopted. If a column has ξ' ≥ ξS, it is defined as a 
“solid-like” column; if ξ' < ξS, the column is defined as “liquid-like” (Supplementary Figure 9j). 
We confirmed that the precise choice of ξS  does not change the growth kinetics determined 
(described in detail in Supplementary Note 6.6). The radial distribution functions presented in 
main text Figure 3b,c are calculated based on the positions of columns belonging to solid or liquid 
states during the entire crystallisation process. The criteria we use to distinguish solid and liquid 
states follows previous literature on phase transitions63. 
 

6.5. 2D density–structural order histogram and coarse-grained order parameter 

The 2D histogram of ($ψ&'$
", 𝜌') shows two domains (Supplementary Figure 10a). Following 

Refs. 63,65,66, we replot this histogram employing the coarse-grained order parameter |ψ(&'|" =
|(∑ ψ&rk∗

rsy )/(𝑍∗ + 1)|", where 𝑍∗is the number of nearest-neighbour columns in the same state 
as column j (gas, liquid or solid). The histogram of (|ψ(&'|", 𝜌') shows more well-defined domains 
(Supplementary Figure 10b). The 2D histogram of only those columns identified as solid-like 
(Supplementary Note 6.4) shows a region of high structural order (Supplementary Figure 10c) 
overlapping with the corresponding domain in Supplementary Figure 10b, reconfirming the correct 
assignment of solid-like columns. Note, the time-varying histogram shown in Figure 2j (main text) 
was computed based on the accumulated counts of neighbouring 11 frames with the time labelled 
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according to the central frame, and the total histogram map in Figure 3a (main text) accumulated 
all the statistics through the whole video (Supplementary Video 6). From both the total histogram 
map and the time-varying ones, we can see two distinctly populated states, one of high local order 
and high local density, the “solid” state, and the other of low local order and high local density, 
the “liquid” as we defined in Supplementary Note 6.4. 
 

6.6. Characterisation of the multi-step crystallisation process 
The column state identification of Supplementary Note 6.4 makes it possible to track the temporal 
evolution of the number of columns in different states (Supplementary Figure 11a) and to display 
their distribution in colour-labelled time-lapse TEM images (Supplementary Figure 11b). Initially, 
dilute columns concentrate locally into amorphous domains with high local density and the number 
of liquid-like columns grows steadily (Supplementary Figure 11, stage I, II). Subsequently, solid-
like columns start to emerge, first fluctuating (Supplementary Figure 11, stage III), then growing 
steadily and rapidly (Supplementary Figure 11, stage IV). At this time, the number of liquid-like 
columns begins to drop, indicating a conversion of liquid-like columns to solid-like ones. 
To compare the crystallisation behaviour in different batches at the same experimental condition, 
we monitor the growth of clusters of columns connected by nearest -neighbour bonds (cf. bond-
network calculation in Supplementary Note 6.4). Figure 3d (main text) shows that the numbers of 
liquid-like and solid-like columns, respectively, versus cluster size N for different batches are 
described by a master curve. No normalisation of the column numbers is applied, except that we 
counted the columns within the views of the same size. Figure 3d illustrates that there is a 
characteristic cluster size 𝑁S, below which clusters are composed of liquid-like columns (the data 
have slope 1, indicating that all columns form into the liquid state). Beyond this critical cluster 
size, solid-like columns start to grow and ultimately dominate the entire cluster. The observation 
of a single characteristic cluster size 𝑁S in multiple experiments suggests that a thermodynamic 
driving force governs the multi-step crystallisation process, as discussed in Supplementary 
Note 6.7 below. 
The intermediate liquid region can remain spatially stable for more than 70 s. We monitor a typical 
spatial region inside the high-density cluster (boxed in Supplementary Figure 11b). The zoomed-
in time-lapse TEM images (Supplementary Figure 11c) show that most columns in the region 
remain liquid-like (blue) before stable solid crystallites emerge from the cluster. The total number 
of columns inside the selected region stabilizes at around 16 ± 2 during this time, with the fraction 
of liquid-like columns being 100% most of the time, and that of the solid-like columns close to 
zero (Supplementary Figure 11d).   
 

Summary of the signatures of two-step crystallisation in the observed pathway 
We summarise three experimentally observed signatures supporting that the high-density liquid 
phase is a metastable intermediate characteristic of two-step crystallisation, instead of an unstable 
transient state occurring in a one-step process.  
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The first signature of two-step crystallisation is based on the numbers of solid (Nsolid) and liquid 
columns (Nliquid) in a high-density cluster composed of N columns (Figure 3d). During 
crystallisation, both local density and structural order increase. To distinguish a two-step process 
from the classical one-step process, prior literature has used the variation of Nsolid vs. N (e.g., 
Figure 2 in Ref. 67; Figure 4 in Ref. 68; Figure 3 in Ref. 60). In those studies, one-step 
crystallisation was characterised by a proportional increase of Nsolid with N, resulting from 
simultaneous fluctuations in density and structure, whereas two-step crystallisation consistently 
showed a delayed increase in Nsolid. Initially, the high-density cluster (N) grows to a characteristic 
size, after which crystalline structure begins to emerge inside the high-density cluster. Our 
Figure 3d measured from the liquid-phase TEM movies indeed matches the pathway for two-step 
crystallisation: Nsolid remains almost zero until the high-density cluster N reaches a characteristic 
size Nc, corresponding to the definition of two-step crystallisation that structural fluctuations 
follow density fluctuations67,69. Another aspect of Figure 3d is that Nsolid increases with a decrease 
in Nliquid, indicating that solid forms from the liquid phase by consuming the liquid-like columns 
and confirming that liquid is not merely coexisting with solid70. This kinetic feature is further 
supported by the TEM imaging, where solid nucleates spatially within the liquid (Figure 3d, inset) 
and by the temporal evolutions of Nsolid and Nliquid (Supplementary Figure 11a), which show that 
liquid appears first and grows for more than 50 s before being converted into solid.  

The second signature of the intermediate liquid phase is the liquid phase peak in the order‒density 
($ψ(&'$

", ρ') histograms (Figure 2j and Figure 3a). One standard method for detecting precursors 
or intermediates in phase transition studies is to graph the probability map of building blocks 
exhibiting certain values of local order parameters, wherein the high-probability phases (peaks in 
the histogram) are considered either metastable or stable phases (see Figure 3 in Ref. 66; Figures 
1b and 2f in Ref. 63). This method relies on a Boltzmann distribution argument: the more populated 
regions reflect a lower free energy, i.e., more stable states. The ($ψ(&'$

", ρ') histogram (Figure 3a) 
clearly shows a highly populated region with high local density and low structural order, i.e., a 
sustained, metastable liquid intermediate. In comparison, transient phases are too short-lived to 
exhibit such a well-defined, low-energy region in the order parameter space. Moreover, consistent 
with the evolution of the number of liquid and solid columns described above, Figure 2j shows 
that the liquid region appears first in the ($ψ(&'$

", ρ') histogram, remains stable, and only becomes 
less populated after the appearance of solid, consistent with the liquid phase acting as an 
intermediate in the crystallisation pathway.  
The third signature of the liquid phase as an intermediate is the direct imaging of a long-lasting, 
spatially stable liquid phase before the emergence of solid (Figure 2j and Supplementary 
Figure 11). Prior studies on two-step crystallisation utilised either real-space images66 or 
spectroscopic features (X-ray scattering in Ref. 70) to show the existence of a liquid state prior to 
the formation of crystals. In accordance with this approach, the top panels in Figure 2j corroborate 
the evidence from the number of columns in the different phases as well as the time evolution of 
the order–density histograms. Additional real-space data follows from monitoring the fraction of 
liquid-like columns within a fixed spatial region (Supplementary Figure 11c,d). For a long time 
(~70 s), the columns in this region fluctuate in position but maintain 100% liquid column fraction 
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most of the time, suggesting the long-lasting, spatially stable existence of the liquid phase prior to 
the emergence of solid. In contrast, for one-step crystallisation, nucleation occurs from density 
fluctuations that are randomly distributed in in space71, and therefore such systems do not exhibit 
a similar spatially stable intermediate.  

 
6.7. Gibbs free energy of column crystallisation 

According to a phenomenological two-barrier Gibbs free-energy model proposed for micron-sized 
colloids72,73, the formation of a crystalline phase starts with the appearance of an amorphous liquid-
like intermediate (Supplementary Figure 12a). The thermodynamic driving force behind this 
phenomenon can be qualitatively explained from classical nucleation theory by comparing the 
change in Gibbs free energy Δ𝐺	for the gas–liquid and gas–solid transitions versus cluster size 𝑁. 
At a cluster size 𝑁 = 𝑁S , corresponding to the characteristic critical cluster size identified 
experimentally (main text Figure 3d), the two Δ𝐺 curves intersect. Below 𝑁S, the liquid “phase” 
has a lower free energy, favouring the formation of liquid-like columns as an intermediate; above 
𝑁S, the solid phase has a lower free energy. The existence of this crossover has been observed in 
other systems with two-step crystallisation process such as proteins67,74-76 and micron-sized 
colloids60,68,77-81.  
In our system, the first step toward crystallisation is the emergence of liquid-like clusters from gas-
like columns. For this step, we obtain the free-energy barrier from the size distribution of liquid-
like clusters60,72,82. Since the cluster size distribution is invariant over time (Supplementary 
Figure 12c), we assume that it follows a Boltzmann distribution and calculate the free-energy 
change ∆𝐺 as a function of cluster size 𝑁 (Supplementary Figure 12d) using ∆𝐺(𝑁) − ∆𝐺(1) =
−𝑘�𝑇ln(𝑛�(𝑁)/𝑛�(1)), where 𝑛�(𝑁) is the number of liquid clusters of size 𝑁. It is noteworthy 
that the Boltzmann distribution is a reasonable assumption even for situations where a phase 
transition is taking place (gas to liquid or liquid to solid) but the number of the product clusters 
(liquid or solid, respectively) is stable over time (Supplementary Figure 12c,e), as demonstrated 
in previous literature60,72. The line tension and chemical-potential difference for the gas–liquid 
transition are obtained by fitting the free-energy curve in Supplementary Figure 12d. Assuming a 
circular shape for the cluster, the area fraction of projected columns arranged in a hexagonal pattern 
is ηS	 = 0.91 and the perimeter of a cluster with 𝑁  columns is ηS

<��π𝑁
�
�  in units of column 

diameter60. Thus, the Gibbs free energy of formation for a 2D cluster containing 𝑁  columns 
follows, 

∆𝐺(𝑁) = ηS
<j"πΓ𝑁

j
" + ∆µ𝑁	, (S3) 

 
with Γ the line tension per column diameter and ∆µ the chemical-potential difference between the 
two states60. By fitting the Gibbs free-energy change using Eq. S3 (red line in Supplementary 
Figure 12d), we estimate the line tension as Γ = 1.0±0.1 kBT per column diameter and the chemical-
potential difference as ∆µ = 0.38±0.04 kBT. This liquid–gas line tension refers to the Gibbs free-
energy difference between columns inside the cluster and those at the cluster surface71. We note 
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that the “gas” phase from which the liquid phase emerges includes both the gas-like columns 
tracked as yellow dots in Figure 2g–i and the platelets dispersed in the solution. This line-tension 
calculation only concerns the probability of liquid cluster sizes and does not depend on the 
experimental accuracy of resolving the gas phase.  
The same method is also applied to calculate the Gibbs free-energy difference between the solid 
and liquid states by counting the cluster distribution of solid nuclei inside the pre-formed liquid 
clusters. The distribution of solid clusters 	𝑛�(𝑁) , the number of solid clusters of size 𝑁 , is 
measured as shown in Supplementary Figure 12e. The Gibbs free-energy change is then calculated 
as ∆𝐺(𝑁) − ∆𝐺(1) = −𝑘�𝑇ln(𝑛�(𝑁)/𝑛�(1)) as shown in Supplementary Figure 12f. By fitting 
the Gibbs free-energy change using Eq. S3 (red line in Supplementary Figure 12f), we estimate 
the line tension as Γ = 0.32 ± 0.03 kBT per column diameter and the chemical-potential difference 
as ∆µ = 0.10 ± 0.02 kBT. The Gibbs free-energy barrier as well as the line tension in the liquid-to-
solid transition are lower compared than for the gas-to-liquid case. These measurements thus 
suggest that the emergence of the liquid intermediate is the rate-limiting step and that the 
subsequent liquid-to-solid transition occurs smoothly. Due to the absence of solid nucleating 
directly from gas in our system, we are not able to measure the gas-solid interfacial tension. 
Qualitatively we expect that due to the larger structural difference between gas and solid than 
between gas and liquid, the interfacial tension of the former is larger, thereby favoring the liquid 
intermediate and the two-step pathway. 
 

Supplementary Note 7. Validation of our experimental platform for other nanoparticle 
systems 
The versatility of our approach is explored for gold nanoparticles of other shapes, including 
concave nanocubes (Supplementary Figure 2a) and nanospheres (Supplementary Figure 2b), each 
representing a distinctive shape category (concave polygons or isotropic, respectively). Capped 
with the same charged thiols as the prisms, these nanoparticles are triggered to crystallise through 
the same process of screening electrostatic repulsion via an increase in ionic strength 
(Supplementary Videos 8 and 9), validating the robustness of our low-dose liquid-phase TEM 
platform to probe nanoscale crystallisation. The superlattice symmetry varies with nanoparticle 
shape. The gold concave nanocubes grow preferentially face-to-face into a simple cubic lattice 
(Supplementary Figure 13), while nanospheres rapidly pack into hexagonal layers, upon which 
more spheres attach vertically following the ABC positioning, resulting in a 3D face-centred cubic 
lattice (Supplementary Figure 14). The Fourier transforms of both superlattices demonstrate high 
structural order, as the nanoparticles dynamically adjust their positions to minimise defects. 
However, the crystallisation pathways can be different due to the inherent complexity and richness 
(surface curvature, ligand patchiness, etc.) associated with nanoscale interactions. 

