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Kac-potential treatment of nonintegrable interactions

Benjamin P. Vollmayr-Lee1,2 and Erik Luijten3
1Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837*

2Institut für Physik, WA 331, Johannes Gutenberg-Universita¨t, D-55099 Mainz, Germany
3Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431

~Received 3 September 2000; published 26 February 2001!

We considerd-dimensional systems with nonintegrable, algebraically decaying pairwise interactions. It is
shown that, upon the introduction of periodic boundary conditions and a long-distance cutoff in the interaction
range, the bulk thermodynamics can be obtained rigorously by means of a Kac-potential treatment, leading to
an exact, mean-field-like theory. This explains various numerical results recently obtained for finite systems in
the context of ‘‘nonextensive thermodynamics,’’ and in passing exposes a strong regulator dependence not
discussed in these studies. Our findings imply that, contrary to some claims, Boltzmann-Gibbs statistics are
sufficient for a standard description of this class of nonintegrable interactions.
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I. INTRODUCTION

In studies of critical phenomena the range of the pairw
interaction that couples the degrees of freedom is an im
tant consideration. For interactions that decay algebraic
at large distances, three classes of critical behavior ma
obtained. With the standard notationu(r );21/r d1s, one
finds for system dimensionalityd,4 that the criticality may
be characterized asshort-rangefor s.22hsr, nonclassi-
cally long-rangefor d/2,s,22hsr, and classicallylong-
range for 0,s,d/2, wherehsr is the correlation-function
exponent in the corresponding system with short-range in
actions@1,2#. The critical behavior matches at the borderi
cases~e.g.,s→d/2 from above and below! with additional
logarithms. However, fors<0 the interactions arenoninte-
grable, i.e., *ddr u(r )→`, and so, under standard defin
tions, the thermodynamic limit does not exist.~See Refs.
@3–5# for rigorous treatments.!

Nevertheless, recent studies have focused on this non
grable regime, typically using a finite system size to ren
the total system energy finite. These results are then in
preted as ‘‘nonextensive thermodynamics’’@6#, in which the
system energydensityscales with some positive power of th
system size, as do intensive variables such as tempera
Examples of such works include molecular-dynamics sim
lations of two- and three-dimensional systems with varia
of the Lennard-Jones potential@7,8#, Monte Carlo simula-
tions of one- and two-dimensional Ising@9,10# and Potts@11#
systems, and a numerical study of theXY chain@12#. Monte
Carlo simulations have also suggested classical critical
havior for a stochastic cellular automation with long-ran
interactions in the regimes<0 @13#. On the basis of these
numerical studies of finite systems, several authors havecon-
jectured that ‘‘nonextensive criticality’’ should be classica
@9,11,12#.

Here we present an alternate approach to nonintegr
interactions, quite similar to, and in certain cases equiva
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to, the use of the Kac potential. We introduce a long-dista
cutoff in the interactions at some finite distanceR, which
enables us to use periodic boundary conditions and thus
sider homogeneous systems. We then find the energy de
in the thermodynamic limit to scale as a power ofR rather
than of the system sizeL, that is, we maintain extensitivity
By multiplying the pair interaction by the appropriate neg
tive power ofR we recover a well-definedR→` limit. In
this way, by using standard methods~including the conven-
tional canonical ensemble!, we find an exact solution for the
free energy for all2d<s<0, and so demonstrate the cla
sical nature of the criticality without resort to simulations
conjecture. These results have been announced previous
Ref. @14#.

Indeed, this is not surprising—the ‘‘infinitely long-rang
and infinitely weak interactions’’ route to an explicit, an
lytic ~mean-field-like! theory is well known@15–18#. What is
new here is the connection between nonintegrable inte
tions and the much-studied ‘‘nonextensive thermodyna
ics.’’ This connection rests on an additional result, nam
the demonstration thatany ordering of the limitsL,R→`
yields thesamefree energy. For the limitL→` first, the free
energy is obtained directly from a Kac-potential treatment~at
least fors,0; the cases50 is treated separately!, while
when the limitR→` is taken first, we obtain, as an interm
diate step, a finite system with constant interactions prop
tional to 1/Ld—i.e., without approximation we obtain mean
field-like interactions. Finally, in the limitR}L→` the
R-dependent prefactor multiplying the pair interactions m
be regarded instead as a power ofL. This reproduces all
scaling results of nonextensive thermodynamics of which
are aware, reducing the study of these systems to the a
cation of standard techniques with Boltzmann-Gibbs sta
tics. Furthermore, in the context of thermalized gravitatio
systems@19–21# our results provide what we believe is
new, direct connection to a rigorous Kac-potential treatme

