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We present a detailed description of the generalized geometric cluster algorithm for the efficient simulation
of continuum fluids. The connection with well-known cluster algorithms for lattice spin models is discussed,
and an explicit full cluster decomposition is derived for a particle configuration in a fluid. We investigate a
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discussed. The capabilities and efficiency of our approach are illustrated by means of two example studies.
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I. INTRODUCTION

Computer simulation methods play an increasingly impor-
tant role in the study of complex fluids. Historically, many
simulations have concentrated on fluids modeled as an as-
sembly of monodisperse spherical particles interacting, e.g.,
via a bare excluded-volume potentialshard-sphere fluidd or a
Lennard-Jones interactionf1g. While such systems can al-
ready display a wealth of interesting features, such as a solid-
liquid transition and—in the presence of attractive
interactions—a critical point, it is also clear that real fluids
and solutions can exhibit far richer behavior. Various factors
contribute to the additional features found in these systems,
including internal degrees of freedom of the constituents
ssuch as in polymeric systemsd, interactions induced by elec-
trical charges, and the presence of various species with a
strong size asymmetry. Modeling any of these properties can
greatly increase the required numerical efforts and in certain
situations can make the simulations prohibitively expensive.
Although available computational power continues to in-
crease steadily, further progress in simulating such systems
will critically depend on algorithmic advances.

Recently, we have introduced a simulation method that
addresses one of the above-mentioned complicating factors,
namely the slowdown arising in simulations of solutions
containing species of largely different sizesf2g ssee also Ref.
f3gd. This method, which generalizes an original idea due to
Dress and Krauthf4g to identify clusters based upon geomet-
ric symmetry operations and accordingly is called thesgen-
eralizedd geometric cluster algorithmsGCAd, exhibits two
noteworthy features. First, it employs a nonlocal Monte
Carlo sMCd scheme to move the constituent particles in a
nonphysical way, thus introducing artificial dynamics while
preserving all thermodynamic equilibrium properties. This
greatly accelerates the generation of uncorrelated configura-
tions of particles. We emphasize that our scheme does not
involve any approximations; the molecular configurations
produced by the GCA are generated according to the same
Boltzmann distribution that would govern a conventional

simulation of the system under consideration, but the GCA
follows a different trajectory through phase space. Secondly,
the nonlocal moves involve clusters of particles that are con-
structed in such a way thatall proposed moves are accepted.
This is not only an additional factor contributing to the effi-
ciency of the method, but it also has a more profound sig-
nificance. Namely, in order to satisfy detailed balancef5–8g
without imposing the usual Metropolisf9g acceptance crite-
rion, the ratio of the probability of transforming a particle
configurationC into a new configurationC8 and the prob-
ability of the reverse transformation must be identical to the
ratio of the Boltzmann factors of the configurationC8 and
the original configurationC. Clearly, this can only be real-
ized if the transformationss“moves”d are proposed with a
probability that involves knowledge about the physical prop-
erties of a system. For the vast majority of MC algorithms,
this is not the case. The most well-known exceptions are the
Swendsen-WangsSWd algorithmf10g for lattice spin models
and its variant due to Wolfff11g. Among continuum systems,
hard-sphere fluids constitute a special case, since all configu-
rations without particle overlap have the same energy and
thus the same Boltzmann factor. However, it is generally
accepted that theserejection-freealgorithms are an exception
scf., e.g., Ref.f7g, Sec. 14.3.1d. Indeed, ever since the inven-
tion of the SW cluster algorithm for Ising and Potts models,
its extension to fluids has been a widely pursued goal. For
lattice gases, the extension can be accomplished in a straight-
forward manner, since they are isomorphic to Potts models.
However, for off-lattice scontinuumd fluids, this mapping
cannot be applied, owing to the absence of particle-hole
symmetry. This symmetry is a critical ingredient for the SW
algorithm for Ising and Potts models, as clusters of spinssor
variables, in the case of the Potts modeld are identified using
a symmetry operation that, if applied globally, would leave
the Hamiltonian of the system invariant. The only known
extensions to continuum systems apply to the Widom-
Rowlinson model for fluid mixturesf12,13g, in which iden-
tical particles do not interact and unlike species experience a
hard-core repulsion, and the closely related Stillinger-
Helfand model, in which the hard core is replaced by a soft
repulsionf14g. However, no generalization has been found in
which identical particles do not behave as an ideal gas. In a
separate development, Dress and Krauthf4g observed that,*Corresponding author. Email address: luijten@uiuc.edu
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for hard-core fluids, an overlap-free configuration can be
transformed into a new configuration of nonoverlapping par-
ticles by means of ageometricsymmetry operation. The par-
ticular advantage of this scheme is its ability to efficiently
relax size-asymmetric mixturesf15–17g. In Ref. f2g, we
showed how this advantage can be retained for fluids with
arbitrary pair potentials, while simultaneously exploiting the
invariance of the Hamiltonian under the symmetry operation
to create particle clusters in a manner that is fully analogous
to the SW or Wolff method. An application to a concrete
physical problem has been presented in Ref.f18g, where
colloid-nanoparticle mixtures featuring attractive, repulsive,
and hard-core interactions were simulated for size asymme-
tries up to 100. We remark that geometric cluster algorithms
have also been applied successfully to lattice-based models.
Heringa and Blöte have employed an algorithm of this type
to investigate lattice gases with nearest-neighbor exclusion
f19g and developed a version for simulation of the Ising
model in the constant-magnetization ensemblef20g. The
“pocket algorithm” of Krauth and Moessnerf21g, which is
essentially a geometric cluster algorithm for dimer models,
was used to investigate hard-core dimers on three-
dimensional latticesf22g. Furthermore, we note that there is
a profound difference between the geometric cluster algo-
rithm and other Monte Carlo schemes that move groups of
particles simultaneouslyf23–26g. Such algorithms can work
efficiently in specific cases, and are sometimes viewed as
counterparts of the SW algorithm merely because they also
invoke the notion of a “cluster,” but they typically involve a
tunable parameter and are neither rejection-free nor do they
exploit a symmetry property of the Hamiltonian.

In the current article, we provide a detailed description of
the generalized geometric cluster algorithm for continuum
fluids and we study basic properties such as the dependence
of cluster-size distribution on temperature and density. We
also describe a multiple-cluster variant of the generalized
GCA in which a particle configuration is fully decomposed
into clusters that can be moved independently.

