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Spontaneous pattern formation plays an important role in a wide variety of natural phenomena and
materials systems. A key ingredient for the occurrence of modulated phases is the presence of competing
interactions, generally of different physical origins. We demonstrate that in dipolar films, a prototypical
system for pattern formation, patterns can be induced by dielectric effects alone. A rich phase diagram
arises, where striped and circular morphologies emerge with geometric properties that can be controlled
through variation of particle shape and substrate permittivity or permeability. These effects are particularly
enhanced by metamaterial substrates.
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Spontaneous pattern formation and modulation of phases
in two dimensions occur in a diverse set of physical,
chemical, and biological systems [1,2]. The domains can
exhibit a variety of patterns—notably stripes, islands, and
circular droplets—that are often characterized by spatial
periodicity. Examples include the orientational patterns in
ferromagnetic thin films [3–5], the domain structure of
dipolar Langmuir monolayers [6,7], and microphase sep-
aration in block copolymer melts [8,9]. These phenomena
have significant potential for technological applications,
such as nanofabrication [10,11] and nanomagnetism [12].
One of the central common, and in fact necessary, factors

underlying pattern formation in thermodynamic equilib-
rium is the presence of competing interactions [1,2].
Dipolar interactions, so ubiquitous in nature, have emerged
as the most basic and widely studied starting point. Yet, a
second potential is required for modulated patterns to
appear, such as the short-range exchange interaction
[4,13,14], interfacial energy [6,7], geometric constraints
[15–17], or an external field [18,19]. No modulated
phases have been reported in systems with solely dipolar
interactions.
Two-dimensional (2D) dipolar systems exhibit a rich

phase diagram [20–24], with an isotropic-polymeric phase
transition at low surface densities [21,24] and more
complicated structures as well as orientational ordering
at high densities [20,22]. Although these systems have
received widespread attention, a parameter that has been
mostly ignored (with dipolar particles confined between
metallic plates as a notable exception [25,26]) is the
dielectric mismatch between the substrate and the medium
containing the dipolar particles. This omission is note-
worthy, given the demonstrated effect of substrate permit-
tivity on properties of a wide range of electromagnetic
systems, from plasmonics [27] to ion mobilities in

electrolytes [28]. Moreover, with the emergence of electro-
magnetic metamaterials [29,30], in which the electric
permittivity and/or magnetic permeability are negative,
the magnitude of polarization effects can be greatly
enhanced [31,32].
Here, we demonstrate that variation of dielectric mis-

match can qualitatively alter the orientational phases of
(quasi-)2D dipolar systems. Remarkably, even modulated
phases can be induced in purely dipolar systems, without
the need for external fields or other interactions. We
elucidate the origin of the different phases and map the
corresponding phase diagram. In addition, we illustrate
how even within an individual phase the characteristic
length scale can be accurately controlled. Throughout this
work, we employ electric dipoles, yet all our findings are
directly applicable to magnetic dipolar systems as well
[33]. There, tuning of the interfacial dielectric contrast must
be replaced by variation of the permeability of the sub-
strate. Experimental realizations of the model studied here
include charged Janus colloids [34] and ferromagnetic
particles. Various aspects of this work pertain to metama-
terial substrates with negative static permittivity or per-
meability. Whereas the former can be realized in a wide
range of materials (e.g., metals [35,36], quasi-2D crystals
[37], and nanoparticle [38,39] and polymeric systems [40]),
the latter can be realized by including active components in
artificial metamaterials [41].
We examine monolayers of N ¼ Nx × Ny spheres of

diameter d that each carry a point dipole μ. To minimize the
influence of the underlying lattice [14], the particles are
placed on a hexagonal lattice with lattice constant a and
dimensions Lx ¼ Nxa, Ly ¼

