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Precise Simulation of Near-Critical Fluid Coexistence
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We present a novel method to derive liquid-gas coexisting densities, ���T�, from grand canonical
simulations (without knowledge of Tc or criticality class). The minima of QL � hm2i2L=hm

4iL in an
L� L� L box with m � �	 h�iL are used to generate recursively an unbiased universal finite-size
scaling function. Monte Carlo data for a hard-core square-well fluid and for the restricted primitive
model electrolyte yield �� to �1%–2% of �c down to 1 part in 104–103 of Tc (and confirm well Ising
character). Pressure mixing in the scaling fields is unequivocally revealed and indicates Yang-Yang
ratios R� � 	0:044 and 0:26 for the two models, respectively.
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FIG. 1. A log-log plot of the reduced semidensity jump, ��
0 �

1
2 ��

��T� 	 �	�T��a3 vs t � �T 	 Tc�=Tc, where a is the hard-
sphere diameter, for a HCSW fluid with interaction range 1:5a
(and ��

c ’ 0:3067) [7] and for the RPM with ��
c ’ 0:079 (at a

� � 5 fine-discretization level [8]). The circles report previous
estimates for the RPM and HCSW fluid [7] employing an
equal-weight prescription [9]. The dashed line has a slope
class: see below and the dashed line in Fig. 1. �Ising � 0:326.
Determining phase boundaries, critical points, and
universality classes for various models that lack a clear
symmetry has presented a serious difficulty in computer
simulations [1,2]. To tackle this problem, understanding
scaling behavior in systems of finite size is crucial.
However, as recently stressed [3], an important issue
arises for asymmetric fluid criticality, even in the ther-
modynamic limit, namely, the potential presence of a
Yang-Yang anomaly, in which the second derivative of
the chemical potential, �
�T�, on the gas-liquid phase
boundary diverges when the critical point, Tc, is ap-
proached from below. To describe a Yang-Yang anomaly
requires pressure mixing in the scaling fields [3–5]. This
also generates a term varying as jtj2� [with t � �T 	 Tc�=
Tc] in the gas-liquid coexistence diameter that dominates
the previously recognized jtj1	 term [6] and further
distorts coexistence curves near criticality.

Our aim here is to show how coexistence curves may be
estimated precisely and reliably near asymmetric critical
points using grand canonical simulations, and to check
our current understanding of scaling in such cases [4,5]. It
transpires that a finite-size scaling analysis at Tc also
elucidates pressure mixing and allows us to measure its
strength using simulation data.

Figure 1 presents our estimates of 	�1�T� � �� 	 �	,
the density discontinuity across the phase boundary, for a
hard-core square-well (HCSW) fluid and for the re-
stricted primitive model (RPM) electrolyte, where
���T� and �	�T� are the coexisting densities of liquid
and vapor. The crosses represent new estimates obtained
as explained below, while the open circles were derived
previously directly from the observed double-peaked
structure of the density distribution function in a finite
grand canonical ensemble [7]. Evidently the new ap-
proach yields estimates of ���T� and �	�T� of precision
�1%–2% of �c or better, for temperatures 1:5 to 2:5
decades closer to the critical point. These results confirm
convincingly that both models belong (as now expected
[7,8]) to the same �d � 3�-dimensional Ising universality
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To outline the established situation [10], recall that
for T < Tc the grand canonical equilibrium distribution
of the density, P L�T;��, in a finite system of dimen-
sions Ld with periodic boundary conditions, has two
Gaussian peaks near ���T� when L a, where a mea-
sures the particle size. For large L the two peaks are
clearly separated and thus provide reasonable estimates
for the coexisting densities via the equal-weight prescrip-
tion [9]—the open circles in Fig. 1 [7]. However, when Tc
is approached, finite-size effects, arising from the diver-
gence of the correlation length, soon blur the distinc-
tion between the vapor and liquid states, thereby seriously
hampering the reliable estimation of the coexistence
curve. An alternative procedure applicable near Tc is
thus imperative.
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Accordingly, we study the finite-system parameter QL
defined [8,10,11] by the dimensionless moment ratio

QL�T; h�iL� � hm2i2L=hm
4iL; m � �	 h�iL; (1)

where h�iL denotes a grand canonical expectation value at
fixed T and �. As well known, QL ! 1

3 when L! 1 in
any single-phase region of the ��; T� plane while QL ! 1
on the coexistence diameter, �diam�T� �

1
2 ��

� � �	�. At
criticality, QL rapidly approaches a universal value Qc

[8,10,11]; e.g., Qc � 0:6236 for d � 3 Ising systems. The
Q loci, �Q�T;L�, on which QL attains isothermal max-
ima, have recently provided a route to estimating Tc and
�c with unprecedented precision [8,12].