 
Supplementary Note 8. Coarse-grained model for pairwise interaction calculation 
To describe the pairwise interaction between two triangular prisms at all possible relative positions 
and orientations, we construct a coarse-grained (CG) model in which each prism coated with 
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charged ligands is discretised as a mesh of beads, placed on stacked hexagonal layers with both 
intralayer spacing and hexagonal lattice spacing Δ�	 = 	0.5 nm. We represent the triangular prism 
shape and surface ligands using N1	= 252,540 beads of type 1 (dark pink beads in Supplementary 
Figure 15a) to model the gold atoms and N2	 = 54,402 type-2 beads (light pink beads in 
Supplementary Figure 15a) to model the coating of charged ligands. The type-1 beads form a 15-
layer triangular prism with thickness 7.5 nm. The type-2 beads form a triangular prism-shaped 
monolayer representing the ligands. The resulting prism has a side length of 100 nm and a 
thickness of 12.5 nm (7.5 nm prism thickness plus 5.0 nm for two monolayers of ligands), matching 
the dimensions measured in experiment (Supplementary Figure 1)1.  

The type-1 beads have a van der Waals interaction 𝑢���(𝑟�<�), and the type-2 beads interact via 
a screened Coulomb potential	𝑢K�(𝑟�<�) using Debye–Hückel approximation, where 𝑟�<� denotes 
the distance between pairs of interacting beads. The van der Waals interactions between ligands 
and between ligands and gold atoms are negligible owing to the very small Hamaker constants for 
hydrocarbon/hydrocarbon and gold/hydrocarbon across water83. The interactions 𝑢���(𝑟�<�) and 
𝑢K�(𝑟�<�) are given by 

𝑢���(𝑟�<�) = −
𝐻Δ�&

𝜋"𝑟�<�&
	 , (S4) 

𝑢K�(𝑟�<�) =
𝑍�"𝑒"

4𝜋𝜖y𝜖L𝑟�<�
𝑒<���7� =

𝑍�"𝑙¡
𝑟�<�

𝑒<���7�𝑘�𝑇	, (S5) 

 
where H = 28.9𝑘¡𝑇 is the Hamaker constant for gold in water, 𝜖y	the vacuum permittivity, 𝜖L the 
relative permittivity of water, 𝜅<j the Debye length which depends on the salt concentration via 
𝜅<j ≈ 0.304/¤𝐼(M) nm for water at room temperature, 𝑙� = 0.7 nm the Bjerrum length of water 
at 25°C and 𝑍� = σΔ�"/𝑒 = 0.075 the effective charge (with e = 1.6 × 10<j¨ C the unit charge) 
of each type-2 bead, derived from the surface charge density σ = –0.048 C/m2 as measured in 
experiment (Supplementary Note 5.1 and Supplementary Figure 2). Note that the charge per bead 
is smaller than the unit charge because we treat the surface charge density as smeared out uniformly 
over the surface. We assume that the charge density of the ligands on the edges of the prism is the 
same as on its face. 
In our CG model, for computational efficiency we assume that the electrostatic and van der Waals 
interactions are additive and pairwise. This is not exactly correct, especially at the nanoscale and 
below, where the size of the building blocks, solvent and ligand molecules are comparable84. 
However, these non-additivity effects appear to be minor in our case, as shown in Supplementary 
Note 11.8, which summarizes the consistency between simulations/modelling and experiments at 
different levels. Moreover, we assume that the Debye–Hückel approximation still holds in the 
ionic strength range of interest. Note that Debye–Hückel theory is only valid in the dilute regime 
but fails at moderate or high salt concentrations due to the neglect of ion–ion correlations, 
hydration forces and steric effects. Remarkably, recent experiments85 have shown that the Debye 
length is a nonmonotonic function of salt concentration, so that the interaction between charged 
surfaces in concentrated electrolytes decays exponentially but with a decay length longer than the 
Debye length. This renders the electrostatic repulsion stronger and longer-ranged than predicted 
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by Debye–Hückel theory. On the other hand, recent simulation work86 indicates that charged 
spherical nanoparticles with either low or high surface charge densities experience strong long-
range depletion attractions at high monovalent salt concentrations, with ion clusters serving as the 
depletants. Owing to these competing effects, it is not clear to what extent in our case the 
interactions will deviate from the Debye–Hückel approximation (Eq. S5) at high ionic strengths. 
Empirically, we note that the prism spacings predicted by our CG model exhibit a fair match with 
experimental measurements over a wide range of ionic strengths (Supplementary Figure 15d). In 
Supplementary Note 11.8 we provide a more complete list of comparisons between our 
modelling/simulations and the experiments at different levels, showing good consistency and thus 
validating our assumptions here. 

Based on the interactions 𝑢���(𝑟�<�) between type-1 beads and 𝑢K�(𝑟�<�) between type-2 beads, 
the total pairwise interaction 𝐸JQJ between two arbitrarily oriented and positioned prisms in our 
CG model is then computed by summing over pairwise interactions between beads on the two 
prisms. The discretisation spacing Δ�  is chosen small enough to ensure convergence of this 
summation. Thus, we define the total pairwise van der Waals interaction 𝐸��� between two prisms 
as 

𝐸��� =ª ª 𝑢���($𝐫¬ − 𝐫'$)
�

'sj

�

¬sj
= −ª ª

𝐻Δ�&

𝜋"$𝐫¬ − 𝐫'$
&

�

'sj

�

¬sj
	 , (S6) 

where the sums over 𝑖 and 𝑗 run over all type-1 beads in the first and the second prism, respectively. 
Here 𝐫¬ and 𝐫' denote the position vectors of the beads being considered, and N1 is the number of 
type-1 beads in a prism. Likewise, the pairwise electrostatic interaction 𝐸K� between two prisms is 

𝐸K� =ª ª 𝑢K�($𝐫¬ − 𝐫'$)
�

'sj

�

¬sj
=ª ª

𝑍�"𝑙¡
$𝐫¬ − 𝐫'$

𝑒<�$𝐫®<𝐫l$𝑘�𝑇
�

'sj

�

¬sj
, (S7) 

where the sums over 𝑖 and 𝑗 run over all type-2 beads on the ligand shell of the first and the second 
prism, respectively, and N2 is the number of type-2 beads in a prism.  

Next, we examine how 𝐸JQJ = 𝐸��� + 𝐸K� depends on the relative position and orientation of two 
prisms. Starting from the simplest case, where two prisms are coaxial, parallel and fully aligned 
(Δθ = 0) with a vertical separation 𝑑, we compute 𝐸���, 𝐸K�, and 𝐸JQJ as a function of 𝑑 at ionic 
strengths varying from 0.2 M to 3.0 M, using the CG model. The definitions of 𝑑 and Δθ for the 
parallel and coaxial case are illustrated in Figure 2a (main text). As a typical example, 
Supplementary Figure 15b shows the interaction energy as a function of 𝑑  at 𝐼  = 2.0 M. The 
potential minimum is very deep and narrow (Supplementary Figure 15b, inset). We denote the 
corresponding separation and (minimum) energy of a pair of prisms as 𝑑R±² and 𝐶, respectively 
(identified by the blue triangle in Supplementary Figure 15b). We will refer to 𝐶 as the coupling 
constant. Besides this simple fully aligned case (Δθ = 0), we compute 𝐸JQJ– 𝑑 at different Δθ 
values at 𝐼 = 2.0 M. As shown in Supplementary Figure 15c, the equilibrium separation at which 
𝐸JQJ is minimal remains constant, independent of Δθ, whereas the energy minimum becomes less 
deep when Δθ increases (up to 60°). Thus, the global energy minimum of a pair of parallel and 
coaxial prisms corresponds to 𝑑 = 𝑑R±² and Δθ = 0. The strong coupling and the small value of 
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𝑑R±² (~1.08𝑡y at 𝐼	= 2.0 M, where 𝑡y = 12.5 nm denotes the total thickness of the prism defined in 
Supplementary Figure 15a) indicates that only minimal tilting of the prism basal planes is 
permitted and that the parallel two-prism configuration is a representative arrangement to study 
the energetics of stacked prisms inside a column. The dependence of 𝑑R±² on ionic strength 𝐼 is 
illustrated in Supplementary Figure 15d, where the values for 𝑑R±² predicted by the CG model are 
shown to be in good agreement with experimental values, validating our model. Likewise, we 
compute the coupling constant 𝐶 vs. ionic strength 𝐼	(Supplementary Figure 15e). As higher salt 
concentration screens the electrostatic repulsion more effectively, the coupling constant increases 
in magnitude. The coupling constant will be used as a key parameter to connect the pairwise 
interaction with ionic strength in our analytical modelling below. 
 
Supplementary Note 9. Derivation of analytical functional forms for inter-particle 
interaction used in Monte Carlo simulations 
The CG model is accurate but computationally very costly. Therefore, we derive an analytical 
model for use in the Monte Carlo simulations, by approximating the pairwise interaction energy 
obtained from the CG model along different degrees of freedom by analytical functions that are 
inexpensive to evaluate. Beyond the coaxial case considered in Supplementary Note 8, we now 
focus on the case where the two prisms are only required to be parallel but not necessarily coaxial. 
Therefore, their relative position and orientation can be fully described by four parameters: the 
vertical separation	𝑑, the spin-angle difference Δθ, the magnitude of the horizontal displacement 
𝑥  and the angle α  (see schematic in Supplementary Figure 16a). The vertical separation 𝑑  is 
defined as the distance from the centre of one prism (prism2) to the basal plane of the other prism 
(prism1 or central prism). The horizontal displacement vector 𝐱 points from the centre of prism1 
to the projected centre of prism2 on the basal plane of prism1. The magnitude of 𝐱 is denoted by 
𝑥 and its direction is measured by the angle α (∈ [−π/3, π/3] owing to the threefold symmetry) 
between 𝐱 and the orientation vector (defined as the vector from the prism centre through an 
arbitrary vertex of its triangular basal plane, shown by the red arrows in Supplementary Figure 16a) 
of prism1. The spin-angle difference Δθ (∈ [−π/3, π/3]) is defined as the angle between the 
orientation vector of prism1 (red arrows) and the projection of the orientation vector of prism2 on 
the basal plane of prism1 (green arrow). For two parallel prisms, the assignment of prism1 and 
prism2 does not make a difference for the values of 𝑑, Δθ, α or 𝑥. However, the order does make 
a difference when the basal planes of two prisms are not parallel, where we will have unequal 𝑑¬→' 
and 𝑑'→¬; 𝑥¬→' and 𝑥'→¬; Δθ¬→' and Δθ'→¬; and α¬→' and α'→¬, depending on which prism’s basal 
plane is used for the measurement (see Supplementary Note 9.4 for details).  
Due to the strong screening of the electrostatic repulsion in the range of ionic strengths considered 
here (0.2 to 3.0 M), the total interaction energy 𝐸JQJ between two parallel prisms computed from 
the CG model consists of a short-range repulsive contribution and a relatively long-ranged 
attractive contribution (see Supplementary Figure 15b for an example). The left panel of 
Supplementary Figure 16b shows a schematic illustration of which term dominates in different 
regions around a central prism (prism1), according to the CG model. To simplify the analytical 
modelling, we approximate the repulsive part of 𝐸JQJ by merely the volume exclusion of the prisms 
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in the analytical model (cf. right panels of Supplementary Figure 16b,c), whereas the remaining 
attractive part of 𝐸JQJ at larger distances, which is more complicated, is approximated by analytical 
functions of 𝑑 , 𝑥 , Δθ  and α  derived from the fitting procedures detailed below. A direct 
consequence of this simplification is that unlike the repulsive region in the CG model (whose 
boundary shrinks or expands with ionic strength), the boundary of the excluded-volume region 
(orange in Supplementary Figure 16b) in the analytical model is fixed by the geometry of the 
prism, e.g., the minimum-energy separation 𝑑R±² in the analytical model becomes simply the total 
thickness of the prism 𝑡y regardless of ionic strength (Supplementary Figure 16c, right panel). As 
shown in Supplementary Figure 16b, inside the attractive region the configuration of the two 
parallel prisms can be classified as either face-to-face (green region) or side-by-side (purple 
region); we will derive functional forms of the pairwise interaction energy (attractive part) for 
these two types of configurations below, see Supplementary Notes 9.1 and 9.2.  
Throughout this Supplementary Note, all lengths are expressed in dimensionless units, measured 
in terms of the total prism thickness 𝑡y	= 12.5 nm, and denoted by an asterisk. 
 

