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Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal
aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent,
the effective interactions that arise from inhomogeneous polarization charge distributions are generally
neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization
charges in dynamical dielectric geometries, and demonstrate that dielectric effects qualitatively alter the
predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
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Colloids are ubiquitous in systems of physical, chemical,
and biological interest. In suspension, dissociation of
surface groups frequently causes these particles to carry
an electrical charge, resulting in electrostatic interactions
that play an important role in colloidal stability, aggrega-
tion, and self-assembly [1–3]. Far less is known about the
effect of induced polarization charges. Although molecular
dynamics (MD) and Monte Carlo simulations of charged
colloids are now commonplace, they rarely take into
account dielectric effects and, instead, treat the dielectric
constant as spatially uniform. This is particularly striking
in view of the large dielectric contrast between typical
colloids and an aqueous solution (e.g., κ ≈ 2.5 for poly-
styrene vs κ ≈ 80 for water at 293 K), which induces
significant polarization charges at the colloidal surface.
Densely packed and anisotropic arrangements of dielectric
objects make this approximation even less justified. Thus,
there is a pressing need to assess the role of dielectric
effects in self-assembly phenomena.
Proper treatment of dielectric effects has been limited

by computational complexity. Only the simplest dielectric
geometries permit analytical solution. For an interacting
system of dielectric spheres, a series expansion has been
derived [4], but this still requires expensive numerical
evaluation. A more general approach is to numerically
solve the induced bound charge self-consistently over
discretized dielectric interfaces [5–10]. This approach does
not constrain the geometry, but has not yet been efficient
enough to allow simulation of dynamical dielectric
objects, such as mobile colloids. Indeed, existing work
has largely treated the dielectric geometry as static, focus-
ing on ion distributions in planar [11–13] or spherical
[14,15] geometries.
In this Letter, we address this situation by presenting the

first study of a dielectric system with a fully dynamic
geometry, exploring the effect of polarization charges that
respond to and influence the motion of charged colloids.
Using an optimized simulation method [16], we explicitly

demonstrate that dielectric interactions can qualitatively
alter self-assembly in a prototypical size-asymmetric binary
mixture of charged colloids in solution. In particular,
polarization charge that binds a colloid pair can also effect
repulsive three-body interactions, giving rise to stringlike
colloidal chains.
To gain insight in the role of dielectric mismatch between

colloidal particles and the surrounding solvent, we briefly
review systems of linear dielectrics, starting from the
electrostatic (free) energy [17]

U ¼ 1

2

Z
ρfðrÞψðrÞdr; ð1Þ

where ρfðrÞ is the free charge density and the potential
ψðrÞ is defined through Poisson’s equation

∇ · ½κðrÞ∇ψðrÞ� ¼ −ρfðrÞ=ε0; ð2Þ

with κðrÞ the material-specific and spatially varying dielec-
tric constant and ε0 the vacuum permittivity. If we scale
κ → γκ and ρf → αρf (α; γ > 1), the energy scales as
U → ðα2=γÞU, so that the behavior of a system is invariant
if γ ¼ α2. Here, we are interested in dispersions of colloidal
particles with κ ¼ κobj in a medium (solvent) with κ ¼ κm.
Such a system is mathematically equivalent to colloids
with reduced dielectric constant ~κ ¼ κobj=κm and scaled
free charge density ~ρf ¼ ρf=

ffiffiffiffiffiffi
κm

p
dispersed in a nonpolar-

izable solvent. Thus, without loss of generality, we vary
only ~κ in our calculations. To illustrate the role of this
reduced dielectric constant, we consider the electrostatic
energy of a neutral sphere of dielectric constant κobj and
radius R and a point charge q at a distance d > 0 from its
surface [17]

Usphere ¼
q2

8πε0κmR

X∞
n¼0

ð1 − ~κÞn
ð1þ ~κÞnþ 1

1

ð1þ d=RÞ2ðnþ1Þ :

