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Critical properties of the three-dimensional equivalent-neighbor model
and crossover scaling in finite systems
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Accurate numerical results are presented for the three-dimensional equivalent-neighbor model on a cubic
lattice, for 12 different interaction ranges~coordination number between 18 and 250!. These results allow the
determination of the range dependences of the critical temperature and various critical amplitudes, which are
compared to renormalization-group predictions. In addition, the analysis yields an estimate for the interaction
range at which the leading corrections to scaling vanish for the spin-1

2 model, and confirms earlier conclusions
that the leading Wegner correction must be negative for the three-dimensional~nearest-neighbor! Ising model.
By complementing these results with Monte Carlo data for systems with coordination numbers as large as
52 514, the full finite-size crossover curves between classical and Ising-like behavior are obtained as a function
of a generalized Ginzburg parameter. Also, the crossover function for the effective magnetic exponent is
determined.@S1063-651X~99!07305-5#

PACS number~s!: 64.60.Fr, 75.40.Cx, 75.10.Hk, 05.70.Fh
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I. INTRODUCTION

Over the past decades, several techniques have bee
plied to investigate how the critical behavior of systems
pends on the range of the interactions. Before the gen
acceptance of the concept of universality, it was not at
clear that the critical properties of all systems with a on
component order parameter and ferromagnetic~i.e., attrac-
tive! interactions with afinite range are described by th
Ising universality class. Since it was realized that most in
actions in nature are not necessarily restricted to the nea
neighbors, one thus tried to determine the properties of m
els with a larger coordination numberq. Another motivation,
which plays a more important role in the present work, is
fact that in the limit of infinite interaction range one recove
the classical or mean-field model. Since the latter model
be solved analytically, whereas no exact solution has b
found for three-dimensional systems with a finite interact
rangeR, it is of interest to see how the crossover takes pl
from finite to infiniteR. A natural choice for the examinatio
of this crossover is the so-called ‘‘equivalent-neighbo
model, introduced by Domb and Dalton@1#. In this generali-
zation of the Ising model, each spin interacts equa
strongly with all its neighbors within a certain distanc
whereas all remaining interactions are equal to zero. In R
@1#, series expansions have been used to investigate two-
three-dimensional systems with interactions extending u
the third shell. On a simple cubic lattice this corresponds
26 neighbors, and on a face-centered-cubic lattice even t
neighbors. While a general trend toward mean-field prop
ties, especially for the critical temperature, is clearly visib
from these results, several problems emerge. First, with
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creasing interaction range, increasingly longer series are
quired to achieve a certain degree of convergence. Secon
appears that the maximum coordination numbers exam
by this method are not large enough to observe
asymptotic deviations from the mean-field behavior@2#. Al-
though Ref.@1# was published over 30 years ago, it appe
that, especially in three dimensions, no substantial prog
toward larger coordination numbers has been pursued.
is probably caused by the fact that other techniques are
plagued by serious difficulties upon increase of the inter
tion range. For example, Monte Carlo~MC! methods in gen-
eral suffer from a serious decrease in efficiency if the num
of interactions increases. Mon and Binder@3# studied two-
dimensional~2D! spin systems with a maximum coordina
tion numberq580, compared toq512 and 18 for quadratic
and triangular lattices, respectively, in Ref.@1#. Furthermore,
they derived theR dependence of critical amplitudes from
scaling considerations. However, it still proved difficult
reach the asymptotic regime where the predictions were
pected to hold. In a subsequent paper@4#, Luijten, Blöte, and
Binder confirmed the predictions of Ref.@3# from a
renormalization-group~RG! analysis, and revealed the exi
tence of a logarithmicR dependence in the shift of the crit
cal temperature. Thanks to the advent of a dedicated
algorithm for long-range interactions@5#, systems with large
coordination numbers could be simulated without loss of
ficiency. Thus, in the same paper the critical properties w
determined for quadratic systems with coordination numb
up to q5436. It was explicitly verified that all examine
systems belong to the 2D Ising universality class, and
predictedR dependence of the critical amplitudes could i
deed be observed, as well as the approach of the cri
temperature toward its mean-field value. It is the purpose
the present work to extend this analysis to three-dimensio
~3D! systems. Apart from the possibility to verify the pre
dicted range dependences in three dimensions, a pre
knowledge of the critical properties of spin models with
extended range of interaction also serves a further purp
4997 ©1999 The American Physical Society
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4998 PRE 59ERIK LUIJTEN
That is, it allows the study of two forms of crossover in the
systems.Finite-size crossoveronly pertains to finite system
at the critical temperature, and denotes the transition fr
the classical regime, where the interaction range is at lea
the order of~some power of! the system size, to the noncla
sical ~Ising! regime, where the system size is much larg
than the interaction range.Thermal crossover, on the other
hand, occurs when the temperature is moved away from
critical value. The interplay between the rangeR of the in-
teractions and the decreasing correlation lengthj determines
the location of the crossover to classical critical behavior
R is small, the temperature distance to the critical tempe
ture Tc must be made rather large beforej andR are of the
same order of magnitude. In such systems, no crossove
mean-field-like critical behavior can be seen, because
has already left the critical region. However, for largeR, it is
very possible to observe both Ising-like and classical criti
behavior. This dependence on botht[(T2Tc)/Tc andR is
expressed by the Ginzburg criterion@6#. Both variants of
crossover were studied for 2D systems in Refs.@7,8#, which
showed that accurate information on crossover scaling fu
tions can be obtained by numerical techniques. In the ligh
a comparison to experimental results on the one hand
theoretical calculations of crossover scaling functions, on
other hand, it is extremely relevant to investigate the 3D c
as well. Here I present the results of MC simulations
systems with interactions up to a distance ofA14 lattice units
~13th shell!, which corresponds to 250 equivalent neighbo
Although larger interaction ranges do not diminish the e
ciency of the MC algorithm, an accurate determination of
critical properties for largerR is hampered by a differen
effect. Indeed, such a determination is only possible in
Ising limit, which implies that thesmallest linear system
sizes must be of the order ofLmin5O(R4/(42d)) @4#, whered
indicates the dimensionality. Thus ford53 the smallest al-
lowable systems contain of the order ofR12 spins, and one
can only hope that this relation exhibits a prefactor cons
erably smaller than unity.

The results of the MC simulations are then used to de
mine the finite-size crossover functions for several qua
ties. It should be noted that for a full mapping of these fun
tions very large coordination numbers are require
simulations have been carried out forq up to 52 514. Yet an
independent determination of the critical temperature
these systems is not required, but can be obtained by
trapolation. It suffices thus to study modest (L<40) system
sizes for these interaction ranges. The determination of t
mal crossover functions will be the subject of a future pa
@9#, as it requires calculations which are actually comp
mentary to those of the present work~results for the suscep
tibility can be found in Ref.@10#!. Indeed, for a determina
tion of the critical properties by finite-size scaling and for t
mapping of the finite-size crossover functions, all data m
lie within the finite-size regime, whereas for thermal cro
over scaling care must be taken that the data lie outside
regime.

