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Rejection-Free Geometric Cluster Algorithm for Complex Fluids
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We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems.
Geometric transformations are used to identify clusters of particles in such a manner that every cluster
move is accepted, irrespective of the nature of the pair interactions. The rejection-free and nonlocal
nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with
components of widely varying size, such as colloidal mixtures. Compared to conventional simulation
algorithms, typical efficiency improvements amount to several orders of magnitude.
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ation of the resulting energy difference. Efficient off-
lattice cluster algorithms are known only for the

particle Metropolis algorithm will be more efficient
[16]. It is noteworthy that for lattice spin models the
The Monte Carlo (MC) method constitutes an impor-
tant simulation technique in many areas of physics and
chemistry [1,2]. One of its central aspects is the possibil-
ity to introduce nonphysical dynamics, permitting the
study of systems that evolve over otherwise prohibitively
large time scales. A well-known example is the cluster
algorithm for lattice spin models introduced by Swendsen
and Wang (SW) [3], which suppresses dynamic slowing
down near a critical point. Since the conception of this
method, its generalization to off-lattice fluids of interact-
ing particles has been an elusive goal, the main bottleneck
being the absence of particle-hole symmetry. Also away
from the critical point the existence of several different
time and length scales constitutes a major obstacle in the
simulation of complex fluids. This situation commonly
arises in multicomponent systems, such as binary mix-
tures, colloidal suspensions, and colloid-polymer mix-
tures, and has essentially precluded the computational
study of many such systems. In this Letter, we present a
novel, rejection-free cluster Monte Carlo method of con-
siderable generality that alleviates this problem. It greatly
facilitates the canonical simulation of large classes of
continuum systems, such as complex fluids, by generating
particle configurations according to the Boltzmann dis-
tribution, without suffering from severe slowing down in
the presence of large size differences.

The SW lattice cluster algorithm and its improvement
by Wolff [4] are based upon the Fortuin-Kasteleyn [5]
mapping of the Potts model onto the random-cluster
model, which decomposes a system of spins (or Potts
variables) into independent clusters. This is manifestly
different from collective update schemes in which more
or less arbitrary groups of spins (particles) are flipped
(moved). While such multiple-particle moves have
yielded significant improvements in specific situations
[6–9], their acceptance rate generally is an exponentially
decreasing function of the number of particles involved.
By contrast, the SW algorithm is rejection-free: every
completed cluster is flipped without an additional evalu-
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Widom-Rowlinson and Stillinger-Helfand models for
fluid mixtures [10,11], in which identical particles do
not interact at all. Furthermore, for hard-sphere fluids
Dress and Krauth [12] have proposed a cluster algorithm
based upon geometric operations that is capable of relax-
ing size-asymmetric mixtures [13] and model glass for-
mers [14]. However, hitherto no general off-lattice
equivalent of the SW approach has been developed. In
this Letter, we demonstrate that the geometric method
can be formulated as a Wolff single-cluster algorithm and
subsequently be extended to arbitrary pair potentials
between the constituents, while maintaining its rejection-
free nature. The resulting generalized geometric cluster
algorithm (GCA) handles interactions in the same man-
ner as the SW algorithm and, in this respect, can be
considered as its counterpart for continuum systems.
Lattice cluster methods as well as the GCA exploit
invariance of the Hamiltonian under global symmetry
operations.

In the original GCA [12] a molecular configuration is
rotated around an arbitrarily chosen pivot and overlaid
with its original (nonrotated) version. Objects that over-
lap between the original and rotated configurations lead
to ‘‘clusters’’ of particles. The particles belonging to these
clusters are exchanged between the original and the ro-
tated configuration. Since the pair potential is either zero
or infinity, each configuration without particle overlaps
has the same Boltzmann factor and hence the same
probability. It has been suggested [12,15] to extend this
approach to other pair potentials by introducing a
Metropolis-type criterion for the acceptance of a cluster
move. However, this approach faces serious drawbacks.
(i) It cannot be applied to soft-core potentials, since the
cluster-construction process fails to generate configura-
tions containing interpenetrating potentials. (ii) The effi-
ciency strongly deteriorates, since the algorithm is no
longer rejection-free. Indeed, the stronger the interac-
tions, the less relevant the (athermal) clusters become,
and for many practical cases a conventional single-
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original GCA has successfully been generalized to in-
clude attractive short-range interactions [17]. However,
this approach implicitly exploits particle-hole symmetry
by relying on a mapping between sites in the original and
the rotated lattice structure.