9.1. Face-to-face configurations 

9.1.1. Dependence of interaction energy on spin-angle difference Δθ (at 𝑑∗ = 𝑑R±²∗ , 𝑥∗ = 0) 

The pairwise interaction energy 𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) between two coaxial parallel prisms 
at the minimum-energy separation vs. the spin-angle difference Δθ is computed using the CG 
model at various ionic strengths ranging from 0.2 to 3.0 M. We find that the curve for 
𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) vs.	Δθ can be fitted very well with a cosine function,  

𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) = 𝐶 +
Δ𝐸
2
(1 − cos3Δθ)	, (S8) 

where Δ𝐸 = 𝐸JQJ 4𝑑∗ = 𝑑R±²∗ , Δθ = ¼
½
, 𝑥∗ = 0: − 𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ = 0, 𝑥∗ = 0)  is the 

difference in total interaction energy between the anti-aligned and aligned cases, and 𝐶  is the 
interaction energy minimum between two coaxial and parallel prisms 
𝐸JQJ(𝑑∗	=	𝑑R±²∗ ,	Δθ	=	0,	𝑥∗	=	0), as defined in Supplementary Note 8, which only depends on the 
ionic strength	𝐼 (see Supplementary Figure 15e). As shown in Supplementary Figure 17a, the 
effective form Eq. S8 works well for typical ionic strengths in the range probed, 𝐼 =	0.5,	1.0	and	
2.5	M. The interaction energy difference Δ𝐸 (labelled in Supplementary Figure 17a) is directly 
related to the coupling constant 𝐶 (or ionic strength 𝐼) as shown in Supplementary Figure 17b, 
following a linear dependence Δ𝐸 = −0.23𝐶 − 1. Thus, in the analytical model we write the 
pairwise energy as a function of Δθ as 

𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) = 𝐶 −
0.23𝐶 + 1

2
(1 − cos3Δθ)	. (S9) 
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9.1.2. Dependence of interaction energy on vertical separation 𝑑∗ (at 𝑥∗ = 0) 

The magnitude of the pairwise interaction 𝐸JQJ (the attractive part) between two coaxial parallel 
prisms decreases as the separation 𝑑∗ increases (Supplementary Figures 15b and 17c). This decay 
can be fitted by 𝐸JQJ(𝑑∗ > 𝑑R±²∗ , Δθ, 𝑥∗ = 0) = 𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) ∙ (𝑑R±²∗ /𝑑∗)Ã  at 
different ionic strengths and Δθ  values. As an example, we plot the full range of 
𝐸JQJ(𝑑∗, Δθ, 𝑥∗ = 0) vs. 𝑑∗/𝑑R±²∗  at ionic strength 𝐼 = 2.0 M for two extreme Δθ values: Δθ = 0 
and Δθ = π/3 in Supplementary Figure 17c, where the squares are the data computed from the 
CG model and the red solid lines represent the analytical model,  

𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗ = 0) =
𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) ∙ 𝑑R±²∗ Ã

𝑑∗Ã

=
𝐶
𝑑∗Ã

−
(0.23𝐶 + 1)

2𝑑∗Ã
(1 − cos3Δθ)	. (S10)

 

The last equality follows since 𝑑R±²∗ = 1 in the analytical model due to the approximation of the 
repulsive part of the pairwise energy by the excluded-volume interaction. 
 

9.1.3. Dependence of interaction energy on horizontal displacement 𝑥∗ 
Now we turn to the off-centre case where the second prism has a horizontal displacement with 
respect to the first prism with magnitude 𝑥∗ and direction characterised by the angle α (−π/3 ≤
	α ≤ π/3), as defined in Supplementary Figure 16a. To determine the dependence of the attractive 
part of the pairwise interaction energy 𝐸JQJ on 𝑥∗ at different values of Δθ and α, we consider six 
special cases listed in Supplementary Figure 17d, where the two prisms are perfectly aligned 
(Δθ = 0) or anti-aligned (Δθ = π/3) and the displacement angle α is chosen to be 0, π/6 or π/3. 
We observe that the qualitative dependence of 𝐸JQJ  on 𝑥∗  remains similar at different ionic 
strengths and vertical separations	𝑑∗.	As an illustration, we plot the interaction energy between two 
prisms at the minimum-energy separation 𝑑∗ = 𝑑R±²∗  as a function of 𝑥∗ for the above 6 cases at 
ionic strength 𝐼  = 2.0 M in Supplementary Figure 17e (Δθ = 0  with α = 0, π/6, π/3 ) and 
Supplementary Figure 17f (Δθ = π/3 with α = 0, π/6, π/3) obtained from the CG model. For all 
curves, the dependence on 𝑥∗ can be described by a cosine function, 

𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗, α) = j
"
𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗ = 0) 41 + cos ÅÆ∗

Æa∗(ÇÈ,É)
:	 , (S11)  

where 𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗ = 0) is defined in Eq. S10. The cutoff distance 𝑥S∗  in the above 
expression determines the off-centre distance beyond which the interaction energy is negligible, 
i.e., 𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ ≥ 𝑥S∗) = 0. As shown in Supplementary Figure 17e,f, 𝑥S∗ is insensitive 
to α at Δθ = 0, but increases with decreasing α at Δθ = π/3. We qualitatively capture this trend 
by setting 𝑥S∗ =	6.2 independently of α when Δθ ≤ π/6, whereas for the more misaligned case 
Δθ > π/6 we set 𝑥S∗ = 8.0 for α ≤ π/18, 𝑥S∗ = 6.5 for π/18 < α < π/6 and 𝑥S∗ = 5.2 for π/6 ≤
α ≤ π/3. Combining Eqs. S5–S8, the general analytical form for the attractive part of the pairwise 
energy, 𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗, α), between two parallel prisms arranged in a face-to-face fashion 
can be summarised as 
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𝐸JQJ(𝑑∗ ≥ 𝑑R±²∗ , Δθ, 𝑥∗, α) = Ê
2𝐶 − (0.23𝐶 + 1)(1 − cos3Δθ)

4𝑑∗Ã
Ë G1 + cos

𝜋𝑥∗

𝑥S∗(Δθ, α	)
O	 . (S12) 

 
This equation covers all the different cases discussed in Supplementary Notes 9.1.1–9.1.3. 
Combination of Eq. S12 with the excluded-volume repulsion 𝐸JQJ(𝑑∗ < 𝑑R±²∗ , Δθ, 𝑥∗, α) = +∞, 
yields the full pairwise interaction energy for face-to-face configurations. 
 

9.2. Side-by-side configurations 
We now consider the configurations where the centre of one prism is located in the ‘side-by-side’ 
region (purple region in Supplementary Figure 16b) of the other prism, see inset of Supplementary 
Figure 18a. Starting from the simplest case where the two prisms are placed on the same plane 
with zero vertical separation (𝑑∗ = 0) and oriented such that Δθ = α = π/3, we compute their 
pairwise interaction energy 𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗) vs. 𝑥∗ using the CG model at ionic 
strengths ranging from 0.2 to 3.0 M. We find that the data at different ionic strengths exhibit a 
common trend. As shown in Supplementary Figure 18a, the curve 𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗) 
vs. 𝑥∗ at 𝐼 =	2.0	M has a well-defined minimum side-by-side total interaction energy 𝐶T±�K and 
horizontal displacement 𝑥R±²∗ . Since 𝐸JQJ  shows a rapidly increasing repulsion as 𝑥∗  decreases 
below 𝑥R±²∗ , we use the excluded-volume interaction of the prisms to model their repulsion, similar 
to the analytical model for the face-to-face configurations (Supplementary Note 9.1). Therefore, 
the minimum-energy horizontal displacement 𝑥R±²∗  in the analytical model is the centre-to-centre 
distance between two fully attached side-by-side prims, 𝑥y∗ (defined in Supplementary Figure 18a, 
inset). In this arrangement, 𝐶T±�K (i.e., 𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗ = 𝑥R±²∗ )), is directly related 
to the coupling constant 𝐶 (the global interaction energy minimum for face-to-face configurations, 
cf. Supplementary Note 9.1), as shown in Supplementary Figure 18b, which illustrates the linear 
fit 𝐶T±�K = 0.15𝐶 + 0.75. Our general model for the attractive part of the interaction energy, 
𝐸JQJ(𝑥∗ ≥ 𝑥R±²∗ ), is described in detail below in Supplementary Notes 9.2.1 and 9.2.2. 

As a matter of simplification, we note that |Δθ| ≈ |α| ≈ π/3  holds for all side-by-side 
configurations (purple region in Supplementary Figure 16b) and therefore we approximate the 
interaction energy 𝐸JQJ(𝑑∗, Δθ, 𝑥∗, α)  between two side-by-side prisms by 𝐸JQJ(𝑑∗, Δθ = α =
π/3, 𝑥∗). The justification for this assumption is that the pairwise attraction for the side-by-side 
configurations is only substantial when the two edges are close enough (see Supplementary 
Figure 18a), where |Δθ| and |α| cannot deviate significantly from π/3 for two non-overlapping 
prisms. For example, if we choose the cutoff for the horizontal distance 𝑥S∗ = 5.2 (as introduced 
below), we have |Δθ| > 50°  and |α| > 35° , and our approximation introduces an error 
within 𝑘�𝑇. 

 

9.2.1. Dependence of interaction energy on horizontal displacement 𝑥∗ (at 𝑑∗ = 0) 
To examine the dependence of the pairwise interaction energy between two side-by-side prisms 
on the horizontal displacement 𝑥∗, we first consider zero vertical separation, 𝐸JQJ(𝑑∗ = 0, Δθ =
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α = π/3, 𝑥∗). The trend of the curves for 𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗) vs. 𝑥∗ is qualitatively 
similar for all ionic strengths examined, and we choose 𝐼 = 2.0  M for illustration purposes. 
Supplementary Figure 18c shows 𝐸JQJ	vs. reduced distance 𝑥∗/𝑥R±²∗  (𝑥R±²∗ = 𝑥y∗ in the analytical 
model, as discussed above) for this case, where the squares represent the data from the CG model. 
The short-range repulsive part of 𝐸JQJ  at 𝑥∗ < 𝑥R±²∗  is well described by the excluded-volume 
repulsion (vertical red line at 𝑥∗ =	𝑥R±²∗ ). We approximate the attractive part of the total energy at  
𝑥∗ ≥ 𝑥R±²∗  via 𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗) = 𝑌/𝑥∗Ã + 𝑍 , with 𝑌  and 𝑍  to be determined 
from the boundary conditions at 𝑥∗ = 𝑥R±²∗  and at the cutoff 𝑥∗ = 𝑥S∗, 

⎩
⎪
⎨

⎪
⎧𝐸JQJ 4𝑑∗ = 0, Δθ = α =

π
3 , 𝑥

∗ = 𝑥R±²∗ : =
𝑌

𝑥R±²∗ Ã + 𝑍 = 𝐶T±�K = 0.15𝐶 + 0.75

𝐸JQJ 4𝑑∗ = 0, Δθ = α =
π
3
, 𝑥∗ = 𝑥S∗: =

𝑌
𝑥S∗Ã

+ 𝑍 = 0												(𝑥S∗ = 5.2)
	 . (S13) 

For simplicity, the cutoff distance is chosen as 𝑥S∗ = 5.2 for all ionic strengths (the same as the face-
to-face case when Δθ = α = π/3 , see Supplementary Note 9.1.3). Equation S13 yields 
𝑌 = 𝐶T±�K𝑥R±²∗ Ã𝑥S∗

Ã/(𝑥S∗
Ã − 𝑥R±²∗ Ã) and 𝑍 = −𝐶T±�K𝑥R±²∗ Ã/(𝑥S∗

Ã − 𝑥R±²∗ Ã). Thus, in the analytical 
model the attractive part of the pairwise interaction energy for the side-by-side configuration 
(Δθ = α = π/3) at 𝑑∗ = 0 as a function of 𝑥∗ is 

𝐸JQJ 4𝑑∗ = 0, Δθ = α =
π
3
, 𝑥∗ ≥ 𝑥R±²∗ : =

𝑥R±²∗ Ã

𝑥S∗Ã − 𝑥R±²∗ Ã Ó
𝑥S∗

Ã

𝑥∗Ã
− 1Ô (0.15𝐶 + 0.75)

																																								=
𝑥y∗

Ã

𝑥S∗Ã − 𝑥y∗
Ã Ó
𝑥S∗

Ã

𝑥∗Ã
− 1Ô (0.15𝐶 + 0.75)														(with	𝑥S∗ = 5.2)	. (S14)

 

Supplementary Figure 18c shows this expression (solid red curve), with 𝑥R±²∗ = 𝑥y∗. 
 

9.2.2. Dependence of interaction energy on vertical separation 𝑑∗ 
The pairwise interaction energy 𝐸JQJ for side-by-side configuration vs. the vertical separation	𝑑∗ is 
plotted in Supplementary Figure 18d for different values of the horizontal distance 𝑥∗ at 𝐼 =	2.0	M. 
Since the CG data (symbols) exhibit a fairly linear dependence on 𝑑∗, we approximate it as 

	𝐸JQJ 4𝑑∗, Δθ = α =
π
3 , 𝑥

∗: 

																	= 𝑑∗𝐸JQJ 4𝑑∗ = 1, Δθ = α =
π
3
, 𝑥∗: + (1 − 𝑑∗)𝐸JQJ 4𝑑∗ = 0, Δθ = α =

π
3
, 𝑥∗:	 , (S15) 

where 𝐸JQJ(𝑑∗ = 1, Δθ = α = π/3, 𝑥∗)  follows from Eq. S12 in the face-to-face case and 
𝐸JQJ(𝑑∗	=	0,	Δθ	=	α	=	π/3,	𝑥∗) from Eq. S14. The curves for this analytical model are plotted in 
Supplementary Figure 18d (solid red curves), showing an overall good agreement. 
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Thus, we obtain the general form of the attractive part of the pairwise total energy between two 
side-by-side parallel prisms (Δθ = α = π/3) with vertical separation 𝑑∗	(< 1) and horizontal 
distance 𝑥∗ (≥ 𝑥R±²∗ ), 

	𝐸JQJ 4𝑑∗, Δθ = α =
π
3 , 𝑥

∗ ≥ 𝑥R±²∗ : 

= 𝑑∗
𝐶 − (0.23𝐶 + 1)

2 G1 + cos
π𝑥∗

𝑥S∗
O + (1 − 𝑑∗)

𝑥y∗
Ã

𝑥S∗Ã − 𝑥y∗
Ã Ó
𝑥S∗

Ã

𝑥∗Ã
− 1Ô (0.15𝐶 + 0.75)	, (S16) 

where 𝑥S∗ = 5.2 and the only control parameter is the coupling constant 𝐶 (or the ionic strength 𝐼). 
 