Two further questions that are addressed in this pa
concern the corrections to scaling. In the first place, the ra
dependence of the thermal finite-size corrections is show
be in very good agreement with the predictions of Ref.@4#.
Second, the finite-size corrections due to the leading ir
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evant field are analyzed, and the related variation of thef4

coefficient in the Landau-Ginzburg-Wilson~LGW! Hamil-
tonian is obtained. This permits an estimation of the inter
tion range for which this coefficient coincides with its fixe
point value, and confirms that for the three-dimensio
nearest-neighbor Ising model it does not lie between
Gaussian fixed point and the Ising fixed point.

The outline of this paper is as follows. In Sec. II, I briefl
summarize earlier predictions for the range dependenc
critical amplitudes, and discuss the shift of the critical te
perature as a function of interaction range. Section III giv
details of the Monte Carlo simulations. Furthermore, the
termination of the critical temperatures is discussed as w
as the analysis of the range dependence of correction
scaling. The variation of critical amplitudes as a function
interaction range is treated in Sec. IV, and finite-size cro
over curves are obtained in Sec. V. I end with some concl
ing remarks in Sec. VI.

II. SUMMARY OF RENORMALIZATION-GROUP
PREDICTIONS

In the absence of an external field, the equivale
neighbor or medium-range model is defined by the Ham
tonian

H/kBT52(̂
i j &

K~r i2r j !sisj , ~1!

wheres561, the sum runs over all spin pairs, and the sp
spin coupling is defined asK(r )5J.0 for ur u<Rm and
K(r )50 for ur u.Rm . I first summarize the findings of Ref
@4# for theR dependence of critical properties, as obtained
a RG analysis. Although at first sight this approach is n
very different from a simple scaling analysis, it offers seve
advantages. The formulation in terms of two competing fix
points provides a clear insight into the crossover mechani
for largeR the coefficient of thef4 term in the LGW Hamil-
tonian is suppressed with respect to the quadratic term in
expression. Thus the renormalization trajectory passes c
to the Gaussian fixed point, and the critical amplitudes p
up a specificR dependence which is determined by the flo
near this fixed point. For any finiteR, the system will still
flow to the neighborhood of the nontrivial~Ising! fixed point
~cf. Fig. 1 in Ref.@4#!. However, theR dependence reveal
some aspects of the Gaussian fixed point which are not
mally seen in Ising-like systems. For example, near this fix
point the thermal exponentyt and the leading irrelevant ex
ponentyi assume the values 2 and 42d, respectively, which
coincide ford52. Such a coincidence would lead to log
rithmic factors in the scaling functions, were it not that t
Gaussian fixed point is unstable ford52. In contrast, theR
dependence of scaling functions indeed allows the obse
tion of such logarithms. The occurrence of these dep
dences is not easily found from a scaling analysis.

For the magnetization densitym and the magnetic suscep
tibility x the range dependences

m}tbR~2db2d!/~42d!, ~2!

x}t2gR2d~12g!/~42d! ~3!
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have been obtained, whereb andg denote the standard Ising critical exponents. Furthermore, the finite-size scaling be
of these quantities was derived as

m5Lyh2dR~3d24yh!/~42d! f̂ s
~1!~ tLytR22~2yt2d!/~42d!,ũLyiR24yi /~42d!,hLyhR~3d24yh!/~42d!!, ~4!

x5L2yh2dR2~3d24yh!/~42d! f̂ s
~2!~ tLytR22~2yt2d!/~42d!,ũLyiR24yi /~42d!,hLyhR~3d24yh!/~42d!!. ~5!
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Here f̂ s
( i ) denote universal scaling functions,yt andyi are the

thermal and leading irrelevant exponents introduced abo
and yh is the magnetic exponent.ũ andh are the irrelevant
and magnetic scaling fields, respectively.

Also the shift of the critical temperature with respect to
mean-field value was calculated in Ref.@4#. However, this
treatment left several questions unanswered, which I
consider here in some more detail. A clear understandin
the nature of this shift is of particular significance for t
crossover scaling, since one has to calculate the critical t
peratures for systems with large coordination numbers
means of extrapolation. It was derived that under a renorm
ization transformation the contribution of thef4 term to the
quadratic term in the LGW Hamiltonian leads to a rang
dependent shift of the reduced temperaturet[(T2Tc)/Tc .
For d52 it was found in Ref.@4# that this shift has the form

Tc2Tc
MF5

c01c1 ln R

R2
1•••, ~6!

wherec0 andc1 are constants. This expression has also b
confirmed numerically; see Fig. 4 in Ref.@4#. Interestingly,
this result was recovered in Ref.@11#, where, in addition, it
was found that the constantc1 has a universal value22/p
'20.6366. Indeed, this agrees with the value20.624 (7)
obtained from an analysis of the available data for 25&R2

&70. ~The somewhat lower value 0.609, corresponding
the coefficients quoted in Ref.@8#, can be explained from the
influence of the data point atR2516.2.! However, the result
for general 2,d,4, a shift proportionalR22d/(42d), clearly
contradicts the results obtained from systematic expans
in terms of the inverse coordination number~but see the
remarks at the end of this section!. Brout @12# obtained, to
leading order, a shift of the form 1/q}1/Rd. This result was
recovered in Ref.@13# and by Dalton and Domb@14#. As
indicated in Ref.@15#, such an additional and actually dom
nant shift can also be obtained from the RG analysis
allowing for a~spherically symmetric! lower-distance cutoff
a in the spin-spin couplingK(r ). In momentum space th
coupling then takes the form

K̃~k!5cS 2p

kRD d/2

Jd/2~kR!2cS a

RD dS 2p

ka D d/2

Jd/2~ka!, ~7!

wherec5JRd, andJn is a Bessel function of the first kind o
order n @cf. Eq. ~A3! in Ref. @4##. The second term in this
expression yields an additional contribution to the quadr
term in the LGW Hamiltonian, which is precisely the 1/Rd

shift obtained by Brout. Furthermore, it contributes to t
k-dependent part of this term, which, via the rescaling of
field ~see Ref.@4#!, leads to a 1/Rd12 shift. Note that, upon
e,
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expansion in powers ofR, a formulation in terms of the
coordination numberq implies such a shift as well. At even
higher order, one finds~at rational dimensionalities! addi-
tional lnR dependences, as was first recognized by Thou
@2#. ~This work only came to the attention of the author af
the publication of Ref.@4#.! He has studied a modified form
of the Ising model, where the system is divided into ce
within which the spin-spin interactions are constant. T
shift of the critical temperature as a function of the cell s
is then calculated by means of perturbation theory. In th
dimensions, the leading-order result of Brout is recover
namely, a shift proportional to 1/q. In the next-to-leading
term a logarithmic dependence on the coordination num
is obtained,

Tc2Tc
MF5

a1

q
1a2

ln q

q2
1•••, ~8!

whereas ford52 the logarithm emerges already in the lea
ing term;

Tc2Tc
MF5b1

ln q

q
1•••. ~9!