II. ALGORITHM DESCRIPTION

A. Swendsen-Wang and Wolff algorithms for lattice spin
models

For reference in future sections that highlight the similari-
ties between the generalized GCAf2g for off-lattice fluids
and the SWf10g and Wolff f11g algorithms for lattice spin
models, we briefly summarize the lattice cluster algorithms
for the case of ad-dimensional Ising model with nearest-
neighbor interactions, described by the Hamiltonian

HIsing = − Jo
ki j l

sisj . s1d

The spinss are placed on the vertices of a squaresd=2d or
simple cubicsd=3d lattice and take values ±1. The sum runs
over all pairs of nearest neighbors, which are coupled via a
ferromagnetic coupling with strengthJ.0. Starting from a
given configuration of spins, the SW algorithm now proceeds
as follows.

sid A “bond” is formed between every pair of nearest
neighbors that are aligned, with a probabilitypij =1−exp
s−2bJd, whereb=1/kBT.

sii d All spins that are connected, directly or indirectly, via
bonds belong to a single cluster. Thus, the bond assignment
procedure divides the system into clusters of parallel spins.
Note how the bond probabilitysand hence the typical cluster
sized grows with increasing coupling strengthbJ sdecreasing
temperatured. For finitebJ,pij ,1 and hence a cluster is gen-
erally asubsetof all spins of a given sign.

siii d All spins in each cluster are flippedcollectivelywith
a probability1

2. That is, for each cluster of spins, a spin value
±1 is chosen and this value is assigned to all spins that be-
long to the cluster.

The last, and crucial, step is made possible by the Fortuin-
Kasteleyn mappingf27,28g of the Potts model on the
random-cluster model, which implies that the partition func-
tion of the former can be written as a Whitney polynomial
that represents the partition function of the latterf29g. Ac-
cordingly, all spins in a clustersa connected component in
the random-cluster modeld are uncorrelated with all other
spins, and can be assigned a new spin value.

This algorithm possesses several noteworthy properties.
First, it strongly suppresses dynamic slowing down near a
critical point f10g by efficiently destroying nonlocal correla-
tions ssee also Ref.f8g for a pedagogical introductiond. Sec-
ondly, this algorithm isrejection-free. Indeed, the assignment
of bonds involves random numbers, but once the clusters
have been formed, each of them can be flipped indepen-
dently without imposing an acceptance criterion involving
the energy change induced by such a collective spin-reversal
operation. Thirdly, the Fortuin-Kasteleyn mapping can also
be applied to systems in which each spin interacts not only
with its nearest neighbors, but also with other spinsf29g. In
particular, the coupling strength can be different for different
spin pairs, leading to a probabilitypij that is, e.g., dependent
on the separation betweeni and j . Thus, cluster algorithms
can be designed for spin systems with medium-f30g and
long-range interactionsf31g.

Critical slowing down is suppressed even more strongly
in a variant of this algorithm due to Wolfff11g. In this imple-
mentation, no decomposition of the entire spin configuration
into clusters takes place. Instead, a single cluster is formed,
which is then always flipped.

sid A spin i is selected at random.
sii d All nearest neighborsj of this spin are added to the

cluster with a probabilitypij =1−exps−2bJd, provided spinsi
and j are parallel and the bond betweeni and j has not been
considered before.

siii d Each spinj that is indeed added to the cluster is also
placed on the stack. Once all neighbors ofi have been con-
sidered for inclusion in the cluster, a spin is retrieved from
the stack and all its neighbors are considered in turn for
inclusion in the cluster as well, following stepsii d.

sivd Stepssii d and siii d are repeated iteratively until the
stack is empty.

svd Once the cluster has been completed, all spins in the
cluster are inverted.

Again, this is a rejection-free algorithm, in the sense that
the cluster is always flipped. Just as in the SW algorithm, the
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cluster-construction process involves random numbers, but
the individual probabilitiespij involve single-particle ener-
gies rather than an acceptance criterion that involves the total
energy change induced by a cluster flip.

B. Geometric cluster algorithm for hard-sphere mixtures

Since suppression of critical slowing is a highly attractive
feature for fluid simulations as well, the generalization of the
SW and Wolff algorithms to fluid systems has been a widely
pursued goal. In the lattice-gas interpretation, where a spin
+1 corresponds to a particle and a spin −1 corresponds to an
empty site, a spin-inversion operation corresponds to a par-
ticle being inserted in or removed from the system. This
“particle-hole symmetry” is absent in off-latticescontinuumd
systems. While a particle in a fluid configuration can
straightforwardly be deleted, there is no unambiguous pre-
scription on how to transform empty space into a particle.
More precisely, in the lattice cluster algorithms the operation
performed on every spin is self-inverse. This requirement is
not fulfilled for off-lattice fluids.

Dress and Krauthf4g proposed a method to efficiently
generate particle configurations for a hard-sphere liquid. This
geometric cluster algorithmproceeds as followsscf. Fig. 1d.

sid In a given configurationC, a “pivot” is chosen at ran-
dom.

sii d A configurationC̃ is now generated by carrying out a
point reflection for all particles inC with respect to the pivot.

siii d The configurationC and its transformed counterpart

C̃ are superimposed, which leads to groups of overlapping
particles. The groups generally come in pairs, except possi-
bly for a single group that is symmetric with respect to the
pivot. Each pair is denoted a “cluster”f32g.

sivd For each cluster, all particles can be exchanged be-
tweenC andC̃ without affecting particles belonging to other
clusters. This exchange is performed for each cluster inde-
pendently with a probability12. Thus, if the superposition of
C andC̃ is decomposed intoN clusters, there are 2N possible
new configurations. The configurations that are actually real-
ized are denotedC8 andC̃8, i.e., the original configurationC
is transformed intoC8 and its point-reflected counterpartC̃ is
transformed intoC̃8.

svd The configurationC̃8 is discarded andC8 is the new
configuration, serving as the starting point for the next itera-
tion of the algorithm. Note that a new pivot is chosen in
every iteration.

Observe that periodic boundary conditions must be em-
ployed, such that an arbitrary placement of the pivot is pos-
sible. Other self-inverse operations are permissible, such as a
reflection in a planef19g, in which case various orientations
of the plane must be chosen in order to satisfy ergodicity.
While operating in the canonical rather than in the grand-
canonical ensemble, this prescription clearly bears great re-
semblance to the original SW algorithm. The original con-
figuration is decomposed into clusters by exploiting a
symmetry operation that leaves the Hamiltonian invariant if
applied to the entire configuration; in the SW algorithm, this
is the spin-inversion operation and in the geometric cluster
algorithm it is a geometric symmetry operation. Subse-
quently, a new configuration is created by moving each clus-
ter independently with a certain probability.

We note that this method represents an approach of great
generality. For example, it is not restricted to monodisperse
systems, and has indeed been applied successfully to binary
f15g and polydispersef16g mixtures. Indeed, the nonlocal
character of the particle moves makes them exquisitely suit-
able to overcome the jamming problems that slow down the
simulation of size-asymmetric mixtures. An important limi-
tation of the algorithm is the fact that the average cluster size
increases very rapidly beyond a certain density, correspond-
ing to the percolation threshold of the combined system con-

taining the superposition of the configurationsC andC̃. Once
this cluster spans the entire system, the algorithm is clearly
no longer ergodic.