ð3Þ
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Depending on ~κ, Usphere (Fig. 1) ranges from attractive to
repulsive [18]. If ~κ > 1, the induced surface bound charge
closest to the point charge has the opposite sign as the point
charge, and the dielectric effects are attractive (bottom
inset). Conversely, if ~κ < 1, the induced bound charge leads
to repulsive dielectric effects (top inset). The two limits
~κ ¼ f0;∞g correspond to a conducting solvent and a
conducting sphere, respectively, but it is noteworthy that
dielectric effects saturate well before either limit is reached.
The asymmetry between ~κ > 1 and ~κ < 1 provides the
starting point for exploring the effect of dielectric mismatch
on colloidal aggregation. As we discuss below, physically
rich behavior arises from the many-body interactions and
the associated constraint that the net polarization charge on
each colloid is fixed.
In our numerical treatment, we solve for the bound-

charge density ρbðrÞ ¼ −∇ · PðrÞ. Substitution of the
polarization field PðrÞ ¼ ε0½κðrÞ − 1�EðrÞ and the electric
field EðrÞ ¼ −∇ψðrÞ yields ρbðrÞ=ε0 ¼ ∇ · f½κðrÞ − 1�
∇ψðrÞg. Comparison with Eq. (2) reproduces the well-
known result

∇2ψðrÞ ¼ −½ρfðrÞ þ ρbðrÞ�=ε0: ð4Þ

We define G to represent the inverse of the operator −∇2.
Its explicit action is GρðrÞ ¼ ð1=4πÞ R ½ρðr0Þ=jr − r0j�dr0.
Equations (2) and (4), combined, relate the free and bound
charge,

∇ · fκðrÞ∇G½ρbðrÞ þ ρfðrÞ�g ¼ −ρfðrÞ; ð5Þ

which can be rewritten as [19]

AðrÞρbðrÞ ¼ bðrÞ; ð6Þ
where AðrÞ represents the linear operator

AðrÞ ¼ −∇ · κðrÞ∇G ¼ κðrÞ − ½∇κðrÞ� ·∇G ð7Þ

bðrÞ ¼ ½1 −AðrÞ�ρfðrÞ: ð8Þ

Equation (6) will be solved for ρbðrÞ, from which the
potential, ψðrÞ ¼ G½ρfðrÞ þ ρbðrÞ�=ε0, and other derived
quantities follow. Equation (5) implies that the net charge in
a compact region Ω with a uniform dielectric constant κ on
its boundary is [16]

Z
Ω
½ρfðrÞ þ ρbðrÞ�dr ¼ κ−1

Z
Ω
ρfðrÞdr: ð9Þ

As a consequence, the bound charge in regions of uniform κ
is simply ρbðrÞ ¼ ðκ−1 − 1ÞρfðrÞ. The difficult (and gen-
erally ignored) task is to calculate ρbðrÞ when ∇κðrÞ ≠ 0.
We consider systems with sharp material interfaces,
where the bound-charge density has to be calculated at
the interface rather than in the entire volume—a consid-
erable numerical simplification [7]. The strategy is to solve
Eq. (6) as a discretized matrix equation for the surface
charge density σðrÞ [8,19],

Aijσj ¼ bi: ð10Þ

This matrix equation has the same mathematical content as
previous discretizations [5–7].
However, in a dynamical situation, where dielectric

objects move, Aij is evolving via its dependence on the
dielectric geometry κðrÞ. At each time step, the explicit
construction of A−1

ij would require OðN3Þ operations,
where N is the number of discretized surface patches.
Since this is prohibitively expensive, we instead opt to
solve Eq. (10) for σj using an iterative method [8]. As
shown in Ref. [16], iterative methods [20,21] are desirable
for two reasons: (i) explicit construction of the matricesAij
or A−1