The latter expression is in perfect agreement with Eq.~6!,
whereas the logarithm in the higher-order term in Eq.~8! was
not found in Refs.@4,15#. Since the logarithms in Eqs.~8!
and~9! apparently follow from the same mechanism, and
factor lnR in Eq. ~6! is specific for the two-dimensional cas
~where all higher-order terms in the LGW Hamiltonian a
equally relevant!, I conclude that there must be two differe
sources for the logarithms, which happen to yield the sa
effect in d52. Indeed, the logarithms in Eqs.~8! and ~9!
arise from counter terms canceling the infrared divergen
in the perturbation expansion. This appears to be intima
linked to the infrared divergences occurring in massl
super-renormalizable field theories at rational dimension
ties @16#. Actually, the treatment of Ref.@4# doesaccount for
logarithmic factors ind53, although at much higher orde
For systems with a large interaction range, the first part
the renormalization trajectory passes close to the Gaus
fixed point. Near this fixed point, only thef4 term is rel-
evant for d53 and all termsfn with n.6 are irrelevant.
The marginal character of thef6 term produces a logarith
mic range dependence in the shift of the critical temperatu
However, since this logarithm stems from the term quadra
in f6 and the fieldf is rescaled by a factorR21, this con-
tribution is extremely weak. An actual calculation shows th
it leads to a shift proportional to lnR/R18} ln q/q6. In addi-
tion, thef6 term will yield a correction of orderR28. How-
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ever, it may be added that it is generally expected@17# that
such high composite operators have very little influence n
the Ising fixed point.

Let me now briefly return to the leading shiftR22d/(42d)

obtained in Ref.@4#. It is instructive to note that this shift is
consistent with crossover arguments first given by Rie
and Wegner@18#. Indeed, the Ginzburg criterion states tha
crossover from classical to nonclassical critical behavior
curs as a function of the crossover parametert (42d)/2Rd. In
terms of a more general formulation, this parameter is w
ten astf/g, with f5(42d)/2 andg5R2d. The crossover
exponentf ~not to be confused with the fieldf), introduced
in Ref. @18#, is just the exponent 42d of the relevant opera
tor driving the system away from the Gaussian fixed po
~i.e., thef4 term in the LGW Hamiltonian!, divided by the
thermal exponentyt52. Then, on general grounds@18,19#,
the shift ofTc is predicted to scale asg1/f}R22d/(42d). This
is another indication that the shift terms in Eq.~8! originate
from a different, complementary, mechanism. In addition
is noted that the formulation in terms of the crossover ex
nent f can be carried even further~see, e.g., Ref.@20#!.
Indeed, for any thermodynamic quantityP which is near the
Ising critical point proportional totxI, the combined depen
dence ong and t will be

P}g~xG2xI !/ftxI, ~10!

wherexG denotes thet dependence ofP near the Gaussian
fixed point. In terms oft andR, this can be written as

P}Rd~xI2xG!/ftxI, ~11!

which yields, e.g., m}R2d(b21/2)/(42d)tb and x
}R2d(12g)/(42d)t2g, recovering Eqs.~2! and ~3!.

III. MONTE CARLO SIMULATIONS

A. Simulational details

I have carried out extensive simulations of 3D simple c
bic lattices consisting ofL3L3L lattice sites with periodic
boundary conditions. Each spins interacts equally with itq
neighbors lying within a distanceRm , i.e., the system is
described by the Hamiltonian~1!. For the simulations I have
used the cluster MC algorithm introduced in Ref.@5#. Its
application to the present case is described in more deta
the appendix of Ref.@4#. In order to avoid lattice effects
formulate the analysis in terms of an effective interact
rangeR @3#,

R2[

(
j Þ i

~r i2r j !
2Ki j

(
j Þ i

Ki j

5
1

q (
j Þ i

ur i2r j u2 with ur i2r j u<Rm . ~12!

It is easily seen that limR→`R253Rm
2 /5. Table I listsRm , q,

and R for the first 13 neighbor shells which have been e
amined in the present work.
ar

l

-

t-

t

t
-

-

in

-

Several tests have been carried out to check the im
mentation of the algorithm. ForRm

2 51 exact results~for L
53 and 4! and accurate MC data are given in Ref.@21#, and
for Rm

2 52 and 3 alternative MC programs were availab
allowing the verification of the data for various system siz
I have carried out very long Monte Carlo simulations (19

and 108 Wolff clusters, respectively! for L54 and 20 for
these ranges, at couplings close toKc(R). On the other hand
if one takes into account all lattice symmetries, an expl
summation over all states is feasible forL53 (227'1.34
3108 configurations!. For this case, I have carried out sim
lations for all ranges 1<Rm

2 <14. No systematic deviation
could be observed. The actual simulations were carried
for systems up toL5200 ~8 000 000 spins!; the number of
samples was chosen depending on the system size. As a
of thumb, the amplitude ratioQ ~to be defined below! had a
relative accuracy on the permille level for the largest s
tems.

B. Determination of the critical temperatures

In order to analyze the range dependence of several q
tities, an accurate knowledge of the critical temperature
each single value ofRm is required. The critical temperature
of systems with interaction ranges corresponding to the
13 neighbor shells have been determined using the ampli
ratio QL5^m2&L

2/^m4&L . For the 3D Ising universality clas
and a cubic geometry with periodic boundary conditions, t
quantity has, in the thermodynamic limit, the univers
critical-point valueQ5QI50.6233 (4)@21#. As mentioned
in Sec. I, an accurate determination of the critical point
mainly hampered by the requirement that one must reach
Ising limit, i.e., Lmin'R4. For the inner shells, the smalle
system sizes that could be used in the finite-size anal
were of the same order as in an analysis of the 3D near
neighbor Ising model, i.e.,L*5. For the remaining shells
the smallest allowable system sizes, as determined from

TABLE I. The range of interactionRm , the corresponding num
ber of neighborsq, and the effective range of interactionR for the
13 neighbor shells examined in this work.