We can take the analogy with the lattice cluster algorithms
one step further, by showing that a single-clustersWolff d
variant can be formulated as wellf2,19g.

sid In a given configurationC, a “pivot” is chosen at ran-
dom.

sii d A particle i is selected as the first particle that belongs
to the cluster. This particle is moved via a point reflection
with respect to the pivot. In its new position, the particle is
referred to asi8.

siii d Stepsii d is repeatediteratively for each particlej that
overlaps withi8. Thus, if the smovedd particle j8 overlaps
with another particlek, particlek is moved as well. Note that
all translations involve the same pivot.

sivd Once all overlaps have been resolved, the cluster
move is completed.

As in the SW-like prescription, a new pivot is chosen for
each cluster that is constructed.

FIG. 1. Illustration of the geometric cluster algorithm for hard
disks f4g. sad Original configuration.sbd A new configuration
sshaded circlesd is created by means of a point reflection of all
particles with respect to a randomly chosen pivot pointssmall filled
diskd. The superposition of the original and the new configuration
leads to groups of overlapping particles. In this example, there are
three pairs of groupssh1,2j, h3j, h4,5,6jd. Each pair is denoted a
cluster. The particles in any one of these clusters can be point-
reflected with respect to the pivot without affecting the other two
clusters. This can be used to carry out the point reflection for every
cluster with a preset probability.scd Final configuration that results
if, starting from the original configuration, only the particles in the
third cluster h4,5,6j are point-reflected. This approach guarantees
that every generated configuration will be free of overlaps. Note
that the pivot will generally not be placed in the center of the cell,
and that the periodic boundary conditions indeed permit any
position.
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C. Geometric cluster algorithm for interacting particles:
Single-cluster variant

The geometric cluster algorithm described in the previous
section is formulated for hard-core interactions. For applica-
tion to general pair potentials, it was suggested in Ref.f4g to
impose a Metropolis-type acceptance criterion based upon
the energy difference induced by the cluster move. Indeed, in
the case of potentials that consist of a hard-coresexcluded-
volumed contribution supplemented by an attractive or repul-
sive tail, such as a Yukawa potential, the cluster-construction
procedure guarantees that no overlaps are generated and the
acceptance criterion takes into account the tail of the inter-
actions. For “soft-core” potentials, such as a Lennard-Jones
interaction, the situation becomes already somewhat more
complicated, since an arbitrary excluded-volume distance
must be chosen for the cluster construction. As the algorithm
will not generate configurations in which the separation be-
tween a pair of particles is less than this distancesi.e., the
particle “diameter,” in the case of monodisperse systemsd, it
must be set to a value that is smaller than any separation that
would typically occur, as already noted in Ref.f33g. In either
case, the clusters that are generated have only limited physi-
cal relevance, and the evaluation of a considerable part of the
energy change resulting from a cluster move is deferred until
the acceptance step. Rejection is not only likely, but also
costly, given the computational efforts of both cluster con-
struction and energy evaluation. We note that this approach
was nevertheless applied to Yukawa mixtures with moderate
size asymmetrysdiameter ratioø5d f33g.

On the other hand, Heringa and Blötef20,34g devised a
geometric cluster algorithm for the Ising model in which the
nearest-neighbor interactions between spins are taken into
account already during the cluster construction. While this
lattice model can obviously be simulated by the SW and
Wolff algorithms, their approach permits simulation in the
constant-magnetization ensemble. The geometric operations
employed map the spin lattice onto itself, such that excluded-
volume conditions are satisfied automatically: every spin
move amounts to anexchangeof spins. For every spin pair
si , i8d that is exchanged, each of its nearest-neighbor pairs
sk,k8d is exchanged with a probability that depends on the
change in pair energy,D=sEik+Ei8k8d−sEik8+Ei8kd. This pro-
cedure is then again performed iteratively for the neighbors
of all spin pairs that are exchanged.

In Ref. f2g, we introduced a generalization of the GCA for
off-lattice fluids, in which particles undergo a geometric op-
eration in a stochastic manner, akin to the approach of Ref.
f20g. The differences arise from the fact that no underlying
lattice is present, so that particles are added to the cluster on
an individual basis, rather than in pairs. All interactions are
treated in a unified manner, so there is no technical distinc-
tion between attractive and repulsive interactions or between
hard-core and soft-core potentials. Thisgeneralized GCAis
most easily described as a combination of the single-cluster
methods formulated in Secs. II A and II B. We assume a
general pair potentialVijsr i jd that does not have to be iden-
tical for all pairssi , jd ssee Fig. 2d.

sid In a given configurationC, a “pivot” is chosen at ran-
dom.

sii d A particle i at positionr i is selected as the first par-
ticle that belongs to the cluster. This particle is moved via a
point reflection with respect to the pivot. In its new position,
the particle is referred to asi8, at positionr i8.

siii d Each particlej that interacts withi or i8 is now con-
sidered for addition to the cluster. Unlike the first particle,
particle j is point-reflected with respect to the pivot only with
a probability pij =maxf1−exps−bDi jd ,0g, where Di j =Vsur i8
−r jud−Vsur i −r jud. A particle j that interacts withi both in its
old and in its new position is nevertheless treated only once.

sivd Each particlej that is indeed added to the cluster
si.e., movedd is also placed on the stack. Once all particles
interacting with i or i8 have been considered, a particle is
retrieved from the stack and all its neighbors that are not yet
part of the cluster are considered in turn for inclusion in the
cluster as well, following stepsiii d.

svd Stepssiii d and sivd are repeated iteratively until the
stack is empty. The cluster move is now complete.

If a particle interacts with multiple other particles that
have been added to the cluster, it can thus be considered
multiple times for inclusion. However, once it has been
added to the cluster, it cannot be removed. This is an impor-
tant point in practice, since particles undergo a point reflec-
tion already during the cluster construction processsand thus
need to be tagged, in order to prevent them from being re-
turned to their original position by a second point reflectiond.
A crucial aspect is that the probabilitypij only depends on
the change inpair energybetweeni and j . A change in the
relative position ofi and j occurs if particlej is not added to
the cluster. This happens with a probability 1−pij
=minfexps−bDi jd ,1g. The similarity with the Metropolis ac-
ceptance criterion is deceptivesand merely reflects the fact
that both algorithms aim to generate configurations accord-
ing to the Boltzmann distributiond, sinceDi j does not repre-
sent thetotal energy change resulting from the translation of

FIG. 2. Two-dimensional illustration of the interacting geomet-
ric cluster algorithm. Like in Fig. 1, open and shaded disks denote
the particles before and after the geometric operation, respectively,
and the small disk denotes the pivot. However, in thegeneralized
GCA, a single cluster is constructed, to which particles are added
with an interaction-dependent probability.sad Original configura-
tion. sbd A cluster is constructed as follows. Particle 1 is point-
reflected with respect to the pivot. If, in its new position, it has a
repulsive interaction with particle 2, the latter has a certain prob-
ability to be point-reflected as well, with respect to the same pivot.
Assuming an attractive interaction between particles 2 and 3, par-
ticle 3 is translated as well, but again only with a certain probability.
If particles 4–6 are not affected by these point reflections, the clus-
ter construction terminates.scd The new configuration consists of
particles 1–3 in their new positions and particles 4–6 in the original
positions. A new pivot is chosen and the procedure is repeated.
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particle i. Instead, other energy changes are taken into ac-
count via the iterative nature of the algorithm.