While a finite free-energy density is obtained in theR,L
→` limit, the actual result depends explicitly on the cuto
function. To be specific, consider a fluid of densityr with the
pair interaction
©2001 The American Physical Society08-1
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u~r !55
`, r ,a

2
1

Rd2t

w~r /R!

r t , r .a,0<t,d

2
1

ln R

w~r /R!

r d , r .a,t5d,

~1!

where t[d1s is introduced to avoid confusion with th
negative values ofs, and where the cutoff function
w(x)—taken to be isotropic for simplicity—decays at lea
as fast as 1/xd2t1« for positive «, with w(0) finite. The
R-dependent prefactors are chosen to preempt the diverg
of the energy in the limitR→`. From this we obtain, in the
limits L,R→`, the Helmholtz free-energy density

f ~r,T!5E$ f 0~r,T!2Ar2%, ~2!

where E$•••% represents the maximal convex envelop
f 0(r,T) is the hard-core free energy~which is strictly pro-
portional toT), and

A5H 1
2 SdE

0

`

w~x!xd2t21dx, 0<t,d

1
2 Sdw~0!, t5d.

~3!

HereSd52pd/2/G(d/2) is the surface area of a unitd sphere.
Up to a factor2kBT, A is just the second virial coefficien
without the hard-core contribution.

The free energy thus obtained indeed depends explic
on the cutoff functionw(x), at least fort,d, but does not
depend on the system shape. We obtain quantitatively
same result for a lattice gas~hence also for Ising spin sys
tems, cf. Ref.@22#, Sec. II E! with the substitution of the
lattice hard-core free energy being the only modification.
this context, we recall that the first application of the K
potential to spin systems is due to Baker@16#.

The dependence on details of the cutoff regulator has
portant implications when this solution is recast in the int
pretation of ‘‘nonextensivity.’’ For the nonperiodic case
nonextensive thermodynamics, where the finite system
is used to regulate the energy, thebulk quantities will depend
on both boundary effects and the system shape, a poin
have not found mentioned in previous studies. Furtherm
when periodic boundary conditions are employed and
interaction is cut off at some fraction of the system size,
bulk thermodynamics will depend on precisely which fra
tion is used, notwithstanding statements to the contrary@8#
~cf. our discussion in Sec. IV below!. The remainder of the
paper is organized as follows. In Sec. II we present our m
ematical treatment of the various limits which lead to t
results above. Next we present briefly the critical proper
of these systems in Sec. III. Since we can interpret our
sults in the language of nonextensive thermodynamics,
connection is presented and discussed in Sec. IV, and va
difficulties with nonextensive thermodynamics are brou
to light, including the above-mentioned system-shape dep
dent ‘‘bulk’’ thermodynamics. Finally, we conclude with
03110
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summary of our main results, and some remarks on the c
nection to work done in the area of gravitational systems

II. MATHEMATICAL TREATMENT

A. Thermodynamic limit with finite range

We begin by considering a fluid ind spatial dimensions
with the pair-interaction potential given by Eq.~1!, with fi-
nite R and in the thermodynamic limit. Then for 0<t,d our
main results~2! and ~3! for the limit R→` follow immedi-
ately from the rigorous treatment of Lebowitz and Penro
@18#. To see this, define

f~x!5w~x!/xt , ~4!

in which case Eq.~1! becomesu(r .a)52R2df(r /R), the
canonical Kac potential, withf(x) satisfying the necessar
conditions for the proof given in@18#, cf. Eqs. ~1.21a!–
~1.21c! in this reference.

It is also possible and useful~for thet5d case! to under-
stand this result from the Mayer cluster or virial expansi
about a reference hard-core potential@22#. Specifically, the
Mayer function f̃ (r )5e2bu(r )21 ~not to be confused with
the free-energy density! may be decomposed as

f̃ ~r !5@u~r 2a!21#1u~r 2a!@e2bu(r )21#, ~5!

with u(x) the Heaviside step function. The first squar
bracket term is the Mayer function for the hard-core poten
and the second term accounts for the attractions. Each
ducible cluster of the virial expansion may be replaced w
a sum of clusters in which the individual bonds are replac
in turn, with each of the hard-core and attraction bonds.