Shell Rm
2 q R2

1 1 6 1
2 2 18 5

3

3 3 26 27
13

4 4 32 39
16

5 5 56 99
28

6 6 80 171
40

7 8 92 219
46

8 9 122 354
61

9 10 146 474
73

10 11 170 606
85

11 12 178 654
89

12 13 202 810
101

13 14 250 1146
125
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TABLE II. The amplitude ratioQ and critical couplingKc for the various ranges of interaction studied
this paper. The numbers in parentheses denote the errors in the last decimal places. The results forRm

2 51 ~3D
nearest-neighbor Ising model! stem from Ref.@21#. The fourth column shows the estimates forKc obtained
with Q fixed at the value found in the same work~the error margins include the uncertainty inQ). For
comparison, the estimates forKc given in Ref.@1# are listed as well.

Rm
2 Q Kc Kc Kc @1#

1 0.6233~4! 0.2216546~10! 0.22171
2 0.6238~8! 0.0644223~5! 0.0644220~5! 0.06450
3 0.6233~8! 0.0430381~4! 0.0430381~4! 0.0432
4 0.6224~5! 0.03432668~12! 0.03432685~15!

5 0.6216~14! 0.01892909~7! 0.01892915~4!

6 0.621~3! 0.01307105~7! 0.01307111~3!

8 0.617~4! 0.01130202~8! 0.01130213~3!

9 0.608~10! 0.00844691~12! 0.00844703~4!

10 0.614~11! 0.00702798~9! 0.00702798~4!

11 0.61~2! 0.00601661~14! 0.00601663~5!

12 0.624~11! 0.00574107~7! 0.00574110~4!

13 0.618~8! 0.00504666~3! 0.00504666~2!

14 0.600~14! 0.00406419~4! 0.00406422~2!
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quality of the least-squares fits, followed the restrictionL
*R4 rather closely. Only for the outermost shells could th
criterion be slightly relaxed. Thus, the accuracy of the
results decreases considerably with increasing interac
range, because the finite-size data cover a much sm
range of system sizes, and all the accurate results for s
system sizes have to be excluded from the analysis.
least-squares fits were made using the finite-size expan
for Q given in Ref.@21#,

QL~K !5Q1a1~K2Kc!L
yt1a2~K2Kc!

2L2yt1•••

1b1Lyi1b2L2yi1•••, ~13!

whereK denotes the spin-spin coupling,Kc the critical cou-
pling, and theai andbi are nonuniversal~range-dependent!
coefficients. The exponentsyt and yi are the thermal and
leading irrelevant exponents, respectively. They are appr
mately given byyt51.587 (2) andyi520.82 (6) @21#,
where the latter exponent was kept fixed in all analys
Table II shows my resulting estimates forQ andKc . In the
first place, one notes that all systems belong, within the
tistical accuracy, to the 3D Ising universality class. The cr
cal couplings for the first three shells are in agreement w
the old series-expansion results of Domb and Dalton. In
der to improve the accuracy of the results, I have repeate
analyses withQ fixed.

The results of the finite-size analyses permit some a
tional tests of the scaling predictions of Refs.@3,4#. Indeed,
the range dependence of the thermal coefficienta1 in Eq.
~13! should take the same form as the first argument of
universal scaling functions~4! and ~5!. Upon expansion of
such a scaling function one finds a temperature-depen
argument of the form atLytR22(2yt2d)/(42d)'2a@(K
2Kc)/Kc#L

ytR22(2yt2d)/(42d), where a is a constant tha
does not depend onR. Thus a152aR22(2yt2d)/(42d)/Kc

;R22(2yt2d)/(42d)Rd;R2.652;q0.884. Figure 1 showsa1 as a
function of the coordination numberq. Both a curve;q0.884

and a reference line with slope 1 are shown; evidently
t
n

ler
all
he
on

i-

s.

a-
-
h
r-
all

i-

e

nt

e

former describes the numerical data very well. Deviations
relatively smallq are not disturbing, since the RG predi
tions are only valid in the limit of large interaction range
and the small-q data may also exhibit some lattice effects

Of particular interest is also the range dependence of
coefficientb1 in Eq. ~13!, because this coefficient is propo
tional to (u2u* )/u* , whereu is the coefficient of thef4

term in the LGW Hamiltonian andu* is its fixed-point value
@22#. As such,b1 yields information on theR dependence of
the size and sign of the corrections to scaling that appea
the Wegner expansion@23#. This expansion describes th
singular corrections to the asymptotic temperature dep
dence of thermodynamic quantities close to the critical po
For example, ifu/u* .1 the leading coefficient in the ex
pansion for the susceptibility will have a negative sign, a
hence the susceptibility exponentg will approach the Ising
value fromabove, cf. also Ref.@24#. On the other hand, ifu
lies between the Gaussian and the Ising fixed point, i.e

FIG. 1. The leading thermal coefficient in the finite-size expa
sion for the amplitude ratioQ, as a function of coordination num
ber. The dashed curve shows the RG prediction~valid in the large-
q limit ! of Ref. @4#. In order to appreciate the quality of this pre
diction, a linearq dependence is shown as well.
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,u/u*,1, the sign of the first Wegner correction will b
positive andg will approach the Ising value from below. I
order to extract theR dependence ofu from the coefficient
b1, the RG scenario of Ref.@4# has to be reconsidered. It ca
be shown that in the large-R limit u5u0 /R4. Becauseu0
will exhibit a remaining, weakR dependence for smallR, I
write it asu0(R). The first part of the RG transformation
just a scale transformation in the neighborhood of the Ga
ian fixed point, which cancels the factor 1/R4 in u. The f4

coefficient can now be written asu0(R)5u* 1@u0(R)
2u* #, which close to the Ising fixed point scales asu0

→u085u* 1@u0(R)2u* #LyiR24yi /(42d) @4#. Thus the coef-

ficient b1 in Eq. ~4! is equal to c@ ū(R)21#R24yi /(42d),
whereū(R)[u0(R)/u* , andc is a nonuniversal proportion
ality constant. For largeR, ū(R) should go to a finite con-
stant, and henceb1 is expected to be proportional t
R24yi /(42d) in this limit. Just as for most other quantities,
is difficult to accurately determineb1 for large interaction
ranges, because the small system sizes have to be om
from the analysis. Nevertheless, the results shown in Fi
appear to be well compatible with the predictedR depen-
dence, withc@ ū(`)21#'20.14 ~the latter estimate relie
on the assumption that the asymptotic limit has actually b
reached for the largest ranges shown in the figure!. Unfortu-
nately, no estimate foru0(R) for either R51 ~nearest-
neighbor Ising model! or any otherR is known to the author,
so that the overall constantc @which would have permitted
the calculation ofu0(R) from b1(R)# cannot be determined
~cf. also Ref.@25#!.