In order to formulate a geometric cluster algorithm for
interacting fluids, we first rephrase the cluster construc-
tion for the original GCA as follows. After a random
pivot has been chosen, the first particle is picked at
random and moved via a point reflection with respect to
the pivot (this reflection replaces the rotation). If this
leads to one or more overlaps, the corresponding particles
are also moved with respect to the same pivot. This
procedure is reiterated recursively until no more overlaps
are present. For the next cluster, a new pivot is chosen. In
the presence of a general pair potential V�r�, we general-
ize this scheme as illustrated in Fig. 1. After the first
particle i has been moved from position ri to its new
position r0i, two classes of particles are identified:
(a) particles that interact with i in its original position;
(b) particles that interact with i in its new position. Every
particle that belongs to category (a) or (b) is subsequently
considered for inclusion in the cluster, i.e., for reflection
with respect to the pivot. Particles that fall into both
categories are considered only once. While the first par-
ticle i is always moved, subsequent particles j are added
to the cluster with a probability pij � max�1�
exp����ij�; 0�, where �ij � V�jr0i � rjj� � V�jri � rjj�
and � � 1=kBT. Thus, the cluster addition probability
for particle j depends solely on the energy difference
corresponding to a change in relative position of i and
j. Other energy differences resulting from a move of
particle j are not taken into account, which distinguishes
this method from a standard Metropolis algorithm with
multiple-particle moves and makes it the analog of the
Wolff cluster algorithm. Instead, the procedure is carried
out iteratively. If particle j is added to the cluster, then all
its interacting neighbors [both in category (a) and in
category (b)] that have not yet been added to the cluster
are considered for inclusion as well. The cluster construc-
FIG. 1 (color online). Two-dimensional illustration of the interact
particles before and after the geometrical operation, respectivel
(b) construction of a new cluster via point reflection of particles 1
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tion is completed once all interacting neighbors have been
considered.

A particle j in category (a) that is added to the cluster
can be viewed as ‘‘moving with’’ particle i; a particle j in
category (b) is then interpreted as ‘‘moving from’’ par-
ticle i in its new position. However, in either case particles
i and j maintain their original separation. The system
evolves by virtue of the particles that are not included in
the cluster. Again, this is analogous to a spin cluster
algorithm, in which all spins within a given cluster
maintain their relative orientation. In the limit of a pure
hard-core repulsion, category (a) particles do not exist
and the addition probability for category (b) particles is
unity. Thus, the original GCA [12] indeed constitutes a
special case of the generalized GCA.

The ergodicity of this algorithm follows from the fact
that there is a nonvanishing probability that a cluster
consists of only one particle, which can be moved over
an arbitrarily small distance, since the location of the
pivot is chosen at random. Despite the presence of a
variable addition probability and the existence of two
categories of particle moves, the proof of detailed balance
proceeds in a similar way as for the Wolff algorithm [4].
In the transition from a given configuration X (energy EX)
to a new configuration Y (energy EY), an energy change is
induced by every interacting particle that is not added to
the cluster. The probability of such a ‘‘broken bond’’ k is
given by 1� pk, which is unity if the pair energy de-
creases. This is the analog of a pair of antiparallel spins in
a lattice cluster algorithm. For an increase in pair energy
�k, the probability of breaking a bond is exp����k�.
Accordingly, the creation of a certain cluster corresponds
to breaking a number of bonds, which has a probability

T�X ! Y� � C
Y
k

�1� pk� � C exp

"
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X
l

�l

#
; (1)

where the product runs over the set fkg of all broken
bonds, which is comprised of the subset flg of broken
bonds l that lead to an increase in pair energy and the
ing geometric cluster algorithm. Light and dark colors label the
y. The small disk denotes the pivot. (a) Initial configuration;
–3 with respect to the pivot; (c) final configuration.
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subset fmg of broken bonds that lead to a decrease in pair
energy. The factor C accounts for the probability of creat-
ing a specific arrangement of bonds inside the cluster. The
probability for the reverse move runs over the same set
fkg, but all energy differences have changed sign (indi-
cated by �pp) and the sum over �l is replaced by the
negative sum over the complementary set fmg,

T�Y ! X� � C
Y
k

�1� �ppk� � C exp

"
��

X
m

�m

#
: (2)

The probability of picking a specific particle as the start-
ing point for this cluster is identical in the forward and
the reverse move. Moreover, we require the geometric
operation to be self-inverse. For clusters thus constructed,
we then indeed have succeeded in fulfilling detailed
balance while maintaining an acceptance ratio of unity:

T�X ! Y�
T�Y ! X�
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: (3)

Figure 2 illustrates the agreement between the gener-
alized GCA and a conventional NVT molecular dynamics
simulation for a binary Lennard-Jones mixture contain-
ing 800 small and 400 large particles at a total packing
fraction �  0:213. The respective particle diameters are
�11 � 1:0 and �22 � 5:0 and the interaction strengths
equal "11 � 0:40 and "22 � 0:225, supplemented by the
Lorentz-Berthelot mixing rules [2]. The particles are
contained in a cubic cell with periodic boundary condi-
tions. All interactions are cut off at 3�22. Evidently, the
GCA is capable of handling soft-core potentials.