ffiffiffi
3

p
Nya=2, periodically repli-

cated in the x and y directions. All particles have fixed
z-coordinate d=2 and are embedded in a medium with
uniform permittivity εm. The substrate has permittivity εs,
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so that there is a dielectric mismatch at z ¼ 0. We study this
system via Monte Carlo simulations in the canonical
ensemble where only 3D rotations of the dipoles are
permitted. Owing to the piecewise uniform permittivity,
the electric dipoles induce surface polarization charge at the
substrate interface. Mathematically, the influence of this
polarization is most conveniently phrased in terms of
“image” dipoles, centered at z ¼ −d=2 and with dipole
moment μ0 (Fig. 1).
The Hamiltonian of the system is characterized by two

energy scales, the interaction between neighboring dipoles
λdd ¼ μ2=ðεma3kBTÞ and the dipole-image coupling λdi ¼
γμ2=ðεmd3kBTÞ ¼ γλdd=α3, where γ¼ðεm−εsÞ=ðεmþεsÞ
is the dielectric mismatch, α ¼ d=a is reduced by the
lattice constant a, μ ¼ jμj, kB is Boltzmann’s constant, and
T the temperature. We choose a as the unit length and use a
tilde to denote reduced lengths. The Hamiltonian reads

H
kBT

¼ 1

2

XN
i¼1

X∞
n

�
λdd

XN
j¼1

0 μ̂i · μ̂j − 3ðμ̂i · r̂repij Þðμ̂j · r̂repij Þ
jr̃repij j3

þ λdi
XN
j¼1

μ̂i · μ̂0j − 3ðμ̂i · r̂0repij Þðμ̂0j · r̂0repij Þ
j1þ jr̃repij =αj2j3=2

�
;

where μ̂i ¼ μi=μ and μ̂0i ¼ ðμi;x; μi;y;−μi;zÞ=μ. The perio-
dicity of the lattice is accounted for via summation over
n ¼ ðnx; ny; 0Þ (nx, ny ∈ Z), where the prime indicates that
i ≠ j for n ¼ 0. The vector r̃repij ¼ ðr̃j;x − r̃i;x þ nxL̃x; r̃j;y −
r̃i;y þ nyL̃y; 0Þ points from dipole i to (a replica of) dipole
j, with corresponding unit vector r̂repij , and r̃0repij ¼ ðr̃j;x −
r̃i;x þ nxL̃x; r̃j;y − r̃i;y þ nyL̃y;−αÞ points from dipole i to
(a replica of) image dipole j, with corresponding unit

vector r̂0repij . Whereas λdd and λdi control the total contri-
butions of the dipole-dipole (D-D) and dipole-image (D-I)
interactions to the system energy, respectively, the geo-
metric factor α determines the ratio between the second-
order (and higher) contributions to the D-I interaction (i.e.,
between dipoles and images of other dipoles) and the first-
order D-I interaction (between dipoles and their own
images), which only depends on λdi (which we regard as
independent of α as it can be controlled via γ). The
observation that α can serve as an independent control
parameter has profound consequences for the tunability of
patterns that arise for different choices of the coupling
strength and dielectric mismatch, as we will explore
below.
In practice, we compute the energy via 3D dipolar Ewald

summation (relative precision 10−5) modified to include
image charges and supplemented with a slab correction
[42]. For each parameter choice, we employ 5 × 105

Monte Carlo cycles of N rotational moves.
To quantify the global orientational order, we introduce

the parameters P1 and P2 [43]. For an instantaneous
configuration, P2 is the largest eigenvalue of the ordering
matrix Q ¼ ð1=2NÞPN

i¼1ð3μ̂iμ̂i − IÞ, where I is the iden-
tity matrix. The corresponding normalized eigenvector is
the global director d̂ from which the instantaneous value of
P1 follows as P1 ¼ ð1=NÞjPN

i¼1 μ̂i · d̂j. Whereas P2

merely characterizes global alignment (nematic order) of
the dipolar particles, P1 is a measure of the global
polarization. The degree of uniaxial alignment (along the
z axis) is quantified by Qzz ¼ hð1=2NÞPN

i¼1ð3μ̂2i;z − 1Þi,
where Qzz vanishes in orientationally isotropic states,
whereas Qzz ¼ −0.5 and Qzz ¼ 1 reflect configurations
of perfectly in-plane or out-of-plane dipoles, respectively.
To establish a baseline, we examine a system of dense-