ij is not required and the cost of each iteration scales
as the cost of the matrix–vector product Aijxj; (ii) con-
vergence requires only a few iterations because the eigen-
values of Aij have a favorable structure. The only
expensive, nonlocal piece of Aijxj [cf. Eq. (7)] is the
calculation of ∇Gx—essentially finding EðrÞ for a given
charge distribution xðrÞ. With an efficient Ewald solver
one can numerically evaluate ∇Gx with OðNÞ [22] or
OðN lnNÞ [23] operations [9]. The number of iterations
required to solve Eq. (10) at fixed numerical accuracy is
bounded by log jλmax=λminj, the ratio of the largest and
smallest eigenvalues of Aij. Although Aij is neither
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FIG. 1 (color online). Electrostatic energy [in units of
q2=ðε0κmRÞ] of a neutral sphere of radius R and dielectric
constant κobj and a negative point charge q embedded in a
medium of dielectric constant κm, as a function of ion-surface
separation, for different values of the reduced dielectric constant
~κ ¼ κobj=κm. The induced bound charges repel the point charge
for ~κ < 1 (top inset; color coding represents calculated polari-
zation charge density), whereas for ~κ > 1 the induced charges are
attractive (bottom inset). The near-horizontal solid line indicates
the pure Coulomb interaction for a reference system of two
oppositely charged nondielectric spheres.

PRL 113, 017801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 JULY 2014

017801-2



symmetric nor normal, it is diagonalizable with positive
real eigenvalues that are bounded by the extremal dielec-
tric constants that occur in the system, κmin ≤ λ ≤ κmax
[16]. Thus, the number of iterations scales at most
as log½κmax=κmin�, where typically κmax=κmin ≲ 25.
Furthermore, the worst-case convergence rates occur only
in geometries with extreme aspect ratios, such as the
infinite dielectric slab or cylinder. Employing GMRES,
which requires only one matrix–vector product (Ax) per
iteration and minimizes the residual in each iteration, we
typically reach convergence (10−4 relative error in the
electrostatic energy) within five iterations for a system
of spherical objects—achieving a far higher efficiency
than many recent approaches. For comparison, the iterative
methods in Refs. [5–7,9] essentially reduce to Richardson
iteration, which converges more slowly and requires
manual tuning of a relaxation parameter; if this parameter
is not properly chosen, such methods may even diverge. To
make progress in simulating mobile dielectric objects,
several additional steps are needed to ensure efficiency
and accuracy. In each iteration, we constrain the net charge
on each object to its correct value via Eq. (9), thus
eliminating a slow relaxation mode of the iterative solver
and simultaneously improving the precision of the polari-
zation charges. Furthermore, we replace the internal (free)
charge q inside each object with a distribution of the charge
q=κm that generates the same potential outside the object.
Last, in this first numerical study of mobile dielectrics,

we must address the electrostatic force on a dielectric
object. This includes forces between induced and free
charges as well as forces between polarization charges
induced on different objects, and the resulting torques that
may arise. A calculation of this force from first principles
requires taking the derivative of the energy Eq. (1) with
respect to object position [16]. If the free charge is rigidly
fixed to the dielectric object, this yields

F ¼ −∇U ¼ κm

Z
Ω
EðrÞ½ρfðrÞ þ ρbðrÞ�dr; ð11Þ

where Ω extends over the object. If the dielectric constant
of the object matches the solvent, the integrand reduces
to the electric component of the Lorentz force density,
fðrÞ ¼ κmEðrÞ½ρfðrÞ þ ρbðrÞ� ¼ EðrÞρfðrÞ. A simple
physical argument supporting Eq. (11) follows from the
principle of effective moments [24,25] where one replaces
the dielectric object with a virtual distribution of free charge
ρvðrÞ that preserves the potential ψðrÞ external to the
domain Ω of the object. A correct choice is, indeed,
ρvðrÞ ¼ κm½ρfðrÞ þ ρbðrÞ�. The torque follows naturally
from the force density.
The strategy outlined here now allows us to investigate a

prototypical system of electrostatic self-assembly, namely a
size-asymmetric binary mixture of charged spherical col-
loids. Such suspensions occur in a variety of contexts
[3,26–28]. It is important to note that we choose this