The hard-core bonds are independent of the cutoffR, so
the sum of diagrams containing only these bonds yields
hard-core free energy~via Legendre transformation!, which
is unaffected by the limitR→`. In what follows, we sum-
marize the argument for why the attraction bond two-clus
is the only other term which survives theR→` limit.

The attraction bonds go to2u(r 2a)bu(r )}1/Rd2t for
large R ~with t,d, for now!. Each vertex that is free to
integrate over space gives a factor*ddr w(r /R)/r t;Rd2t.
Consider first diagrams with only attraction bonds: t
nth-order ring diagram~each vertex having exactly two
bonds! with n>3 hasn bonds andn21 free vertices, and so
vanishes as 1/Rd2t for largeR. All other n>3 clusters have
a higher ratio of bonds to vertices, and so these also va
when all bonds are attractive.

Replacing an attraction bond with a hard-core bond
moves one factor of 1/Rd2t but also kills one of the free
vertex integrals, i.e., the integration region is constrained
the scale of the hard core. The net effect for ring diagram
that they remain of the same order inR, and so vanish for
n>3. For more complicated irreducible clusters, a situat
can arise where two vertices mutually constrained by ha
core bonds are also connected by an attraction bond. In
case, replacing the attraction bond with a hard-core b
does increase the order of the diagram by a factorRd2t.
However, this situation can only occur for diagrams w
8-2
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higher powers of 1/R than the ring diagrams, and can nev
bring them up to orderR0. Consequently, all diagrams wit
n>3 and at least one attraction bond vanish asR→`.

The n52 case is distinct as it has one bond and one f
integral, so it provides anR0 contribution

a25 lim
R→`

2
b

2Er .a
ddr

w~r /R!

Rd2tr t

5 lim
R→`

2bSd

2 E
a/R

`

w~x!xd2t21 dx

52bA, ~6!

whereA is given in Eq.~3!.
Thus the virial expansion reproduces~2!, apart from the

convex envelope. The failure of this otherwise exact meth
to reproduce the Maxwell construction is that the virial e
pansion relies on a homogeneous density and breaks d
when this is not the case. Nevertheless, since it is e
whenever the densityis homogeneous, the virial expansio
supplemented with the second law~convexity! prescribes a
unique free energy, and so can be regarded as providing
rigorous result.

The utility of the virial-expansion method is that it applie
to the borderline caset5d, where we cannot directly map t
the results of@18#. The hard-core terms are unmodified, a
traction bonds now go as 1/lnR, and free vertex integrals
give

E
r *a

ddr w~r /R!/r d; ln R. ~7!

The sum of diagrams withn>3 and at least one attractio
bond isO(1/lnR) @provided there are no surviving resumm
tions of 1/(lnR)n terms#. The n52 attraction bond diagram
gives the only remaining contribution

a25 lim
R→`

2b

2 E
r .a

ddr u~r !

5 lim
R→`

2bSd

2 lnRE
a/R

`

w~x!x21 dx

52 1
2 bSdw~0!, ~8!

which again leads to Eqs.~2! and~3!. Interestingly, the bulk
thermodynamics in this marginal case is not sensitive to
details of the cutoff function.

B. Infinite range with finite system size

Now consider the same fluid system, but takingR→`
with finite L. For clarity, we begin by considering a on
dimensional system with 0<t,1, in which the periodic
boundary conditions lead to the effective pair potentialr
.a)
03110
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ueff~r !52
1

R12t (
n52`

`
w~ unL1r u/R!

unL1r ut
, ~9!

where r is understood to be less thanL/2. As R becomes
large, the direct (n50) interaction becomes negligible an
an increasingly large number of terms contribute to the su
By use of the expansions

unL1r u2t5unLu2tS 12
tr

nL
1

t~t11!r 2

2n2L2 2••• D ~10!

and

wS unL1r u
R D5w~ unuL/R!1sgn~n!

r

R
w8~ unuL/R!