In the two-phase region it has been known, but little
appreciated, for some time [9(a),13] that QL�T;�� dis-
plays a surprising singular behavior when L! 1 [14].
This is illustrated by the dashed-line plots in Fig. 2,
which follow directly from the double-peaked structure
of P L�T;�� below Tc [12,13,15] (together with our esti-
mates for �� and �	). Specifically, Q1�T; h�i� exhibits a
discontinuous drop from Q1 � 1

3 to Q1 � 0 on the two-
phase boundaries, �	 and ��, and a continuous (but
nonconvex [12,15]) form for �	 < h�i< ��. For finite
systems, however, the singularities are rounded and, as
seen from the histogram-reweighted Monte Carlo simu-
lations presented in Fig. 2, QL�T; h�iL� displays two
smooth isothermal minima close to ���T� and �	�T�. It
is notable that while the HCSW data are fairly symmet-
rical about �diam, the RPM displays a remarkably strong
asymmetry.

Clearly, it is tempting to extrapolate these minima in
order to estimate ���T� and �	�T� [12]. However, when
Tc is approached, naive extrapolation fails badly owing to
the finite-size effects: indeed, the graph of QL�T; h�iL�
FIG. 2. Plots of QL�T; h�iL� vs �� � h�ia3 for (a) the HCSW
fluid at T� � 1:200 (< T�

c � 1:21821 [12]) and (b) the RPM at
T� � 0:0500 (< T�

c � 0:05069 [8]). The solid lines are for
(a) L� � L=a � 6; 9; 12 and (b) L� � 6; 8; 10; 12; the dashed
lines represent the exact limiting forms for the estimated
values of �� and �	 [15].
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still exhibits two distinct minima at and above T � Tc.
Hence, a more powerful approach is necessary.

The behavior of QL�T; h�iL� near criticality can be
understood via a recently developed ‘‘complete’’ scaling
theory that explicitly encompasses pressure mixing [3–
5,12]. Specifically, the full thermodynamics of a one-
component fluid near the bulk critical point �pc; Tc; �c�
can be described with three relevant scaling fields

~pp � �pp	 k0t	 l0 ���� � � � ;

~tt � t	 l1 ���	 j1 �pp� � � � ;

~hh � ���	 k1t	 j2 �pp� � � � ;

(2)

where the dimensionless deviations of the pressure and
chemical potential from criticality are �pp � �p	 pc�=
�ckBTc and ��� � ��	�c�=kBTc: the coefficients j1 and
j2 measure the degree of pressure mixing, the Yang-Yang
ratio (� 	T�00


=CV) being fixed by R� � 	j2=�1	 j2�
[3,4]. For a finite box of dimensions Ld with periodic
boundary conditions, the finite-size scaling hypothesis
now asserts [4,5,12,16]

�c ~pp � L	dY�x; z�; x � D~ttL1=�; z � U~hh=j~ttj	;

(3)

where we have used the hyperscaling relation d� � 2	 
(valid for d < 4) and, for simplicity, neglected correc-
tions to scaling. Note that D and U are nonuniversal
amplitudes (of dimensions L	1=� and L0, respectively),
while Y�x; z� is a universal function that is even in z and
independent of microscopic details while depending on
the geometry and the boundary conditions of the system.

It follows that the full scaling expression for QL is

QQ�x; z��1� AjL	 Qj�x; z� � AlL	!Ql�x; z� � � � ��;

(4)

[12] with exponents and nonuniversal amplitudes

 � �=�; Aj � j2D
	U=�c; ! � �		 1�=�;

Al � �l1 � j1�D1		=�1	 j2�U; (5)

while the scaling functions QQ, Qj, and Ql depend only
on derivatives of Y�x; z� thereby being universal. The
symmetry of Y�x; z� implies that QQ is even in z while
Qj and Ql are odd. Notice that the pressure-mixing
coefficient j2 provides the dominant asymmetric
L-dependent correction (with Ising values  � 0:517 <
! � 0:896) which, indeed, describes the strong asymmet-
ric behavior of QL�T; h�iL� for the RPM seen in Fig. 2(b).

