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Optimized energy calculation in lattice systems with long-range interactions
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We discuss an efficient approach to the calculation of the internal energy in numerical simulations of spin
systems with long-range interactions. Although, since the introduction of the Luijten-Blo¨te algorithm, Monte
Carlo simulations of these systems no longer pose a fundamental problem, the energy calculation is still an
O(N2) problem for systems of sizeN. We show how this can be reduced to anO(N log N) problem, with a
break-even point that is already reached for very small systems. This allows the study of a variety of, until now
hardly accessible, physical aspects of these systems. In particular, we combine the optimized energy calcula-
tion with histogram interpolation methods to investigate the specific heat of the Ising model and the first-order
regime of the three-state Potts model with long-range interactions.

PACS number~s!: 02.70.2c, 64.60.Fr
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I. INTRODUCTION

The numerical study of systems with long-range inter
tions is notoriously difficult, due to the large number of i
teractions that has to be taken into account. Specifically,
number of operations to calculate the energy of a single
ticle scales as the total number of particles in the system
contrast to the case of short-range interactions, where
corresponding number of operations is of order unity. T
implies that Monte Carlo–based methods are generally
stricted to very small system sizes, which are still hampe
by strong finite-size effects. Some years ago, this prob
was resolved for the case of O(n) spin systems with~ferro-
magnetic! long-range interactions, for which a dedicat
cluster algorithm was developed@1#. Since the efficiency of
this algorithm isindependentof the number of interactions
per spin, speed improvements of several orders of magni
could be obtained compared to a conventional cluster a
rithm. This speedup pertains to the generation of indepen
configurations, for which the calculation of the energy is n
required. Indeed, a variety of interesting physical resu
could be obtained by means of this method; see, e.g., R
@2–4#. Whenever one needs to sample the internal ene
however, the improvement is much less dramatic: the m
remaining advantage is that one only has to calculate
energy for truly independent configurations, rather than
every Monte Carlo step. Whereas this still implies that o
can study systems that are an order of magnitude larger
those that can be accessed via Metropolis-type simulat
~cf. Ref. @5#!, one is eventually limited by the fact that th
total computing time scales quadratically with the syst
size. One major disadvantage of this inaccessibility of
energy is the fact that it is not possible to apply histogr
interpolations in order to obtain information on thermod
namic quantities over a large parameter space@6#. In this
paper, we point out that, for systems with periodic bound
conditions, this problem can be circumvented by calculat
the internal energy in momentum space. Thus, one can a
a fast Fourier transform~FFT!, reducing the total computa
PRE 611063-651X/2000/61~2!/2058~7!/$15.00
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tional effort toO(N logN) for a system containingN spins.
Indeed, this is a natural choice if one recognizes that the t
energy is just given by a~discrete! convolution, which is one
of the major applications of the FFT. Remarkably, the co
putational overhead entailed by the FFT turns out not to b
limiting factor: already for very small systems it is mo
efficient than a direct calculation of the energy.

The remainder of this paper is organized as follows. Fi
we derive an expression for the energy in terms of
Fourier-transformed spin system and point out that sev
other observables can be obtained on the fly, at neglig
additional cost. We also give a detailed comparison of
approach and the conventional method. Next, we illustr
our approach by means of several physical results for o
dimensional systems with long-range interactions. We e
with a summary of our results.

II. ENERGY CALCULATION

We will now first illustrate our approach for a
(d51)-dimensional system with ann-component order pa
rameter, i.e., a generalized O(n) spin chain. This system is
described by the Hamiltonian

H52
1

2 (
x51

N

(
y51

N

J~x2y!S~x!•S~y!, ~1!

where the spinsS(x) aren-component unit vectors andN is
the system size. The interactionJ(x) is defined for allx
PN. Under the condition that periodic boundary conditio

are employed, theeffectivecouplingJ̃(x) between two spins
is given by the sum over all periodic copies,

J̃~x![ (
m52`

`

J~x1mN! ~2!