9.3. Summary of the analytical functional forms for the pairwise interaction energy between two 
parallel prisms 
Based on the pairwise interactions for face-to-face (Supplementary Note 9.1) and side-by-side 
(Supplementary Note 9.2) configurations, the pairwise total energy between two parallel prisms 
with vertical separation 𝑑∗, horizontal centre-to-centre distance 𝑥∗, spin-angle difference Δθ and 
horizontal relative direction	α can be fully described by the volume exclusion of the prisms plus 
the analytical function	𝐸JQJ(𝑑∗, Δθ, α, 𝑥∗), 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

≈ 𝐸JQJ 4𝑑∗, Δθ = α = 	
𝜋
3
, 𝑥∗: =

𝑑∗[𝐶 − (0.23 ∙ 𝐶 + 1)] Ù1 + cos 𝜋𝑥∗

𝑥S∗ 4
𝜋
3 ,
𝜋
3:
Ú

2
																																								

																								+
(1 − 𝑑∗)(0.15 ∙ 𝐶 + 0.75) G𝑥S∗ 4

𝜋
3 ,
𝜋
3:

Ã
− 𝑥∗ÃO 𝑥y∗

Ã

G𝑥S∗ 4
𝜋
3 ,
𝜋
3:

Ã
− 𝑥y∗

ÃO 𝑥∗Ã
								(0 ≤ 𝑥∗ ≤ 𝑥S∗, 0 ≤ 𝑑∗ < 1)

= Ê
2𝐶 − (0.23 ∙ 𝐶 + 1)(1 − cos3Δθ)

4𝑑∗Ã
Ë G1 + cos

𝜋𝑥∗

𝑥S∗(α, Δθ)
O																	(0 ≤ 𝑥∗ ≤ 𝑥S∗, 1 ≤ 𝑑∗ ≤ 𝑑S∗)

= 0																																																																																																																																				(𝑥∗ > 𝑥S∗	or	𝑑∗ > 𝑑S∗)

, (S17) 

where the coupling constant 𝐶  (which is also the global energy minimum for face-to-face 
configurations) is the only control parameter, directly related to the ionic strength	𝐼. The cutoff 
distance 𝑥S∗  is assigned based on the rule introduced in Supplementary Note 9.1.3. For 
computational efficiency, the cutoff for the vertical separation is set to the fairly small value 𝑑S∗ =
3.0 (i.e., 𝐸JQJ(𝑑∗ > 𝑑S∗, Δθ, 𝑥∗, α) = 0). This is justified by the 𝑑∗<Ã decay of  𝐸JQJ versus 𝑑∗ and 
guarantees a relative error of less than 1.2%. 

 
9.4. Generalisation of the analytical model to nonparallel pairs and the approximations being made 
The analytical forms presented in the previous Supplementary Notes apply to prisms that are nearly 
parallel. For nonparallel prism pairs, there are additional degrees of freedom to be taken into 
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account. However, due to the short-range character of the interactions (e.g., the cutoff distance for 
the vertical separation 𝑑S∗ = 3.0), two prisms within the same column must be very close and 
almost parallel to have a nonzero pairwise interaction. In addition, the attraction between prisms 
and the substrate (see Supplementary Note 10) promotes the vertical growth of columns on the 
substrate, so that most prisms are nearly parallel with each other and with the substrate. Therefore, 
we impose in our analytical model that two prisms have nonzero interaction energy only if 
|𝐧ÝÞ ∙ 𝐧Ý¡| > 0.95, where 𝐧ÝÞ and 𝐧Ý¡ are the normal vectors of the two prisms, respectively. This 
requirement in the analytical model promotes nematic order of the system and artificially lowers 
the probability of certain rare nonequilibrium configurations, e.g., face-to-edge arrangements, but 
does not affect equilibrium configurations. 
For near-parallel prisms, the interaction zone around a central prism in the analytical model is 
shown in Supplementary Figure 19a,b for face-to-face and side-by-side configurations, 
respectively. The combined interaction zone (green and purple regions) around the central prism 
appears as an approximately cylindrical shape due to the simplification (in the schematic only) that 
𝑥S∗  is a constant. Since 𝑥S∗  varies with Δθ  and α , the actual contour is considerably more 
complicated. As mentioned at the beginning of Supplementary Note 9 and shown in 
Supplementary Figure 16a, a pair of non-parallel prisms (i and j) has unequal interaction 
parameters when i and j are exchanged, i.e., the pairs  𝑑¬→'∗  and 𝑑'→¬∗ ; Δθ¬→' and Δθ'→¬; α¬→' and 
α¬→'; and 𝑥¬→'∗  and 𝑥'→¬∗  are not identical. To eliminate this geometric asymmetry, we employ their 
average as the true pairwise interaction energy, 

𝐸JQJ
¬' =

1
2
ß𝐸JQJà𝑑¬→'∗ , 𝑥¬→'∗ , Δθ¬→', α¬→'á + 𝐸JQJà𝑑'→¬∗ , 𝑥'→¬∗ , Δθ'→¬, α'→¬áâ	, (S18) 

where 𝐸JQJà𝑑¬→'∗ , 𝑥¬→'∗ , Δθ¬→', α¬→'á and 𝐸JQJà𝑑'→¬∗ , 𝑥'→¬∗ , Δθ'→¬, α'→¬á are defined in Eq. S17.   

Lastly, we examine the validity of restricting pairwise attractions to near-parallel prisms. The 
requirement |𝐧ÝÞ ∙ 𝐧Ý¡| > 0.95 corresponds to tilt angles γ < 18.2°. For two coaxial cases, Δθ = 0 
and Δθ = π/3 (Supplementary Figure 19c), we compute the pair potential from the CG model as 
a function of tilt angle at different separations 𝑑j→"∗  (Supplementary Figure 19d,e). The data from 
the CG model (symbols) agree fairly well with the analytical model Eq. S18 (red lines). Note that 
at each value for 𝑑j→"∗ , beyond a certain tilt angle γ the interaction energy increases sharply due to 
the strong electrostatic repulsion (CG model) or the excluded-volume interactions (analytical 
model). In particular, at 𝑑j→"∗ = 𝑑R±²∗ = 1 no tilting is permitted in the analytical model. 

 
Supplementary Note 10. Prism–substrate interaction employed in the Monte Carlo 
simulations  

As reported earlier56 and also observed in the present work, there is a short-range attraction 
between the substrate and the prisms. Since prisms attracted to the surface are greatly confined in 
their motion, the substrate–prism attraction plays an important role in templating the assembly of 
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the final hierarchical lattice and promoting the vertical growth of stacks of prism (see main text 
Figure 1d–g and Supplementary Figure 6).  

We model this prism–substrate interaction via an attractive square-well potential with range 𝑡y 
from the substrate (Supplementary Figure 19f). Thus, the interaction energy 𝐸N� is proportional to 
the overlap volume between the prism and the interaction zone (𝑉±² in Supplementary Figure 19f), 
𝐸N� = 𝐸y𝑉±²/𝑉Ç , where 𝐸y < 0 is a constant and 𝑉Ç = 16√3𝑡y½ is the total volume of the prism 
including the coated ligands (i.e., the volume of the prism in the analytical model). Setting the 
magnitude of 𝐸y  too large will result in prisms first fully covering the entire substrate before 
forming columns, whereas a too small value will not lead to vertical columns, in contradiction to 
the experimental observations. Thus, we choose 𝐸y = 𝐶/2, where 𝐶 is the minimum of the prism–
prism interaction. The role of the substrate–prism interaction is discussed further in Supplementary 
Notes 11.4. 

 

Supplementary Note 11. Large-scale canonical Monte Carlo simulations of hierarchical 
assembly 

11.1. Simulation methods 

Monte Carlo (MC) simulations are conducted of systems of 𝑀JQJ triangular prisms in a rectangular 
simulation box in the canonical ensemble. The system is periodic in 𝑥 and 𝑦 directions, but finite 
along the 𝑧-axis to make it consistent with the experimental setup. The aspect ratio of the box is 
chosen to be 𝐿Æ: 𝐿ë= 2:√3, which ensures that the target crystal structure (hexagonal lattice) will 
not be forbidden by the periodic boundary conditions in the x–y plane87. All prisms have pairwise 
interactions described by the analytical model of Supplementary Note 9, Eqs. S17–S18. For the 
excluded-volume interactions, overlapping prisms are detected via the Möller–Trumbore ray–
triangle interaction algorithm88.  

Each simulation runs for 10ì MC cycles for equilibration and then another 10ì MC cycles for 
production, where a cycle consists of 𝑀JQJ MC moves. In each MC move, a prism is randomly 
picked for a translation, rotation or spin with respective probabilities 0.4, 0.3 and 0.3. In a rotation, 
the normal vector of the prism face is rotated to a trial orientation generated by adding a randomly 
oriented vector with magnitude αL to the original normal vector. Thus, αL controls the maximum 
range of the rotational motion. A spin refers to rotation of the prism around its normal vector within 
the range [−αT, αT] . During the equilibration process, αL  and αT , as well as the maximum 
displacement of the translational move αJ, are adjusted after every cycle to maintain an acceptance 
rate of 20%.  

The initial configuration of the system consists of 𝑁SQ� = 64 columns organised on a 2D square 
lattice in order to accelerate the assembly of individual prisms into columns. There are 𝑀 prisms 
inside each column, where 𝑀 is determined by 𝐿í to achieve an average spacing 𝐿í/𝑀 of 1.1𝑡y. 
We use 𝑀JQJ = 𝑁SQ� ⋅ 𝑀 to denote the total number of prisms. Note that the columns are free to 
disassemble or rearrange themselves during the equilibration cycles. To ensure that the equilibrium 
structure does not depend on the initial configuration, we also perform simulations starting from 
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more random initial configurations, where the system is composed of 𝑀  layers within which 
prisms are randomly distributed and oriented within x–y plane. After a longer equilibration time, 
such systems arrive at the same final structure as those started from a square-lattice initial 
configuration. 

Since the packing density along the 𝑧-axis is controlled by the confinement and does not influence 
the 2D structural order, we use the 2D packing fraction to describe the concentration of the 
columns. ϕ"# is defined as the 2D packing faction ϕ"# = 𝑁SQ� ∙ 𝐴Ç/(𝐿Æ𝐿ë), where 𝐴Ç is the area 
of the face of a prism and 𝑁SQ� = 64 in all simulations (ϕ"# is varied from 0.29 to 0.5 which is 
realised by varying 𝐿Æ). At each ϕ"#, we vary both the height of the simulation box 𝐿í from 10𝑡y 
to 25𝑡y (with 𝑀 and 𝑀JQJ being automatically determined) and the ionic strength 𝐼 from 0.44 to 
3.0 M (by varying 𝐶 in the model). The parameters used in the large-scale simulations are listed 
in Supplementary Table 4, in which there are three independent variables: ionic strength 𝐼, height 
of the simulation box 𝐿í and the 2D packing fraction ϕ"#.  
 

11.2. Characterisation of orientational order of a single column 

To quantify the in-plane (i.e., x–y) orientational order of the 𝑀 prisms within a column, we define 
the orientational order parameter 𝑆È = maxÈñ{∑ cos	[3(θ¬ − θy)]ó

¬sj /𝑀}, where θ¬  denotes the 
in-plane spin angle (i.e., the angle between the projection of the orientation vector of the prism on 
the x–y plane and the x axis) of prism i and 𝐧Ý = (cosθy, sinθy) is the global director for triatic 
phases. 𝑆È  follows the conventional definition of the triatic order parameter of 2D liquid-
crystalline phases due to the three-fold symmetry of triangular prisms. In particular, 
𝑆" = maxÈñ{∑ cos	[2(θ¬ − θy)]ó

¬sj /𝑀} and 𝑆Ã = maxÈñ{∑ cos	[4(θ¬ − θy)]ó
¬sj /𝑀} measure the 

degree of nematic and tetratic ordering of 2D systems89. 𝑆È ranges from 0, corresponding to an 
orientationally disordered (randomly misaligned) state, to 1, corresponding to a fully ordered 
(perfectly aligned) state. The calculation of 𝑆È can be easily converted to an eigenvalue problem 
by rewriting it as 

𝑆È = max
Èñ

j
ó
∑ 42 cos" õ½

"
(θ¬ − θy)ö − 1:ó

±sj 																																																																																																			

	= max
Èñ

j
ó
∑ õ2 4cos" ½È®

"
cos" ½Èñ

"
+ sin" ½È®

"
sin" ½Èñ

"
+ 2cos ½È®

"
cos ½Èñ

"
sin ½È®

"
sin ½Èñ

"
: − 1öó

±sj

				= max
Èñ

j
ó
∑ 4cos ½Èñ

"
, sin ½Èñ

"
: 4cos3θ sin3θ
sin3θ −cos3θ:Ù

cos ½Èñ
"

sin ½Èñ
"

Úó
¬sj 	.																																												(S19)

If 𝐧Ý′  denotes the vector 4cos ½Èñ
"
, sin ½Èñ

"
:  and 𝑄 = j

ó
∑ Gcos3θ¬ sin3θ¬

sin3θ¬ −cos3θ¬
Oó

¬sj  is the ordering 

matrix, we obtain the simplified expression 𝑆È = max
𝐧Ýù
ú𝐧Ýû ∙ 𝑄 ∙ 𝐧Ýûüý. Thus, 𝑆È is just the largest 

eigenvalue of the ordering matrix 𝑄 , and the director 𝐧Ý = (cosθy, sinθy)  can be obtained 
from(cos(3θy/2) , sin	(3θy/2)) = 𝐧Ýy , where 𝐧Ýy  is the normalised eigenvector corresponding 
to	𝑆È. 
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The average columnar orientational order of the system of multiple columns is denoted by 〈𝑆È〉, 
where the angular brackets indicate an average over all columns. 
The orientational structure of a column can also be quantified by the orientational correlation 
function 𝐺½(𝑚) = 〈cos[3(θ¬ − θ¬"#)]〉¬ , quantifying the average orientational correlation 
between prism i and its 𝑚J$-nearest neighbour within the same column. Fitting 𝐺½(𝑚) with 𝑒<#/%& 
yields the decay length 𝑙S. 
 