Of course, the mean density h�iL also has a scaling
form which we choose to write as [12]

y�T;L� � 2�h�iL 	 �diam�T��=	�1�T�

� Y�1� AjL	 Yj � AlL	!Yl � � � ��; (6)

where, again, the scaling functions Y�x; z�, Yj�x; z�, and
065701-2



FIG. 3. Scaling plots of �	ymin�
	 (for  � 2, 1=�Is � 3:07,

and 5) vs q � �QQmin ln�4=e �QQmin � for the HCSW fluid built up
recursively from low q where the dashed lines are exact: see
Eq. (8). Various symbols, most suppressed for clarity, depict
results at increasing Tj: see text.
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Yl�x; z� derive from Y�x; z� and are universal, while Y is
odd in z, and Yj and Yl are even.

The crucial point here is that �diam / ��� � �	� and
	�1 / ��� 	 �	� embody the desired coexistence val-
ues ���T� and �	�T�. Our strategy will be to determine
values for �diam and 	�1 so that the minima of
QL�T; h�iL�, say, Q�

m�T;L� and Q	
m�T;L�, and their loca-

tions, ��
m�T;L� > �	

m�T;L�, satisfy appropriate scaling
relations. We focus first on 	�1 and, to minimize the
effects of asymmetry (arising from the mixing coeffi-
cients j2, j1, and l1), we examine the mean and difference

�QQ min �
1
2�Q

�
m �Q	

m�; 	ymin �
1
2�y

�
m 	 y	m�: (7)

Now, on evaluating (4) and (6) at z�min (which asymp-
totically fixes Q�

m) and formally eliminating x / tL1=�

between the resulting expressions, we see that
�QQmin�T;L� and 	ymin�T;L� should be related in a way

that, to the orders displayed, is independent of T and L
and (up to the neglected corrections to scaling) reflects
only the universality class of the critical system under
consideration. A priori this class is unknown — and, in-
deed, is to be determined. However, for any scalar order
parameter the two-peaked, double-Gaussian structure of
P L�T;�� should be reproduced asymptotically when
L! 1 at fixed T < Tc. On this basis it is straightforward
to calculate the universal relation for �QQmin ! 0: we
find [12(a)]

	ymin�q� � 1� 1
2q�O�q2�; q � �QQmin ln�4=e �QQmin�;

(8)

which, to this order, is independent of any asymmetry.
Finally, we can employ our scaling analysis to generate

the limiting coexistence curve recursively using finite-
size simulation data for QL. Appropriate initial steps are
the following: (i) Collect data sets fQ�

m�T;Li�; �
�
m�T;Li�g

for a range of values fLig
n
1 at fixed values of T & Tc.

(ii) For a value T � T0 sufficiently low that �QQmin & 0:03
[which corresponds to well separated peaks in P L�T0;��],
choose a density-jump value, say, 	�T0 , independent of i,

which leads to the best fit of 	y�i�min � ���
m�T0;Li� 	

�	
m�T0;Li��=	�T0 vs q�i�0 � q�T0;Li� to the relation (8)

at small q: see the dashed lines in Fig. 3. In light of the
scaling relations (4) and (6), the parameter 	�T0 can then
be identified as an estimate for 	�1�T0�. (iii) Increase T0
to T1 � T0 �	T0 by a small 	T0, chosen so that the new
set fq�i�1 gn1 overlaps the previous one. (iv) Determine a new
value, 	�T1 , so that the plotted data display an optimal
collapse that extends the previous numerical scaling func-
tion to larger values of q: see the gradual departure of the
fits from the dashed lines in Fig. 3 as q increases. In
practice we have found that n � 3 distinct box sizes
with L3 * 1:3L1 may well suffice. (v) Repeat steps (iii)
and (iv) generating successive estimates for 	�1�Tj�
for j � 2; 3; . . . . Smaller increments 	Tj are needed as
Tj ! Tc and the q�i�j increase to qc � Qc

min ln�4=eQ
c
min �
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(see Fig. 3) so that histogram-reweighting procedures are
crucial [7,8].