1
r 2

2R2 w9~ unuL/R!6•••, ~11!

where we assumew(x) to be analytic, we may rewrite
ueff(r ) for largeR as

ueff~r !52
2

R (
n51

` S R

nLD tH wS nL

R D F11OS 1

n2D G
1OS L

nR
,
L2

R2D J . ~12!

The convergence of this series is guaranteed by the shap
the cutoff functionw and its derivatives. Note that the lead
ing sum for largeR is independentof the spatial separationr;
the correction terms are down by a factor (L/R)12t. In the
limit of large R, we may, in turn, express this sum as
integral

lim
R→`

ueff~r !52
2

RE0

`

~R/nL!tw~nL/R!dn ~13!

52
2

LE0

`

w~x!x2t dx. ~14!

For the borderline caset51, Eqs.~9! and~12! have to be
multiplied by (lnR)21. Furthermore, Eq.~13! now requires a
lower integration limitn51 ~or any constant! as a regulator.
The pair interaction is then

ueff~r !52
2

L ln REL/R

`

w~x!x21 dx ~15!

52
2

L ln R
@w~0!ln R1O~R0!#. ~16!

In the limit R→`, we find the effective pair potential is
again independent of the spatial separation,ueff(r )5
22L21w(0).

The generalization of this treatment to higher dimensio
alities is straightforward. For ad-dimensional system of size
8-3
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L13L23•••3Ld , with periodic boundary conditions an
0<t,d, the effective pair potential (r .a) is

ueff~r !52
1

Rd2t (
n152`

`

••• (
nd52`

` wS r̃ ~n1 , . . . ,nd!

R
D

r̃ ~n1 , . . . ,nd!t
,

~17!

where

r̃ ~n1 , . . . ,nd![ur1n1L1x̂11•••1ndLdx̂du ~18!

is the separation corresponding to the (n1 , . . . ,nd) periodic
repeat, and thex̂i are orthonormal vectors. In the limit o
infinite interaction rangeR, the direct interaction term~all
ni50) becomes negligible compared to the sum and we
the following generalization of Eq.~13!:

ueff~r !52
Sd

V E
0

`

w~x!xd212t dx , ~19!

where Sd has been introduced below Eq.~3! and V
[) i 51

d Li . We note that the strength of this constant inter
tion is inversely proportional to the volume, just as one e
pects for a mean-field-like system@23#. For t5d one has, in
the limit R→`, ueff(r )52SdV21w(0). Since a constan
pair interaction gives a configuration-independent ene
density1

2 ueffr
2V, the energy and entropy contributions to t

free energy decouple, and one obtains~2! directly in the
thermodynamic limit.

Instead of a ‘‘soft’’ cutoff provided by the~analytic! func-
tion w(x), one can also introduce a ‘‘hard’’ cutoff at a dis
tanceR, which is equivalent to taking, say,w(x)5u(12x)
in Eq. ~1!. We start again withd51 andt,d. The effective
pair potential can be written as

ueff~r !52
1

R12t (
n52R/L

R/L
1

unL1r ut
, ~20!

where, for simplicity, we have takenR to be an integer mul-
tiple of L. For largeR, the n50 term becomes negligible
compared to the sum and by use of the expansion~10! we
rewrite ueff(r ) as

ueff~r !52
2

L S R

L D t21

(
n51

R/L H 1

nt F11OS 1

n2D G J . ~21!

The O(n22) correction terms are again down by a fact
(R/L)t21 from to the leading sum@compare to Eq.~12!#. As
before, we end up with a constant effective interact
limR→`ueff(r )522L21/(12t). For t51, the correction
terms decay only like 1/lnR and limR→`ueff(r )522/L.
Since the case of general dimensionality can be treated a
the same lines, we only mention the resulting values for
constant pair potential: limR→`ueff(r )52SdV21/(d2t) for
t,d and limR→`ueff(r )52Sd /V for t5d. These results
are all consistent with Eq.~2! with w(x)5u(12x).
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Thus, we have shown that, in the limit of infinite intera
tion range, all pair interactions are identical even in a fin
system, for any 0<t<d. For t.d, on the other hand, the
sum in Eqs. ~9! and ~17! is convergent and hence th
R-dependent prefactor inu(r ) should be omitted. The firs
term within the square brackets is then no longer negligi
in the limit R→`, which leads to an effective interactio
that depends both onr and ont and consequently to non
trivial critical behavior. Interestingly, the criticalexponents
retain their classical values untilt.3d/2, except for the
correlation-length exponentn and the correlation-function
exponenth @1#. The critical temperature and other nonun
versal quantities exhibit a nontrivialt dependence alread
for t.d, cf. Ref. @24# and references therein.