11.3. Characterisation of crystal structure in simulations 

To describe the 2D hexagonal order of the columns we first detect and locate each column. Prisms 
are considered to belong to the same column if their centre-to-centre distance in the x–y plane lies 
within a certain cutoff. We find that a cutoff of 50/√3 nm maximises the accuracy. The center 
position of the column in the x–y plane is calculated by averaging the x–y centre position of each 
constituent prism. The local hexagonal order of the columns is quantified by the squared modulus 
of the six-fold bond-orientation order parameter $ψ&'$

"  (see Supplementary Note 6.4 for 
definition). The cutoff distance used to determine the bonded neighbours is the position of the first 
minimum after the first peak of the radial distribution function 𝑔(𝑟) of the columns, consistent 
with Supplementary Note 6.4. The global bond-orientation order parameter 	Ψ&6( is given by 

	Ψ&6( = 〈
1
𝑁SQ�

ª ψ&'

a^)

'sj

〉	 , (S20) 

where the angular brackets indicate the time average. The square of the absolute value of the bond-
orientation order parameter $	Ψ&6($

" is used to characterise the 2D global structural order of the 
system87. 
The 3D translational order of the prisms is characterised by the diffraction patterns in Figure 1c 
and Figure 4d (main text), which were generated by computing the structure factor,  

𝑆(𝐪) =
1
𝑀JQJ

〈ª ª 𝑒<¬𝐪∙à𝐑l<𝐑,á
ó]^]

rsj

ó]^]

'sj
〉 	 , (S21) 

where 𝐑' is the position vector of the center of prism j and the angular brackets denote the temporal 
average. 
The translational order of the prisms along the z axis is characterised by (i) the structure factor 
𝑆(𝑞í) = 〈∑ ∑ 𝑒<¬./(íl<í,)ó]^]

rsj
ó]^]
'sj 〉/𝑀JQJ, where 𝑧' denotes the z coordinate of the centre of prism j, 

and (ii) the volume fraction profile along the z axis. The latter is defined as the ratio between the 
volume fraction of prisms whose centres lie in a horizontal slab of volume 𝐿Æ𝐿ëΔ𝑧 between 𝑧 and 
𝑧 + Δ𝑧  and the overall volume fraction. This ratio can be written as ϕ(𝑧)/ϕ  = 〈𝑀(𝑧)𝑉Ç/
(𝐿Æ𝐿ëΔ𝑧)〉/ϕ = 〈𝑀(𝑧)𝐿í/(𝑀JQJΔ𝑧)〉, where 𝑀(𝑧) represents the number of prisms whose centres 
are located between 𝑧 and 𝑧 + Δ𝑧 and 𝑉Ç is the volume per prism. We choose Δ𝑧 = 0.2𝑡y. 
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11.4. Role of the confinement along the z axis and the prism–substrate interaction 
The combination of top and bottom substrates is not essential to the nanoprism superlattice 
formation. Previous experiments and simulations (Refs. 90‒92 and main text Refs. 24, 25) show 
that the column formation is independent of the top and bottom substrates. To demonstrate whether 
confinement affects the further building process, we perform simulations without boundaries, but 
instead 3D periodic boundary conditions. As shown in Supplementary Figure 20a, under 
conditions that are otherwise the same as in the confined system, we again obtain the hexagonal 
lattice from columns stacked with misaligned prisms. Given that both the column configuration 
and the inter-column interaction are unaffected by the confinement, we conclude that the two-step 
crystallisation can be retained in the absence of the sandwich geometry.  
Nevertheless, to fully reflect experimental conditions in our simulation, we introduce the 
sandwiching geometry. There are two minor effects brought about by the confinement. First, the 
positional ordering along the z axis (z coordination of stacking in different columns) disappears in 
the absence of confinement, as illustrated in Supplementary Figure 20b, which shows the volume 
fraction profiles ϕ(𝑧)/ϕ under different boundary conditions. The reason is straightforward: the 
existence of the bottom substrate and the substrate attraction aligns the bottom-layer prisms on the 
same lateral plane, and the z-ordering then propagates, because the spacing between prisms within 
the same column is stable1. Second, whereas the 3D periodic systems exhibit no preferential 
orientation for the columns, the confined systems prefer columns to grow parallel to the substrate 
due to the reduced symmetry. This was shown in previous experiments92 and also confirmed by 
our supplementary simulations in the absence of the prism–substrate attraction (Supplementary 
Figure 20c), where columns lie down on the surface. However, in our experiments the prism–
substrate attraction favors the stacking of prisms on top of the substrate and therefore promotes 
the columns to grow vertically (i.e., along the z axis) prior to crystallisation. To reflect this aspect 
of our experimental setup, the substrate–prism attraction (for the bottom substrate only) is 
employed in the simulations as well. 
 

11.5. Analysis of single-prism rotational motion from the large-scale simulations 
As shown in the main text (Figure 4d,e), the final assembled lattice is orientationally disordered. 
Supplementary Figure 21a shows a histogram of the in-plane angle θ  of all prisms in the 
equilibrated hierarchical lattice, consistent with our observation of orientational randomness. The 
minor variation (peaks) in the histogram originate from the spatial symmetry of the hexagonal 
lattice, which makes certain orientations (±π/6 ) slightly more favourable in a rectangular 
simulation cell with periodic boundary conditions. The temporal decay of orientational order can 
be derived from the orientational autocorrelation function 𝑔L(𝑡) = 〈 j

ó]^]
∑ 𝑢1¬(𝑡y) ∙ 𝑢1¬(𝑡y +
ó]^]
¬sj

𝑡)〉dñ, where 𝑢1¬(𝑡) is the unit vector that defines the in-plane orientation of prism i at the instance 
𝑡 and the angular brackets denote the ensemble average. Supplementary Figure 21b illustrates that 
𝑔L(𝑡) decays more slowly at higher ionic strength, due to the strong orientational correlation 
between prisms within the same column. 
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11.6. Dependence of 2D hexagonal order on 2D packing fraction ϕ"# 

Within the range of packing fractions examined (0.362 ≤ ϕ"# ≤ 0.433), the correlation between 
the global hexagonal order parameter $Ψ&6($

" and the average columnar orientational order 〈𝑆È〉 is 
described by a master curve (Figure 4g in main text). In Supplementary Figure 22a,b we illustrate 
that 2D packing fractions outside this range will suppress the hexagonal order, regardless of 〈𝑆È〉. 
In both regimes, $Ψ&6($

" is consistently smaller than 0.5, even at small 〈𝑆È〉. At lower packing 
fractions, no crystallisation takes place, whereas higher packing fractions can only be attained for 
columns consisting of aligned prisms, which then can only crystallise into a honeycomb lattice (if 
ϕ"# is sufficiently high). The effects of packing fraction on the columnar orientational order 〈𝑆È〉 
are discussed in Supplementary Note 13.5 below. 

 
11.7 Simulation of a 2D nanoprism system 
It is noteworthy that the 3D structural details matter critically to the hexagonal lattice of the prism 
system and our system is far more complicated than a purely 2D system. To demonstrate this point, 
we conduct simulations of a true 2D system with triangular nanoprisms that are only allowed to 
move in the x–y plane, i.e., just a single layer of prisms. Under the same conditions where the 3D 
system crystallises into a hexagonal superlattice, this 2D system shows a completely disordered 
phase (Supplementary Figure 23), reinforcing the essential role of the 3D structure of the columns. 
Prisms must to be embedded in a 3D liquid volume to make it possible for several layers to stack, 
thereby accumulating the misalignment between adjacent prisms that results in an isotropic 
column–column interaction potential, which in turn constitutes the driving force for the 
crystallisation. 

 
11.8. Consistency between modelling/simulations and experiments 
The MC simulations presented are consistent with the liquid-phase TEM experiments on the 
following levels. First, the pairwise interaction modelled in the simulation correctly predicts the 
equilibrium inter-prism spacing in the columns measured in experiments at different ionic 
strengths (Supplementary Figure 15d). Second, on the column level, the prism misalignment in 
columns given as the equilibrium structure by MC (Supplementary Video 5) matches the TEM 
images (main text Figure 1e). Third, the computed inter-column interaction strength in the 
simulations matches the line tension obtained from the cluster analysis in the experiments. Last, 
the equilibrium (hexagonal) crystal phase observed in the large-scale simulations matches our 
experimental imaging (main text Figure 1b,c).  
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Supplementary Note 12. Large-scale Monte Carlo simulations at fixed pressure to study the 
prism entering process 

12.1. Simulation methods 

To determine the dependence of osmotic pressure on the 3D volume fraction ϕ =
𝑀JQJ𝑉Ç/(𝐿Æ𝐿ë𝐿í)  and the ionic strength, isothermal–isobaric (𝑁𝑃𝑇  ensemble) Monte Carlo 
simulations are carried out as well. We simulate a system of 𝑀JQJ	 = 	648 prisms in a simulation 
box that is periodic in the 𝑥 and 𝑦 directions but finite along the z axis, with 𝐿í = 20𝑡y . The 
system is equilibrated at fixed osmotic pressure using both prism moves (including 40% translation, 
30% rotation and 30% spin) and anisotropic volume moves. In each MC cycle, there are on average 
𝑀JQJ prism moves and 1 volume move. The volume move is applied only in the 𝑥 and 𝑦 directions 
and maintains the aspect ratio 𝐿Æ/𝐿ë at 2/√3. In each volume move, Δ𝐿Æ/𝐿Æ and Δ𝐿ë/𝐿ë range 
from –0.005 to 0.005. The dimensionless osmotic pressure 𝑃∗ is defined as 𝑃∗ = 𝑃𝑡y½/𝑘¡𝑇. We 
study the system at three pressures (𝑃∗ = 0.01, 0.02, 0.05) and vary the ionic strength 𝐼 from 0.1 
to 2.25	M to obtain the relationship between the equilibrium packing fraction ϕ and the ionic 
strength 𝐼 at different values of pressure 𝑃∗. 
 
12.2. Equation of state 

Supplementary Figure 24 shows the equilibrium 3D volume faction of prisms ϕ as a function of 
ionic strength	𝐼 at different pressures 𝑃∗. At each pressure, ϕ initially increases with increasing 
ionic strength and then saturates. Conversely, at the same equilibrium volume fraction, the larger 
pressure value corresponds to smaller ionic strength, meaning that the gradient of 𝐼 will cause the 
pressure gradient that concentrates the prisms. This explains why the prisms enter the electron-
beam region where the ionic strength is higher than elsewhere at the beginning of the experiment. 
𝑃∗ = 0.02 (squares in Supplementary Figure 24) is closest to the crystallisation pressure condition, 
where ϕ » 0.38 at 𝐼 = 0.5	M.  

