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Nonmonotonic Crossover of the Effective Susceptibility Exponent
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We have numerically determined the behavior of the magnetic susceptibility upon approach o
critical point in two-dimensional spin systems with an interaction range that was varied over n
2 orders of magnitude. The full crossover from classical to Ising-like critical behavior, span
several decades in the reduced temperature, could be observed. Our results convincingly show
effective susceptibility exponentgeff changesnonmonotonicallyfrom its classical to its Ising value
when approaching the critical point in the ordered phase. In the disordered phase the be
is monotonic. Furthermore, the hypothesis that the crossover function is universal is supp
[S0031-9007(97)03721-6]
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At a continuous phase transition, several thermo
namic observables diverge as a power of the tempera
distance to the critical point. These powers, or critic
exponents, have universal values which are identical
large classes of systems. For example, uniaxial fer
magnets, binary alloys, simple fluids, binary mixture
ionic solutions, and polymer mixtures all belong to th
three-dimensional Ising universality class. Howev
the corresponding power-law behavior is only observ
asymptotically close to the critical point. As stated b
the Ginzburg criterion [1], classical or mean-field-lik
critical behavior may be observed at temperatures fart
away from the critical temperatureTc. The explanation
of this crossoverin terms of competing fixed points o
a renormalization-group transformation is one of t
great achievements of Wilson’s renormalization th
ory. Nevertheless, the precise nature of the crosso
between these two universality classes is still subj
to debate. Theoretically, several attempts have b
made to approximately calculate crossover functio
For instance, Nicoll and Bhattacharjee [2] solved t
renormalization equations ind dimensions to second
order in e ­ 4 2 d by applying a specific matching
condition, whereas Bagnuls and Bervillier [3] used ma
sive field theory ind ­ 3. The results of Belyakov and
Kiselev [4] are phenomenological generalizations
first-ordere expansions. All these results are only val
in the symmetric phasesT . Tcd and suggest that the
crossover behavior is universal. However, Anisim
et al. [5] claimed that, while at criticality microscopic
cutoff effects may be neglected compared to the
finite correlation length, this is no longer the case
the crossover region. This implies that the crosso
functions cannot be represented as universal functi
of one variable. A particular question concerns t
variation of the so-called effective exponents describ
the continuous change from one type of power-la
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behavior to another in the crossover region. Where
some calculations predict a strictly monotonical variatio
others indicate that anonmonotonicalvariation might be
possible. While on the theoretical side several importa
open questions remain, the experimental situation is har
better. Measurements in the critical region are difficu
and accurate results are scarce. Fisher [6] has discu
experiments on micellar solutions (expected to belong
the Ising universality class) [7] that yielded values for th
susceptibility exponentg that lie below the classical value
gMF ­ 1, while the Ising value is given bygI ­ 1.237
[8]. He argues that these results can be incorporated
standard scaling description of crossover behavior if o
allows for an effective susceptibility exponent that vari
nonmonotonically as a function of the reduced temperat
t ­ sT 2 TcdyTc. More recently, Anisimovet al. [9]
measured a susceptibilityx for which they found that the
logarithmic derivativegeff ; 2d ln xyd ln jtj approached
the Ising value fromaboveupon approach of the critica
point. As this implies a nonmonotonical variation ofgeff,
Bagnuls and Bervillier subsequently suggested that
measurements might have been taken outside the crit
region, see Refs. [10,11]. Indeed, since the crosso
region is expected to span several decades in the redu
temperature [5,6], in many experiments the full crossov
behavior cannot be observed. At the same time, the la
extent of the crossover region reinforces its experimen
relevance: Many measurements of critical exponents
actually madewithin the crossover region, and thus only
detailed knowledge of the crossover behavior guarant
a correct interpretation of the data.

Although it is tempting to apply numerical simulation
to shed some light on these issues, in practice o
encounters difficulties comparable to those experienced
experimentalists. In particular the size of the crossov
region constitutes a towering hurdle. A major effo
has been undertaken in Ref. [12] for three-dimensio
© 1997 The American Physical Society 561
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polymer mixtures, in which crossover occurs as a functio
of the polymer chain length. These systems offer t
advantage that the crossover can be influenced both
varying the temperature and by changing the chain leng
Despite chain lengths of up to 512 monomers, the resu
did not span the full crossover region. Mon and Bind
[13] examined the two-dimensional Ising model with a
extended range of interactionR, where crossover from
Ising to classical behavior occurs whenR is increased.
They studied crossover in finite systems atT ­ Tc. Even
in these systems the mean-field regime could hardly
reached. In Ref. [14] we showed that a new Monte Car
(MC) cluster algorithm for long-range interactions [15
could be applied to this model, leading to a speed increa
of many orders of magnitude compared to convention
algorithms.