C. Lattice gas

So far we have only discussed continuum fluid criticali
The generalization to a lattice gas~and, of course, to the
Ising ferromagnet! results in the same free energy~2! with
the appropriate lattice hard coref 0(r). This may be seen
most directly in theR→` first case, where the pair interac
tions go to a constant. This derivation applies both for p
ticles in a continuum or on a lattice~indeed, no specification
was made!, and so the constant interactions are obtained
both cases. The final step of constructing the free ene
from the decoupled energy and entropy reveals that the
tice hard-core free energy is the appropriate one to use in
~2!.

For theL→` first limit, one must use a lattice general
zation of the Mayer expansion. Such an expansion wo
give for noninteracting particles the lattice hard-core free
ergy. The lattice sums for clusters with attraction bonds c
be taken to integrals in the largeR limit, and so the rest of
the continuum derivation applies.

D. Thermodynamic limit with a system-size-dependent range

The final case we consider is that ofR}L→`, the case
most directly applicable to ‘‘nonextensive thermodyna
ics.’’ Consider a finite system with periodic boundary cond
tions ~with all dimensionsLi}L) and direct pair interactions
given by Eq.~1! for some finiteR. The periodic boundary
conditions give rise to the effective pair potential~17!. The
virial expansion for the pressure may then be obtained fr
a finite-volume cluster expansion with the Mayer functi
f̃ 5exp(2bueff)21;2bueff for largeR. Since the effective
interaction is a sum of pair interactions, a simpleueff cluster
such as the irreducible three-cluster shown in Fig. 1~a! de-
composes into a large number of pair-interaction bond c
ters@cf. Fig. 1~b!#. Note that, in order to avoid overcounting
one end of every bond must remain in the original fin
volume, but the other end may be taken to lie in any of
periodic repeats~and these still contribute to the virial ex
pansion as they are parts of an irreducible cluster!.

In spite of these complications, we remark that all ha
core bonds are the same as in the previous (L→` first! case,
since they only appear in the direct interaction of the origi
pair. Hence the hard-core bonds sum to the hard-core
8-4
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energy regardless of whetherL and R are simultaneously
taken to infinity, orL first.

Furthermore, alln-clusters withn>3 and at least one
attraction bond can be shown to still vanish asR,L→`.
First, all bonds still carry a factor of 1/Rd2t for largeR, as
before. Free vertices integrate to

E
Ld

ddr r 2tw~r /R!;Rd2tE
(L/R)d

ddx x2tw~x! ~22!

for the direct interaction of the original pair, which goes
Rd2t times a finite factor for largeR. For a pair interaction
involving a neighboring replica, the vertex integration is t
same as above with a shift in the argument ofw( r̃ /R), where
r̃ @see Eq.~18!# goes roughly asr 1cL. The resulting vertex
integration will also scale asRd2t, provided r 1cL&R.
Since r̃ increases for each increasingly remote replica,
cutoff function w(x) will ensure that only a numbe
O„(R/L)d

… of such bonds will contribute. Hence free verte
integration with effective interaction bonds, while conside
ably more complicated, still results in a factorRd2t at large
R. Previous arguments from Sec. II A then apply, and
these terms all vanish whenR,L→`.

The remaining two-cluster integral may be written as

a25 lim
R→`

b

2Er .a
ddr ueff~r ! ~23!

;
2b

2Rd2t)i 51

d S (
ni52`

` E
0

Li
dxi D w~ r̃ /R!

r̃ t
~24!

5
2b

2Rd2t)i 51

d S (
ni52`

` E
niLi

(ni11)Li
dxi D w~r /R!

r t , ~25!

where the sums cover all replicas~and we have omitted writ-
ing the hard-core condition for clarity!. In going from Eqs.
~24! to ~25! the integrand variable changed fromr̃ to r, con-
sistent with the definition ofr̃ . The remaining integrals piec
together a single volume integral over all space, so

a25 lim
R→`

2b

2Rd2tEr .a
ddr w~r /R!/r t

52bA, ~26!