 

Supplementary Note 13. Single-column Monte Carlo simulations 
13.1. Simulation method 
To understand the energetics driving column formation, we examine the dependence of the 
orientational structure of a single column on the ionic strength 𝐼 and the number of constituent 
prisms 𝑀 . Thus, we perform single-column simulations (see Supplementary Video 5 for an 
example), where the centre positions of the prisms are fixed and only spin motion around the z 
axis is allowed, i.e., αJ = αL = 0 and αT = 1. For simplicity, we simulate the most common case 
where the prisms are coaxial, equally spaced and parallel to the x–y plane. For consistency with 
the large-scale simulations, we vary the confinement 𝐿í	along the z direction from 10𝑡y to 25𝑡y, 
choosing	𝑀 to set the spacing 𝐿í/𝑀 to 1.1𝑡y. We set 𝐿Æ and 𝐿ë large enough to avoid interactions 
between periodic images.  
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13.2. Helmholtz free-energy calculation in single-column simulations 

We calculate the Helmholtz free energy 𝐹, scaled entropy 𝑇𝑆 and interaction energy 𝐸 of a single 
column as a function of the orientational order parameter 𝑆È. The free energy 𝐹(𝑆È) is obtained 
from the distribution 𝑃(𝑆È) of 𝑆È , since 𝑃(𝑆È) ∝ 𝑒<6(78)/r9ü , i.e., 𝐹(𝑆È) = −𝑘�𝑇lnà𝑃(𝑆È)á +
const. The additive constant is only related to the choice of the reference state. Computation of 
the interaction energy 𝐸(𝑆È)  then yields the entropic contribution 𝑇𝑆(𝑆È) = 𝐸(𝑆È) − 𝐹(𝑆È) . 
Although this does not provide the absolute entropy, it permits calculation of free-energy barriers. 
We apply this approach to two cases: a short column at high ionic strength (Supplementary 
Figure 25a) and a tall column at low ionic strength (Supplementary Figure 25b). Due to 
competition between the entropy favouring low	𝑆È and the interaction energy which is minimised 
when the prisms are perfectly aligned, the free-energy minimum is located at very different values 
of 𝑆È for these two cases, confirming that the orientational order of the column is controlled by 
both ionic strength and the number constituent prisms. 
Owing to the small size of either column, the free-energy well is rather shallow and broad, resulting 
in large fluctuations in 𝑆È. Moreover, it is important to note that the orientational order of the 
columns in the large-scale (many-column) system is also affected by the intercolumn interaction 
and column packing fraction ϕ"#  (see Supplementary Note 13.5 for a comparison of single-
column and large-scale simulations). In particular, for the large-scale system at the same condition 
as in Supplementary Figure 25a, the columns are more aligned and fluctuate less (cf. Figure 4b in 
main text and Supplementary Video 7) than in the single-column simulations due to strong lateral 
attractions between columns.  
A noteworthy point is that the maximum of the entropy curve in Supplementary Figure 25 is not 
located at 𝑆È  =	0,	 the orientationally isotropic state. The reason is that the eigenvalues of the 
ordering matrix 𝑄 (cf. Eq. S19) are dependent on the number of constituting prisms 𝑀. As reported 
previously93, for an orientationally isotropic system, the largest eigenvalue of 𝑄, which we define 
as 𝑆È, decays to zero as 1/√𝑀. Therefore, for the small systems considered here with number of 
prisms between 9 and 23, the computed 𝑆È  is nonzero even for a perfectly isotropic column, 
leading to the entropy maximum at a nonzero value. Therefore, 𝑆È can give a better estimation of 
the orientational order when the column is in a more ordered phase or the number of prisms is 
large. 
 

13.3. Dependence of columnar orientational order on ionic strength 

The ionic strength 𝐼 determines the pairwise interaction profile vs. Δθ between two coaxial parallel 
prisms (Supplementary Figure 26a), and thus affects the relative rotational range quantified by ΔθS 
(defined in main text). At low ionic strength, the two prisms have more relative rotational freedom 
(larger ΔθS). This dependence on ionic strength propagates along the column once prisms are 
stacked into a column, and thus affects the orientational order of the column. Supplementary 
Figure 26b confirms that the orientational correlation function 𝐺½(𝑚) of an individual column 
decays faster at lower ionic strength, indicating a more disordered column as a result of larger ΔθS. 
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13.4. Dependence of column orientational order on the number of constituent prisms 
From single column simulations, a random-walk model has been presented to illustrate the 
dependence of the orientational order on the number of prisms inside the column as shown in 
Supplementary Figure 27.  
 

13.5. Connection between large-scale simulations and single-column simulations 

For single-column simulations, the columnar orientational order 𝑆È depends on ionic strength	𝐼 
and cell height	𝐿í . Supplementary Figure 28a summarises the trends found in Supplementary 
Notes 13.3 and 13.4, namely that orientational order is promoted by high ionic strength and by 
small cell height. However, in systems where columns interact with each other, the columnar 
orientational order is also affected by this interaction and thus also by the column packing fraction 
ϕ"# . Figure 4f (main text) shows a 2D map of the column-averaged orientational order 〈𝑆È〉 
obtained in large-scale simulations at a representative packing fraction ϕ"# = 0.386. This map is 
qualitatively consistent with the single-column results of Supplementary Figure 28a, except for a 
shift toward larger values. 

Supplementary Figure 28b quantifies this correlation via a scatter plot of 〈𝑆È〉 at various 𝐼, 𝐿í and 
ϕ"#  (as listed in Supplementary Table 4) determined in large-scale simulations vs. the order 
parameter 𝑆È obtained from single-column simulations. For low packing fractions, the data points 
closely follow 〈𝑆È〉 = 𝑆È (red line), i.e., the single-column simulations provide a good estimation 
of the columnar orientational order in the large-scale system. 〈𝑆È〉 is systematically larger than 𝑆È 
at large	𝑆È, due to the additional intercolumn attraction, which is particularly strong at high ionic 
strength. At higher packing fractions ϕ"#, the shift of 〈𝑆È〉 toward larger value becomes more 
apparent due to the decrease of free space for each column, along with the increased intercolumn 
attraction. In particular, when ϕ"# is large enough (>	0.440), 〈𝑆È〉 never reaches low values, no 
matter how small 𝑆È  is, owing to crowding. Within our ϕ"#  range of interest 
(0.362 £ ϕ"# £ 0.433), the single-column order parameter 𝑆È serves as a good estimator for 〈𝑆È〉 
in the multi-column systems. 
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Supplementary Figures 