It is instructive to note that the expression forpij bears
close resemblance to the probability employed in the SW
algorithm sSec. II Ad. In the latter, two different situations
can be discerned that lead to a change in the relative energy
Di j

SW between a spini that belongs to the cluster and a spinj
that does not yet belong to the cluster. Ifi and j are initially
antiparallel, j will never be added to the cluster and only
spin i will be inverted, yielding an energy changeDi j

SW=
−2J,0 that occurs with probability unity. Ifi and j are
initially parallel and j is not added to the cluster, the result-
ing change in the pair energy equalsDi j

SW= +2J.0. This
occurs with a probability exps−2bJd,1. These two situa-
tions can indeed be summarized as minfexps−bDi j

SWd ,1g, just
as in the generalized GCA.

The ergodicity of this algorithm follows from the fact that
there is a nonvanishing probability that a cluster consists of
only one particle, which can be moved over an arbitrarily
small distance, since the location of the pivot is chosen at
random. This obviously requires that not all particles are part
of the cluster, a condition that is violated at high packing
fractions. While a compact proof of detailed balance of the
generalized GCA has already been given in Ref.f2g, we in-
clude it here for the sake of completeness. We consider a
configurationX that is transformed into a configurationY by
means of a cluster move. All particles included in the cluster
maintain their relative separation; as noted above, an energy
change arises if a particle isnot included in the cluster, but
interacts with a particle that does belong to the cluster. Fol-
lowing Wolff f11g we denote each of these interactions as a
“broken bond.” A broken bondk that corresponds to an en-
ergy changeDk occurs with a probability 1−pk=1 if Dkø0
and a probability 1−pk=exps−bDkd if Dk.0. The formation
of an entire cluster corresponds to the breaking of a sethkj of
bonds, which has a probabilityP. This set is comprised of
the subsethlj of broken bondsl that lead to an increase in
pair energy and the subsethmj of broken bonds that lead to a
decrease in pair energy, such that

P = p
k

s1 − pkd = expF− bo
l

DlG . s2d

The transition probability from configurationX to configura-
tion Y is proportional to the cluster formation probability,

TsX → Yd = C expF− bo
l

DlG , s3d

whereC accounts the factor for the fact that various arrange-
ments of bonds within the clusters“internal bonds”d corre-
spond to the same set of broken bonds. In addition, it incor-
porates the probability of choosing a particular pivot and a
specific particle as the starting point for the cluster.

If we now consider the reverse transitionY→X, we ob-
serve that this again involves the sethkj, but all the energy
differences change sign compared to the forward move. Con-
sequently, the subsethlj in Eq. s3d is replaced by its comple-
ment hmj and the transition probability is given by

TsY → Xd = C expF+ bo
m

DmG , s4d

where the factorC is identical to the prefactor in Eq.s3d.
Since we require the geometric operation to be self-inverse,
we thus find that the cluster move satisfies detailed balance
at an acceptance ratio of unity,

TsX → Yd
TsY → Xd

=

expf− bo
l

Dlg

expf+ bo
m

Dmg
= expF− bo

k

DkG
= expf− bsEY − EXdg =

exps− bEYd
exps− bEXd

, s5d

whereEX andEY are the internal energies of configurationsX
and Y, respectively. That is, the ratio of the forward and
reverse transition probabilities is equal to the inverse ratio of
the Boltzmann factors, so that we indeed have created a
rejection-free algorithm. This is obscured to some extent by
the fact that in our prescription the cluster is moved while it
is being constructed, similar to the Wolff algorithm in Sec.
II A. The central point, however, is that the construction
solely involves single-particle energies, whereas a
Metropolis-type approach only evaluates the total energy
change induced by a multiparticle move and then frequently
rejects this move. By contrast, the GCA avoids large energy
differences by incorporating “offending” particles into the
cluster with a high probability.

D. Geometric cluster algorithm for interacting particles: Full
cluster decomposition

We now introduce a SW implementation of the general-
ized GCA. The merit of this formulation, which builds upon
the Wolff version described in the previous section, is two-
fold: First, it demonstrates that the algorithm constitutes the
true off-lattice counterpart of the SW and Wolff cluster algo-
rithms for spin models outlined in Sec. II A. Secondly, the
SW formulation produces a full decomposition of an off-
lattice fluid configuration intostochastically independent
clusters. This implies an interesting and remarkable analogy
with the Ising model. As observed by Coniglio and Klein
f35g for the two-dimensional Ising model at its critical point,
the clusters created according to the prescription in Sec. II A
are just the so-called “Fisher droplets”f36g. While Ref.f35g
makes no reference to the work by Fortuin and Kasteleyn,
these “Coniglio-Klein clusters” are implied by the Fortuin-
Kasteleyn mapping of the Potts model onto the random-
cluster modelf28g, which in turn constitutes the basis for the
Swendsen-Wang approachf10g. The clusters generated by
the GCA do not have an immediate physical interpretation,
as they typically consist of two spatially disconnected parts.
However, just as the Ising clusters can be inverted at random,
each cluster of fluid particles can be moved independently
with respect to the remainder of the system. As such, the
generalized GCA can be viewed as a continuum version of
the Fortuin-Kasteleyn mapping.

The cluster decomposition of a configuration proceeds as
follows. First, a cluster is constructed according to the Wolff
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version of Sec. II C, with the exception that the cluster is
only identified; particles belonging to the cluster are marked
but not actually moved. The pivot employed will also be
used for the construction of all subsequent clusters in this
decomposition. These subsequent clusters are built just like
the first cluster, except that particles that are already part of
an earlier cluster will never be considered for a new cluster.
Once each particle is part of exactly one cluster, the decom-
position is completed. Like in the SW algorithm, every clus-
ter can then be movedsi.e., all particles belonging to it are
translated via a point reflectiond independently, e.g., with a
probability f. Despite the fact that all clusters except the first
are built in a restricted fashion, each individual cluster is
constructed according to the rules of the Wolff formulation
of Sec. II C. The exclusion of particles that are already part
of another cluster simply corresponds to the fact that every
bond should be considered only once. If a bond is broken
during the construction of an earlier cluster, it should not be
reestablished during the construction of a subsequent cluster.
The cluster decomposition thus obtained is not unique, as it
depends on the placement of the pivot and the choice of the
first particle. Evidently, this also holds for the SW algorithm.