packed spheres (α ¼ 1) in the absence of dielectric contrast
at the interface (γ ¼ 0). In this case, the energy is mini-
mized by head-to-tail chains, yielding an in-plane ferro-
electric (IF) state at strong couplings [Fig. 2(a)] [20,21].
Note that this is indeed a global, long-range ferroelectric
order, unlike the vortexlike structure observed for quasi-2D
dipolar spheres with positions that are not constrained to a
lattice structure [21]. This tendency of dipolar interactions
to favor arrangements with in-plane orientation is enhanced
in the presence of low-permittivity substrates (γ > 0),
since the interaction energy of dipoles with the induced
surface charge is also minimized for such configurations.
More interesting is the situation of substrates with a higher
permittivity than the medium (γ < 0), where this energy is
minimized for perpendicular dipoles. The resulting com-
petition between the dipole-dipole interactions favoring in-
plane ferroelectric ordering and the dipole-polarization
interaction favoring out-of-plane configurations raises the
possibility of a dielectrically induced structural transition.

FIG. 1. Schematic depiction of a system of 2D hexagonally
packed dipolar spheres immersed in a uniform dielectric medium
with permittivity εm above a dielectric substrate with permittivity
εs. To account for the polarization charges induced at the
interface, we employ image dipoles (dashed circles). (a) For
high-permittivity substrates (as well as for metamaterials with
sufficiently negative permittivity), the in-plane component of
these induced dipoles is antiparallel to their counterpart above the
surface, whereas the perpendicular component is parallel. (b) For
substrate materials with small absolute permittivity, the situation
is reversed. In both cases, nonintuitive collective behavior can
emerge, since the images are induced by individual dipoles, but
interact with all other dipoles above the substrates.
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The magnitude of polarization effects, especially the
first-order D-I interaction, is controlled by λdi. This corre-
sponds to the surface anisotropy in magnetic films [15],
which promotes the out-of-plane orientation of dipoles. λdi
can be varied by either the dielectric mismatch at the
interface γ or the geometric ratio α. Decreasing the latter
from α ¼ 1 to α ¼ 2

3
while keeping λdd ¼ 5 leads to λdi ¼

−16.875 for a perfectly conducting substrate (γ ¼ −1). As
shown in Fig. 2(b), this indeed transforms the IF state into a
state with out-of-plane orientation. Owing to the strong
interaction of the dipoles with their own images, they are
predominantly aligned with the z axis, so that P2 and Qzz
are close to 1. Simultaneously, the nearest-neighbor dipolar
interaction is minimized by an antiparallel arrangement,
i.e., an out-of-plane anti-ferroelectric (OAF) state with
P1 ≈ 0. This structure is confirmed by the orientational
pair correlation function (not shown). Experimentally, α
can be reduced by increasing the lattice constant either
through variation of the particle shape or by employing a
patterned substrate to control the lattice structure [44].

Alternatively, polarization effects can be enhanced (at fixed
λdd) by increasing the magnitude of dielectric mismatch γ.
Although jγj is bounded by 1 for conventional mate-
rials (i.e., the magnitude of an image dipole cannot exceed
the real dipole), this constraint is lifted for a negative-
permittivity material (or negative-permeability material for
magnetic dipoles) [31,32]. Specifically, γ < −1 when
εs < −εm. Remarkably, this additional control parameter
gives rise to new modulated phases. At fixed α ¼ 1 and
λdd ¼ 5, increasing the dielectric contrast to γ ¼ −1.6
(λdi ¼ −8) yields the bubble phase [Fig. 2(c)], followed
by the “stripe” phase [Fig. 2(d)] at γ ¼ −3 (λdi ¼ −15). The
bubble and stripe phases both consist of alternating “up”
and “down” domains with a continuous variation of the
dipolar orientation, and only differ in the shape of the
domains. Neither of these phases has a global polarization
(P1 → 0 in the thermodynamic limit), but due to their
geometric difference they have either slight global in-
plane (bubble, Qzz < 0) or out-of-plane (stripe, Qzz > 0)
characteristics.
We construct the phase diagram of this system as λdd–λdi