The true advantage of the generalized GCA transpires
upon consideration of its efficiency. As a simple model
system with intrinsically slow dynamics, we again con-
sider a binary fluid mixture of N1 small and N2 large
spherical particles with size ratio � � �22=�11 � 1. The
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FIG. 2. Comparison between a conventional molecular dy-
namics calculation (solid lines) and the geometric cluster
algorithm (symbols), for a size-asymmetric binary Lennard-
Jones mixture. Shown are, from left to right, the correlation
functions for small-small, large-small, and large-large pairs.
The agreement is clearly excellent.
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particles are contained in a fixed volume, at equal pack-
ing fractions �1 � �2 � 0:1. N2 is fixed at 150 and N1

increases from 1200 to 506 250 as � is varied from 2 to
15. While pairs of small particles, as well as pairs in-
volving a large and a small particle, act like hard spheres,
the large particles have a Yukawa repulsion,

U22�r� �
�
�1 r � �22

J exp����r� �22��=�r=�22� r > �22;
(4)

where �J � 3:0 and the screening length ��1 � �11. The
Hamiltonian describing the system is given by the sum
over all pair interactions. As a measure of efficiency we
consider the integrated autocorrelation time � for the
energy [18]. For conventional MC calculations, � rapidly
increases with increasing �, because large particles tend
to get trapped by particles belonging to the smaller
species (this situation will further deteriorate in the pres-
ence of an attraction between large and small particles).
Indeed, for � > 7 it was not even feasible to accurately
estimate � within a reasonable amount of CPU time. By
contrast, the generalized GCA has an autocorrelation
time that only weakly depends on the size ratio, as
illustrated in Fig. 3. At � � 7 the resulting efficiency
gain already amounts to more than 3 orders of magnitude.

To explore the performance of our algorithm near a
critical point, we have simulated the one-component
Lennard-Jones fluid with a potential cutoff rc � 2:5� at
T� � kBT=" � 1:19 and �� � ��3 � 0:3197, very close
to criticality [19]. The energy autocorrelation time �
exhibits a power-law dependence on the linear system
size L for local moves as well as cluster moves;
see Fig. 4. Since the density is a conserved quantity,
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FIG. 3. Efficiency comparison between a conventional local
update algorithm (open symbols) and the generalized geomet-
ric cluster algorithm (solid symbols), for a size-asymmetric
binary mixture of Yukawa particles. As opposed to the local
algorithm, the autocorrelation time per particle (expressed in
microseconds of CPU time) for the GCA depends only weakly
on size ratio � (variations correspond to changes in the volume
ratio of large vs small particles in the cluster), resulting in an
efficiency improvement of several orders of magnitude already
for moderate �.
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FIG. 4. Energy autocorrelation times � vs linear system size
for a critical Lennard-Jones fluid, in units of particle sweeps.
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hydrodynamic slowing down must be anticipated [20].
Owing to field mixing [21], this will also manifest itself
in the critical energy correlations. Thus, the acceleration
�L2:1 achieved by the GCA cannot unequivocally be
ascribed to the (partial) suppression of critical slowing
down. This is consistent with the observation that the
average relative cluster size grows faster than L�= .
Given the number of factors that determine the cluster-
growth process, care must be taken to generalize these
observations to the performance of the GCA at the criti-
cal point of other fluids.

Suppression of critical slowing down is the primary
benefit of cluster algorithms for lattice systems, making it
a crucial requirement that the percolation threshold of the
cluster-formation process coincides with the critical
point. The generalized GCA, on the other hand, addresses
a much larger class of problems by accelerating fluid
simulations over a wide range of temperatures and pack-
ing fractions. Its essential limitation is that the clusters
must occupy only part of the system. The average cluster
size depends not only on the interaction strength, but also
on the total packing fraction and size and shape of all
constituents. Although no unique percolation threshold
can be defined in a continuum system of interacting
particles, we have observed that the average relative clus-
ter size increases abruptly above a certain packing frac-
tion, rapidly lowering the computational efficiency. This
packing fraction depends on temperature and system
properties, but �  0:23–0:25 represents a typical thresh-
old. For increasing size ratio or degree of polydispersity,
we expect the window of accessible packing fractions to
grow, in accordance with the increase of the percolation
threshold as a function of polydispersity [22]. Indeed, for
the binary mixtures of Fig. 3, the relative cluster size
rapidly decreases with increasing � at fixed total packing
fraction.

In summary, we have introduced the first general
rejection-free cluster algorithm for off-lattice systems.
Its premier significance lies in a performance increase
035504-4
of many orders of magnitude for complex fluids in which
the constituents exhibit a large size asymmetry, thus
enabling the simulation of mixtures that were hitherto
accessible only via an effective one-component approach.
Size ratios up to 100 have been reached in simulations
involving several millions of particles. Our approach can
be extended in several ways, including the treatment of
nonspherical particles and electrostatic interactions.
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