On the other hand, an estimate of the interaction ra
whereū(R)51 does not depend onc, and so it can be pre
dicted with a reasonable accuracy that this condition is
filled at R2'1.56. The interest of this point lies in the fa
that the leading corrections to scaling should vanish th
which in principle allows a much more accurate determi
tion of critical properties from numerical simulations. Th
approach was used for the first time in Ref.@21#, where,
among others, a spin-1

2 model with nearest-neighbor cou
pling Knn and third-neighbor couplingK3n was simulated.

FIG. 2. Range dependence of the leading irrelevant field, cf.
second argument on the right-hand side of Eq.~4!. Note that the
result forR51 is not shown, because it has the opposite sign.
dashed line represents the asymptotic expressionb1}R24yi /(42d),
as discussed in the text.
s-

ted
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The ratioK3n/Knn was set to 0.4, which in hindsight prove
to be somewhat too strong for fully suppressing the lead
corrections to scaling. A newer estimate yieldedK3n/Knn
50.25 (2) as an optimal choice@26#. Further studies of
these systems were presented in Ref.@27#, where the cou-
pling constant ratio was systematically varied in order
eliminate the leading finite-size corrections. This lead to
estimate ofK3n/Knn'0.27. Both estimates turn out to be
quite good agreement with my prediction forgeneral inter-
action profiles. Indeed, as follows from Eq.~12!, an effective
interaction rangeR251.56 can be obtained by, e.g., neare
neighbor and next-nearest-neighbor interactions w
K2n/Knn50.64 or by nearest and third-neighbor interactio
with K3n/Knn50.29. This also explains the finding of Re
@21# thatK2n had to be chosen much larger thanK3n to reach
the same effect.

In this context it is of interest to review some serie
expansion results for the leading correction amplitudes
the magnetization, the susceptibility, and the correlat
length on simple cubic~sc!, body-centered-cubic~bcc!, and
face-centered-cubic~fcc! lattices. Liu and Fisher@22# con-
cluded that the leading correction amplitudes arenegativefor
the sc and bcc lattices, and gave various arguments that
also holds for the fcc lattice. Furthermore, they argued t
these amplitudes should vanish monotonically with coor
nation number (q56, 8, and 12, respectively!. This is indeed
confirmed by the fact that the data in Fig. 2monotonically
approach the predicted asymptoticR dependence, apart from
statistical scatter. However, from the fact that for the sc
tice with q518 (R25 5

3 ) the finite-size corrections have a
ready changed sign, it would be expected that the correc
amplitudes for the fcc lattice are close to zero. In contra
both the results of George and Rehr@28# and Liu and Fisher
@29# ~see Table III! exhibit a relatively weak variation with
coordination number. On the basis of these results one wo
certainly expect the leading corrections to vanish at mu
higher coordination numbers. Thus I conclude that, ap
from the dependence onq ~or R), the value ofu has a rather
strong dependence on the lattice structure as well. For c
pleteness, it may be remarked that the analyses of the M
Carlo data for the magnetization density and the suscept

e

e

TABLE III. The leading correction amplitudes appearing in th
Wegner expansion for the magnetization (T,Tc , am), the mag-
netic susceptibility (T.Tc , ax) and the squared correlation leng
(T.Tc , aj2), for three different lattice structures. The results f
am were taken from Ref.@29#, and the results forax andaj2 from
Ref. @28#. The ~slight! nonmonotonicity as a function of coordina
tion number in the latter two quantities, already noted in Ref.@22#,
is probably not significant, and also appears to depend on
adopted choice for the susceptibility exponentg ~the present results
correspond tog51.237). The results foram correspond to the
somewhat too high valueb50.3305, which can probably accoun
for the difference with the resultam'20.203 ~for the sc lattice!
obtained in Ref.@38#.

sc (q56) bcc (q58) fcc (q512)

am 20.256 20.240 20.234
ax 20.108 20.119 20.114
aj2 20.363 20.217 20.222
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ity have revealed the same monotonicR dependence of the
leading correction amplitude as that of the quantityb1 dis-
cussed above.

IV. RANGE DEPENDENCE AT CRITICALITY

A. Critical temperature

The estimates for the critical coupling as given in Table
can in principle be used to verify the predictions for the sh
of the critical temperature. Because lattice effects are
relatively strong for the interaction ranges studied here,
coordination numberq, appearing in, e.g., Eq.~8!, cannot be
used directly. It is expected that these lattice effects dis
pear when theeffectiveinteraction rangeR is used instead
Thus the predicted shift is rewritten as

Tc
21[qKc511

c0

R3
1

c1

R5
1

c21c3 ln R

R6
1•••, ~14!

where I have used the inverse critical temperature to conf
to the earlier literature. Unfortunately, it turns out that ev
in terms ofR the numerical data exhibit remarkably stron
scatter forRm

2 <10, making it impossible to obtain a sensib
fit for the smaller interaction ranges. On the other hand,
Rm

2 .10, Eq. ~14! describes the data very well. Because
the small variation of the lnR term over the fit range, it was
not possible to discern the coefficientsc2 andc3. Thus I have
omitted c2 altogether, which implies that this coefficient
absorbed into an effective value ofc3. The resulting fit
yielded the valuesc050.498 (2), c1525.7 (7), andc3
57.1 (9). Clearly, the last two estimates suffer from th
fact that~for the available values ofR) the last two terms in
Eq. ~14! lie quite close. Thus it cannot be excluded that t
high values ofc1 and c3 are partially caused by a mutua
cancellation, and that apart from the quoted statistical er
there is a considerable systematic error. Nevertheless, as
be seen below, the accuracy of the resulting expressio
sufficient to obtain rather precise estimates for systems w
larger interaction ranges. In fact, if the results forRm

2 59 and
10 are also included in the least-squares fit, and the la
effects are simply ignored, an essentially phenomenolog
interpolation formula is obtained, which for larger rang
turns out to agree very well with the first fit.

In Refs. @14,2#, series-expansion estimates are given
the coefficientsc0 andc3 in Eq. ~14!. In terms of an expan-
sion in q, Dalton and Domb found the value 4.46 for th
leading coefficient~confusingly, in later work@1,30# the
value 3.5 was quoted! and for the prefactor of the logarithm
Thouless obtained22000/27'274.1. To compare thes

values to c0 and c3, I write q11' 4
3 pRm

3 ' 4
3 p( 5

3 )3/2R3

'9.013R3. This yieldsc050.495 andc3522.74. In view of
the various approximations that have been made, the ag
ment for c0 is truly remarkable. Because of the abov
mentioned cancellation effects and because of the omis
of c2 in the fit, a sensible comparison forc3 is not possible.
However, we note that Thouless also found a relatively h
value forc3. Figure 3 shows the various predictions for t
shift of the inverse critical temperature.
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B. Magnetization density

In the Monte Carlo simulations, I have sampled the ab
lute magnetization densitŷumu&. The dependence of thi
quantity on bothL andR is given by Eq.~4!, from which the
following finite-size expansion can be derived,

mL~K,R!5Lyh2d$d0~R!1d1~R!@K2Kc~R!#Lyt1d2~R!