sections for different fixed α (Fig. 3; see Supplemental
Material [45] for an alternative representation of the phase
diagram). In addition to the four ordered phases identified
above (IF, OAF, bubble, stripe) we find a disordered phase
at low λdd, jλdij. When dipolar couplings dominate, we
observe the IF phase, which transitions to either the OAF
phase or the stripe phase upon increase of jλdij, when
polarization interactions become dominant. For larger
geometric ratio α [Fig. 3(a)] the IF phase transitions to
the stripe phase via a narrow region exhibiting the bubble
phase. This intermediate phase can be interpreted by noting

FIG. 2. Typical structures formed by N ¼ 100 × 114 dipolar
spheres placed on a 2D hexagonal lattice at dipolar coupling
λdd ¼ 5. (a) Representative partial (30 × 30) configuration in the
absence of dielectric contrast (εs ¼ εm, so γ ¼ 0 and λdi ¼ 0) and
at packing α ¼ 1, showing an IF phase with P1 ¼ 0.88,
P2 ¼ 0.68, Qzz ¼ −0.43. (b) Same subsample on a perfectly
conducting substrate (εs ¼ þ∞, γ ¼ −1) with geometric ratio
α ¼ 2

3
, so that the dipole-image coupling is raised to

λdi ¼ −16.875. This results in an OAF phase with P1 ¼ 0.01,
P2 ¼ 0.79, Qzz ¼ 0.78. (c) Snapshot of the full dense-packed
(α ¼ 1) system on a metamaterial substrate with γ ¼ −1.6,
exhibiting a bubble phase with P1 ¼ 0.01, P2 ¼ 0.23,
Qzz ¼ −0.12. (d) As the dielectric contrast is increased further
to γ ¼ −3, the bubble phase transforms to a stripelike phase with
P1 ¼ 0.01, P2 ¼ 0.34, Qzz ¼ 0.12. Between the bubble and
stripe phases, the bubbles gradually merge into stripes, see
snapshot between panels (c) and (d), for γ ¼ −2. Colors char-
acterize the different phases: IF phase, green; OAF phase, red;
bubble phase, yellow; stripe phase, blue.

FIG. 3. Phase diagrams parametrized by λdd and λdi, at different
values of the geometric factor α: (a) α ¼ 1; (b) α ¼ 3; (c) α ¼ 2

3
;

(d) α ¼ 1
3
. Colors characterize the different phases: IF phase,

green; OAF phase, red; bubble phase, yellow; stripe phase, blue;
disordered phase, pink. Phase boundaries are drawn based on
discrete simulation data points with positions indicated by black
dots in (a).
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that as jλdij increases, the stripe phase forms via merging of
circular domains [Fig. 2, between panels (c) and (d)],
thereby reducing the area of the boundaries between
oppositely oriented bubbles and thus the fraction of in-
plane dipoles. As α is increased further, the stripe region
grows at the expense of the IF and bubble regions
Fig. 3(b)]. Conversely, for small α [Figs. 3(c), 3(d)] the
IF and disordered phases occupy larger regions of the phase
diagram, and the OAF phase replaces the stripe phase.
Interestingly, when the competing parameters λdd and jλdij
become large enough to overwhelm entropic effects, at
fixed α only their ratio determines the phase of the system
[cf., diagonal phase boundaries in Figs. 3(a), 3(c), 3(d)].
What is then the role of the geometric factor α in the

phase diagram of Fig. 3? We focus on conditions with
strong polarization effects (large jλdij), where the dipoles
are predominantly oriented out-of-plane. In addition to the
first-order D-D and D-I interactions characterized by λdd
and λdi, respectively, dipoles interact with the surface
polarization induced by other dipoles. The second-order
D-I interaction (between a dipole and its nearest-neighbor