In this Letter we use this algorithm to study two
dimensional Ising systems with a variable interactio
range and present results for the crossover behavior of
magnetic susceptibility at temperatures below and abo
Tc. Although two-dimensional systems are simpler tha
their three-dimensional counterparts, this model exhibits
surprising behavior. In particular, a qualitative differenc
betweenT , Tc andT . Tc is found. The advantage of
examining two-dimensional instead of three-dimension
systems is the much larger variation of the critica
exponents in the crossover region and the accessibility
larger interaction ranges, which makes it feasible to cov
the full crossover region.

The model under investigation was introduced
Ref. [13] and is defined by the following Hamiltonian:

H ykBT ­ 2
X
ij

Kdsri 2 rjdsisj , (1)

where the spinss take the values61, the sum runs
over all spin pairs, and the spin-spin coupling depen
on the distancejrj between the spins asKdsrd ­ cR2d

m
for jrj # Rm and Kdsrd ­ 0 for jrj . Rm. For finite
Rm the critical behavior of this model will be Ising-
like, but for Rm ! ` it will be classical. This implies
a singular dependence of the critical amplitudes onRm,
which was first derived on phenomenological grounds
Ref. [13]. In Ref. [14] a renormalization derivation o
these singular dependences was given, which, in additi
revealed logarithmic corrections ford ­ 2. To avoid
lattice effects we formulate range dependences in ter
of an effective interaction rangeR, which is directly
related toRm [13]. The Ginzburg criterion introduces a
parameterG ~ R22dys42dd (the Ginzburg number) which
determines whether the critical behavior will be Ising-lik
st ø Gd or classicalst ¿ Gd. In the latter case, care
must be taken thatt is still within the critical region. For
many experimental systems the Ginzburg number is n
small, and one has left the critical region before observi
the full crossover to classical critical behavior. In ou
model system,G is adjustable so that we can varytyG
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over the full crossover region while keepingt sufficiently
small. On the other hand, for a too small Ginzbur
number, the critical point must be approached very close
to access the Ising regime. The diverging correlatio
length is then, in our simulations, truncated by the fini
system sizeL. Therefore we construct the crossove
function by studying systems with various values ofG
(interaction ranges) such thatt has to be varied only
within a limited range (but in such a way that the resul
for several differentG overlap at fixedtyG).

We have carried out MC simulations of square sy
tems with periodic boundary conditions containing up
1000 3 1000 spins in which each spin interacts with up
to 31 416 neighbors. This corresponds to an effective in
teraction rangeR of 71 lattice spacings or intermolecular
distances. To avoid systematic errors in the determin
tion of the crossover behavior, an accurate estimate
Tc as a function ofR is required. For systems with in-
teraction ranges up toR ø 8.3, results forTcsRd have
been obtained in Ref. [14]. For larger ranges the critic
temperature can be calculated to a comparable accur
from a renormalization expression forTcsRd [14]. Further
simulational details will be presented elsewhere [16].

In the two-dimensional Ising modelgI ­ 7y4, and the
susceptibility x diverges for t " 0 as A2

I s2td27y4 and
for t # 0 as A1

I t27y4. The critical amplitudes for the
nearest-neighbor model are known exactly [17],A2

I ­
0.025537 . . . , andA1

I ­ 0.96258 . . . . Note the very large
asymmetry, A1

I yA2
I ø 38. Mean-field theory predicts

a susceptibility that fort " 0 diverges as1ys22td and
for t # 0 as 1yt, i.e., a susceptibility exponentgMF ­ 1
and a much smaller ratioA1

MFyA2
MF ­ 2. As derived in

Refs. [13,14], the Ising critical amplitude of the susce
tibility is proportional to R23y2. Thus, in a graph dis-
playing the results for various ranges as a function of t
crossover variabletyG ~ tR2, a data collapse is obtained
for xyR2. The susceptibility is related to the averag
magnetization per spinm. In our simulations we have,
for t , 0, sampled the connected susceptibility give
by the fluctuation relatioñx ­ Ldskm2l 2 kjmjl2dykBT ,
whereas fort . 0 we have usedx ­ Ldkm2lykBT .

In Fig. 1 we show the magnetic susceptibility belowTc

for various system sizes and interaction ranges. This gra
exhibits several interesting features. For very small va
ues ofjtj the curves lie almost horizontal; this is the finite
size regime, where the correlation length is truncated
the system size. For somewhat larger values ofjtj the
curves start following the Ising asymptote with slope [i.e
the logarithmic derivatived ln xyd ln jtj] 27y4. This is
the critical behavior as it is experimentally measured clo
to Tc. Also, the critical amplitudeA2

I is accurately re-
produced by the simulations. At even lowerT , we see
that the curves for systems with small interaction rang
start to deviate from the Ising asymptote toward the mea
field asymptote (slope21) without actually reaching it.
These systems have left the critical region and the ord
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FIG. 1. Crossover behavior of the connected susceptibilityx̃
for various ranges and system sizes. In this and all follow
figures, the numbers in the key refer to values for the interac
rangeR.