In order to establish that this prescription is a true equiva-
lent of the SW algorithm, we prove that each cluster can be
moved sreflectedd independently while preserving detailed
balance. If only a single cluster is actually moved, this es-
sentially corresponds to the Wolff version of the GCA, since
each cluster is built according to the GCA prescription. The
same holds true if several clusters are moved and no inter-
actions are present between particles that belong to different
clusterssthe hard-sphere algorithm is a particular realization
of this situationd. If two or more clusters are moved and
brokenbonds exist between these clusters, i.e., a nonvanish-
ing interaction exists between particles that belong to dispar-
ate smovingd clusters, then the shared broken bonds are ac-
tually preserved and the proof of detailed balance provided
in the previous section no longer applies in its original form.
However, since these bonds are identical in the forward and
the reverse move, the corresponding factors cancel out. This
is illustrated for the situation of two clusters whose construc-
tion involves, respectively, two sets of broken bondshk1j and
hk2j. Each set comprises bondsl shl1j and hl2j, respectivelyd
that lead to anincreasein pair energy and bondsm shm1j and
hm2j, respectivelyd that lead to adecreasein pair energy. We
further subdivide these sets intoexternalbonds that connect
cluster 1 or 2 with the remainder of the system andjoint
bonds that connect cluster 1 with cluster 2. Accordingly, the
probability of creating cluster 1 is given by

C1 p
iPhk1j

s1 − pid = C1 p
iPhl1j

s1 − pid

= C1 p
iPhl1

extj

s1 − pid p
jPhl1

jointj

s1 − pjd. s6d

Upon construction of the first cluster, the creation of the
second cluster has a probability

C2 p
iPhl2

extj

s1 − pid, s7d

since all joint bonds inhl2
jointj=hl1

jointj already have been bro-
ken. The factorsC1 andC2 refer to the probability of realiz-
ing a particular arrangement of internal bonds in clusters 1
and 2, respectivelyscf. Sec. II Cd. Hence, the total transition
probability of movingboth clusters is given by

T12sX → Yd = C1C2 expF− b o
iPhl1

extj

Di − b o
jPhl2

extj

D j

− b o
nPhl1

jointj

DnG . s8d

In the reverse move, the energy differences for all external
broken bonds have changed sign, but the energy differences
for the joint bonds connecting cluster 1 and 2 are the same as
in the forward move. Thus, cluster 1 is created with prob-
ability

C1 p
iPhm1

extj

s1 − p̄id p
jPhl1

jointj

s1 − pjd

= C1 p
iPhm1

extj

expf+ bDig p
jPhl1

jointj

expf− bD jg, s9d

where thep̄i reflects the sign change of the energy differ-
ences compared to the forward move and the product over
the external bonds involves the complement of the sethl1

extj.
The creation probability for the second cluster is

C2 p
iPhm2

extj

s1 − p̄id = C2 p
iPhm2

extj

expf+ bDig s10d

and the total transition probability for the reverse move is

T12sY → Xd = C1C2 expF+ b o
iPhm1

extj

Di + b o
jPhm2

extj

D j

− b o
nPhl1

jointj

DnG . s11d

Accordingly, detailed balance is still fulfilled with an accep-
tance ratio of unity,

T12sX → Yd
T12sY → Xd

= expF− b o
iPhk1

extj

Di − b o
jPhk2

extj

D jG
= expf− bsEY − EXdg , s12d

in which hk1
extj=hl1

extjø hm1
extj and hk2

extj=hl2
extjø hm2

extj and
EX andEY refer to the internal energy of the system before
and after the move, respectively. This treatment applies to
any simultaneous move of clusters, so thateach cluster in the
decomposition indeed can be moved independentlywithout
violating detailed balance. This completes the proof of the
multiple-cluster version of the GCA. It is noteworthy that the
probabilities for breaking joint bonds in the forward and re-
verse moves cancel only because the probability in the clus-
ter construction factorizes into individual probabilities.

In order to illustrate the validity of this approach, we have
applied it to the binary Lennard-Jones mixture employed in
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Ref. f2g. This system consists of 800 small particlessdiam-
eter s11=1.0; reduced couplingb«11=0.40d and 400 large
particlessdiameters22=5.0; reduced couplingb«22=0.225d
at a total packing fractionf<0.213. Following the Lorentz-
Berthelot mixing rulesf1g, we set the parameters for the
large-small Lennard-Jones interaction tos12=ss11+s22d /2
and«12=Î«11«22. The particles are contained in a cubic cell
with linear sizeL=50. Periodic boundary conditions are ap-
plied and the cutoff for all interactions is set to 3s22. We
perform a full cluster decomposition for every configuration
and carry out a reflection for every cluster with a probability
f = 1

2. As illustrated in Fig. 3, the correlation functions for
pairs of large particles and for pairs of large and small par-
ticles agree perfectly with the results obtained in Ref.f2g by
means of the single-cluster version. In Sec. III A, we address
the relative efficiency of both approaches.

E. Implementation issues

The actual implementation of the generalized GCA in-
volves a variety of issues. The point reflection with respect to
the pivot requires careful consideration of the periodic
boundary conditions. Furthermore, as mentioned above, par-
ticles that have been translated via a point reflection must not
be translated again in the same cluster move, and particles
that interact with a given cluster particle both before and
after the translation of that cluster particle must be consid-
ered only once, on the basis of the difference in pair poten-
tial. In order to account for all interacting pairs in an efficient
manner, we employ the cell index methodf1g. For mixtures
with large size asymmetriessthe situation where the gener-
alized GCA excelsd, it is natural to set up different cell struc-
tures, with cell lengths based upon the cutoffs of the various
particle interactions. For example, in the case of a binary
mixture of two species with very different sizes and cutoff

radii srcut
large and rcut

small, respectivelyd, the use of an identical
cell structure with a cell size that is determined by the large
particles would be highly inefficient for the smaller particles.
Thus, two cell structures are constructed in this caseswith
cell sizesl large and lsmall, respectivelyd and each particle is
stored in the appropriate cell of the structure belonging to its
species, and incorporated in the corresponding linked list,
following the standard approachf1g. However, in order to
efficiently deal with interactions between unlike species
swhich have a cutoffrcut

ls d, a mapping between the two cell
structures is required. If all small particles must be located
that interact with a given large particle, we proceed as fol-
lows. First, the small cellc is identified in which the center
of the large particle resides. Subsequently, the interacting
particles are located by scanning over all small cells within a
cubic box with linear size 2rcut

ls , centered aroundc. This set
of cells is predetermined at the beginning of a run and their
indices are stored in an array. Each set contains approxi-
mately Ncell=s2rcut

ls / lsmalld3 members. In an efficient imple-
mentation, lsmall is not much larger thanrcut

small, which for
short-range interactions is of the order of the size of a small
particle. Likewise,rcut

ls is typically of the order of the size of
the large particle, so thatNcell=Osa3d, wherea denotes the
size asymmetry between the two species. SinceNcell indices
must be stored for each large cell, the memory requirements
become very large for cases with large size asymmetry, cf.
Ref. f18g for a=100.