3@K2Kc~R!#2L2yt1•••1e1~R!Lyi1•••%.

~15!

For each single value ofR, I have fitted the numerical data t
this expression. The critical couplings obtained from th
analysis are in agreement with those shown in Table II. T
corresponding estimates foryh are listed in Table IV. The
slight tendency of the estimates to decrease with increa
R, as well as the increasing uncertainties, can be expla

FIG. 3. Numerical results for the inverse critical temperatu
normalized by the mean-field critical temperature, as a function
the inverse squared interaction range, together with the se
expansion results of Dalton and Domb@14# and Thouless@2#. The
dashed and dotted lines indicate the results of the least-square
discussed in Sec. IV A, where the dotted line is the phenomenol
cal description in which lattice effects have been ignored.

TABLE IV. The magnetic exponentyh and the critical ampli-
tude d0(R) of the absolute magnetization density as a function
interaction range. The estimates foryh in the third column have
been obtained withKc fixed at their best values given in Table I
whereas the critical amplitudes have been obtained withyh fixed at
its 3D Ising value.

Rm
2 yh yh d0(R)

2 2.479~2! 2.479~1! 0.9674~5!

3 2.479~2! 2.481~1! 0.8933~6!

4 2.475~5! 2.479~1! 0.8424~4!

5 2.477~4! 2.480~1! 0.7269~5!

6 2.476~6! 2.483~2! 0.6716~7!

8 2.472~7! 2.484~3! 0.6415~9!

9 2.46~2! 2.480~3! 0.5895~10!

10 2.47~2! 2.478~3! 0.5622~10!

11 2.47~2! 2.471~5! 0.5395~14!

12 2.53~4! 2.485~6! 0.5335~20!

13 2.47~2! 2.480~5! 0.5128~16!

14 2.463~15! 2.475~4! 0.4845~17!
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from the requirement that the smallest system size inclu
in the analysis must increase withR. When the analyses wer
repeated with the critical couplings fixed at the best value
Table II, the agreement of the estimates foryh ~also shown in
Table IV! with the 3D Ising valueyh52.4815 (15)@21# was
even better. Thus, this confirms the expectation that all th
systems belong to the Ising universality class. The criti
amplitudesd0(R) can be used to extract the leading ran
dependence of the magnetization density. In order to m
mize the accuracy in these amplitudes, the results show
Table IV were obtained with the exponentsyh andyt fixed at
their Ising values~but the critical couplingKc was included
as a free parameter!. A fit of d0(R) to the form d0(R)
5dRx for the largest three values ofR yielded x5
20.87 (5), somewhat~although not significantly! smaller
than the predicted value x5(3d24yh)/(42d)5
20.926 (6). This shows that the asymptotic regime, whe
higher-order corrections can be neglected, has not yet b
reached. In general, the corrections are powers ofR22 @4#:

d0~R!5dRxS 11
A1

R2
1

A2

R4
1••• D . ~16!

Expression~16! with one correction term allowed me to ob
tain a very acceptable fit (x2/NDOF'0.6) for all data points
with 2<Rm

2 <14 and yieldedx50.923 (5), in excellent
agreement with the RG prediction of Ref.@4#. Figure 4
shows the MC results ford0(R) together with the asymptotic
range dependence and the full fit to the renormalization
pression.

C. Susceptibility

At criticality, the magnetic susceptibility is directly pro
portional to the average square magnetization. Thus, I h
fitted the Monte Carlo data, for each interaction range se
rately, to an expression of the form

xL~K,R!5s01L2yh2d$p0~R!1p1~R!@K2Kc~R!#Lyt

1p2~R!@K2Kc~R!#2L2yt1•••

1q1~R!Lyi1•••%, ~17!

FIG. 4. Range dependence of the critical finite-size amplitude
the magnetization density, together with the predicted asympt
range dependence~dashed line! and a fit of all the data points to th
renormalization-group prediction~dotted curve!.
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where the additive constants0 originates from the analytic
part of the free energy. In the further analysis, this const
has been set to zero, because it tends to interfere with
leading irrelevant termq1(R)Lyi. Just as for the absolut
magnetization density, I list estimates for the magnetic ex
nent yh ~Table V!. Although, as expected, the uncertain
increases withR, one observes that all estimates agree w
the Ising value. Also the critical couplings agree with tho
obtained from the fourth-order amplitude ratio and^umu&.
Thus I have repeated all analyses withKc fixed; the corre-
sponding results foryh are shown in Table V as well. Fi
nally, I have fixed the magnetic exponent atyh52.4815~but
includedKc as a free parameter! in order to obtain accurate
estimates forp0(R) ~Table V!. Fitting a straight linepR2x to
the last three values yielded a slope21.73 (9), which is
consistent with the prediction21.852 @Eq. ~5!#. A fit for-
mula with one additional correction term,pR2x(11bR22),
allowed the inclusion of several more data points and yield
x521.92 (11). Both fits and the numerical data are sho
in Fig. 5.

D. Connected susceptibility

In principle, theconnectedsusceptibility, given by

x̃5Ld ^m2&2^umu&2

kBT
, ~18!

can be treated in the same way as the absolute magnetiz
density and the susceptibility. The main drawback of t
quantity, being the difference of two fluctuating quantities,
that its statistical accuracy is relatively poor. Neverthele
the magnetic exponents extracted from the numerical d
for the individual interaction ranges are consistent with
Ising value, and the finite-size amplitudes can be used
determine the range dependence of the connected susc
bility. As shown in Ref.@8#, knowledge of this dependence
very useful to determine the thermal crossover curve for

f
ic

TABLE V. The magnetic exponentyh and the critical amplitude
p0(R) of the magnetic susceptibility as a function of interacti
range. The estimates foryh in the third column have been obtaine
with Kc fixed at their best values given in Table II, whereas t
critical amplitudes have been obtained withyh fixed at its 3D Ising
value. The data point forRm

2 51 is taken from Ref.@21#.

Rm
2 yh yh p0(R)

1 1.5580~15!

2 2.479~1! 2.479~1! 1.1620~7!

3 2.481~6! 2.484~3! 0.9865~32!

4 2.478~6! 2.484~2! 0.8752~12!

5 2.481~8! 2.481~3! 0.6518~18!

6 2.478~13! 2.478~12! 0.5534~35!

8 2.484~14! 2.480~2! 0.5105~16!

9 2.46~3! 2.476~9! 0.4343~12!

10 2.46~2! 2.474~4! 0.3951~15!