and hence has a periodN. We set the self-energyJ̃(mN),
which is just an additive constant in the total energy, equa
2058 ©2000 The American Physical Society
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PRE 61 2059OPTIMIZED ENERGY CALCULATION IN LATTICE . . .
zero. Each component of the spin configurationS(x) and the

interactionJ̃(x) can then be written as a Fourier sum,

f ~x!5
1

AN
(
k50

N21

f ke
2p ikx/N, ~3!

where the Fourier coefficientsf k are obtained from the dis
crete Fourier transform off (x). By means of the discrete
convolution theorem@7# it is then straightforward to show
that Eq.~1! can be written as

H52
AN

2 (
k50

N21

J̃kSk•S2k . ~4!

The essential step is now that application of the fast Fou
transform@7,8# reduces the computational effort for the ca
culation of the N Fourier coefficients fromO(N2) to
O(N logN), thus, in principle, greatly speeding up the calc
lation of the total energy. The sum in Eq.~4! adds another
O(N) operations, but this is compensated for by the fact t
one typically also wants to calculate the magnetic susce
bility N21u(x50

N21S(x)u2, which in the momentum-space rep
resentation is immediately given byuSk50u2. For maximum
efficiency, one has to restrict the system size to powers o

Naturally, the calculation of the coefficientsJ̃k has to be
carried out only once.

Even more can be gained if one also desires to calcu
the spin-spin correlation functiong(r )5^S(0)•S(r )&
5N21(x50

N21S(x)•S(x1r ). The discrete correlation theorem
@7# states that the Fourier transformgk of g(r ) is equal to
N21/2Sk•S2k , so thatgk is obtained byN multiplications
rather than anotherO(N2) operations in the real-space re
resentation.

All the above estimates are only measures for the co
plexity of the algorithm, which become valid for sufficient
large N. It remains to be seen whether the FFT-based
proach is actually faster for the range of system sizes that
be accessed in present-day Monte Carlo simulations, w
for lattice models go up toN;105–106. Figure 1 compares

FIG. 1. Required CPU time~in microseconds on a Pentium-
400 MHz! per spin for the calculation of the energy and the su
ceptibility, as a function of system size, for both the conventio
method and two FFT-based methods. For a further discussion
the text.
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the required CPU time per spin for the calculation of t
internal energy via Eq.~1! and Eq.~4!, respectively, and the
susceptibility. As expected, the former method scales asy
totically linearly withN. For the latter method, two estimate
are given, which only differ in the choice of the FFT imple
mentation. The slower results~open squares! were obtained
by means of the routines of Ref.@9# and the faster~triangles!
by means of those of Ref.@10#. Although these two estimate
differ by as much as a factor of 5, both of them outperfo
the conventional method already forN*10; for N5218 the
improvement amounts to roughly four orders of magnitu
The initial downward trend in Fig. 1 is due to overhead bei
distributed over an increasing number of spins. Likewise,
‘‘irregularities’’ in the FFT estimates can be attributed
computational aspects. The slight deviations from linearity
the conventional estimates, however, are due to statis
inaccuracies in the timing: forN*O(104) this method al-
ready becomes prohibitively slow. Thus, we conclude t
the method presented here provides a very efficient appro
to energy calculations in lattice systems with long-range
teractions; while there is still a weak system-size depende
in the required computational effort per spin, this no long
constitutes a bottleneck for practical applications. Note t
higher-dimensional models can also be treated in this fa
ion.

III. APPLICATIONS

A. The Ising chain

As a first example, we consider the Ising chain with alg
braically decaying interactions,J(x)[Juxu212s. The critical
behavior for this system is essentially classical for 0,s
< 1

2 and nonclassical for12 ,s<1; see Ref.@11#. Numerical
results for the thermal exponentyt @12# have indicated that
the latter regime can be subdivided into two parts:yt.