III. ALGORITHM PROPERTIES

A. Efficiency

The most notable feature of the generalized GCA, as em-
phasized in Ref.f2g, is the efficiency with which it generates
uncorrelated configurations for size-asymmetric mixtures.
This performance directly derives from the nonlocal charac-
ter of the point reflection employed. In general, the transla-
tion of a single particle over large distances is impossible in
all but the most dilute situations. On the other hand,
multiple-particle moves typically entail an energy difference
that strongly suppresses the likelihood of acceptance. By en-
abling collective moves while maintaining a highsand, in
fact, maximald acceptance probability, fluid mixtures can be
simulated efficiently over a wide parameter rangesvolume
fraction, size asymmetry, and temperatured. Following Ref.
f2g, we illustrate this for a simple binary mixture in which
the autocorrelation time is determined as a function of size
asymmetry. This system contains 150 large particles of size
s22, at fixed volume fractionf2=0.1. Furthermore,N1 small
particles are present, also at fixed volume fractionf1=0.1.
Thus, as the sizes11 of these small particles is varied
from s22/2 to s22/15 si.e., the size ratioa=s22/s11 is
increased from 2 to 15d, their number increases from
N1=1200 to 506 250. Pairs of small particles and pairs in-
volving a large and a small particle act like hard spheres.
However, in order to prevent depletion-driven aggregation of
the large particlesf37g, we introduce a short-ranged Yukawa
repulsion,

FIG. 3. Comparison between the single-cluster versionsSec.
II C; solid linesd and the multiple-cluster versionsSec. II D; sym-
bolsd of the generalized geometric cluster algorithm. The figure
shows pair correlation functions for the size-asymmetric Lennard-
Jones mixture described in the text.gll andgls represent the large-
large and large-small correlation functions, respectively. There is
excellent agreement between both algorithms.
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Ullsrd = 5+ `, r ø s22

s22

r
« expf− ksr − s22dg, r . s22,6 s13d

where b«=3.0 and the screening lengthk−1=s11. In the
simulation, the exponential tail is cut off at 3s22.

The additional Yukawa interactions also provide a fluctu-
ating internal energyEstd that permits us to determine the
rate at which the system decorrelates. We consider the inte-
grated autocorrelation timet obtained from the energy auto-
correlation functionf38g,

Cstd =
kEs0dEstdl − kEs0dl2

kEs0d2l − kEs0dl2 , s14d

and comparet for a conventionalsMetropolisd MC algo-
rithm and the generalized GCAssee Fig. 4d. In order to avoid
arbitrariness resulting from the computational cost involved
with a single sweep or the construction of a cluster, we ex-
presst in actual CPU timesassuming that both methodolo-
gies have been programmed in an efficient mannerd. Further-
more,t is normalized by the total number of particles in the
system, to account for the variation inN1 as the size ratioa
is increased.

For conventional MC calculations,tMC rapidly increases
with increasinga, because the large particles tend to get
trapped by the small particles. Indeed, already fora.7 it is
not feasible to obtain an accurate estimate fortMC. By con-
trast, tGCA exhibits a very different dependence ona. At
a=2, both algorithms require virtually identical simulation
time, which establishes that the GCA does not involve con-
siderable overhead compared to standard algorithmssif any,
it is mitigated by the fact that all moves are acceptedd. Upon
increase ofa, tGCA initially decreasesuntil it starts to in-
crease weakly. The nonmonotonic variation oftGCA results
from the changing ratioN2/N1 which causes the cluster com-

position to vary witha. The main points to note aresid the
GCA greatly suppresses the autocorrelation time,tGCA
!tMC for a.2, with an efficiency increase that amounts to
more than three orders of magnitude already fora=7; sii d the
increase of the autocorrelation time witha is much slower
for the GCA than for a local-move MC algorithm, making
the GCA increasingly advantageous with increasing size
asymmetry. This second observation is confirmed by the
large size asymmetries that could be attained in Ref.f18g.

B. Cluster size

The cluster size clearly has a crucial influence on the per-
formance of the GCA. If a cluster contains more than 50% of
all particles, an equivalent change to the system could have
been made more efficiently by moving its complement; un-
fortunately, it is unclear how to determine this complement
without constructing the cluster. Nevertheless, it is found that
the algorithm operates in a comparatively efficient manner
for average relative cluster sizes as large as 90% or more.
Once the total packing fraction of the system exceeds a cer-
tain value, the original hard-core GCA breaks down because
each cluster occupies the entire system. The same phenom-
enon occurs in the generalized GCA, but in addition the clus-
ter size can saturate because of strong interactions. Thus, the
maximum accessible volume fraction depends on a consid-
erable number of parameters, including the range of the po-
tentials and the temperature. For multicomponent mixtures,
size asymmetry and relative abundance of the components
are of importance as well, and the situation can be compli-
cated further by the presence of competing interactions.

As an illustration, we consider the cluster-size distribution
for a monodisperse Lennard-Jones fluidsparticle diameter
sd. For an interaction cutoff of 2.5s, the critical temperature
Tc lies just below 1.19« /kB f39g, where« denotes the cou-
pling strength. Figure 5sad shows this distribution at the criti-
cal density 0.32s−3 sf<0.168d for a range of supercritical
temperatures. Already at temperatures that are far above the
critical temperature, the cluster-size distribution tends toward
a bimodal form, indicative of the formation of large clusters.
The gap between the two peaks widens with decreasing tem-
perature and in the vicinity of the critical temperature the
average cluster size becomes very large. This is greatly dif-
ferent from the SW and Wolff algorithms, which operate at
the percolation threshold when applied to a critical system.
Remarkably, when applied to a lattice gas at its critical den-
sity, the geometric cluster algorithm was also found to yield
the power-law distribution that is characteristic for a perco-
lating systemf40g. This can be understood from the fact that
excluded-volume effects play no role in geometric operations
applied to lattice-based systems. In continuum systems, the
superposition of a system and its point-reflected counterpart
percolates already when the original system has a density
that is considerably below the percolation threshold. Moti-
vated by this, we investigate the cluster-size distribution in
the same Lennard-Jones fluid at a twice lower density,r
=0.16s−3, see Fig. 5sbd. For the highest temperaturefwhich
is already twice as low as the highest temperature in panel
sadg, this distribution now is a monotonously decreasing

FIG. 4. Efficiency comparison between a conventional local up-
date algorithmsopen symbolsd and the generalized geometric clus-
ter algorithmsclosed symbolsd, for a binary mixturessee textd with
size ratio a. Whereas the autocorrelation time per particlesex-
pressed inms of CPU time per particle moved rapidly increases with
size ratio, the GCA features only a weak dependence ona.
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function of cluster size, and the bimodal character only ap-
pears for temperatures around 25% above the critical tem-
perature.