images) is controlled by λð2Þdi ¼ λdi½α2=ð1þ α2Þ�3=2 and
grows in magnitude with increasing α, at fixed λdi. For
large α, its contribution to the total energy becomes
comparable to the first-order (direct) D-I interaction.
Interestingly, precisely in this situation of large α, the
secondary images promote the parallel alignment of
neighboring dipoles [cf., dipolar field in Fig. 4(a), left-
hand side], opposing (and overwhelming) the influence of
the direct D-D interaction between nearest neighbors. Thus,

the second-order D-I interaction acts as an “exchange para-

meter” with magnitude jD0j¼j½ð2α2−1Þ=ðα2þ1Þ�λð2Þdi j that
promotes short-range ferroelectric order (see Supplemental
Material [45] for derivation). However, at larger distances
the dipolar coupling dominates and favors antiferroelectric
order, resulting in modulated (i.e., stripe and bubble)
phases. By contrast, at small α the exchange parameter
D0 is not only smaller in magnitude, but owing to the
geometry of the dipolar field it also favors the same
antiparallel alignment as imposed by the D-D interactions
[Fig. 4(a), right-hand side, see Supplemental Material [45]
for details]. This explains why different values of α result in
modulated (stripe) or nonmodulated (OAF) equilibrium
phases at large jλdij.
The stripe phase, in particular, has been the subject of

considerable attention [9,13,14,46], notably its formation
mechanism in different systems and the degree to which it
can be controlled. Remarkably, the dielectric modulation
mechanism identified here allows fine control over the
stripe width w̃ via the geometric factor α. The reduced
stripe width is defined as w̃ ¼ hN=Npi, where Np ¼P

hjkiHð−μj;zμk;zÞ is the number of dipole pairs at stripe
interfaces selected by the Heaviside function HðxÞ ¼
½1þ sgnðxÞ�=2. For fixed dipolar coupling λdd and dielec-
tric coupling λdi, the width of stripes can be manipulated
accurately through variation of the geometric factor, as
illustrated in Fig. 4(b) via w̃ as a function of α and D0, as
well as accompanying representative snapshots. The stripe
width accurately reflects an exponential dependence on D0

for sufficiently large w̃ [Fig. 4(b)], in accordance with

FIG. 4. (a) Role of geometric factor α in the effect of polarization charge on the (anti-)parallel alignment of neighboring dipolar
particles. The schematic shows the electric field generated by a central dipole above a substrate (blue shaded region). The interaction

with the image of a neighboring dipole (also shown) is characterized by the parameter λð2Þdi . At small geometric factor α (right) the field
will promote antiparallel alignment of the neighboring image dipole and hence also of the real dipole, in accordance with the direct
dipole-dipole interaction. However, for large α (left), the polarization will promote parallel alignment of two neighboring dipoles,
opposing the direct dipolar interaction. (b) Control of stripe width via the geometric factor. Reduced stripe width w̃ is shown as a
function of α for fixed λdd ¼ 5 and λdi ¼ −16 (upper left panel). The width exhibits an exponential dependence on the exchange
parameter D0 (upper right panel), confirming theoretical predictions. Representative equilibrium configurations of a 100 × 114 system
are shown for α ¼ 0.8, 1.5, and 3 (lower panel).
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predictions based upon the asymptotic expression for the
ground-state energy of a 2D Ising dipole system [13].
Moreover, the domain-wall thickness t, which is deter-
mined by the balance between the exchange interaction D0

and the surface anisotropy λdi, increases with α. This is
consistent with the theoretical prediction [47] that t scales
as the square root of the ratio between the exchange energy
and surface anisotropy.
In conclusion, we have demonstrated that dielectric

effects can induce modulated phases in quasi-2D dipolar
systems, without the presence of an additional competing
interaction. Notably, the so-called striped and bubble
patterns can be realized in dipolar films on a substrate
with negative static permittivity and/or permeability.
Accurate control of the properties of these modulated
phases is possible via a geometric factor, related to particle
shape and separation, which can be interpreted in terms of
an effective “exchange parameter” promoting local ferro-
electricity. Besides elucidating the pattern-modulation
mechanism, our findings may also provide guidance to
future applications of such metamaterials.
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