FIG. 1. ~a! The three-cluster formed with the effective intera
tion ueff and~b! one contribution to the decomposition of this clu
ter into pair interactionsu(r ).
03110
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following Eq. ~6!. Combining this with the hard-core contr
bution gives the same free energy~2! in theR,L→` limit as
was found previously forL or R going to infinity first. The
significance of this simultaneous limit towards nonextens
thermodynamics will be discussed in Sec. IV.

III. CRITICAL BEHAVIOR

The critical properties of nonintegrable systems a
readily found from the Helmholtz free-energy density~2! via
standard procedures. For example, the critical density ca
obtained from]3f (r,T)/]r3urc

50, which reduces to the
temperature ~and attraction! independent condition
]3f 0(r,T)/]r3urc

50. The critical temperature is then foun

from ]2f (r,Tc)/]r2urc
50 which gives

kBTc52AS ]2~b f 0!

]r2 D
r5rc

21

. ~27!

For a hypercubic lattice with lattice constanta, the lattice-
gas hard-core free energy isb f 0

LG5r ln r1(a2d2r)ln(1
2adr). This results in the critical values

adrc51/2, kBTc5A/~2ad! ~28!

for the lattice gas. Although the free energy for continuu
hard spheres~diametera) is not known exactly, a very good
approximation in three dimensions is nevertheless given
the Carnahan–Starling~CS! expression

b f 0
CS~r!5b f Id~r!1

r2v0~423rv0!

~12rv0!2 , ~29!

with v05pa3/6 the volume of the hard sphere andf Id the
ideal-gas free-energy density. Using this forf 0 yields a quin-
tic equation forrc with a unique positive root@25# and the
critical values

a3rc.0.249 129,
~30!

kBTc.0.180 155A/a3

for the hard-sphere fluid.
The susceptibilityx, defined as the ratio of the isotherm

compressibility to the ideal gas compressibility,

x21~r,T![r
]2~b f !

]r2 , ~31!

exhibits near criticality the classical divergencex;C1 /t for
r5rc and positive reduced temperaturet[(T2Tc)/Tc .
From Eq.~2! we find

C15S rc

]2~b f 0!

]r2 UrcD 21

, ~32!

which results in C1
LG51/2 for the lattice gas andC1

CS

.0.361 569 for thed53 hard-sphere fluid, approximated b
the CS expression.

Finally, the order parameter forT,Tc is given by
8-5
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adur2rcu5BA2t ~33!

for t sufficiently small, with

B5adS 18@]2f 0 /]r2#rc

@]4f 0 /]r4#rc

D 1/2

. ~34!

This evaluates toBLG53/2 andBCS.1.134 59.

IV. NONEXTENSIVE THERMODYNAMICS

As indicated in the Introduction, the main motivation f
this work stems from the considerable attention systems w
nonintegrable interactions have received in the contex
nonextensive thermodynamics. An essential aspect of th
studies of nonextensivity is the use of the system size as
regulator for the energy. Furthermore, the interactions
not scaled by a negative power of the system size but
with strength of order unity.

Our cutoff interaction with rangeR can be interpreted
directly in terms of this nonextensive thermodynamics
R/L constant, which reproduces the system-size regula
The negative power ofL multiplying our pair interaction is
eliminated by scaling the temperature according toT
→Ld2tT in the Boltzmann factor (T→T ln L for t5d). The
scaling of this system-size dependent ‘‘temperature’’~and
consequently the free energy! matches exactly the conjec
tures of nonextensive thermodynamics, thus we have der
rigorously the primary conclusions of Refs.@9,8,11,12# using
only standard methods. We note that, despite what has
suggested in Ref.@26#, neither the explicit free energy no
exact results for the nature of the criticality were obtained
Refs.@9,11#.

Next we want to discuss some examples from the rec
literature and point out a few problems attached to the in
pretation of nonextensive thermodynamics. First, a perva
notational problem in the nonextensive thermodynamics
erature is the use of ‘‘long-range interactions’’ to mean no
integrable interactions. The former term already has a s
dard meaning within the considerably more important cl
of integrable interactions@27,28,1#. The converse problem
also exists, where all integrable interactions~including the
true long-range interactions! are termed ‘‘short-range’’~see,
e.g., Ref.@29#!.

