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REFORMULATION OF THE HAMILTONIAN AND PHASE
DIAGRAM

We discuss an alternate representation of the Hamiltonian
as well as the phase diagram constructed under this represen-
tation. The Hamiltonian presented in the main text can be
written as
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in which all variables have been introduced in the main text.
In this formulation, we choose the dielectric mismatch γ as an
independent variable rather than λdi. There are two motiva-
tions for adopting this representation. First, γ is more directly
related to materials properties, thus facilitating the connection
to experiments. Second, in the long-range limit (|r̃rep

i j | � α)
the total dipole–image energy scales as γ λdd compared to the
dipole–dipole energy, which scales as λdd. Therefore, γ mea-
sures the anisotropy of the effective long-range interaction.
However, we remark that γ only determines the magnitude of
the dipole–image energy relative to the total long-range en-
ergy. Whether this contribution will reinforce or counteract
the dipole–dipole energy is different for dipoles with in-plane
and out-of-plane orientation.

In addition to λdd, which serves as a global energy scale
(or inverse temperature), and γ , we choose α as the third in-
dependent parameter. α determines the magnitude of the sur-
face anisotropy (i.e., the first-order dipole–image interaction),
characterized by γ λdd/α

3. Figure S1 shows a λdd = 5 section
of the phase diagram in the α–γ plane .

ENERGY ANALYSIS OF THE MODULATED PHASES

We (i) derive the effective pairwise potential between two
dipoles placed on a dielectric substrate and (ii) demonstrate
how this potential affects the resultant modulated phases. As a
representative example, we focus on the stripe phase (λdi < 0,
γ < 0) and assume that the dipole moments of the particles
are oriented perpendicular to the substrate owing to the attrac-
tion by their own images (cf. Fig. 4a, main text). Thus, the
dipole moment µi of particle i is given by µi = µσi , where
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FIG. S1. Phase diagram parametrized by α and γ at λdd = 5. Phase
boundaries are drawn based on discrete simulation data points with
positions indicated by the black dots.

σi = (0, 0, σi,z) = (0, 0,±1). The induced image dipole is
µ′i = −γµσi (with γ as defined in the main text).

The electric field at the position rj of dipole j , generated by
dipole i located at ri and its image located at r′i = ri−(0, 0, d)
(we recall that all dipoles are located at a distance d/2 above
the surface) is

E(σi , ri j ) = Edd(σi , ri j )+ Edi(σi , ri j ) , (1)

where ri j = |ri j | = |rj − ri |. Here the contributions Edd of
the real dipole and Edi of the image dipole are expressed as

Edd(σi , ri j ) = −
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where r′i j = rj − r′i = ri j + (0, 0, d). Thus, the total pairwise
electrostatic energy between dipole i and j is

U tot
p (σi , σj , ri j ) = −µj · E(σi , ri j ) = U dd

p +U di
p , (4)

where the dipole–dipole and dipole–image (i.e., interaction of
a dipole with the polarization induced by the other dipole)
contributions, U dd

p and U di
p , are given by
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As in the main text, we choose the lattice constant a as the
unit length and use a tilde to denote reduced lengths.
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FIG. S2. Illustration of the effective pairwise interaction between
two dipoles placed on a dielectric substrate and oriented parallel
to the z-axis. As in Fig. 4 in the main text, we set λdd = 5 and
λdi = −16, corresponding to the stripe phase. (a) Dipole–image
component of the pairwise interaction, Udi

p , as a function of the
center-to-center distance r̃ at different values of the geometric fac-
tor α. The depth D0 of the energy well and the critical separation r̃c
at which Udi

p switches sign are marked by arrows. (b) Dependence of
the two characteristic parameters D0 (left-hand axis) and r̃c (right-
hand axis) as functions of α. Both quantities grow in magnitude with
increasing α.

From the energy expressions Eqs. (5) and (6) it is evident
that the magnitudes of both U dd

p and U di
p decay asymptotically

with the center-to-center distance r̃ as 1/r̃3. However, what
truly matters is how these interactions depend, at different
length scales, on the relative dipolar orientations {σi,z, σj,z}.
The direct interaction U dd

p decays monotonically, favoring
anti-parallel orientational arrangements (with σi,zσj,z = −1)
at all length scales. However, at sufficiently short r̃ this is
overwhelmed by the deep energy well of the dipole–image in-
teraction U di

p with σi,zσj,z = 1 (Fig. S2a), favoring parallel

arrangements. At r̃c =
√

2α, the dipole–image contribution
changes sign, so that a nonmonotonic trend results, where fer-
roelectric order is preferred at short distances and anti-parallel

arrangements become favorable at larger r̃ . Thus, as illus-
trated in the main text, the dipole–image component of the
pairwise interaction acts as an effective ‘exchange interaction’
to promote short-range ferroelectricity. Here the depth of the

energy well D0 = λ
(2)
di

2α2
−1

α2+1
(in reduced units) and the crit-

ical distance r̃c at which U di
p switches sign characterize the

strength and range of this exchange interaction, both of which
grow in magnitude with α (Fig. S2b).

Interestingly, even though the interaction range extends be-
yond the nearest neighbors (especially at large α), we observe
that the exponential dependence of the stripe width on the ex-
change parameter, as found for the 2D dipolar Ising system [1]
(with nearest-neighbor exchange interaction only), accurately
describes our system as well (see Fig. 4b in the main text).

Finally, it is noteworthy that while the observed orienta-
tional phases can be realized in magnetic films by exploiting
the quantum exchange interaction, they cannot be sustained in
systems with larger length scales (e.g., in colloidal systems).
By contrast, in the approach proposed here the many-body
dielectric force acts effectively as an exchange interaction in
which both strength and range can be tuned independently by
varying λdi and α. This provides new ways to realize and
control orientationally modulated patterns beyond the atomic
scale, with potential applications in optical devices and the
possibility to serve as a starting point for other studies on con-
trolling orientational structure in materials.
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