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Nonmonotonic Crossover of the Effective Susceptibility Exponent
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We have numerically determined the behavior of the magnetic susceptibility upon approach of the
critical point in two-dimensional spin systems with an interaction range that was varied over nearly
2 orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning
several decades in the reduced temperature, could be observed. Our results convincingly show that the
effective susceptibility exponeng.;; changesnonmonotonicallyfrom its classical to its Ising value
when approaching the critical point in the ordered phase. In the disordered phase the behavior
is monotonic. Furthermore, the hypothesis that the crossover function is universal is supported.
[S0031-9007(97)03721-6]
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At a continuous phase transition, several thermodybehavior to another in the crossover region. Whereas
namic observables diverge as a power of the temperatusome calculations predict a strictly monotonical variation,
distance to the critical point. These powers, or criticalothers indicate that aonmonotonicalvariation might be
exponents, have universal values which are identical fopossible. While on the theoretical side several important
large classes of systems. For example, uniaxial ferroepen questions remain, the experimental situation is hardly
magnets, binary alloys, simple fluids, binary mixtures,better. Measurements in the critical region are difficult,
ionic solutions, and polymer mixtures all belong to theand accurate results are scarce. Fisher [6] has discussed
three-dimensional Ising universality class. However.experiments on micellar solutions (expected to belong to
the corresponding power-law behavior is only observedhe Ising universality class) [7] that yielded values for the
asymptotically close to the critical point. As stated bysusceptibility exponeny that lie below the classical value
the Ginzburg criterion [1], classical or mean-field-like yyr = 1, while the Ising value is given by, = 1.237
critical behavior may be observed at temperatures farthgB]. He argues that these results can be incorporated in a
away from the critical temperaturE.. The explanation standard scaling description of crossover behavior if one
of this crossoverin terms of competing fixed points of allows for an effective susceptibility exponent that varies
a renormalization-group transformation is one of thenonmonotonically as a function of the reduced temperature
great achievements of Wilson's renormalization the-t = (T — T.)/T.. More recently, Anisimovet al.[9]
ory. Nevertheless, the precise nature of the crossoveneasured a susceptibilify for which they found that the
between these two universality classes is still subjeckogarithmic derivativey.;s = —d In y /d In || approached
to debate. Theoretically, several attempts have beethe Ising value fromaboveupon approach of the critical
made to approximately calculate crossover functionspoint. As this implies a nonmonotonical variationwfy,

For instance, Nicoll and Bhattacharjee [2] solved theBagnuls and Bervillier subsequently suggested that the
renormalization equations i/ dimensions to second measurements might have been taken outside the critical
order in e =4 — d by applying a specific matching region, see Refs. [10,11]. Indeed, since the crossover
condition, whereas Bagnuls and Bervillier [3] used mas+egion is expected to span several decades in the reduced
sive field theory ind = 3. The results of Belyakov and temperature [5,6], in many experiments the full crossover
Kiselev [4] are phenomenological generalizations ofbehavior cannot be observed. At the same time, the large
first-ordere expansions. All these results are only valid extent of the crossover region reinforces its experimental
in the symmetric phasél’ > T.) and suggest that the relevance: Many measurements of critical exponents are
crossover behavior is universal. However, Anisimovactually madewithinthe crossover region, and thus only a
et al.[5] claimed that, while at criticality microscopic detailed knowledge of the crossover behavior guarantees
cutoff effects may be neglected compared to the ina correct interpretation of the data.