 
Supplementary Figure 1. Characterisation of gold triangular nanoprisms. (a) TEM image of 
the gold triangular nanoprism sample after purification. (b) Prism side length distribution of 
nanoprisms measured from 118 triangular prisms with 354 side lengths in total. The red line shows 
a Gaussian fit of the distribution with an average of 100.5 nm and a standard deviation of 9.5 nm. 
Scale bar: 100 nm. 
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Supplementary Figure 2. Characterisation of gold concave nanocubes and gold nanospheres. 
Schematics and TEM images of the as-synthesised gold concave nanocubes with an edge length 
of 62.0 ± 4.6 nm (a) and gold nanospheres with diameter of 76.0 ± 2.2 nm (b). Scale bars: 200 nm. 
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Supplementary Figure 3. Trajectories and MSD of columns in our liquid-phase TEM work. 
(a) Trajectories of liquid-like columns tracked from the first 80 frames of Supplementary Video 4 
with the colour denoting elapsed time. Tracking is performed by first identifying the column 
positions (Supplementary Note 6.2) and then utilizing the Matlab code (imageTrack.m in Ref. 13) 
to link the column positions in different frames into a continuous single-column trajectory. Scale 
bar: 200 nm. (b) MSD versus time curve calculated from the trajectories in (a) (mean ± s.d. from 
trajectories of 33 columns). The red line is the linear fit and the diffusivity (Dmeasure) is measured 
from the slope of the red line following Dmeasure = MSD/4∆t. 
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Supplementary Figure 4. Discussion of electron-beam effects. (a) Liquid-phase TEM image of 
the obtained kinetically trapped aggregate when the liquid-phase TEM imaging is performed for 
the sample that forms a large-scale superlattice (main text Figure 1b) but at a dose rate of 
14.8 e– ·Å– 2·s–1. At this dose rate, the ligands are expected to remain stable, but the ionic strength 
increase is high enough to screen electrostatic repulsion to the extent that irreversible irregular 
aggregation occurs1. Scale bar: 200 nm. (b) Surface charge density of the nanoprisms as a function 
of the solution pH. Grey dotted line denotes the charge density at which the carboxylate groups 
are completely deprotonated. (c) Calculated pH of PBS buffer (initial concentration: 0.0345 M, 
pH = 8) as a function of additional H+ ion concentration generated during the TEM imaging. Red 
line is a guide to the eye. Grey dotted line corresponds to the case pH = 5, which requires about 
0.0325 M H+. (d) Scatter plot of electron beam dose rates used in previous liquid-phase TEM 
literature and the corresponding electron beam effects. (Adapted with permission from Ref. 1. 
Copyright 2016 American Chemical Society.) Dose rate values for each reference are listed in 
Supplementary Table 2. 
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Supplementary Figure 5. Image-processing procedure for contour finding and labelling from 
TEM images. (a) Image contrast enhancement procedure for the image of two stacked prisms. 
I. Five liquid-phase TEM images (out of a total of 22 frames chosen from Supplementary Video 2) 
are shown as examples, with centre positions (green dots) measured from the circumscribed circles 
(green circles) of each prism pair. II. The prisms are repositioned and rotated to centre and align 
the prisms in each image. III. Final high-contrast image acquired by averaging over 22 frames after 
repositioning and reorientation. (b) Contour-finding and labelling process for two stacked prisms. 
Top: Work flowchart from input TEM images to output contours of stacked prisms. 
Bottom: starting from the contrast-enhanced images (I), a series of built-in Matlab functions are 
applied to subtract the background (II) and filter noise to further enhance the contrast (III). The 
image is then binarised with the contour identified (raw contour shown as red line in IV). The 
contour is smoothed and overlaid onto the TEM images with background subtracted (V). To 
highlight the shapes of the structure, the contour of interest is selected and plotted on a black 
background (VI). (c) Contour finding and labelling of the short columns with rugged projections. 
The same process is followed as in (b), with modifications of the parameters (details in 
Supplementary Table 3). Scale bars in all panels: 50 nm. 
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Supplementary Figure 6. Vertical growth of columns from prism stacking. (a) Time-lapse 
TEM images showing the gradual building process of columns acquired at 0 s (light green), 76 s 
(green) and 117 s (black). The projections of the columns change from triangular to circular shapes 
as time goes by. Scale bars: 100 nm. (b) Distribution of intensity values of the TEM images in (a). 
The peak position of the intensity distribution shifts to lower values and the distribution narrows 
to a sharp peak as time goes by, indicating the formation of thicker columns. (c) Intensity profile 
along the yellow dashed line, with the red dot in (a) denoting 𝑥 = 0. The intensity is averaged over 
the boxed region in (a) and reflects the gradual stacking of prisms onto existing columns. The three 
intensity profiles across the same two columns show the data from the beginning to the fully grown 
columns. The initially different intensity plateaus (red arrows) reflect different numbers of prisms 
in the columns, whereas the two columns have the same intensities (blue arrows) after 117 s. 
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Supplementary Figure 7. Tracking of single columns in liquid-phase TEM movies. 
(a) Column-tracking workflow from the original TEM image to the final image with overlaid 
tracked positions. (b) Typical raw TEM image of Supplementary Video 4, showing an ordered 
lattice composed of circular column projections. (c) The same image with inverted intensity (to 
render the columns bright for tracking) and enhanced contrast after bandpass filtering. Compared 
with the raw image in (b), the background of the image is more uniform and the column shapes 
are more distinguishable from the background. (d) Automatic detection of column contours by 
positioning fitted circles. (e) The same raw TEM image as in (b) overlaid with the centres (green 
dots) of the circles identified in (d). The column position information was used for further 
structural and phase characterisation in Supplementary Notes 6.3–6.6. Scale bars: 200 nm. 
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Supplementary Figure 8. Measurement of centre-to-centre distance 𝒓  of two nearest-
neighbour columns and comparison with perfect hexagonal and honeycomb lattices. 
(a) Typical TEM snapshot of an ordered hexagonal lattice formed by columns. Green dots and 
white dotted lines highlight the central positions of columns and the bond network, respectively. 
Scale bar: 200 nm. (b) Histogram of the centre-to-centre distance between pairs of neighbouring 
columns measured from (a). The red line is a Gaussian fit of the histogram and the inset is a 
schematic showing the definition of the centre-to-centre distance 𝑟 for neighbouring columns. 
(c) Schematic of the hexagonal lattice composed of columns stacked from randomly oriented 
prisms. (d) Schematic of the possible honeycomb lattice from columns of aligned prisms. 
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Supplementary Figure 9. Illustration of the image processing and analysis procedure of a 
typical TEM image of Supplementary Video 6 to classify columns into different states. 
(a) Analysis workflow from tracked column positions to column state determination. (b) Column 
positions (green dots) from particle tracking (method detailed in Supplementary Note 6.2) overlaid 
on the original TEM image. (c) Voronoi cells calculated from the particle positions. Each cell is 
shaded according to the local density ρ'. (d) Radial distribution function 𝑔(𝑟) calculated from the 
column positions in Supplementary Video 6 over the full crystallisation process. A cutoff value 𝑟S 
= 171 nm was determined from the first minimum after the first peak position (orange arrow). This 
cutoff value is used to decide if two columns are nearest neighbours. (e) Bond network rendered 
based on panels (b) and (d). (f) TEM image overlaid with dots at the column centres coloured 
according to the values of local order parameter |ψ&'|" . (g) TEM image overlaid with bond 
network coloured by the value of 𝑆¬' , which characterises structural similarity between 
neighbouring columns. (h) Distribution of 𝑆¬' for columns during crystallisation (Supplementary 
Video 6). Based upon the double-peaked distribution, a cutoff value 𝑆¬',S = 0.5 is chosen for the 
calculation of the solid bond number. (i) TEM image overlaid with dots coloured by solid bond 
number ξ' . (j) TEM image identifying solid-like (red) and liquid-like columns (blue). Scale 
bars: 200 nm. 
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Supplementary Figure 10. 2D histograms of local density and local structural order 
highlighting the existence of liquid-like and solid-like domains. (a, b) 2D histogram with (a) 
|ψ&'|" and (b) coarse-grained order parameter |ψ(&'|" to characterise the structural order. The two 
domains in the 2D histogram are more concentrated for (|ψ(&'|", 𝜌') than for (|ψ&'|", 𝜌'). (c)  2D 
histogram based on statistics only from solid-like columns identified based upon the solid bond 
number, confirming that the identified solid-like columns indeed correspond to the domain with 
high structural order. All panels employ the same greyscale. 
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Supplementary Figure 11. Temporal evolution of liquid-like and solid-like columns using 
Supplementary Video 6 as an example. (a) Number of liquid-like (𝑁�±;<±�, open green circles) 
and solid-like columns (𝑁TQ�±�, solid green circles) as a function of time. Solid lines show the 
numbers of liquid-like (blue) and solid-like (red) columns averaged over 21 neighbouring frames. 
(b) Time-lapse TEM images showing different stages of the crystallisation process. The tracked 
columns are overlaid with dots that are coloured based on their states: gas-like (yellow), liquid-like 
(blue) and solid-like (red). Initially (pre-nucleation, stage I), most columns are gas-like. At the 
induction stage (II), a large liquid-like domain begins to form without any solid-like columns. At 
the conversion stage (III), rapidly fluctuating domains of solid-like columns appear inside the 
liquid-like domains. Lastly (stage IV), solid-like columns form domains that grow rapidly and 
convert most of the view into the crystalline structure. (c) Zoomed-in time-lapse TEM images for 
the white boxed region in (b) with dots coloured based on their states. (d) Temporal evolution of 
the fraction of liquid (blue) and solid (red) columns inside the boxed region in (b) before a stable 
solid nucleus emerges. Right panel: accumulated distribution over time. Scale bars in panels (b) 
and (c): 200 nm. 
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Supplementary Figure 12. Two-barrier Gibbs free-energy model to explain two-step 
crystallisation.  Measurement of line tension between the gas–liquid and liquid–solid column 
interfaces. (a) Schematic illustrating that the amorphous, liquid intermediate state emerges 
between the gas and the solid states as an effective a wetting layer, cf. TEM images in Figures 2g–
i and Figure 3d (main text). (b) Schematic plot of the free-energy change ∆𝐺 for the gas–solid and 
gas–liquid transitions, as a function of cluster size 𝑁. The crossover between the two curves, at a 
critical cluster size 𝑁S, occurs as the gas–solid interface has a higher line tension than the gas–
liquid interface owing to the larger structural difference, whereas the chemical potential of the 
solid state is lower than that of liquid state at the experimental conditions that favours 
crystallisation. (c) Distribution of the liquid cluster sizes 𝑁 (measured in number of columns), 
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obtained from Supplementary Video 6. The vertical axis is the number of liquid clusters with 𝑁 
columns, 𝑛�(𝑁), normalised by the number of liquid clusters with only one column 𝑛�(1). (d) 
Free-energy difference for the gas–liquid transition ∆𝐺 is measured based on the distribution of 
liquid-like cluster sizes by accumulating all the clusters in Supplementary Videos 4 and 6. The red 
line is a parabolic fit of the-free energy difference, from which the line tension and chemical 
potential difference of the liquid-gas formation process are acquired. (e) Distribution of the solid 
cluster sizes 𝑁  (measured in number of columns) inside a liquid cluster, obtained from the 
crystallisation process of Supplementary Videos 4 and 6. The vertical axis is the number of solid 
clusters with 𝑁 columns, 𝑛�(𝑁), normalised by the number of solid cluster with only one column 
𝑛�(1) . (f) Free-energy difference for the liquid-solid transition ∆𝐺  is measured from the 
distribution of solid-like cluster sizes by accumulating all clusters in Supplementary Videos 4 
and 6. The red line is a parabolic fit of the-free energy difference. The uncertainties in (d) and (f) 
are estimated as the standard errors from two different experiments. 
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Supplementary Figure 13. Superlattice formation of gold concave nanocubes. (a) Time-lapse 
liquid-phase TEM images showing the crystallisation of fast-moving individual concave 
nanocubes (dark “clouds”) into ordered 3D simple cubic superlattices at 27.1 e– ·Å– 2·s–1. The 
bottom images are the corresponding Fourier transforms of the boxed region in (a). (b) Schematic 
of the simple cubic superlattice of concave nanocubes. Scale bars: 200 nm. 
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Supplementary Figure 14. Superlattice formation of gold nanospheres. (a) Time-lapse liquid-
phase TEM images showing the real-time nanosphere crystallisation process observed at 
11.9 e– ·Å– 2·s–1, with 1, 2, 3 and 4 labelling four superlattice domains. The bottom images are the 
corresponding Fourier transforms of the boxed region in (a). (b) Schematics of the ABC layered 
face-centred cubic lattice (top view) from nanospheres. Scale bars: 200 nm. 
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Supplementary Figure 15. CG model for prism–prism pairwise interactions and model 
validation. (a) Schematic depiction of the CG model consisting of 252,540 type-1 beads (dark 
pink beads) to model the gold triangular prism and 54,402 type-2 beads (light pink beads) forming 
the ligand monolayer shell to model the charged ligands. Type-1 bead have a van der Waals 
interaction 𝑢���(𝑟�–�)  and type-2 beads have a screened Coulomb interaction 𝑢K�(𝑟�–�)  (see 
Eqs. S1 and S2 for expressions for 𝑢���(𝑟�–�) and 𝑢K�(𝑟�–�)). The pairwise interaction between 
two prisms is computed as a summation over all bead–bead interactions. The total thickness of the 
CG prism including two monolayers of ligands is denoted as	𝑡y. (b) Van der Waals interaction 
𝐸��� (Eq. S6, dashed red line), electrostatic interaction 𝐸K� (Eq. S7, dashed grey line) and the total 
pairwise energy 𝐸JQJ (solid black line) between two coaxial parallel and aligned (Δθ = 0) prisms 
(as shown in the lower left schematic) versus the prism–prism separation 𝑑  at ionic strength 
𝐼 = 2.0 M, computed in the CG model. The minimum total interaction energy 𝐶 (at corresponding 
separation 𝑑R±²) is marked with a blue triangle. The inset shows a magnified view of the shaded 
part of the 𝐸JQJ– 𝑑 curve to highlight the deep and narrow potential well. The definitions of 𝑑 and 
Δθ are shown in Figure 2a in the main text. (c) Total pairwise interaction energy 𝐸JQJ for two 
coaxial parallel prisms as a function of vertical separation 𝑑 at different values of relative spin 
angle Δθ . The minimum-energy separation 𝑑R±²  is independent of Δθ . (d) Minimum-energy 
separation 𝑑R±² versus ionic strength 𝐼 computed in the CG model (dark blue squares) and prism 
spacings measured in our previous experiments1 (light blue triangles), validating the CG model. 
(e) Minimum energy 𝐶  between two coaxial parallel prisms as a function of ionic strength 𝐼 
computed in the CG model. 
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Supplementary Figure 16. Connection between the CG model and the analytical model; 
classification of configurations. (a) Schematic showing the definition of the four degrees of 
freedom for a pair of parallel prisms (prism1, which is the central prism, and prism2) employed in 
the analytical model: the vertical separation 𝑑, spin-angle difference Δθ, horizontal displacement 
magnitude 𝑥 and direction angle α. The black dots stand for the geometric centres of prism1 and 
prism2, while the green dot denotes the projected centre of prism2 on the basal plane of prism1. 
(b) Side-view schematic showing different interaction regions (repulsive, face-to-face attractive, 
side-by-side attractive and excluded-volume regions) around the central prism (prism1) in the CG 
model (left) and the analytical model (right). Due to its short-range character, we choose to replace 
the repulsive part of the prism–prism interaction in the CG model (yellow region) by the excluded-
volume repulsion of the prisms in the analytical model (orange region), whereas the attractive part 
of the interaction (green plus purple regions in left panel) in the CG model is fitted by analytical 
functions in the analytical model. The configuration of two parallel prisms (prism1 and prism2) is 
classified as face-to-face (side-by-side) if the centre of prism2 is located in the green (purple) 
region. (c) Total interaction energy 𝐸JQJ between two parallel, coaxial (𝑥 = 0) and fully aligned 
(Δθ = 0) prisms vs. their vertical separation 𝑑  at 𝐼  = 2.0 M in the CG model (left) and the 
analytical model (right). Note that the minimum-energy separation 𝑑R±² in the analytical model 
becomes exactly 𝑡y regardless of the ionic strength. 
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Supplementary Figure 17. Derivation of analytical form of the attractive part of the total 
interaction energy 	𝑬𝐭𝐨𝐭  for a pair of face-to-face parallel prisms (cf. Supplementary 
Figure 16b for the definition of face-to-face configuration). (a) Pairwise interaction energy 𝐸JQJ 
between two coaxial (𝑥 = 0) parallel prisms at the minimum-energy separation 𝑑∗ = 𝑑R±²∗  as a 
function of the spin-angle difference Δθ at three different ionic strengths (𝐼 =	0.5,	1.0,	2.5	M). 
Blue symbols are the data computed using the CG model, fitted by the analytical model 
𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) = 𝐶 + (1 − cos3Δθ)Δ𝐸/2  (solid red lines, labelled AM). The 
energy difference Δ𝐸 between the anti-aligned (Δθ = π/3) and aligned (Δθ = 0) cases is labelled 
in the plot. (b) Δ𝐸 vs. coupling constant 𝐶 determined from the CG model (grey circles) and fitted 
by a linear function in the analytical model (solid red line). (c) Pairwise interaction energy 𝐸JQJ 
between two coaxial parallel prisms as a function of 𝑑∗/𝑑R±²∗  for Δθ = 0 (black squares) and 
Δθ = π/3 (light green squares). The data from the CG model (squares) are well fitted by the 
analytical model 𝐸JQJ(𝑑∗, Δθ, 𝑥∗ = 0) = 𝐸JQJ(𝑑∗ = 𝑑R±²∗ , Δθ, 𝑥∗ = 0) ∙ (𝑑R±²∗ /𝑑∗)Ã  for 𝑑∗ ≥
𝑑R±²∗ , accounting for the attractive part, combined with excluded-volume repulsion 𝐸JQJ(𝑑∗ <
𝑑R±²∗ ) = +∞ (solid red lines). (d) Schematic showing the six combinations of (α,	Δθ) considered 
for fitting the dependence of the interaction energy on horizontal displacement, with either Δθ = 0 
(green column, fits shown in panel e) or Δθ = π/3 (yellow column, fits shown in panel f). For 
both cases, we examine α = 0, π/6 and	π/3. (e, f) Pairwise interaction energy 𝐸JQJ between two 
parallel prisms at the minimum-energy separation 𝑑∗ = 𝑑R±²∗  as a function of 𝑥∗ for α = 0 (dot), 
α = π/6 (star) and α = π/3 (triangle) at (e)	Δθ = 0 and (f) Δθ = π/3, at ionic strength 𝐼 = 2.0 M. 
The data computed using the CG model (symbols) are well fitted by 𝐸JQJ(𝑑∗, Δθ, 𝑥∗) =
𝐸JQJ(𝑑∗, Δθ, 𝑥∗ = 0)(1 + cos(π𝑥∗/𝑥S∗))/2  for 𝑥∗ < 𝑥S∗  used in the analytical model (solid red 
lines), where 𝑥S∗  (which depends on Δθ  and α ) is the cutoff distance beyond which 
𝐸JQJ(𝑑∗, Δθ, 𝑥∗ > 𝑥S∗) = 0. 
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Supplementary Figure 18. Attractive part of pairwise interaction energy 𝑬𝐭𝐨𝐭  in the 
analytical model for a pair of parallel prisms in side-by-side configuration 
(cf. Supplementary Figure 16b). (a) Pairwise interaction energy	𝐸JQJ between two parallel prisms 
arranged in side-by-side fashion (Δθ = α = π/3) with zero vertical separation (𝑑∗ = 0), as a 
function of horizontal displacement magnitude 𝑥∗ computed using the CG model at ionic strength 
𝐼 = 2.0 M. The equilibrium distance 𝑥R±²∗  and side-by-side interaction energy minimum 𝐶T±�K are 
identified in the plot. Inset: Schematic of a typical side-by-side configuration of two parallel prisms 
and definition of 𝑥y∗ denoting the centre-to-centre distance between two fully attached side-by-side 
prisms. (b) Relationship between the side-by-side energy minimum 	𝐶T±�K  and the coupling 
constant 𝐶 measured from the CG model (blue squares), described by a linear fit that we employ 
in the analytical model (solid red line). (c) Pairwise energy	𝐸JQJ between two side-by-side (Δθ =
α = π/3) parallel prisms with zero vertical separation (𝑑∗  = 0) as a function of the reduced 
horizontal displacement 𝑥∗/𝑥R±²∗  at 𝐼 = 2.0 M. Black squares are the data from the CG model and 
the red line is the fit function Eq. S14 combined with the excluded-volume repulsion 
𝐸JQJ(𝑑∗ = 0, Δθ = α = π/3, 𝑥∗ < 𝑥R±²∗ ) = +∞ . (d) Pairwise energy between two side-by-side 
(Δθ = α = π/3) parallel prisms as a function of the reduced vertical separation 𝑑∗/𝑑R±²∗  at three 
different values of 𝑥∗ (𝑥R±²∗ : circle; 1.034𝑥R±²∗ : star; 1.087𝑥R±²∗ : triangle) at 𝐼 = 2.0 M. Symbols 
represent the CG model, fitted by the linear function of 𝑑∗, Eq. S16 (solid red lines). 
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Supplementary Figure 19. Schematic summarising the interaction zone of two interacting 
prisms and the dependence of interaction energy on tilt angle 𝛄. (a–b) Schematics showing the 
interaction zone of face-to-face (a) and side-by-side (b) configurations, outside which the pairwise 
interaction is zero in our analytical model. Here the central prism (prism1, with solid border) 
interacts with all “almost parallel” (as defined in the text) prisms (prism2, with dashed border) 
whose centres are located inside the (a) green or (b) purple regions. 𝑑S denotes the cutoff distance 
for the vertical separation, which we set to 𝑑S = 3𝑡y for computational efficiency (see more details 
in Supplementary Note 9.3). Note that the cutoff for the horizontal displacement 𝑥S varies with the 
angles Δθ and α (see Supplementary Note 9.1.3 for details) and is plotted here as a constant just 
for visual clarity. (c) Configurations used to examine the effect of tilt angle γ in panels d and e: 
Δθ = 0 (left) and Δθ = π/3 (right). (d–e) Dependence of pairwise interaction energy 𝐸JQJ on tilt 
angle γ between two coaxial prisms with spin-angle difference (d) Δθ = 0 and (e) Δθ = π/3 at 
𝐼 = 2.0	M. Black symbols are calculated from the CG model and red lines represent the analytical 
model Eq. S18. Three different vertical separations with respect to prism1 are investigated,  𝑑j→"∗  = 
𝑑R±²∗  (open square, solid line), 𝑑j→"∗ = 	1.2𝑑R±²∗  (open circle, dotted line) and	𝑑j→"∗ = 1.5𝑑R±²∗  
(open triangle, dashed line). (f) Schematics of the prism–substrate interaction, showing the overlap 
volume 𝑉±² between a prism and the substrate interaction zone. 
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Supplementary Figure 20. The role of confinement along the z axis and the prism–substrate 
interaction. (a) Snapshot showing the hexagonal columnar phase (with $	Ψ&6($