11 2.46~2! 2.47~1! 0.3653~16!

12 2.48~2! 2.481~6! 0.3564~24!

13 2.46~2! 2.484~5! 0.3297~16!

14 2.45~4! 2.477~6! 0.2943~23!



u
th
g.
G
-
he

ng
ic
th

e
b

de

to

tion
ion
are
ys-
er-
ral-

ver

er
re-
for

ize
t can
. III
,

c-

e-
ent
pe
e

a

nt
e
or-
ons

be
all
vent
ver
e
the
this

sity

s as

of a
d

e-

o
ot
e

d
d
t

n

PRE 59 5005CRITICAL PROPERTIES OF THE THREE- . . .
susceptibility ~which for T,Tc is represented byx̃) from
data for differentR, because it makes it possible to divide o
the subleading range dependence of this curve. Rather
giving the full details of the analysis, I restrict myself to Fi
6, which shows the critical amplitudes together with the R
prediction fitted to it. Instead ofx̃, the so-called scaled sus
ceptibility kBTx̃ is often considered. It has been noted for t
two-dimensional case@8# that the latter quantity exhibits
considerably stronger deviations from the asymptotic ra
dependence, which are caused by the shift of the crit
temperature. Figure 6 confirms that this also holds for
three-dimensional case.

V. FINITE-SIZE CROSSOVER

A. General considerations

As stated in Sec. I, the critical properties of th
equivalent-neighbor models obtained in Sec. IV can now
used to find the finite-size crossover scaling functions

FIG. 5. Range dependence of the critical finite-size amplitude
the magnetic susceptibility, together with the predicted asympt
range dependence~dashed line! and a fit of the data points to th
renormalization-group prediction~dotted curve!.

FIG. 6. Range dependence of the critical finite-size amplitu
r 0(R) of the connectedsusceptibility, together with the predicte
asymptotic range dependence and a fit of the data points to
renormalization-group prediction. Also, the frequently-usedscaled
susceptibility is shown, which clearly exhibits stronger deviatio
from the asymptotic range dependence.
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scribing the crossover from a finite mean-field-like system
a finite Ising-like system atT5Tc . A detailed description of
this phenomenon was given in Ref.@8#. Qualitatively this
crossover can simply be understood from the observa
that systems with a linear size of the order of the interact
range are essentially mean-field-like systems, which
turned into systems with a short-range interaction if the s
tem size grows beyond the interaction range. RG consid
ations have shown that the crossover is ruled by a gene
ized Ginzburg parameterG[LR24/(42d), so that the mean-
field regime corresponds toG!1 and the Ising regime to
G@1. The expression forG was also obtained in Ref.@31#.
It is numerically not feasible to observe the entire crosso
regime in a system with fixedR by merely varying the sys-
tem size, since it spans several decades in the parametG.
Thus I construct the crossover curve by combining the
sults for various interaction ranges, just as has been done
the two-dimensional case in Ref.@8# and for the three-
dimensional thermal crossover in Ref.@10#. Since it turns out
that forL&20 the curves are affected by nonlinear finite-s
effects, the smallest value of the crossover parameter tha
be reached with the interaction ranges studied in Secs
and IV is 20/(9.168)2'0.24. The true mean-field regime
however, is only reached formuch smaller G5O(1024).
Thus, I have carried out simulations for systems with effe
tive interaction ranges up toR25323.81 (Rm

2 5540), corre-
sponding to coordination numbers as large asq552 514.
Evidently, the Monte Carlo algorithm introduced in Ref.@5#
comes to its full glory here: The simulation of thre
dimensional systems with so many interactions pres
would not have been feasible with either a Metropolis-ty
algorithm or a conventional cluster-building algorithm. Th
actual crossover curves shown below are obtained from
combination of the data for 2<Rm

2 <14, with system sizes
betweenL520 and 200, and additional data for 20 differe
interaction ranges 18<Rm

2 <540. For the latter systems, th
critical coupling was determined using the extrapolation f
mula discussed in Sec. IV A, and subsequently simulati
were carried out for 20<L<40 at each single value ofRm

2 .
An additional complication is formed by the regimeG

@1. Whereas this part of the crossover curve can easily
reached by simulating large system sizes with very sm
interaction ranges, higher-order range dependences pre
the direct use of these data for the construction of crosso
curves. It was recognized in Ref.@8# that these are the sam
corrections that are responsible for the deviations from
asymptotic range dependence in Figs. 4, 5, and 6, so that
effect can be removed by dividing the magnetization den
by the factor in brackets in Eq.~16! and the other quantities
by the corresponding counterparts of this factor.

B. Magnetization density

As follows from Eq.~4!, the magnetization densitŷumu&
at criticality is proportional toLyh23 in the Ising regime. The
prefactor depends on the interaction range and scale
R924yh. On the other hand,̂umu& is independent ofR in the
mean-field regime and just scales asN21/4}L23/4. If the
crossover behavior can indeed be described in terms
single variableG5L/R4, a data collapse should be obtaine
for ^umu&L3/4. In the mean-field regime, this quantity is ind
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pendent ofG, and in the Ising regime it scales asGyh29/4.
The resulting curve for this quantity is shown in Fig. 7. It
immediately clear that the data lie on a perfectly smo
curve, confirming that the crossover is indeed ruled by
generalized Ginzburg parameterG. The correction paramete
C@m#511A1R22 refers to the higher-order range depe
dences which have been divided out, in order to make
data for smallR collapse on the same~Ising! asymptote. For
large interaction ranges this correction factor rapidly a
proaches unity. In the graph I have included a line with slo
yh29/450.2315, indicating the dependence onG in the
Ising regime. Whereas no exact result exists for the fin
size amplitude of this asymptote, it is possible to calculate
counterpart in the mean-field regime, where it is found t
@8#

^umu&L3/45121/4

GS 1

2D
GS 1

4D 1OS 1

L3/2D . ~19!

Thus ^umu&L3/4 should approach 0.909 891 . . . in the limit
G→0. One indeed observes that the leftmost data point
the graph lie already very close to this limit. Together w
the collapse of all numerical data onto a single curve, t
also indicates that the simulations for systems with la
interaction ranges indeed have been carried out at the co
temperatures; i.e., the extrapolation formula@Eq. ~14!# has
yielded sufficiently accurate estimates for the critical te
peratures for 18<Rm

2 <540. For the sake of clarity, it is
stressed that for each single value ofR, the simulations of the

FIG. 7. Finite-size crossover curve for the absolute magnet
tion density^umu& multiplied by an appropriate power of the syste
size. For very small interaction ranges~rightmost data points!,
higher-order range dependences have been divided out, as indi
by the correction factorC@m# ~for a more extensive discussion o
this topic, the reader is referred to the text!. The crossover curve
spans at least four decades in the parameterL/R4 and systems with
a coordination number up toq552514 had to be employed to full
reach the mean-field limit. The perfect collapse of all interact
ranges and system sizes confirms the validity of the crossover
scription in terms of a single parameter. The dashed lines denot
exact mean-field limit~MF! and the Ising asymptote with slopeyh

29/4.
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finite systems have been carried out at the critical temp
ture of a system with that particular interaction range in
thermodynamic limit.