salt-free model system to highlight dielectric effects.
Experimental realizations generally contain salt, which
screens the electrostatic interactions and thereby diminishes
the role of polarization. We also disregard van der Waals
interactions, notably Debye induction interactions (of
similar origin as the induced interactions considered here,
but far weaker [18]) and London dispersion forces (which
display many-body effects as well [29,30]). Our model
constrains the colloids to have constant charge. In reality,
charge regulation, in which the colloidal surfaces have a
dynamic ionization state, provides a more accurate descrip-
tion than either constant-charge or constant-potential
boundary conditions [31–33], but its incorporation in a
many-particle simulation would extend the computational
complexity even further; furthermore, the present model
offers the advantage of isolating the dielectric effects,
permitting a quantitative assessment of their relevance
compared to the nonpolarizable models widely employed
in colloidal self-assembly.
The solvent (dielectric constant κm) contains an equal

mixture of small colloids (diameter σLJ, free charge −q,
dielectric constant κsmall) and large colloids (diameter 7σLJ,
free charge þq, dielectric constant κlarge). The bound
charge on the small colloids is distributed uniformly, and
its fluctuations are assumed to be small. Indeed, we have
verified that full treatment of these fluctuations would lead
to corrections ≲1% in the pair energy and ∼5% in the
pairwise forces [16]. For a large–small pair at separation
r ≫ R ¼ 3.5σLJ, the induced interactions decay as r−4,
much faster than the direct Coulombic interactions.
However, as Fig. 1 shows, at small separations r ≈ R
dielectric interactions become important, reaching a mag-
nitude comparable to the Coulombic interactions at contact
(d ¼ 0.5σLJ=3.5σLJ ≈ 0.14) for ~κ ≫ 1 or ~κ ≪ 1.
To investigate the properties of this system, we perform

large-scale MD simulations of mixtures containing 100
large colloids and 100 small colloids. The excluded-volume
interactions between colloids are modeled via a purely
repulsive shifted-truncated Lennard-Jones (LJ) potential,
4εLJf½σLJ=ðr − δÞ�12 − ½σLJ=ðr − δÞ�6 þ 1

4
g for δ < r ≤

21=6σLJ þ δ with δ ¼ 0, 3σLJ, and 6σLJ for small-small,
large-small, and large-large interactions, respectively. The
colloids are placed in a periodic cubic volume, with a large-
colloid volume fraction of 5%. We take the particle masses
to be m0, yielding a time scale t0 ¼ σLJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=εLJ

p
.

Surface bound charges are computed in each time step
using the GMRES algorithm, which converges in two or
three iterations for this system. The bound charge is
discretized using 372 surface patches per colloid, placed
on a shell of radius 3σLJ, just below the excluded-volume
radius 3.5σLJ, resulting in more than 37000 discrete charges
in each system. This patch density yields a relative error of
Oð10−3Þ in the dielectric interaction energy of a large-small
pair at contact. Starting from a random, nonoverlapping
configuration, we investigate self-assembly by following
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the system for 1 × 106 time steps of 0.005t0, for a total
duration of 5000t0 per simulation run. The first 10% of
each run is discarded. Temperature is controlled via a
Langevin thermostat with a damping time of 20t0. To
isolate electrostatic effects, we vary the reduced temper-
ature τ ¼ kBT=Ucoul, where Ucoul ¼ q2=½4πε0κmð4σLJÞ� is
the Coulomb interaction of a large and a small colloid at
contact. For simplicity, we maintain εLJ ¼ kBT. Then,
without loss of generality, we may reduce the five physical
quantities (q, κm, κsmall, κlarge, and T) to just two parameters
(~κ ¼ κlarge=κm and τ).
As simulations are performed at successively lower