Many papers addressing nonintegrable interactions h
relied on numerical simulations of finite systems. In gene
the required regularization of the interactions is carried
either by imposing free boundary conditions~which leads to
an inhomogeneous system! or by adopting periodic boundar
conditions and cutting off the interaction at half the syst
size, being the maximum separation between the partic
For example, Curilef and Tsallis@8# have performed
molecular-dynamics simulations of fluids ind52,3 dimen-
sions with Lennard-Jones-like interactions, with an attract
tail decaying liker 2t and 1<t<2d. It is explicitly stated
~Ref. @8#, p. 271! that, in the thermodynamic limit, no phys
cal consequences emerge from the~‘‘computationally conve-
nient’’! adoption of a cutoff at half the size of the simulatio
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box. Our exact solution presented in Sec. II shows that thi
not correct fort,d, but that rather differentbulk thermody-
namics emerges for different cutoff distances and cu
functions.

In Ref. @29#, rings of magnetic particles in a colloida
suspension have been studied numerically, where the n
magnetic part of the interactions has the above-mentio
generalized Lennard-Jones form. The main results are h
ristically interpreted in terms of nonextensive thermodyna
ics by observing that the size dependence of the total en
of the rings can be well described by a scaling law obtain
from the integrated interaction~which is essentially a mean
field-like approximation!. This scaling law is just what is
also found within the ‘‘q-generalized thermodynamics’’ o
Ref. @6#, commonly referred to as Tsallisq statistics, and
consequently at dependence (t5d1s) is proposed for the
so-called ‘‘nonextensivity parameter’’q appearing in this
formalism: q51 ~corresponding to Boltzmann-Gibbs stati
tics! for t.d andq522d/t for t<d. Also in Ref. @30# it
has been conjectured thatq is a d- andt-dependent quantity
for t<d. It appears that these conclusions have been s
revised @10,31#, and these systems are now classified
‘‘weakly violating’’ Boltzmann-Gibbs statistics, meanin
that q51, whereas several thermodynamic quantities lo
their extensivity. Nevertheless, recent studies have contin
to exploreqÞ1 values fort<d, citing an alleged natura
connection between Tsallis statistics and nonintegrable in
actions@32#. Our results show that the same energy scal
for t<d may be obtained with the conventional valueq
51.

Inspired by the system-size dependence of the ene
found in Ref.@29#, an Ising model with interactions decayin
as r 2t (t>0) and free boundary conditions has been a
lyzed by mean-field methods in Ref.@9#. On the basis of the
resulting values of the critical temperature fort50 and t
5d, it was thenconjecturedthat the mean-field prediction
for the critical temperature might hold for all 0<t<d. Our
exact result now demonstrates that this is indeed true,
reveals in addition an awkward consequence of the bound
conditions adopted in Ref.@9#: since the thermodynamic
limit explicitly depends on the choice of the cutoff functio
an inhomogeneous system with an inhomogeneous cu
will lead to bulk thermodynamics that depends on theshape
of the system, which to our judgment constitutes an unde
able feature of the nonextensivity formulation. We note th
Hiley and Joyce already observed in an early study of a s
model with dipolar interactions~i.e., t5d with anisotropy! a
system-shape dependence of the zero-field susceptibility,
absence of system-shape dependence for certain other
modynamic properties@33#. Later, the free energy was rigor
ously proven to be independent of system shape in this c
both for lattice systems@34# and fluids@35#. Also the exact-
ness of mean-field theory forshape-independentforces in the
limit t→d1 has been obtained in@33#, essentially from an
observation similar to ours for general 0<t<d, namely that
one divergent term dominates all other terms in the latt
sum. However, for the caset,d, we have been unable t
find in the literature any mention of the system-shape dep
dent thermodynamics that must result for all inhomogene
8-6
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systems with nonintegrable interactions and a system-
dependent cutoff.

