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Screening in Ionic Systems: Simulations for the Lebowitz Length
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Simulations of the Lebowitz length, �L�T; ��, are reported for the restricted primitive model hard-core
(diameter a) 1:1 electrolyte for densities � & 4�c and Tc & T & 40Tc. Finite-size effects are elucidated
for the charge fluctuations in various subdomains that serve to evaluate �L. On extrapolation to the bulk
limit for T * 10Tc the exact low-density expansions are seen to fail badly when � > 1

10�c (with �ca3 ’
0:08). At higher densities �L rises above the Debye length, �D /

���������
T=�

p
, by 10%–30% (up to � ’ 1:3�c);

the variation is portrayed fairly well by the generalized Debye-Hückel theory. On approaching criticality
at fixed � or fixed T, �L�T; �� remains finite with �cL ’ 0:30a ’ 1:3�cD but displays a weak entropylike
singularity.
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Understanding the thermodynamic and correlation prop-
erties of ionic fluids has challenged both theory and ex-
periment [1]. Typical electrolytes exhibit phase separation
that is analogous to the gas-liquid transition in simple
fluids, albeit at rather low temperatures when appropriately
normalized. However, the long range of the Coulomb
interactions has hampered understanding especially near
criticality [1]. One crucial aspect is Debye-Hückel screen-
ing. For a d-dimensional classical fluid system with short-
range ion-ion potentials beyond the Coulomb coupling
z�z�q2=rd�2 (where z� is the valence of ions of species
� and mole fraction x� while q is an elementary charge),
the charge-charge correlation function, GZZ�r;T; ��, de-
cays as exp��jrj=�Z;1�T; ��� (see, e.g., [2,3]): the asymp-
totic screening length �Z;1 approaches the Debye length
�D � �kBT=4��z2

2q
2��1=2 when the overall ion density �

approaches zero (with �z2
2 �

P
�z

2
�x� [2,3]).

By contrast, at a critical point of fluid phase separa-
tion, the density-density (or composition) correlation
length �N;1�T; �� diverges, as do all the moments of
GNN�r;T; ��. What then happens to charge screening
near criticality? This question was first posed over a decade
ago [4] and has been addressed recently via the exact
solution of �d > 2�-dimensional ionic spherical models
[3]. As anticipated [4(b)], the issue of � ion symmetry
proves central. However, spherical models for fluids dis-
play several artificial features (e.g., infinite compressibil-
ities on the phase boundary below Tc; parabolic
coexistence curves, � � 1

2 ; etc.). Accordingly, understand-
ing screening near criticality for more realistic models
remains a significant task.

To that end we report here on a Monte Carlo study of the
restricted primitive model (RPM), namely, hard spheres of
diameter a carrying charges q� � �q (so that z	 �
�z� � 1, x	 � x� �

1
2 ). Grand canonical simulations

have been used and, to accelerate the computations, a
finely discretized (� � 5 level) lattice version of the
RPM has been adopted [5]. For this system the critical
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behavior is well established as of Ising-type with T
c �
kBTca=q2 ’ 0:05069 and �
c � �ca3 ’ 0:079 [6].
Furthermore, it has been demonstrated that for � * 3 the
fine-lattice discretization does not qualitatively affect ther-
modynamic or finite-size properties [7].

Ideally one would like to calculate �N;1�T; �� and
�Z;1�T; �� near criticality, but, even in nonionic model
fluids, obtaining �N;1 via simulations is hardly fea-
sible. Nevertheless, the low-order moments MN;k �R
jrjkGNN�r�d

dr, for k � 0; 1; 2; . . . , are accessible and,
by scaling, all the �N;k � �MN;k=MN;0�

1=k for k > 0 diverge
as �N;1. However, for charges the Stillinger-Lovett sum
rules [2,3] dictate MZ;0 � 0 [so that GZZ�r� is not of
uniform sign] while the second moment satisfies MZ;2 �
�6�z2

2q
2��2

D, which is fully analytic through �Tc; �c�. On
the other hand, the first moment of GZZ�r� is known [8] to
be intimately related to charge screening via the so-called
‘‘area law’’ of charge fluctuations.

