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We present a novel method for the accurate numerical determination of the phase behavior of fluid
mixtures having large particle-size asymmetries. By incorporating the recently developed geometric
cluster algorithm within a restricted Gibbs ensemble, we are able to probe directly the density and
concentration fluctuations that drive phase transitions, but that are inaccessible to conventional simulation
algorithms. We develop a finite-size scaling theory that relates these density fluctuations to those of the
grand-canonical ensemble, thereby enabling accurate location of critical points and coexistence curves of
multicomponent fluids. Several illustrative examples are presented.
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The vast majority of commercially relevant fluids are
multicomponent mixtures. An understanding of the phase
behavior of these systems is of paramount importance for
applications, and also a matter of great fundamental inter-
est [1]. With the advent of powerful computers, various
computational techniques have been devised to directly
determine fluid phase behavior [2]. However, these meth-
ods are all restricted to fluids in which the various compo-
nents have similar sizes, whereas important phenomena
occur in highly size-asymmetric multicomponent fluids
such as colloidal dispersions, colloid-nanoparticle mix-
tures, and polymer solutions [1,3].

The computational bottleneck for existing simulation
methods arises from the fact that they cannot simulta-
neously relax a fluid system on disparate length scales.
Specifically, for large size ratios, the big particles become
‘‘jammed‘‘ by the smaller ones. Recently, however, build-
ing on earlier work [4], a geometric cluster Monte Carlo
algorithm (GCA) was proposed [5,6] that facilitates
rejection-free simulations of highly size-asymmetric mix-
tures via large-scale collective updates which move whole
groups of particles in a single step. Although this method
has been successfully applied to problems relating to col-
loidal stabilization [7,8], in which size asymmetries span
several orders of magnitude, it is incapable of dealing with
the density and concentration fluctuations associated with
phase separation, since it inherently operates in a canonical
ensemble in which the particle number and volume are
fixed. This limitation cannot be overcome by incorporating
cluster moves into a standard grand-canonical (GC) or
constant-NpT ensemble, because this does not address
the underlying shortcomings of these ensembles with re-
spect to sampling of density fluctuations in asymmetric
mixtures.

It is the purpose of this Letter to introduce a method that
overcomes these problems. This is achieved by embedding
cluster moves in a variant of the Gibbs ensemble [9,10], in
such as way that they couple to the density fluctuations,
resulting in efficient exploration of configuration space. To

exploit this approach we present a finite-size scaling theory
that permits the determination of the critical point and the
phase boundary. As an illustration, we apply the method to
study liquid-vapor coexistence in asymmetric binary mix-
tures, for which we show that the presence of even small
quantities of small-particle additives can strongly affect the
location of the critical point. Furthermore, depending on
the nature of the interaction of the additive with the fluid
particles, the critical temperature can either be enhanced or
depressed.

To enable density fluctuations, we distribute a prescribed
number of particles N0 over two boxes, and devise an
operation that exchanges particles between these boxes
[9] to maintain chemical equilibrium. By adopting the
symmetrical restricted Gibbs (RG) ensemble [10], in
which the boxes have equal constant volumes V � Ld,
geometric cluster moves can be used for this exchange
operation. The prescription for a cluster move closely
follows the original algorithm [5], with the crucial differ-
ence that a geometric operation not only alters the position
of a particle, but also transfers it from one box to the other.
Specifically, a pivot is placed at a random position within
the first box, as well as at the corresponding position within
the second box. A particle i is picked at random from one
of the boxes (denoted 1) and point-reflected with respect to
the pivot from its original position ri to r0i. However,
instead of placing the particle at r0i, we place it at the
corresponding point �r0i in the other box (denoted 2), subject
to periodic boundary conditions. Thereafter, any particle j
interacting with particle i around its original position in
box 1 or its new position in box 2 will also be considered
for point reflection around the pivot and subsequent trans-
fer to the opposite box, with a probability pij � max�1�
exp����ij�; 0�, where �ij � �V�jri � rjj� if particles i
and j originally reside in the same box and �ij � V�j�r0i �
rjj� if i and j originally reside in different boxes. V�r�
denotes a general pair potential and � the inverse tempera-
ture 1=kBT. Note that pij solely depends on the pair
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interaction between particles i and j, rather than on the
total energy change resulting from the displacement of
particle j. The cluster construction proceeds iteratively
for all particles interacting with each particle j. Upon
completion of a cluster move, a new pivot is selected.
The proof of detailed balance is analogous to that for the
generalized GCA [5,6].