It turns out to be possible to influence the cluster-size
distribution by placing the pivot in a biased manner. Rather
than first choosing the pivot location, a particle is selected
that will become the first member of the cluster. Subse-
quently, the pivot is placed at random within a cubic box of
linear sized.0, centered around the position of this particle.
By decreasingd, the displacement of the first particle is de-
creased, as well as the number of other particles affected by
this displacement. As a consequence, the average cluster size
decreases, and higher volume fractions can be reached. Ulti-
mately, the cluster size will still occupy the entire system, but
we found that the maximum accessible volume fraction can
be increased from approximately 0.23 to a value close to
0.34. This value indeed corresponds to the percolation
threshold for hard spheres, 0.3419f41g. Note that the proof
of detailed balance is not affected by this modification.

C. Critical slowing down

The cluster-size distributions obtained in the previous sec-
tion suggest that the generalized GCA will not suppress criti-
cal slowing down for the Lennard-Jones fluid. As empha-
sized in Ref.f2g, this does not have to be viewed as a great
shortcoming of the algorithm, because of the efficiency im-
provement it delivers for the simulation of size-asymmetric
fluids over a wide range of temperatures and packing frac-
tions scf. Fig. 4d. Nevertheless, since suppression of critical
slowing down plays such an important role for lattice cluster
algorithms and since it is a feature that has not been realized
by any fluid simulation algorithm, we have investigated the
integrated autocorrelation time for the energy at the critical
point, as a function of linear system size. In Fig. 6, these
times are collected for three algorithms:s1d Conventional
local-update Metropolis algorithm;s2d Wolff version of the
GCA; s3ad SW version of the GCA, in which each cluster is
point-reflected with a probability 0.50;s3bd SW version of
the GCA, in which each cluster is point-reflected with a
probability 0.75. This also serves as a performance compari-
son between the single-cluster GCA and the multiple-cluster
variant. Just as for spin models, the single-cluster version is
more efficient than the SW-like approach. However, all vari-
ants of the GCA exhibit the same power-law behavior, which
outperforms the Metropolis algorithm by a factor,L2.1. It is
important to emphasize that this acceleration may be due to
the suppression of the hydrodynamic slowing downf42g
caused by the conservation of the densityswhich may couple
to the energy correlationsf2gd. Remarkably, already for mod-
erate system sizes the generalized GCA outperforms the Me-
tropolis algorithm, despite the time-consuming construction
of large clustersfcf. Fig. 5sadg which lead to only small con-
figurational changes.

FIG. 5. Cluster-size distributions as a function of relative cluster
sizeX, for a monodisperse Lennard-Jones fluid.sad Critical density,
r=0.32s−3. The distribution is strongly bimodal in the vicinity of
the critical temperature and remains bimodal up to relatively high
temperatures.sbd Twice smaller density,r=0.16s−3. The cluster-
size distribution only becomes bimodal for temperatures relatively
close to the critical temperature and decreases monotonously for
higher temperatures. Identical symbols refer to identical tempera-
tures in both panels. All temperatures are indicated in terms of
« /kB.

FIG. 6. Energy autocorrelation timet as a function of linear
system size for the critical Lennard-Jones fluid, in units of particle
sweeps, for three different Monte Carlo algorithms: Local moves
s“Metropolis MC”d; GCA with Swendsen-Wang-type cluster de-
composition and probability 0.50s“SW 50%”d and 0.75 s“SW
75%”d of moving each cluster; single-cluster GCAs“Wolff” d.
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IV. EXAMPLES

A. Size-asymmetric mixture with Yukawa attraction between
unlike species

As an illustration of the capabilities of the generalized
GCA, we apply it to a binary mixture first studied in Ref.
f33g. It contains dilute colloidal particles in a solvent of
smaller particles. Both species are modeled as hard spheres,
but unlike pairs experience a Yukawa attraction which pro-
motes the accumulation of the solvent particles around the
colloids. Systems like this are relevant for an improved un-
derstanding of depletion effects in the presence of additional
nonadditive interactionsf43g, but have hitherto been studied
only to a limited extent, because of computational limita-
tions.

Specifically, we set up a simulation cell containing 29 000
small particlessspecies 1d at volume fractionf1=0.116 and
two large colloidssspecies 2d at volume fractionf2=0.001.
The pair potentials are chosen as

Vii = H+ `, r ø sii

0, r . sii ,
J i = 1,2 s15d

and

V12 =H+ `, r ø s12

−
s11

r « expf− ksr − s12dg, r . s12,
J s16d

where s12=ss11+s22d /2 and s22/s11=5. The coupling
strength is set to«=1.6kBT, corresponding to a contact en-
ergy s1.6/3dkBT, and the decay parametersinverse screening
lengthd is set tok=4/s11 f44g.

In Ref. f33g, this system was investigated by means of the
hard-core GCA supplemented by an acceptance criterion in
order to take into account the Yukawa attractions. In view of
the size asymmetry between the two species, this already
yields a considerable efficiency improvement over conven-
tional MC simulations that only employ local moves. How-
ever, the acceptance criterion potentially greatly deteriorates
performance, as clusters will be constructed that are subse-
quently rejected in their entirety. Indeed, the authors report
f33g that accurate direct sampling of the colloidal pair corre-
lation functiongsrd was prohibitively expensive, so that they
instead obtained it via numerical differentiation of theinte-
gratedpair correlation functionssee symbols in Fig. 7d. This
differentiation involves a polynomial fit and the result was
found to be sensitive to the degree of this polynomial.

In the generalized GCA, the Yukawa attractions are di-
rectly incorporated in the cluster construction, so that all
clusters are accepted. As demonstrated in Fig. 7ssolid lined,
accurate results forgsrd can now be obtained through direct
sampling. Note that our choice for the colloid concentration
f2 is slightly smaller than in Ref.f33g sleading to a some-
what larger number of small particles in our calculationd,
which is, however, irrelevant for the results, as they have
already converged to the dilute colloid limit. Thus, the gen-
eralized GCA opens possibilities for a systematic investiga-
tion of the effect of interaction strength and range on the
potential of mean force, as a function of size asymmetry and
solvent concentration.