1
2 for

1
2 ,s&0.65 andyt,

1
2 for interactions that decay faster. Th

implies that the specific heat diverges in only a part of
nonclassical regime and should display a cusplike singula
in the remaining part. By means of illustration, we have c
culated the specific heat fors50.25 ands50.90. In both
cases, we expect to find a function that does not diverg
the critical point, although the behavior should be quali
tively different. Simulations were carried out forN52p, with
3<p<16, at a number of different couplings, for sever
times 106 independent samples per system size. The
curves were determined by means of the multiple-histogr
method@6#, where great care was taken to minimize syste
atic errors due to the histogram interpolation.

Figure 2 shows the specific heatC for s50.25, as a func-
tion of the reduced couplingK[J/(kBT). It displays several
close similarities to the specific heat of the mean-field mod
including the buildup of a jump discontinuity at the critic
point, the crossing of the finite-size curves in a single po
at Kc ~up to corrections to scaling!, and~not visible on this
scale! an excess peak in the curves for finite systems,
limN→`Cmax(N)Þ limK↓Kc

limN→`C(K,N) @12#. As shown
in Ref. @2#, the location of the specific-heat maximum shif
as a function of system size, according to

Kmax5Kc1a1L2yt* 1a2L22yt* 1b1Ls211•••, ~5!
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2060 PRE 61MICHAEL KRECH AND ERIK LUIJTEN
whereyt* 5 1
2 and the coefficientsai ,bi are nonuniversal. A

fit to this expression yieldedyt* 50.51(6) and Kc

50.1147(5), in good agreement withKc50.114 142(2)
@13#. The inset shows the peak height as a function of sys
size, strongly suggesting that the maximum is indeed finit
the thermodynamic limit.

The cases50.90, shown in Fig. 3, clearly exhibits
distinctly different behavior. The specific heat is now no
zero in the thermodynamic limit, on either side of the critic
point, and indeed displays the expected cusplike singula
The inset confirms that the maximum is convergent forN
→`. Sinceyt is still sufficiently close to1

2 , i.e., the absolute
value of the exponenta is sufficiently small, the location o
the maximum cannot be distinguished from the critical po
unlike the cases51, where it is expected to occur at
couplingK,Kc .

B. The three-state Potts chain

The ferromagnetic Potts model provides a particular g
eralization of the Ising model with respect to the numberq of

FIG. 2. Specific heat of the Ising chain with interactions dec
ing as r 21.25, for system sizes 8,N,65 536. One observes th
appearance of a mean-field-like discontinuity at the critical c
pling. The inset shows the peak height as a function of system

FIG. 3. Specific heat of the Ising chain with interactions dec
ing asr 21.90, for system sizes 8,N,65 536. With increasingN, a
cusplike singularity appears. The vertical line indicates the crit
coupling. The inset shows the peak height as a function of sys
size.
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possible coexisting ordered phases. Forq52 the Ising model
is recovered; forq.2 the ferromagnetic Potts model defin
a genuine universality class distinct from the Ising and
more general O(n) universality class. The Potts model is o
particular theoretical interest, because the phase transitio
describes may be of first or second order depending onq and
the spatial dimensiond, even in the absence of symmetr
breaking fields. For nearest-neighbor interactions ind52
many properties of the Potts model are exactly known@14#.
In particular, if the model is in the first-order regime andq is
sufficiently large, the asymptotic finite-size properties of t
nearest-neighbor ferromagnetic Potts model have been e
lished in a rigorous fashion@15#. For long-range interactions
however, much less is known and currently available n
merical data are limited to rather small systems@5#. We dem-
onstrate in the following that also for the Potts model t
cluster algorithm introduced in Ref.@1# can be combined
with the FFT, allowing the numerical treatment of muc
larger systems.