The exchange of particles between boxes leads to (com-
plementary) density fluctuations around the average num-
ber density �0 � N0=�2V� in each box. The fluctuation
spectrum of the number density in box 1, �1 � N1=V,
can be related to the grand-canonical probability distribu-
tions P of the number densities of both boxes via [11]

 PRG��1j�0; V; T� / P��1j�;V; T�P�2�0 � �1j�;V; T�;

(1)

where we note that PRG��1� is independent of the choice of
chemical potential � on the right-hand side [11]. PRG��1�
is symmetric (even) with respect to its mean ��1 � �0. To
facilitate comparison of the forms of PRG��1� for various
choices of �0, it is expedient to consider distributions of
zero mean, to which end we define x � �1 � �0 and write

 PRG�xj�0; T� / P�x� �0jT�P��x� �0jT�; (2)

where we have suppressed reference to the constant vol-
ume V and the (arbitrary) chemical potential �.

The parameter space of the RG ensemble is spanned by
�0 and T. In the vicinity of the critical point (�c0, Tc)
terminating a line of liquid-vapor coexistence of a pure
fluid or fluid mixture, PRG exhibits universal scaling be-
havior. Introducing reduced variables %0 � ��0 � �

c
0�=�

c
0

and t � �T � Tc�=Tc, we make the following ansatz for
the finite-size scaling (FSS) properties of PRG�x�,

 PRG
L �xj%0; t� � a0L

�=� ~PRG�a0L
�=�x; a1%0L

�=�; a2tL
1=��:

(3)

Here ~PRG is a universal function which is symmetric in x
for all values of t and %0; � and � are critical exponents,
and a0, a1, a2 are nonuniversal metric factors. The argu-
ments in t and %0 control deviations from criticality. The
temperature field has the form familiar from the FSS
properties of magnets [12] or fluids [13], while that in %0

is particular to the RG ensemble. As one can verify [14]
from an expansion of Eq. (2) with respect to �0, together
with the known [13] symmetry properties of the derivatives
of P�x�, variations in the form of PRG�x� are—to leading
order—controlled by the value of �2

0; all terms having odd
powers of �0 are antisymmetric in x and hence absent on
symmetry grounds.

To characterize the form of ~PRG�x� as a function of %0

and t, it is useful to consider the behavior of the dimen-
sionless fourth-order cumulant ratio Q � hx2i2=hx4i [12],
whose scaling properties follow from Eq. (3) as

 QL�%0; t� � ~Q�q1%0L�=�; q2tL1=��; (4)

with ~Q a universal function and ~Q�0; 0� � Q	. The value
of Q	 � 0:711 901 is known a priori by virtue of the re-
sult that ~PRG�a0L

�=�x; 0; 0� / �P	�L�=�m��2 [11], with
P	�L�=�m� the universal critical Ising magnetization dis-
tribution [15]. Measurements of QL�%0; t� for a range of
global densities �0 provide a useful route to locating
criticality. Specifically, consider the locus of points in
%0-t space for which QL�%0; t� � Q	, which we term the
‘‘iso-Q	 curve.’’ Expanding Eq. (4) with respect to t < 0
and %0, and recalling that only terms involving even
powers of %0 are nonzero, one has

 QL�%0; t� � Q	�1� q1%
2
0L

2�=� � q2tL
1=� �O�%4

0; t
2��;

(5)

from which it follows that, sufficiently close to the critical
point, the iso-Q	 curve is a parabola in %0-t space,

 %2
0 � ��q2=q1�L�1�2��=�t: (6)

The maximum of this parabola (at %0 � t � 0) coincides
with the critical point and hence, by fitting to a few
estimated points on the iso-Q	 curve, one can readily
determine the critical parameters �c0 and Tc.