B. Entropic interactions induced by “soft” depletants

The addition of small, nonadsorbing additives, e.g., poly-
mers, to a colloidal suspension can lead to the well-known
depletion interaction between colloids. This interaction has
been modeled successfully by the Asakura-OosawasAOd
modelf37,45g, which treats the polymer chains as ideal, non-
interacting spheres that have an excluded-volume interaction
with the colloids. Alternatively, the polymers can be treated
as hard spheres, leading to an additive binary hard-sphere
mixture f46g. Although on a qualitative level both theories
agree with the experimentally observed trends for depletion
interactions, it recently has been suggested that a more accu-
rate description can be obtained by means of a model in
which the polymer pair potential is described by a Gaussian
f47–49g,

Vsrd = « expF− S r

R
D2G , s17d

where « is the strength of the repulsive potential andR
=aRG its width. For dilute and semidilute polymer solutions,
a=1.13 and 1.45, respectively, were found to be appropriate
parameter valuesf48g. This potential can be viewed as a
model that interpolates between the AO model for ideal poly-
mers and the binary hard-sphere mixture.

In order to demonstrate that these systems can be accu-
rately and efficiently simulated by means of the generalized
GCA, we study the depletion interactions between colloidal
particles as a function of the widtha and the strength«. The
colloid and polymer volume fractions are fixed at 0.010 and
0.10, respectively, and their size ratio is set to 20. We employ
the polymer coil diameters2RGd as unit length scale. The
simulation involves 1.63106 “polymers” and 20 colloidal
particles. Figure 8 shows that the AO model generally over-
estimates the depletion attraction in both strength and range.
Indeed, the soft-core polymer model yields an effective col-

FIG. 7. Pair correlation function of dilute colloidal particlessdi-
ameters22 and volume fractionf2=0.001d in an environment of
smaller particlessdiameter s11=s22/5 and volume fractionf1

=0.116d that experience a Yukawa-type attractive interaction with
the colloids. The symbols represent data obtained by means of the
hard-core GCA supplemented by an acceptance criterionf33g. The
solid line is obtained via the generalized GCA.

JIWEN LIU AND ERIK LUIJTEN PHYSICAL REVIEW E 71, 066701s2005d

066701-10



loidal pair potential that decreases in strength and range with
increasinga and «. In addition, this potential exhibits a re-
pulsive barrier for a separationD*RG, owing to many-body
effects that arise from the mutual repulsion between poly-
mers. By contrast, there is good agreement between the ad-
ditive hard-sphere mixture and the Gaussian polymer model,
in particular for«<2kBT anda&1.5. Interestingly, these are
precisely the values that were found to reasonably represent
dilute and semidilute self-avoiding random-walk polymers
f47–49g.

V. SUMMARY AND CONCLUSIONS

We have presented a detailed description of the general-
ized geometric cluster algorithm for continuum fluids intro-
duced in Ref.f2g, which is a generalization of the work by
Dress and Krauthf4g. In order to emphasize the connection
with the Swendsen-Wang algorithm for lattice models, we

have derived a multiple-cluster variant of the GCA, in which
a particle configuration is decomposed into clusters that can
be independently point-reflected with respect to a given pivot
point, without affecting the remainder of the system. This
algorithm establishes that it is generally possible to identify
such clusters and to devise a rejection-free Monte Carlo
scheme, independent of the detailed nature of the pair poten-
tials between particles. No restrictions are imposed upon the
number of species involved, but ergodicity can only be main-
tained if not every cluster contains all particles of a given
species. For monodisperse hard-sphere fluids, this implies a
threshold packing fraction around 0.23, which can be in-
creased to approximately 0.34 if the pivot is placed in a
biased manner. For interactions with a longer range, the clus-
ters will typically be larger and hence the maximum acces-
sible volume fraction decreases. The nonlocal character of
the particle translations permits the efficient decorrelation of
fluid mixtures that involve a strong size asymmetry between
the components. Unavoidably, the resulting dynamics have
no physical interpretation, but all thermodynamic equilib-
rium properties are identical to those sampled by conven-
tional algorithms. While cluster-size distributions for the
Lennard-Jones fluid indicate that the percolation threshold
and the critical point do not coincide, the algorithm signifi-
cantly accelerates canonical simulations at the critical point.

Two specific example applications have been discussed,
both involving depletion interactions in size-asymmetric bi-
nary mixtures. In the first illustration, we assess the effect of
attractive interactions between unlike species on the pair cor-
relation function of the larger species. This system has been
investigated earlier by means of the hard-sphere GCA
supplemented by an acceptance criterion, and is included
here to illustrate that it is possible to perform the calculation
in a rejection-free manner. In the second illustration, we cal-
culate the depletion interaction induced by a depletant that
acts as a hard sphere for the larger species but has a Gaussian
interaction potential with other depletant particles. It is dem-
onstrated how such calculations can be performed efficiently
for relatively large size ratios and lead to depletion potentials
that interpolate between the well-known AO potential and
the depletion potential for binary hard-sphere mixtures.

A variety of extensions to the GCA can be devised. In
particular, the application to nonspherical particles is
straightforward, but may require an additionalsrotationald
Monte Carlo move that permits an efficient relaxation of the
rotational degrees of freedom. Periodic boundary conditions
are an essential ingredient for the point-reflection moves em-
ployed, but application to layered systemssi.e., with only a
periodicity in thex and y directionsd can be realized if the
point reflection is performed in a horizontal plane and the
relaxation along thez coordinate is performed via local
Monte Carlo moves. For strongly aspherical particles, the
overlap threshold—and hence the range of accessible volume
fractions—decreases significantly.

In summary, the generalized GCA offers a wide range of
opportunities to efficiently simulate fluid systems that were
hitherto inaccessible to computer simulations. In addition, it
may well be possible to generalize this algorithm to other
situations in which cluster algorithms are employed, such as
quantum-mechanical systems.

FIG. 8. Effective pair potential as a function of colloid surface-
to-surface separationD for the Gaussian polymer model, Eq.s17d.
Panelsad pertains to a fixed interaction strength«=1.0kBT for vari-
ous interaction widthsa=2.0, 1.633, and 1.414striangles, circles,
and squares, respectivelyd. In panelsbd, « is varieds1.0kBT, 2.0kBT,
and 5.0kBT, indicated by squares, circles, and triangles, respec-
tivelyd for fixed a=1.414. The solid line in both figures represents
the hard-sphere result obtained by density-functional theoryf46g
and the dotted line pertains to the expression by Vrijf45g for the AO
model f37g.
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