To explain this, consider a regular subdomain � with
surface area A� and volume j�j, embedded in a larger
domain, specifically, say, the cubical Ld simulation box. If
Q� is the total fluctuating charge in �, electroneutrality
implies hQ�i � 0; but the mean square fluctuation, hQ2

�i,
will grow when j�j increases. In the absence of screening,
one expects hQ2

�i � j�j; however, in a fully screened, bulk
�L! 1� conducting fluid hQ2

�i is asymptotically propor-
tional to the surface area [8]. This was first observed by
van Beijeren and Felderhof and later proven rigorously by
Martin and Yalcin [8]. Following Lebowitz [8] one may
then define a screening distance proportional toMZ;1�T; ��,
which we call the Lebowitz length, �L�T; �� [2], via

hQ2
�i=A� � cd��z2

2q
2�L�T; �� as j�j ! 1; (1)

where cd is a numerical constant with c3 �
1
2 . Note that,

since GZZ�r� is not necessarily of uniform sign, �L�T; �� /
MZ;1�T; �� might diverge at Tc even though the second
moment MZ;2 / �2

D remains finite.
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Clearly, by simulating hQ2
�i in various subdomains one

may, as we show here, hope to calculate the Lebowitz
length. To our knowledge no numerical results have been
reported previously for d � 3, although Levesque et al. [9]
presented a study (above criticality) for d � 2. An exact
low-density expansion [2] proves that �L=�D ! 1 when
�! 0 and corrections of order �1=2, � ln�, and � have
been evaluated. This analysis [2] also served to validate the
generalized Debye-Hückel (GDH) theory for the correla-
tions [10] for small �.

The GDH theory, however, did not generate a � ln�
term: nevertheless, as we find here, the exact expansion
fails at very low densities—around �c=10 even for
T ’ 10Tc—while GDH theory provides a reasonable esti-
mate of �L�T; �� at higher densities; see Fig. 3 below.
Furthermore, our calculations show that �L remains finite
at criticality, exceeding �cD by only 33%. Nonetheless, the
Lebowitz length does exhibit weak singular behavior that,
in accord with general theory, matches that of the entropy.

The first serious computational task is to understand the
finite-size effects resulting from the L L L simulation
box with periodic boundary conditions. Each simulation at
a given �T
; �
� yields a histogram of the total fluctuating
charge Q� for 24 different subdomains �. We have used
the following: six small cubes of edges �L with � �
0:3; 0:4; . . . ; 0:8; seven ‘‘rods’’ of dimensions �L �L
L, with � � 0:2; . . . ; 0:8; four ‘‘slabs’’ of dimensions
�L L L, with � � 0:2; . . . ; 0:5; and seven spheres of
radius R � �L, with � � 0:15–0:45 in increments �� �
0:05. To minimize correlations between these various sub-
domains, they have been located as far apart as feasible.

While the area law for the charge fluctuation, hQ2
�i, is

rigorously true for L! 1 followed by �! 1, it is by no
means clear how it will be distorted for a finite subdomain
� embedded in a finite system. To understand this, Fig. 1
presents hQ2

�i, normalized by q2, for the six cubic subdo-
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FIG. 1. Reduced charge fluctuations, hQ2
�i=q

2, for given �T; ��
in cubes � of edges �L vs reduced area, A�=L

2 � 6�2.
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mains as a function of the reduced area A�=L
2 at selected

temperatures and densities for box sizes L
 � L=a � 6
and 12. Surprisingly, at high temperature and moderate
density (T
 � 0:5 ’ 10T
c , �
 � 0:08 ’ �
c), the area law
is well satisfied for � & 0:7 even for small systems. For
L
 � 6 the data point for � � 0:8 deviates strongly from
the linear fit (dashed line) owing to finite-size effects:
indeed, electroneutrality dictates that hQ2

�i should vanish
when �! 1, corresponding to A�=L2 � 6. At low den-
sities around 1

3�c, the Debye length �D /
���������
T=�

p
becomes

large but nevertheless we see that the area law is still well
satisfied. Furthermore, the area law is found to hold even
near criticality; see the lowest plot. Note, however, that the
linear fits to the data do not pass through the origin. This
reflects finite-size effects which are discussed further
below.

Combining (1) with the observations illustrated in Fig. 1,
we conclude that charge fluctuations in the cubic subdo-
mains are well described by

hQ2
��T; �;L�i � A0�T; �;L� 	 1

2
�q2�L�T; �;L�A�; (2)

where the intercept A0�T; �;L� need not vanish. The (fit-
ted) linear slope serves to define the finite-size Lebowitz
length, �L�T; �;L�, which should approach the bulk value,
�L�T; ��. But by what route?

To answer this question consider Fig. 2, which displays
�L�T; �;L� vs 1=L
 for T
 � 0:5 at various densities. It is
rather clear that �L�T; �;L� approaches its bulk limit as
1=L. This can be understood by recalling the Lebowitz
picture [8] in which the uncompensated charge fluctua-
tions in a subdomain arise only from shells of area A� and
thickness of order �L. By invoking the screening ofGZZ�r�,
one can see that ��L � �L�L� � �L�1� for smooth sub-
domains decays as 1=L2. Indeed, by this route van Beijeren
and Felderhof [8] showed explicitly that fluctuations in a
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FIG. 2. Quadratic fits to finite-size Lebowitz length data for
sizes up to L
 � 24 at T
 � 0:5 and various densities.
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sphere of radius R (in an infinite system) approach their
limiting behavior as 1=R2. For spheres in finite systems, we
observe similarly that �L�L� approaches the bulk value as
1=L2. However, for cubes—which have edges and cor-
ners—and rods with edges, �L�L� gains a lower order, 1=L
term as seen in Fig. 2. [The intercept A0�L� in (2) is,
correspondingly, found to vary as L.] On the other hand,
for slabs, lacking edges and corners, we find that �L�L�
obtained via (1) approaches the limit exponentially fast.