Again, we concentrate on the case of algebraically dec
ing interactionsJ(x)[uxu212s. The Hamiltonian of the fer-
romagnetic Potts chain with periodic boundary conditio
can then be written in the same form as Eq.~1!, where the
Potts spinsS(x) are unit vectors that mark the corners of
~hyper!tetrahedron inq21 dimensions. For the present ca
q53 we employ the complex notation

S~x!→S~x!P$1,e2p i /3,e4p i /3%, ~6!

i.e., S(x)•S(y)5Re@S(x)S(y)* #, where the asterisk denote
the complex conjugate. The spin representation of the P
model given by Eq.~1! is equivalent to the standard Kro
necker representation, but it has the advantage that the
figurational energy is directly accessible by means of
FFT. According to mean-field theory the ferromagnetic Po
model should always show a first-order phase transition
q.2. For our case ofd51 and algebraically decaying inter
actions, one therefore expects the mean-field prediction to
correct for sufficiently small valuess.0 of the decay expo-
nent of the interaction, i.e., there should be a critical valuesc
separating first- and second-order behavior. Mean-fi
theory provides an important guideline for the interpretat
of our Monte Carlo data, so we briefly summarize the ba
mean-field predictions. Following Ref.@14#, we introduce
the probabilitypk(x) that lattice sitex is occupied by the
Potts statek, 1<k<q, and we define a homogeneous sca
order parameters indicating a broken symmetry with respe
to Potts statek51:

p1~x![m15
11~q21!s

q
,

~7!

pk~x![mk5
12s

q
, 2<k<q.

For a given value ofs the mean-field free-energy densi
f MF(s) ~in units of kBT) is then obtained as

f MF~s!52Kz~11s!s21$@11~q21!s# ln@11~q21!s#

1~q21!~12s!ln~12s!%/q, ~8!
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PRE 61 2061OPTIMIZED ENERGY CALCULATION IN LATTICE . . .
whereK5J/(kBT) denotes the reduced coupling andz(a) is
the Riemann zeta function. Note that the replacemenK
→(q21)q21K transforms Eq.~8! from the spin representa
tion into the Kronecker representation. The transition po
K5KMF

t from the disordered phases50 to the ordered (k
51) phases5sMF

t follows from standard mean-field argu
ments@14#:

KMF
t z~11s!5

~q21!2

q~q22!
ln~q21!, sMF

t 5
q22

q21
. ~9!

According to Eqs.~7! and ~9! the distribution function
P(m1) for a finite system displays three maxima near t
transition temperatureTMF

t [J/(kBKMF
t ): one atm151/q for

the disordered phase, one atm15(q21)/q for the ordered
(k51) phase, and one atm151/@q(q21)# for the ordered
phases with respect to the remaining Potts states (k>2).
Note that all ordered phases appear with equal probabilit
the course of the simulation. Fors<0.4 and in our case o
q53 these three peaks inP(m1) are indeed located ver
close to their mean-field positions. Fors50.6 the peaks are
still clearly separated, but they occur at positions shifted w
respect to the mean-field predictions and fors>0.7 the
peaks start to overlap strongly and can only be identified
very large systems~see below!.

Although the algorithm introduced in Ref.@1# is by far the
most efficient one for the simulation of spin systems w
long-range interactions, it is not able to deal with first-ord
phase transitions beyond a certain system size. The reas
that like the Metropolis algorithm the Wolff cluster algo
rithm encounters an activation barrier between states w
and without long-range order, which is set by the ener
density gap between the disordered and the ordered ph
For a given size of the gap the tunneling time between
ordered and ordered phases, and therefore the required
pling time, increases exponentially with the system size
that the attainable system sizeN is severely limited. This
tunneling problem can be solved by employing the we
established ideas of multicanonical sampling@16#; however,
the generalization of the cluster algorithm@1# to an efficient
multicanonical algorithm is beyond the scope of the pres
paper.