" = 0.73) formed 
in a 3D periodic system. (b) Volume fraction profile along the z direction, ϕ(𝑧∗)/ϕ, at 𝐼 = 0.5 M, 
𝐿í = 25𝑡y for the 3D periodic system of panel (a) (red line) and for the 2D periodic system (i.e., 
confined along the z axis by top and bottom surfaces) with ϕ"# = 0.386. This illustrates how the 
confinement induces z coordination of prisms in different columns. (c) Snapshot showing a typical 
configuration in a simulation with confinement along the z axis but in the absence of prism–
substrate interaction. The simulation is conducted at 𝐼 = 0.5 M, 𝐿í = 10𝑡y, and ϕ"# = 0.386. The 
system starts with 64 columns standing on the substrate, but as time elapses the columns reorient 
and lie parallel to the substrate. 
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Supplementary Figure 21. In-plane angle distribution and rotational dynamics of the system 
after reaching equilibrium. (a) Histogram of the in-plane angle θ of each prism measured over 
the production runs (1000 samples of 1152 prisms). (b) Orientational autocorrelation function 
𝑔L(𝑡) at different ionic strengths. 
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Supplementary Figure 22. Dependence of global 2D hexagonal order on column packing 
fraction. Correlation between the average global hexagonal order characterised by $Ψ&6($

" and the 
average columnar orientational order 〈𝑆È〉 at (a) high and (b) low 2D packing fraction ϕ"#. 
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Supplementary Figure 23. Simulation snapshot of a purely 2D nanoprisms system. The 
system consists of 140 prisms at ionic strength I = 0.5 M and 2D packing fraction ϕ"# = 0.386 and 
remains in a disordered phase without exhibiting crystallisation. 
  



 

 
 

61 
 

 

 
Supplementary Figure 24. Equilibrium prism concentration induced by ionic strength 
gradient. Equilibrium volume fraction ϕ measured from the NPT simulations as a function of the 
ionic strength I at three different values of the dimensionless pressure 𝑃∗. The uncertainties are 
smaller than the symbol size. 
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Supplementary Figure 25. Free-energy curve of a single column at the two different 
conditions discussed in Figure 4b–f (main text). Free energy 𝐹 (left axis), entropic contribution 
𝑇𝑆  (right axis), and total interaction energy 𝐸  (right axis) computed from single-column 
simulations as a function of the column orientational order parameter 𝑆È at (a) 𝑀 = 9, 𝐿í∗ = 10, 
and 𝐼 = 3.0  M, and (b) 𝑀 = 23 , 𝐿í∗ = 25 , and 𝐼 = 0.5  M. (Insets) Snapshots of typical 
configurations at the thermodynamic equilibrium state (orange triangle). 
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Supplementary Figure 26. Dependence of orientational structure on ionic strength. (a) Total 
pairwise energy 	𝐸JQJ  between two parallel and coaxial prisms with minimum-energy 
separation 𝑑R±² , computed in the CG model and plotted vs. (Δθ, 𝐼) . Black lines mark the 
[−ΔθS, ΔθS]  interval upon variation of ionic strength 𝐼 . (b) Orientational correlation function 
𝐺½(𝑚) of an individual column with 𝑀 = 27 and 𝐿í∗ = 30 at four different ionic strengths. 
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Supplementary Figure 27. Random-walk model illustrating the dependence of orientational 
order on the number of prisms inside the column 𝑴. (a) (Inset) Schematic of the 1D random-
walk model in which successive rotations proceed clockwise or counter-clockwise with equal 
probability. The step size is the pairwise relative orientation 〈Δθ〉, and the number of steps is the 
number of prisms 𝑀 within the column. (Main) Mean squared angular displacement relative to the 
first prism, (θó − θj)", as a function of 𝑀 calculated from 1,000,000 random paths, confirming 
the expected linear relationship. (b) Columnar orientational order 𝑆È vs. number of constituent 
prisms 𝑀 for a representative random walk path (purple line) and the average over 1000,000 
random paths (black line). (Inset) Snapshots showing the configurations of the column at 𝑀 = 5, 
10, 18 and 24 for the representative path (marked by the yellow triangles). The colour of the four 
snapshots reflects their orientational order 𝑆È (cf. colour bar). 
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Supplementary Figure 28. Effects of 2D packing fraction and intercolumn interaction on 
columnar orientational order. (a) Orientational order parameter 𝑆È  from single-column 
simulations as a function of ionic strength 𝐼 and cell height 𝐿í (in units of prism thickness 𝑡y). 
Yellow triangles mark the two conditions used in Figure 4b,d (main text). (b) Scatter plot of 
average columnar orientational order 〈𝑆È〉 measured from large-scale simulations vs. predicted 𝑆È 
in single-column simulations at the same ionic strength and cell height. Symbol colours specify 
the 2D packing fractions ϕ"# used in the large-scale simulations and each data point corresponds 
to an (𝐼, 𝐿í) condition listed in Supplementary Table 2. 
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Supplementary Tables 

Supplementary Table 1. Literature Summary on sluggish nanoparticle motions. 
 

Liquid Liquid 
chamber  

Nanoparticle 
with radius 𝑟 

noted  

Measured 
particle 

diffusivity 
Dmeasure 
(nm2/s) 

Predicted 
particle 

diffusivity* 
Dpredict 
(nm2/s) 

Dpredict / Dmeasure Ref. 

Aqueous buffer Graphene 2.5 nm 
Au spheres 

1.7 9.8×107 5.8×107 14 

Water-glycerol 
mixture, 15% 

glycerol (volume 
ratio) 

Si3N4 2.5 nm 
Au spheres 

0.165 6.0×107 3.7×108 15 

5 nm 
Au spheres 

0.172 3.0×107 1.8×108 

7.5 nm 
Au spheres 

0.268 2.0×107 7.5×107  

o-
dichlorobenzene-

oleylamine 
mixture  

Graphene 0.27 nm 
Pt nanocrystal 

1.1 2.0×108 1.8×108 16 

0.43 nm 
Pt nanocrystal 

0.2 1.2×108 6.2×108 

0.55 nm 
Pt nanocrystal 

0.1 9.7×107 9.7×108 

 HAuCl4 aqueous 
solution 

Si3N4 

 
2 nm 

Au spheres 
0.05 1.2×108 2.5×109 17 

Pentadecane, 
oleylamine, oleic 

acid mixture  

Si3N4 

 
2 nm 

PtFe3 spheres 
0.11 1.74×107 1.6×108 18 

CTAB aqueous 
solution 

Si3N4 

 
18 nm 

Au octahedron 
46-110 1.4×107 1.2-3.0×105 19 

o-
dichlorobenzene-

pentadecane 
mixture  

Si3N4 

 
3.7 nm 

Pt spheres 
~40 1.4×107 3.6×105 20 

Water Si3N4 6 nm 
Au spheres 

15 4.1×107 2.7×106 21 

Aqueous buffer Si3N4 Columns 
stacked from 
Au triangular 
nanoprisms 

~2470 1.7×106 6.9×102 This 
liquid-
phase 
TEM 

work** 
*The predicted diffusivity is calculated from 𝐷CLK�±SJ =

r9ü
&ÅD�

, where 𝑇 is the temperature and 𝜂 is the viscosity of the liquid.  

**The predicted diffusivity is calculated using the column height estimated from simulation (23 prisms inside one column). 
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Supplementary Table 2. Literature survey on dose rate dependent electron beam effects in 
SiNx chambered liquid-phase TEM.  

Sample Observation Dose rate (e– ·Å– 2·s– 1) Ref. 
Rotavirus particle In situ imaging of virus < 0.1 27 
Glioblastoma cell, 
Au nanorod 

Visualisation of cell and interaction 
with Au nanorod < 0.5 28 

Cupriavidus metallidurans 
cells Visualisation of cells 0.5 29 

DNA-Au nanoparticle Nanoparticle assembly via 
DNA base paring ~1.1 30 

Pt electrode Redox potential shift in cyclic 
voltammogram 1 31a 

Au triangular nanoprisms Assembly of Au triangular nanoprisms 1–6 (assembly) 
3400 (nanoparticle fusion) 1 

Au nanorods Assembly of Au nanorods 10–15 44 
CTAB-Au nanospheres, 
nanocubes, nanorods and 
nanobipyramids 

Assembly of Au nanoparticles 10–20  45 

Au triangular nanoprisms Assembly of Au triangular nanoprisms 10–40  4 

Au nanoparticles Aggregation and dynamics of 
Au nanoparticles 

40 (motion) 
90 (motion) 21 

Au nanosphere Assembly of Au nanospheres 63.5–67.3 46b 

HAuCl4 Growth of Au nanocrystals < 30 (no growth) 
42 (growth) 32 

Au nanoparticles Growth of amorphous Au structures 
onto Au nanoparticles 46 33 

AgNO3 Growth of Ag nanoparticles 140 47 

HAuCl4, 
Pt nanoparticle Growth of Au shell on Pt nanoparticle 

< 30 (no growth) 
300 (growth) 

1500 (dendritic growth) 
34 

citrate-Au nanoparticle Fusion of Au nanoparticles 370 (no fusion) 
750 (fusion) 48 

Bismuth neodecanoate Growth and coalescence of 
Bi nanoparticle 500 (growth) 49b 

Pb(acac)2, Fe(acac)2 Growth of lead-iron hydroxide 
core-shell nanoparticle 

500 (growth) 
1000 (bubble formation) 

1500 (nanoparticle deformation) 
50b 

K2PtCl4, EDTA Growth and assembly of 
Pt nanoparticles 1000–3000 51 

HAuCl4 Growth and coalescence of 
Au nanocrystals 1675–1836 35 

Pt(acac)2 Pt nanocrystal growth 1300–8700 52b 

HAuCl4, CTAB Dynamics and aggregation of 
Au nanoparticles 1480–16000 (fusion) 53 

HAuCl4, citrate acid Growth of Au nanospheres 6250 36 
HAuCl4, CTAB Fusion between Au nanoparticles 5000–20000 54 

 
Acetylacetonate is abbreviated as acac.  
aAn electrochemical setup was used.  bOrganic solvents were used. 
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Supplementary Table 3. Parameters used in image processing and contour finding in 
Supplementary Figure 5. 
 

Parameters Image size* 
(pixels) 

Background 
subtraction 

Low-pass filter 
threshold 

Intensity 
threshold 

Smoothing 
factor 

For Supplementary 
Figure 3b: 
1 pixel is 2.1 nm 

67×67 Shape: disk 

Size: 50 pixels 

0.12 pixel−1 15900 9 

For Supplementary 
Figure 3c: 
1 pixel is 1.4 nm 

247×247 Shape: disk 

Size: 30 pixels 

0.04 pixel−1 11000 15 

 
* The original image used for identifying the contour in Supplementary Figure 5b is the output image in Supplementary Figure 5a 
(101×101 pixels). 
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Supplementary Table 4. Parameters used in the large-scale Monte Carlo simulations. 
 

Parameter 1 
𝐼 (M) 0.44 0.52 0.65 0.76 0.98 1.44 2.25 3.00 

𝐶 
(𝑘�𝑇) 

–20 –22 –25 –27 –30 –35 –40 –43 

Parameter 2 

𝐿í 
(𝑡y) 

10 15 20 25 

𝑀 9 14 18 23 

𝑀JQJ 576 896 1152 1472 

Parameter 3 

𝐿Æ 
(𝑡y) 

64.4 66.4 68.2 68.8 69.4 71.2 72.0 

72.8 73.6 74.4 75.2 76.0 79.2 84.0 

ϕ"# 
0.494 0.465 0.440 0.433 0.425 0.404 0.395 

0.386 0.378 0.370 0.362 0.355 0.327 0.290 
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