V. SUMMARY AND CONCLUSIONS

In summary, we have shown thatd-dimensional, periodic
systems with nonintegrable, algebraically decaying inter
tions, i.e., interactions of the formu(r );21/r t, with 0<t
<d, are exactly described by mean-field theory, upon int
duction of a cutoffR in the interaction range and the prop
R-dependent rescaling of the interaction strength. This pr
holds for either order of limitsR→` andL→` ~whereL is
the linear system size!, including the simultaneous limit, an
the resulting free energy depends on the details of the cu

Our study employs Boltzmann-Gibbs statistics and p
tains directly to nonextensive thermodynamics, providing
plicit, exact results for the thermodynamics and critical b
havior. In doing so, we show that nonintegrable interactio
do not require@30,32# the application of generalizedq statis-
tics. Furthermore, the explicit regulator dependence—cu
length, cutoff shape, and even system shape for inhom
neous systems—is demonstrated, a topic which has b
mostly neglected in nonextensivity studies.

On an intuitive level, our findings for the case of fini
systems with infiniteR ~Sec. II B! result from the divergence
of the lattice sums over the periodic copies of the syst
under consideration; these divergent sums then dominate
direct pair interaction, and are, to leading order, independ
of the spatial separation between particles. A suitable n
malization is indispensable for the existence of the therm
dynamic limit and—as we have pointed out—a regulator
pending on the number of interactions rather than on
system size emerges as the natural choice. The resultin
fective pair interaction is then independent of the spa
separation, for 0<t<d.

We have concentrated on both fluids and lattice ga
However, since our method for theR→` first case demon-
strated how the effective interaction becomes independen
spatial separation, our results immediately carry over to la
classes of other systems as well~obviously, the critical prop-
erties obtained in Sec. III explicitly refer to systems with
one-component order parameter!. These include genera
O(n) models (XY, Heisenberg,. . . ) andPotts models. In
this context we note that in earlier work the exactness
mean-field theory in the limitt→d1 has been found no
only for the Ising model (n51) @33# but also for the Husimi-
Temperley mean spherical model (n→`) @36#.

Our explicit result of an analytic free energy, generaliz
to the systems mentioned above, explains a number of
merical results obtained for systems with nonintegrable
teractions. This includes the molecular-dynamics simulati
of systems with a generalized Lennard-Jones potential
cussed in Sec. IV@7,8#, Monte Carlo simulations of one
dimensional Ising@9#, Potts@11#, andXY @12# models with
t,1, and the scaling properties found in Re
@29,10,37,13#. In Ref. @38#, a subleading term in the spin
spin correlation function of the nonintegrable Ising cha
was considered and on the basis of Monte Carlo simulat
of finite systems witht50.50 andt50.75 it was concluded
03110
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that these correlations are correctly described by mean-
theory.

Finally, we remark on the connection of these results
gravitational systems, whered53 and t51. Since the
masses of the particles and the gravitational coupling
presumably fixed, we are not at liberty to scale to infinite
weak interactions. However, following the nonextensi
thermodynamics formulations, we can considerR}L for a
finite system and regard the prefactor in the pair interacti
as belonging to a rescaled temperatureT→Ld2tT5L2T. At
the same time, we note that such a divergent tempera
appears of limited practical use.

The existence of a phase transition in these systems
been studied for fermionic particles in the context
Thomas-Fermi theory@19,20#. Most studies have considere
gravitationally interacting particles in a non-periodic, finit
sized system, concentrating on the asymptotic, large-N limit.
Here they obtain nonextensivity in the particle numberN,
with the energy per particle growing asN4/3 ~in contrast to
N0 for integrable interactions!. In Ref. @21# the energy den-
sities were suitably rescaled to enable the infinite-volu
limit, which presumably comes closest to what has been p
sented in the current work.

However, these studies differ from ours due to the ferm
onic character of the particles, which is used to regulate
short-distance behavior. Classical gravitational systems h
previously been studied as well@39,40#, again in a nonperi-
odic, finite-sized box, with various forms of short-distan
regulators. In this case the energy per particle scales aN,
essentially because the pair interaction, while decaying
1/r , has a minimum value for all particles that is proportion
to 1/L, due to the fixed system size. In contrast, our therm
dynamic limit, L→` with fixed particle density, combined
with the long-distance power-law tails of the pair potenti
implies an energy per particle growing asN2/3 ~or N12t/d for
generalt,d). Finally, we mention Ref.@41# for a recent
review of some interesting features of thermalized grav
tional systems.
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