The data we present in the following have been obtai
from histograms of the energy taken at several temperatu
The data are again conveniently analyzed by the optimi
multiple-histogram method@6#. For the valuess50.2 and
s50.4 the Potts chain undergoes a strong first-order ph
transition@5# which limits the chain length toN5213 in the
former case and toN5214 in the latter case. We reinvest
gate chains fromN5210 spins to the respective maximum
chain length by taking a few times 106 independent sample
for each system size and temperature, where a compa
with the finite-size theory of Borgset al. @15# turns out to be
very instructive. We restrict the detailed presentation to
cases50.4; the data fors50.2 are qualitatively very simi-
lar. Near the transition temperature the energy distribut
function P(E) displays two peaks characterizing the order
and the disordered phase, respectively@17#. In Ref. @5# the
temperature of equal peak height is taken as an estimat
the transition temperature on the finite system, where
leading finite-size corrections are of the orderO(1/N). If the
t
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systems are large enough, i.e., the peaks in the energy d
bution are well separated, the ratioWo /Wd of the weight of
the ordered phaseWo and the weight of the disordered pha
Wd provides a far more convenient indicator of the transiti
temperature, because the associated finite-size correc
decay exponentiallywith N @15,17#. Our result for long-
range interactions is shown in Fig. 4. The transition tempe
ture is marked by the intersection ofWo /Wd as a function of
temperature for the three largest systems. ForN5211 the
peaks in the energy distribution are not well separated so
Wo /Wd is not well defined in this case. ForN>212 the
curves meet atWo /Wd51.67(2) as shown by the solid line
For s50.2 we find a corresponding intersection atWo /Wd
51.25(2). For nearest-neighbor interactions ind>2 and
sufficiently largeq the valueWo /Wd5q is expected to indi-
cate the transition temperature@15,17#. Surprisingly, we find
a much smaller value here, which appears to increase wits.
From Ref.@15# one furthermore expects the curves displa
ing the energy density for different system sizes as a func
of temperature to exhibit an intersection close to the tran
tion temperature, where the deviations are predicted to
exponentially small inN. In Fig. 5 this situation is shown fo
long-range interactions withs50.4. A corresponding resul
has been obtained fors50.2. The energy densities interse
near the transition temperature found in Fig. 4, where
shifts between mutual intersections seem to be compa
with exponentially small finite-size effects. Still too few da
are available for a quantitative analysis of these shifts,
finite-size effects of the order 1/N can be ruled out. The
fourth-order energy cumulantU4 defined by

U4[^H 4&/^H 2&2 ~10!

is shown in Fig. 6 for different system sizes as a function
temperature, whereH is the Hamiltonian given by Eq.~1!.

FIG. 4. RatioWo /Wd of the weights of the ordered and th
disordered phases as a function of temperature for the system
N5211 (L), 212 ~1!, 213 (h), and 214 (3). The temperature is
measured in units of the mean-field transition temperatureTMF

t .
Statistical errors~one standard deviation, not shown! are smaller
than the symbol sizes. The horizontal line marks the value
Wo /Wd at the intersection of the three largest systems~see main
text!.
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2062 PRE 61MICHAEL KRECH AND ERIK LUIJTEN
These cumulants should also intersect at the transition t
perature in the limitN→`. The data displayed in Fig. 6
show the expected tendency, but the finite-size correct
are much larger than those for the weight ratio or the ene
density~see Figs. 4 and 5, respectively!. For s50.2 a cor-
responding result has been found. The systematic shift of
intersections ofU4 for different system sizes is compatib
with a 1/N behavior as anticipated in Ref.@15# for nearest-

FIG. 5. EnergyE/(JN) per spin in units of the coupling con
stant J as a function of temperature for the system sizesN
5211 (L), 212 ~1!, 213 (h), and 214 (3). The temperature is
measured in units of the mean-field transition temperatureTMF

t .
Statistical errors~one standard deviation! are shown only when they
exceed the symbol sizes. Within the statistical error the curves
the three largest systems intersect at the same temperatu
Wo /Wd in Fig. 4.