finite correlation length, this is no longer the case in Although it is tempting to apply numerical simulations
the crossover region. This implies that the crossoveto shed some light on these issues, in practice one
functions cannot be represented as universal functionsncounters difficulties comparable to those experienced by
of one variable. A particular question concerns theexperimentalists. In particular the size of the crossover
variation of the so-called effective exponents describingegion constitutes a towering hurdle. A major effort
the continuous change from one type of power-lawhas been undertaken in Ref. [12] for three-dimensional
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polymer mixtures, in which crossover occurs as a functiorover the full crossover region while keepingufficiently
of the polymer chain length. These systems offer thesmall. On the other hand, for a too small Ginzburg
advantage that the crossover can be influenced both byumber, the critical point must be approached very closely
varying the temperature and by changing the chain lengthio access the Ising regime. The diverging correlation
Despite chain lengths of up to 512 monomers, the resultength is then, in our simulations, truncated by the finite
did not span the full crossover region. Mon and Bindersystem sizeL. Therefore we construct the crossover
[13] examined the two-dimensional Ising model with anfunction by studying systems with various values ®f
extended range of interactioR, where crossover from (interaction ranges) such thathas to be varied only
Ising to classical behavior occurs whéhis increased. within a limited range (but in such a way that the results
They studied crossover in finite systemdat= 7.. Even for several differentG overlap at fixed/G).
in these systems the mean-field regime could hardly be We have carried out MC simulations of square sys-
reached. In Ref. [14] we showed that a new Monte Carldems with periodic boundary conditions containing up to
(MC) cluster algorithm for long-range interactions [15] 1000 X 1000 spins in which each spin interacts with up
could be applied to this model, leading to a speed increas®e 31416 neighbors. This corresponds to an effective in-
of many orders of magnitude compared to conventionateraction rangek of 71 lattice spacings or intermolecular
algorithms. distances. To avoid systematic errors in the determina-
In this Letter we use this algorithm to study two- tion of the crossover behavior, an accurate estimate of
dimensional Ising systems with a variable interactionT,. as a function ofR is required. For systems with in-
range and present results for the crossover behavior of theraction ranges up t® = 8.3, results for7T.(R) have
magnetic susceptibility at temperatures below and abovbeen obtained in Ref. [14]. For larger ranges the critical
T.. Although two-dimensional systems are simpler thartemperature can be calculated to a comparable accuracy
their three-dimensional counterparts, this model exhibits &rom a renormalization expression f6r(R) [14]. Further
surprising behavior. In particular, a qualitative differencesimulational details will be presented elsewhere [16].
betweenl’ < T. andT > T, is found. The advantage of In the two-dimensional Ising model; = 7/4, and the
examining two-dimensional instead of three-dimensionabusceptibility y diverges forz 10 as A; (—¢)~7/* and
systems is the much larger variation of the criticalfor r | 0 as A, +~7/*. The critical amplitudes for the
exponents in the crossover region and the accessibility afearest-neighbor model are known exactly [14], =
larger interaction ranges, which makes it feasible to cove.025537 ..., andA; = 0.96258.... Note the very large
the full crossover region. asymmetry,A; /A; = 38. Mean-field theory predicts
The model under investigation was introduced ina susceptibility that forr 1 0 diverges asl/(—2¢) and
Ref. [13] and is defined by the following Hamiltonian:  for ¢ | 0 as1/¢, i.e., a susceptibility exponentyr = 1
and a much smaller ratia;;r/Ayr = 2. As derived in
H /T = =Y Kalt; — r))sis;, (1)  Refs. [13,14], the Ising critical amplitude of the suscep-
i tibility is proportional to R~3/2. Thus, in a graph dis-
where the spinss take the valuest1, the sum runs playing the results for various ranges as a function of the
over all spin pairs, and the spin-spin coupling dependsrossover variable/G = tR?, a data collapse is obtained
on the distancer| between the spins a&;(r) = cR,¢  for y/R?. The susceptibility is related to the average
for [r| = R, and K;(r) = 0 for |r| > R,,. For finite  magnetization per spim. In our simulations we have,
R,, the critical behavior of this model will be Ising- for # < 0, sampled the connected susceptibility given
like, but for R,, — o it will be classical. This implies by the fluctuation relationy = L¢((m?*) — {|m|)?)/ksT,
a singular dependence of the critical amplitudesRyy ~ whereas for > 0 we have useqt = L%(m?)/kpT.
which was first derived on phenomenological grounds in In Fig. 1 we show the magnetic susceptibility bel@w
Ref. [13]. In Ref. [14] a renormalization derivation of for various system sizes and interaction ranges. This graph
these singular dependences was given, which, in additiomxhibits several interesting features. For very small val-
revealed logarithmic corrections faf = 2. To avoid ues of|¢| the curves lie almost horizontal; this is the finite-
lattice effects we formulate range dependences in termsize regime, where the correlation length is truncated by
of an effective interaction rang®, which is directly the system size. For somewhat larger valueg:pthe
related toR,, [13]. The Ginzburg criterion introduces a curves start following the Ising asymptote with slope [i.e.,
parameteiG o« R ~24/4=4) (the Ginzburg number) which the logarithmic derivativel In y /dIn|¢|]] —7/4. This is
determines whether the critical behavior will be Ising-like the critical behavior as it is experimentally measured close
(r < G) or classical(r > G). In the latter case, care to T.. Also, the critical amplituded; is accurately re-
must be taken thatis still within the critical region. For produced by the simulations. At even lowgr we see
many experimental systems the Ginzburg number is nahat the curves for systems with small interaction ranges
small, and one has left the critical region before observingtart to deviate from the Ising asymptote toward the mean-
the full crossover to classical critical behavior. In ourfield asymptote (slope-1) without actually reaching it.
model system(G is adjustable so that we can varyG  These systems have left the critical region and the order
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FIG. 1. Crossover behavior of the connected susceptibjlity FIG. 3. The effective susceptibility exponep; below 7.
for various ranges and system sizes. In this and all following