Turning now to the task of obtaining subcritical coex-
istence properties within the RG framework, we consider
the peak positions of PRG��1j�0; t� on an isotherm. When
�0 equals the coexistence diameter �d � ��g � �l�=2,
with �g and �l the gas and liquid densities, the peak
positions ofPRG��1� coincide with the coexisting densities,
which can thus be read off from a histogram of its form
[16]. An effective method for locating �d exploits the fact
that the even moments ofPRG�xj�0; t� are maximized when
�0 � �d. From the absence of odd powers of �0 in the
expansion of Eq. (2), it can then be shown [14] that the
variance �2��0jt� of PRG�xj�0; t� varies to leading order
quadratically in ��0 � �d�, i.e.,

 �2��0jt� � �2��d; t� � b��0 � �d�2; (7)

with b a positive constant. By fitting to estimates of
�2��0jt�, this result facilitates a determination of �d and
thence the coexisting densities.

To test the scaling theory, we first perform simulations
using the GCA in the restricted Gibbs ensemble for a pure
Lennard-Jones (LJ) fluid. We employ a potential cutoff
2:5� and reduced system sizes L	 � L=� � 10, 20, 30.
At fixed global density �0, histogram reweighting can be
used to determine a point on the iso-Q	 curve, i.e., the
temperature at which QL��0; T� takes the value Q	.
Repeating for a range of �0 values allows the entire
iso-Q	 line to be mapped. As shown in Fig. 1, the iso-Q	

curves for the various L	 are indeed parabolas [cf. Eq. (6)]
that coincide at their maximum. A careful analysis [14] of
the position of this maximum, ~Tc � kBTc=" � 1:1878�2�,
~�c � �c0�

3 � 0:3204�5�, reveals excellent agreement with
an existing GC estimate, ~Tc � 1:1876�3�, ~�c � 0:3197�4�
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[17]. The inset confirms the finite-size scaling predicted in
Eq. (6) with remarkable accuracy. Furthermore, the critical
density distribution ~PRG�x� is indeed in quantitative agree-
ment (not shown) with the square of the critical Ising
magnetization distribution, as predicted [11].

Having established the validity of our methodology, we
exploit the GCA to address a typical problem that is
intractable for conventional simulations. We consider a
binary, strongly size-asymmetric mixture of LJ particles
of size � and small particles (‘‘additives’’) of diameter
�s � �=10. Depending on their interaction with the large
particles, the presence of additives will affect the phase
behavior and shift the location of the liquid-vapor critical
point compared to the pure fluid. The additives mutually
interact via a weakened LJ potential,

 Vss�r� � 4
�
"
10

���
�s
r

�
12
�

�
�s
r

�
6
�

�r < 2:5�s�; (8)

whereas a large and a small particle interact as hard spheres
at a separation �ls � ��� �s�=2.

As before, we perform simulations for a range of �0, at
fixed additive volume fraction �s �

�
6 �

3
s�s � 0:005, cor-

responding toNs � 10 000. Because the small particles are
so numerous, and disperse relatively homogeneously, the
insertion probability of a large particle in a standard GC
approach would be prohibitively small. By contrast, the
present scheme renders it feasible to equilibrate the system
and sample the density fluctuations. Figure 2 (diamonds)
shows that the iso-Q	 curve (plotted as a function of the
total reduced density ~�0 � �l�

3 � �s�
3
s) again has a

parabolic shape. However, despite the small volume frac-
tion of additives, the maximum of this curve, i.e., the
liquid-vapor critical point of the mixture, is markedly
shifted. The increase in the critical temperature reflects
an enhanced attraction between the large particles which

stems from the entropic depletion interactions induced by
the additives [18].