FIG. 6. Fourth-order energy cumulantU4 as a function of tem-
perature for the system sizesN5211 (L), 212 ~1!, 213 (h), and
214 (3). The temperature is measured in units of the mean-fi
transition temperatureTMF

t . Statistical errors~one standard devia
tion! are shown only when they exceed the symbol sizes.
curves do not have a common intersection within the displa
temperature range indicating much larger finite-size effects tha
Figs. 4 and 5.
-

ns
y

he

neighbor interactions, but the present amount of data is
limited to give reliable quantitative evidence for this beha
ior.

For nearest-neighbor interactions and periodic bound
conditions the energy density asymptotically obeys the s
ing law @cf. Eq. ~1! of Ref. @15# #

E~b,L !.
Ed1Eo

2
2

Ed2Eo

2
tanhFEd2Eo

2
~b2b t!N1

lnq

2 G ,
~11!

whereb51/(kBT) is the inverse temperature andb t is the
transition point. It is instructive to compare the scaling for
given by Eq. ~11! with the data displayed in Fig. 5. Th
energies of the disordered phaseEd and the ordered phaseEo
can be read off from the positions of the two maxima of t
energy distribution function. It turns out that the data in F
5 and their counterpart fors50.2 are in fact consistent with
Eq. ~11! within the error bars,providedthe number of states
q on the right-hand side of Eq.~11! is replaced by theeffec-
tive value qeff(s50.4)[Wo /Wdub5b t

51.67 measured in

Fig. 4 at the transition temperature or its counterpartqeff(s
50.2)51.25, respectively. The quantitative comparison
our data fors50.2, N5213 and s50.4, N5214 with Eq.
~11! is shown in Fig. 7. Within the statistical errors, th
agreement is excellent except for larger values of the sca
variable (b2b t)N. These deviations are due to the fact th
Eq. ~11! holds asymptotically only for sufficiently large sys
tems. For finite systems additional finite-size corrections
ter through the residualN dependence ofEd , Eo , and
qeff(s), which appear as parameters in Eq.~11!. Figure 7
demonstrates that the finite-size effects in the three-s
Potts chain with periodic boundary conditions and lon
range interactions can be interpreted in terms of the Bo
Kotecký theory @15# for the nearest-neighbor Potts model
higher dimensions for an effective number of statesqeff(s).

or
as

d

e
d
in

FIG. 7. Energy density fors50.2, N5213 (L) and for s
50.4, N5214 ~1! as functions of the scaling variable (b t2b)N in
comparison with Eq.~11! for q→qeff(s50.2)51.25 ~solid line!
andq→qeff(s50.4)51.67~dashed line!. Error bars on the numeri-
cal data~one standard deviation! are shown only when they excee
the symbol sizes. The inverse temperatureb51/(kBT) is given in
units of 1/(kBTMF

t ).
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The physical meaning ofqeff(s), however, remains unclea
The proof of Eq.~11! also requires the assumption thatq is
sufficiently large@15#, so q53 may not be sufficient for a
quantitative comparison. On the other hand, numerical inv
tigations have shown that theq>5 nearest-neighbor Pott
model in d52 @17# and theq53 nearest-neighbor Pott
model in d53 @18# follow the theory of Ref.@15# very
closely despite the small values ofq. Further analytical and
numerical studies are required to settle this question.

We close our discussion of the three-state Potts chain
a brief summary of our results fors50.6, 0.7, and 0.75
which have been studied with reduced statistics (105 inde-
pendent samples for each system size and temperature!. The
values50.6 is still located in the first-order regime@5#, but
in order to obtain a well-defined weight ratioWo /Wd system
sizes of N>216 Potts spins are required, although t
maxima in the energy distribution are well separated alre
for N>214. We have performed simulations forN5214 up to
N5217 at four to six temperatures for each system size. E
for N5217 the finite-size corrections are too large to ident
an intersection of the energy densities as accurately as
played in Fig. 5. Data acquisition forN.217 is strongly
hampered by the energy gap so that we refrain from disc
ing our data fors50.6 in any more detail. In contrast to Re
@5# the values50.7 of the decay exponent can undoubted
be identified as a member of the first-order regime. For s
tem sizesN>216 the energy distribution function display
the typical double-peak structure, which becomes sharpe
the system size is increased at fixed temperature. We i
trate this in Fig. 8, where the data forP(E) are shown at
T/TMF