Having established the finite-size behavior, let us exam-
ine �L�T; �� on the T
 � 0:5 isotherm, well above Tc.
Figure 3 shows estimates extrapolated from cubes, spheres,
and slabs. At moderate densities systems up to L
 � 16
suffice, but for �
 � 0:025 we went up to L
 � 24. The
results may be compared with GDH theory [10] (dashed
curve) and with approximants which reproduce the exact
low-density expansion known to order � [2]. For the latter
we adopt

��1;0�L � �D�T; ���1	 a1�T��
 	 a2�T��
 ln�
�; (3)

��0;1�L � �D�T; ��=�1� a1�T��

 � a2�T��


 ln�
�; (4)

shown in Fig. 3 as solid and dotted curves, respectively,
where a1�T� and a2�T� follow from [2]. The simulations
agree well with the low-density expansion but only up to
�
 ’ 0:005; thereafter �L rises above the Debye length
much more slowly. By contrast, GDH theory captures the
overall behavior of �L�T; �� over a broad density range,
representing the numerical estimates to within a few per-
cent at moderate densities, 0:01 � �
 � 0:10, where no
exact results are available.

In the critical region the first question is the finiteness of
�L�Tc; �c�. To answer this, we study �L on the critical
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isochore � � �c as T ! Tc. Figure 4 [11] reveals that
�L=a falls increasingly rapidly when T
 drops from �0:5
but clearly attains a finite nonzero value at Tc that exceeds
�cD=a ’ 0:2260 [6]. Owing to the relatively strong finite-
size dependence of �L and the excessively large computa-
tional requirements near �Tc; �c�, reliable extrapolation to
L � 1 is difficult. Nevertheless, we may test for the non-
analytic behavior expected in any finite quantity [12].

On general grounds [12] weak, entropylike behavior is
predicted. Thus temperature derivatives at � � �c should
diverge as the specific heat, namely, as

�CV=kB � A	=t	 	 A0; (5)

when t � �T � Tc�=Tc ! 0, where 	 ’ 0:109 and
A	a3 � 0:50� 0:07 [13] with, via a rough fit, A0a3 ’
�0:37. A direct comparison for finite L of @��L=�D�=@T
1-3
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c ’ �1:36218; see text.
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with the specific heat is shown in Fig. 5 [11]. Bearing in
mind the lack of �L data near Tc and its imprecision, the
resemblance of the two plots is striking: we accept it as
confirmation of the anticipated singularity.

Complementary nonanalytic behavior should arise on
the critical isotherm as the reduced chemical potential


 � �
�
0�T��=kBT [14] varies. This is borne out by
the plots in Fig. 6 of @��L=�D�=@



 and �@��
U
�=@

�=
�
k with k � 1

2 , where U
�T; �� is the configurational
energy per particle; the power �
k represents a convenient
‘‘k-locus factor’’ [15]. In the bulk limit both functions
should, by scaling, diverge as 1=j
�
cj

 , with  �
�1� ��=��	 �� ’ 0:43 [6,7].

Returning to the isochore � � �c, theory indicates

�L�T� � �cL�1	 e	t
1�	 	 e1t	 e�t1�		� 	 e2t2 	 � � ��;

where � ’ 0:52 is the leading correction exponent [13]. By
making allowance for the L dependence and fitting over
various ranges above Tc, we conclude �cL ’ 0:30a and,
with less confidence, e	 ’ 2:6� 0:2 and e1 ’ �2:2� 0:3.

In summary, the Lebowitz screening length �L�T; �� has
been studied for the restricted primitive model electrolyte
via grand canonical Monte Carlo simulations of the charge
fluctuations in subdomains. The corresponding area law
that is asymptotically valid for large subdomains [8] holds
surprisingly well even in small simulation boxes, L & 12a.
Finite-size effects can be understood so that the bulk, L!
1 limit may be extracted by extrapolation vs 1=L for cubic
subdomains and 1=L2 for spheres while the effective,
finite-size Lebowitz lengths for slabs converge exponen-
tially fast. Evaluation of �L for T * 10Tc over densities
from 0:03�c to 4�c reveals that the exact low-density
expansions [2] are effective only for � & 1

10�c, whereas
GDH theory [10] reproduces well the general trends.
14570
Finally, �L remains finite at criticality but exhibits weak,
entropylike singularities on approaching �Tc; �c�. This is
the first time that charge-charge correlations and a strongly
state-dependent screening length have been studied by
simulations close to criticality.
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