figures, the numbers in the key refer to values for the interaction ) o ] ]
rangeRr. slope is now clearly visible. The data for different interac-

tion ranged =< R =< 70 overlap for considerable intervals
parameter shows strong saturation effects (which decreasgg;g2. The perfect collapse of these data lends strong sup-
the susceptibility). However, systems with a larger interport to the hypothesis that the crossover curve is univer-
action range clearly cross over to the mean-field asymptotgg| and spans several decades in the reduced temperature.
reproducing the mean-field critical amplitudg,-. For  |n addition, it follows from the renormalization treatment
even lower temperatures these systems also exhibit satyyr Ref. [14] that the correlation length decreases as ”
ration effects, which foR = 8.3 are accurately described jith an amplitude which is for = 2 to leading order in-
by mean-field theory (dashed curves). However, the outdependent oR. Thus, at a fixed value oR? the curves
standing feature of this graph is the region between theor different ranges haveifferentvalues for¢, and the
Ising and the mean-field asymptote. Namely, before sefct that they collapse implies that the ratio betweeand
tling at the latter asymptote, the curve describing the susthe lattice spacing: does not affect the crossover curve.
ceptibility first has (in this double-logarithmic plot) a slope This is markedly different from the results of Ref. [5] for
that isless steegthan in the mean-field regime. That is, 7 = 3. Also, the influence of irrelevant fields is not visible
Yerr < 1 (the superscript minus sign indicates that we aren the data collapse. To connect to experimental results,
considering the case<< 0). To illustrate this effect more e have plotted the effective exponen; (obtained by
clearly we have reproduced Fig. 1 without the data thahumerical differentiation) in Fig. 3. Starting froff, .
are plagued by finite-size effects or lie outside the criti-fjrst steeply decreases to a minimum belgyy and then
cal region. Furthermore, we have corrected for the satugradually rises to the asymptotic mean-field value.
ration effects for systems with large ranges. While this' Now we turn to the symmetric phase, for which a
is a real physical effect, it can be removed by applyingdata collapse of the susceptibility is shown in Fig. 4.
a correction factor accounting for the difference betweeny,st as belowr, finite-size effects occur for very small
the asymptotic mean-field susceptibility and the mean-field. Qutside the finite-size regime the data for varidus

susceptibility affected by saturation. The resulting graphjcely collapse on the Ising asymptote, again with slope
is shown in Fig. 2. The nonmonotonical variation of the
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FIG. 4. Crossover behavior of the susceptibiljtyfor various
FIG. 2. Crossover curve for the connected susceptibjtity = ranges and system sizes.
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2 ' ' y T T T yielded, for the first time, strong numerical evidence
Tsing ig — tha_t belowT, the eifective susceptit_)ility exponent;
175 —;“ii;g 24 - 1 varies nonmonotonically between its Ising value and
¥ 6.0 its classical value. Abovd'., on the other hand, the
i 83 ——s . e
15+ i 32 et exponent shows a monotonical variation between the two
+3 i limiting values. Thus, the plausibility of the occurrence
125 | ii i of a minimum in vy in three-dimensional systems, at
s least in the phase of broken symmetry, has been greatly
(L L e Y increased. Furthermore, the fact that the crossover curves
ME for many different interaction ranges collapse supports the
0.75 . . . . . . hypothesis that this curve is universal.
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—7/4 but with a much larger amplitude. For higher to a Cray-T3E, on which part of the computations have
temperatures the curves appear to gradually approach theen carried out.
mean-field asymptote. However, the critical amplitude
Ay is reproduced only for larger interaction ranges. This
stresses an important point: Abo¥g no saturation of
the order parameter occurs, marking the end of the critical
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