t 50.8095, which is close to the transition point. Th
same analysis has been repeated fors50.75 and system
sizes up toN5219 spins. AlthoughP(E) also develops a
plateau similar to the one displayed in Fig. 8 forN5215, no
double-peak structure could be resolved up toN5219 so that
s50.75 may already belong to the second-order regime
the three-state Potts chain with long-range interactio
However, the detection of a double-peak structure inP(E)

FIG. 8. Energy distribution functionP(E) for s50.7, T/TMF
t

50.8095, and system sizesN5215 (L) andN5217 ~1!. The typi-
cal double-peak structure remains invisible forN,216 spins but
sharpens ifN is increased at fixedT.
s-

th

y

n

is-

s-

s-

as
s-

of
s.

for a given value ofs is essentially a matter of attainab
system size~see Fig. 8!, sosc.0.7 is the only safe conclu
sion here.

IV. CONCLUSIONS

The combination of the recently developed cluster alg
rithm @1# for systems with long-range interactions with th
fast Fourier transform for the calculation of the configur
tional energy leads to a Monte Carlo algorithm with a ve
high efficiency. In particular, the FFT allows one to exte
the attainable system sizes by two orders of magnitude
comparison with other approaches~cf. Ref. @5#!. Histogram
interpolation methods then allow the investigation of therm
dynamic properties of these systems with unpreceden
resolution. By construction the algorithm can only deal w
first-order phase transitions up to a limited system size
order to avoid this limitation the algorithm must be gener
ized to include multicanonical sampling. Here, we have de
onstrated the potential of the algorithm for the Ising cha
and the three-state Potts chain with algebraically decay
interactions. For completeness, it is mentioned that for s
tem sizes that are not integer powers of two a considera
gain can also be obtained by performing the discrete Fou
transform via, e.g., a prime-factor algorithm.

For the Ising chain we have investigated the finite-s
behavior of the specific heat in the classical regime fors
50.25 and in the nonclassical regime fors50.9. In the
former case the specific-heat behavior is essentially me
field-like, i.e., the expected discontinuity in the specific he
at the critical temperature in the thermodynamic limit buil
up as the system size is increased. On the other hand
choices50.9 is expected to yield a negative specific-he
exponent, i.e., a cusp singularity should appear with incre
ing system size. Our numerical data confirm this behavio
well and clearly show the different shapes of the speci
heat curves in the two cases.

The three-state Potts chain is expected to show a fi
order phase transition fors,sc , where our results indicate
that sc.0.7. For s50.2 ands50.4, for which theq53
Potts chain displays a strong first-order phase transition,
data confirm the Borgs-Kotecky´ scenario of the first-orde
transition in Potts models with nearest-neighbor interacti
in higher dimensions, provided the numberq of states is
replaced by the effective number of states qeff(s)
5Wo /Wdub5b t

,q, which also enters the finite-size scalin
form of the energy density near the transition temperatu
For s50.6 the same behavior can be confirmed only on
semiquantitative level, because much larger systems mus
investigated in order to obtain sufficient resolution. T
mechanism that leads to the reduction of the effective nu
ber of states and the physical interpretation ofqeff(s) are not
known.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussions with
Neuhaus and W. Janke, and stimulating comments by
Binder. M.K. also gratefully acknowledges financial supp
through the Heisenberg program of the Deutsche Fo
chungsgemeinschaft.



P.
-

n-

ch-

r

2064 PRE 61MICHAEL KRECH AND ERIK LUIJTEN
@1# E. Luijten and H. W. J. Blo¨te, Int. J. Mod. Phys. C6, 359
~1995!.

@2# E. Luijten and H. W. J. Blo¨te, Phys. Rev. Lett.76, 1557
~1996!; 76, 3662~E! ~1996!.
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