As a side remark, I note that a much more sensitive
scription of the crossover can be formulated in terms of
called ‘‘effective exponents.’’ Originally introduced by Kou
vel and Fisher@32#, these have found widespread use
experimental analyses~see, e.g., Ref.@24#! and more recently
also in the analysis of numerical results; cf. Refs.@7,8,10,25#.
Although these effective exponents are usually defined
terms of the logarithmic derivative with respect to the r
duced temperature, an effective magnetic exponent can
introduced as

yh
eff[

9

4
1

d ln~^umu&L3/4!

d ln~L/R4!
. ~20!

In the mean-field regime,yh
eff doesnot approach the classica

value yh511d/2, but the corresponding valueyh* 53d/4.
This directly related to the violation of hyperscaling in th
mean-field regime, and can be explained from the danger
irrelevant-variable mechanism@33–35#. This is clearly illus-
trated in Fig. 8, where a smooth interpolation between
value 9/4 and the Ising value 2.4815 is found.

C. Susceptibility

In a very similar way, the crossover function for the ma
netic susceptibilityx at criticality can be obtained. Since it i
proportional to the average square magnetization densit
is independent ofR in the mean-field regime. In the Isin
regime, it scales asL2yh23R2(924yh), so that the quantity
xL23/2 can be represented as a function of the parameteG.
Indeed, upon application of the range-dependent correc
factor C@x#, which has the same form as the factor betwe
brackets in Eq.~16!, a perfect data collapse is obtained; s
Fig. 9. The total crossover curve spans approximately f
decades inG, just as for the magnetization density. The exa

mean-field result expected here isxL23/2→A12G( 3
4 )/G( 1

4 )
51.170 829 . . . , which is indeed well reproduced for th
data in the regimeG→0. No nonlinear finite-size effects ca
be observed, suggesting that these are~on the scale of the
graph! negligibly small forL>20.

a-

ted

e-
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FIG. 8. The crossover behavior of the effective magnetic ex
nent as a function of the finite-size crossover parameter.
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D. Fourth-order amplitude ratio

Rather than reproducing crossover curves for the c
nected susceptibility or the spin-spin correlation functio
which are very similar to those presented in Secs. V B a
V C, I prefer to pay some attention to the crossover of
amplitude ratioQ. This quantity, which is just a disguise
form of the fourth-order cumulant introduced by Binder@36#,
attains trivial limiting values on either side of the critic
temperature, but takes a nontrivial universal value at critic
ity. Its Ising limit QI50.6233 (4) has already played a
important role in Sec. III B, where this parameter was used
determine the location of the critical point. The critical val
in the mean-field limit is known exactly, QMF
50.456 946 58 . . . @37,5#. Indeed, the full crossover from
QMF to QI as a function ofL/R4 can be observed, as illus
trated in Fig. 10. No correction term has been applied h
because it may be expected that the correction terms
^m2&2 and^m4& cancel each other to a large extent, cf. Fig
in Ref. @8#. The less smooth appearance of the crosso
curve compared to that for the magnetization density and
susceptibility can mainly be attributed to several other
fects. Apart from the much larger scale of the graph, it tu
out that nonlinear finite-size effects are considerably stron
for Q than for other quantities. Further deviations are cau
by imperfections in the estimates forTc for large R, which
on this scale become visible for the larger system sizes.

VI. CONCLUSIONS

In this paper, I have presented a detailed determinatio
the critical properties of the three-dimensional equivale
neighbor model, which is a generalization of the spin-1

2 Ising
model, on a cubic lattice. Monte Carlo simulations have b
carried out for systems with up to 13 neighbor shells, cor
sponding to 250 equivalent neighbors. All systems have b
shown to belong to the 3D Ising universality class. An ana

FIG. 9. Finite-size crossover curve for the magnetic suscept
ity multiplied by an appropriate power of the system size. For v
small interaction ranges~rightmost data points!, higher-order range
dependences have been divided out, as indicated by the corre
factor C@x#. Just as in Fig. 7, systems with a coordination num
up to q552 514 had to be employed to reach the mean-field li
fully. The perfect collapse of all interaction ranges and system s
confirms the validity of the crossover description in terms o
single parameter. The dashed lines denote the exact mean-field
~MF! and the Ising asymptote with slope 2yh29/2.
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er
e
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en
-

sis of these critical properties has yielded a coherent pic
of their dependence on the interaction rangeR. The shift of
the critical temperature as a function of interaction range
which various mechanisms appear to contribute, has b
determined and compared to theoretical predictions. I h
shown that the range dependence of the critical finite-s
amplitudes of the magnetization density and the magn
susceptibility conform very well to the theoretically expect
behavior. Also, renormalization-group predictions for t
variation of the finite-size corrections with interaction ran
have been confirmed, and an estimate has been obtaine
the effective interaction range at which the leading finite-s
corrections should vanish. The numerical results support
expectation that thef4 coefficient in the Landau-Ginzburg
Wilson Hamiltonian varies monotonically with interactio
range~or coordination number!, and scales for large range
as 1/R4. Further Monte Carlo results for systems with ve
large coordination numbers could be obtained by mean
an efficient simulation scheme. These results enabled
mapping of the full finite-size crossover curves for seve
quantities, including the magnetic susceptibility and t
fourth-order amplitude ratio. All these curves can be d
scribed by a single crossover parameterL/R4, and interpo-
late smoothly between mean-field and Ising-like behav
Also, the finite-size crossover function for the effective ma
netic exponentyh has been obtained.

A very interesting and experimentally most relevant e
tension of the work presented here is the case ofthermal
crossover, for which some first results have appeared in
@10#. A more extensive analysis of this case will be presen
elsewhere@9#.
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FIG. 10. Finite-size crossover curve for the amplitude ratioQ. It
smoothly interpolates between the mean-field limit (L/R4!1) and
the Ising limit (L/R4@1).

l-
y

ion
r
it
es

mit



E

r

.

t

S.

cs

d

12.

al

s.

5008 PRE 59ERIK LUIJTEN
@1# C. Domb and N. W. Dalton, Proc. Phys. Soc. London89, 859
~1966!.

@2# D. J. Thouless, Phys. Rev.181, 954 ~1969!.
@3# K. K. Mon and K. Binder, Phys. Rev. E48, 2498~1993!.
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