temperatures, the colloids exhibit a strong tendency to
aggregate, as shown by the large-particle radial distribution
function in Figs. 2(a)–2(c). First, we consider gðrÞ for the
highest reduced temperature τ ¼ 0.04 [Fig. 2(a)]. Here, the
colloids are not strongly bound and gðrÞ shows a broad
peak from r ¼ 7σLJ (large particles in contact, typically
bonded by two small colloids) to r ≈ 8σLJ (large colloids
separated by a small colloid). Compared to nonpolarizable
colloids (~κ ¼ 1), colloids with a higher dielectric constant
than the solvent (~κ > 1) exhibit a stronger peak, as the
bound-charge interactions become attractive (Fig. 1) and
the small colloids mediate an attractive effective interaction
between the large ones. Conversely, for low-dielectric
constant colloids (~κ < 1) the polarization charges counter-
act the Coulombic large-small attraction, diminishing
and broadening the primary peak in gðrÞ. The repulsive
interaction between the polarization charges induced by a
small colloid on surrounding colloids amplifies this effect.
Thus, dielectric effects at this temperature can be qualita-
tively understood through decomposition into two-body
interactions.
As the reduced temperature is lowered to τ ¼ 0.02

[Fig. 2(b)], the situation changes. In the absence of
dielectric effects (~κ ¼ 1) the broad peak observed at
τ ¼ 0.04 gives way to a prominent contact peak only,
signaling the Coulombic binding of two large colloids
by small colloids. For ~κ ¼ 0.1, the repulsive polarization
charges diminish the height of this peak somewhat. Most
striking, however, is the situation at ~κ ¼ 10, where a
prominent peak at r ¼ 8σLJ arises; here, three-body inter-
actions qualitatively alter the situation, as the induced
bound charges on the colloids simultaneously enhance
the large-small attraction and yield an effective local
repulsion between the large colloids.
Finally, at the lowest reduced temperature τ ¼ 0.01

[Fig. 2(c)], entropic effects become negligible. The pair
correlation function reveals a complete reversal from the
weakly bound system at τ ¼ 0.04, with the strongest
binding and most ordered structure now occurring at the
lowest ~κ. These findings are the opposite of the expect-
ations based upon two-body interactions and result from
emergent dielectric many-body interactions. Indeed, the
peaks in gðrÞ at ~κ ¼ 10, 1, and 0.1 correspond to three

different structures: strings [Fig. 3(a)], hexagonally packed
“sheets” (not shown), and crystalline aggregates with a
sodium chloride structure [Fig. 3(b)], respectively. The
stringlike aggregates exhibit a particularly noteworthy
example of many-body effects. Once two small colloids
are bound to diametrically opposite locations on a large
colloid (minimizing their mutual repulsion), the locally
induced (positive) polarization charge, in conjunction with
the net-charge requirement Eq. (9), results in a negative
polarization charge induced around the “equator,” hinder-
ing the association of additional small colloids with this
large colloid and, instead, promoting the formation of
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FIG. 2 (color online). Role of dielectric effects in size-
asymmetric mixtures of charged, polarizable colloids at succes-
sively lower reduced temperatures (a) τ ¼ 0.04, (b) 0.02, (c) 0.01.
Each panel shows the radial distribution function gðrÞ of large
colloids for different reduced dielectric constants ~κ. At high
temperatures [panel (a)], the strongest binding occurs for ~κ > 1 as
polarization charges enhance the large-small binding. Dielectric
many-body effects reverse the situation at low temperatures
[panel (c)], where gðrÞ shows the most pronounced structure
for ~κ < 1. To exclude equilibration artifacts, all runs are repeated
five times from different initial conditions, with results that agree
within statistical error.
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stringlike structures. Not only do such self-assembled
chains offer a striking example of the qualitative changes
that can be induced by polarization effects, but they may
also provide a (partial) explanation of experimentally
observed chain formation of nanoparticles (for which the
many-body effects will be stronger than for larger colloids)
in a range of solvents [34–36].
In conclusion, using a newly introduced efficient and

generally applicable method [16] that permits simulations of
a broad range of systems with fully resolved dielectric many-
body effects, we have explored the role of these effects in the
aggregation of colloids and nanoparticles. We demonstrated
that polarization can qualitatively alter the self-assembled
structures. Our approach, which immediately generalizes to
arbitrarily complex dielectric geometries, provides insight
into the underlying mechanisms of recent experimental
observations and makes it possible to exploit dielectric
effects to control colloidal self-assembly.
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