parameter shows strong saturation effects (which decre
the susceptibility). However, systems with a larger int
action range clearly cross over to the mean-field asympt
reproducing the mean-field critical amplitudeA2

MF . For
even lower temperatures these systems also exhibit s
ration effects, which forR * 8.3 are accurately describe
by mean-field theory (dashed curves). However, the o
standing feature of this graph is the region between
Ising and the mean-field asymptote. Namely, before
tling at the latter asymptote, the curve describing the s
ceptibility first has (in this double-logarithmic plot) a slop
that is less steepthan in the mean-field regime. That i
g

2
eff , 1 (the superscript minus sign indicates that we

considering the caset , 0). To illustrate this effect more
clearly we have reproduced Fig. 1 without the data t
are plagued by finite-size effects or lie outside the cr
cal region. Furthermore, we have corrected for the sa
ration effects for systems with large ranges. While t
is a real physical effect, it can be removed by apply
a correction factor accounting for the difference betwe
the asymptotic mean-field susceptibility and the mean-fi
susceptibility affected by saturation. The resulting gra
is shown in Fig. 2. The nonmonotonical variation of t

FIG. 2. Crossover curve for the connected susceptibilityx̃.
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FIG. 3. The effective susceptibility exponentg
2
eff below Tc.

slope is now clearly visible. The data for different interac
tion ranges1 & R & 70 overlap for considerable intervals
of tR2. The perfect collapse of these data lends strong su
port to the hypothesis that the crossover curve is unive
sal and spans several decades in the reduced temperat
In addition, it follows from the renormalization treatment
in Ref. [14] that the correlation lengthj decreases ast2n

with an amplitude which is ford ­ 2 to leading order in-
dependent ofR. Thus, at a fixed value oftR2 the curves
for different ranges havedifferent values forj, and the
fact that they collapse implies that the ratio betweenj and
the lattice spacinga does not affect the crossover curve
This is markedly different from the results of Ref. [5] for
d ­ 3. Also, the influence of irrelevant fields is not visible
in the data collapse. To connect to experimental result
we have plotted the effective exponentg

2
eff (obtained by

numerical differentiation) in Fig. 3. Starting fromTc, g
2
eff

first steeply decreases to a minimum belowgMF and then
gradually rises to the asymptotic mean-field value.

Now we turn to the symmetric phase, for which a
data collapse of the susceptibilityx is shown in Fig. 4.
Just as belowTc, finite-size effects occur for very small
t. Outside the finite-size regime the data for variousR
nicely collapse on the Ising asymptote, again with slop

FIG. 4. Crossover behavior of the susceptibilityx for various
ranges and system sizes.
563
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FIG. 5. The effective susceptibility exponentg
1
eff aboveTc.

27y4 but with a much larger amplitude. For highe
temperatures the curves appear to gradually approach
mean-field asymptote. However, the critical amplitud
A1

MF is reproduced only for larger interaction ranges. Th
stresses an important point: AboveTc no saturation of
the order parameter occurs, marking the end of the criti
region, but the system smoothly passes over to regu
(noncritical) behavior. In this high-temperature region th
susceptibility decreases proportional to1yT . It is this
behavior that is seen in the graph at high temperatu
for systems with small interaction ranges. As rightfull
stressed by Bagnuls and Bervillier [10], this behavio
should be clearly distinguished from classicalcritical
behavior. Thus, it is by no means disturbing that th
curves for smallR deviate from the mean-field asymptote
and this does not imply a nonuniversal character
the crossover curve in the critical region. Disregardin
these systems that have left the critical region, we no
that aboveTc the susceptibility smoothly crosses ove
from Ising-like to classical critical behavior and that th
effective exponentg1

eff decreases monotonically from7y4
toward1, as visualized in Fig. 5.

In conclusion, we have presented crossover curv
for the magnetic susceptibility in two-dimensional Isin
models with medium-range interactions, both fort , 0
andt . 0. Unlike previous treatments, which all suffere
from some systematic limitations (like extrapolating low
order e expansions to physical dimensions), the prese
approach, for the first time, gives an explicit descriptio
of crossover scaling functions for critical phenomena. A
least in principle, these curves could be directly compar
to experimental results. The large interaction ranges t
could be accessed allowed us to observe the crosso
between Ising-like and classical critical behavior fo
nearly six decades in the crossover variable. This h
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yielded, for the first time, strong numerical evidenc
that belowTc the effective susceptibility exponentgeff
varies nonmonotonically between its Ising value an
its classical value. AboveTc, on the other hand, the
exponent shows a monotonical variation between the t
limiting values. Thus, the plausibility of the occurrenc
of a minimum in geff in three-dimensional systems, a
least in the phase of broken symmetry, has been gre
increased. Furthermore, the fact that the crossover cur
for many different interaction ranges collapse supports
hypothesis that this curve is universal.
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