Figure 3 presents a scaling plot for the HCSW fluid
constructed in this fashion: system sizes L� � L=a � 9,
10:5, and 12 were used and led to the estimates shown
in Fig. 1 for 	�1�T� from jtj ’ 0:23 down to jtj ’ 10	4.
Purely for ease of presentation, Fig. 3 displays �	ymin�

	 

for selected values of  . In fact, the scaling analysis in-
dicates that 	ymin�q� should diverge like �qc 	 q�	� when
q! qc as T ! Tc, with qc a universal value (depending
on geometry and boundary conditions) [12(b)]. For the
HCSW fluid with periodic boundary conditions we find
Qc

min � 0:1102. To lower precision, the RPM data yield
the same scaling plots and value of Qc

min [12(b)]. On the
other hand, the approximate scaling form proposed by
Tsypin and Blöte [17] for P L�Tc;�� for (d � 3) Ising
models gives Qc

min ’ 0:117, only 6% higher than we ob-
serve. For (d � 2) Ising models we estimate Qc

min ’ 0:28
using data in [8].

Evidently, the choice of  � 1=� should yield a plot
that intersects the q axis linearly; indeed, for the Ising
value, �Is � 0:326, this is so. But, we emphasize that this
observation plays no role in the calculation of Fig. 1.

Clearly, uncertainties in choosing 	�Tj , 	�Tj�1
, . . . in

steps (ii) and (iv) will propagate. Well below Tc (where
care must be taken to ensure two-phase equilibrium) we
can fit the limiting behavior (8) with a precision of �1:0%
or better in 	�T=�c. The overall uncertainties then grow
by factors of 5–10 as jtj decreases to 10	4 for the HCSW
fluid and 10	3 for the RPM: see Fig. 1.

It is also remarkable that the 	�1�T� estimates imply
values for Tc. For the HCSW fluid we thus find T�

c ’
1:218 21�2� which lies close to the upper confidence
limit of the previous estimate T�

c ’ 1:2179�3� [7]: see
065701-3



FIG. 4. Plots of the critical asymmetry factor Ac
min�L�: see

Eq. (9). The fitted curves use Ising exponent values and indicate
relatively large pressure mixing in the RPM.
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also Eq. (5.6) of Ref. [12(a)]. For the RPM we obtain
T�
c ’ 0:050 69�2� which agrees precisely with Ref. [8].

Explicit fits to 	�1�T� that allow for the leading correc-
tion terms yield � � 0:324�10� for the HCSW fluid and
� � 0:34�5� for the RPM, so providing independent,
albeit weaker, confirmation of the Ising behavior estab-
lished using data confined to T * Tc [7,8].

The scaling results (4) and (5) suggest that evidence for
a pressure-mixing coefficient j2 might be detected in
finite-size data. Indeed, a detailed calculation [12(b)] of
the asymmetry seen in the minima ofQL at T � Tc yields�

Amin �
Q�

m 	Q	
m

Q�
m �Q	

m

�
c
� AjcjL	 �AlclL	!��� � ; (9)

where cj and cl are universal numbers determined by
expansion coefficients of Y�0; z� about the minima at
z�min. Recall from (5) that Aj is proportional to j2.

In Fig. 4 we present data for Ac
min�L� for the RPM and

the HCSW fluid: even by eye, the former strongly suggest
a leading exponent closer to  � 0:517 than to ! � 0:896.
The fits in Fig. 4, using only the two leading terms in (9),
support this but also indicate a weak j2 contribution of
opposite sign for the HCSW fluid. Further fairly elaborate
analysis [12] yields j2 � 	0:35�7�, implying a strong,
R� � 0:26�4�, Yang-Yang anomaly for the RPM, while
j2 � 0:042�3� and R� � 	0:044�3� for the HCSW fluid.
The latter result is consistent with the earlier, much less
precise estimate R� ’ 	0:08�12� [7].

Finally, to determine the diameter �diam�T� we com-
pare �yymin � 1

2 �y
�
m � y	m� and Amin�T;Li�. Analysis of the

two-Gaussian limit [12(b)] yields �yymin =Amin � 1
2 �qq�

O� �qq2� with �qq�q	 �QQmin which is again universal in lead-
ing order. Owing to the asymmetric terms in (4) and (6)
the analogous scaling plots are now more sensitive to
nonuniversal details and exhibit small, L-dependent cor-
rections when q approaches qc. Nevertheless, the ap-
proach succeeds and the critical densities, ��

c , predicted
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from the diameters when T ! Tc are fully consistent
with the previous, T * Tc estimates [7,8,12]. Details for
both the RPM and the HCSW fluid will be presented
elsewhere [12(b)].

In summary, we have shown how the finite-size scaling
information hidden in precise simulation data can be
systematically extracted via a novel Q-minima recursive
algorithm to yield coexistence curves far closer to Tc and
with a much higher precision than previously appeared
possible. As a by-product, pressure mixing has been
quantitatively resolved.
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(2000).
065701-4