To highlight the subtle role of the interactions of the
additives with the larger species we study a system in
which there is a weak attraction between large and small
particles. The interaction is again of the LJ form, Eq. (8), in
which �s is replaced with �ls. Already at �s � 10�3 the
critical temperature is now noticeably depressed, as is
evident from the shift of the iso-Q	 maximum in Fig. 2,
and at �s � 10�2, Tc has decreased by almost 20%. We
explain this surprising effect by the formation of a shell of
small particles around the large particles, akin to nano-
particle halo formation [3,7,8], which weakens the effec-
tive attraction between the large particles.

Our approach not only yields accurate estimates of
critical points, but also entire coexistence curves. As de-
scribed above, for each subcritical temperature, the vari-
ance of PRG�x� has a maximum at the coexistence curve
diameter �d [Eq. (7)], as is confirmed in Fig. 3. The
(total) densities of the coexisting liquid and vapor
phases are determined from the peak positions of PRG

[cf. Fig. 4(a)], resulting in the phase diagram in Fig. 4(b).
We emphasize that obtaining such a phase diagram in a
reasonable time scale would not be feasible using even the
most efficient traditional approach to fluid phase equilibria,
namely, GC simulation [17]. Our tests show that the GC
relaxation time is too large to be reliably estimated.
Nevertheless, a lower bound on the GC relaxation time
can be estimated via a comparison of the large-particle
transfer (insertion or deletion) acceptance probability pacc.
For liquidlike densities of the large particles (~�1 
 0:6),
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FIG. 2 (color online). Iso-Q	 curves for size-asymmetric bi-
nary mixtures consisting of a LJ fluid (particle size �) and small
additives (particle diameter �=10, volume fraction �s). All
curves pertain to a linear system size L � 8:06�. For additives
that interact with the fluid as hard spheres (diamonds, upper
curve), the critical temperature and density increase compared to
the pure fluid (open circles), whereas the critical temperature
decreases strongly if the additives have a weak attraction with
the fluid (squares, filled circles, triangles).
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FIG. 1 (color online). Measured iso-Q	 points (symbols) for a
pure LJ fluid, together with parabolic fits (curves). The maxima
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correspond to the critical point. The data collapse in the inset
confirms the scaling prediction [Eq. (6)].
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we find that for �s � 0:005, pacc � 10�4; while for �s �
0:01, this falls to pacc � 10�6. These values are to be
compared with pacc � 10�1 for the pure LJ fluid. One
can therefore expect the GC relaxation time of the mixtures
we have studied to be several orders of magnitude greater
than for the pure LJ fluid. Since the algorithm presented
here operates along fundamentally distinct lines—large-
scale collective updates of clusters of small and large
particles are accepted with unit probability—it is not
hampered by this problem. Consequently, it allows the
efficient calculation of phase diagrams, even under con-
ditions for which the GC approach fails.

Summarizing, we have extended the rejection-free GCA
to the study of phase transitions, by embedding it within a
restricted Gibbs ensemble. The accurate location of critical
points and coexistence curves within this ensemble re-
quires a suitable FSS theory, which has been presented as
well. We have applied our method to a strongly size-
asymmetric LJ mixture, which cannot be studied with
existing direct methods. We find that the liquid-vapor
phase behavior is highly sensitive to the concentration of
small particles and the nature of their interaction with the
large ones. Thus our method should prove useful in pre-
dicting the alterations to phase behavior which occur when
small particles of various types are added to a fluid.
Furthermore, by employing the method with a variant of
the GCA suitable for electrostatic interactions [19], it
becomes possible to study the effects of adding salt on
the phase behavior of charged colloids. Finally, we note
that while for concreteness we have developed the formal-
ism for the case of phase transitions whose order parameter
is the density, the structure of our theory holds also for con-

solute points, or indeed situations where the order parame-
ter is a linear combination of density and concentration.
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