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Crossover scaling in two dimensions
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We determine the scaling functions describing the crossover from Ising-like critical behavior to classical
critical behavior in two-dimensional systems with a variable interaction range. Since this crossover spans
several decades in the reduced temperature as well as in the finite-size crossover variable, it has up to now
largely evaded a satisfactory numerical determination. Using a dedicated Monte Carlo method, we could obtain
accurate results for sufficiently large interaction ranges. Our data cover the full crossover region both above
and below the critical temperature and support the hypothesis that the crossover functions are universal. Also
the so-called effective exponents are discussed and we show that these can vary nonmonotonically in the
crossover region.@S1063-651X~97!02512-9#

PACS number~s!: 64.60.Fr, 75.40.Cx, 75.10.Hk, 05.70.Fh
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I. INTRODUCTION

The crossover from Ising-like to classical critical behav
has attracted renewed attention in recent years. This cr
over behavior occurs in many thermodynamic systems, s
as ionic solutions, simple fluids, fluid mixtures, and polym
mixtures. The Ginzburg criterion@1# states that sufficiently
close to the critical point these systems exhibit critical ex
nents belonging to the three-dimensional~3D! Ising univer-
sality class. At larger distances from the critical point, b
still within the critical region, classical~mean-field-like!
critical exponents are observed. Although this appears to
a well-established picture, the precise nature of the cross
between these two universality classes is still subject to
vestigation. For example, Anisimovet al. recently claimed
@2# to have observed an ‘‘effective’’ susceptibility expone
that variednonmonotonicallyfrom its classical valuegMF
51 to its Ising valueg I'1.24 when the critical point was
approached. Later, the possibility of such behavior within
critical domain was questioned by Bagnuls and Bervilli
see Refs.@3,4#. On the other hand, Fisher has argued@5# that
nonmonotonic variation of effective critical exponents is n
necessarily an indication of nonuniversal behavior. Ot
questions concern the size of the crossover region, whic
expected to span several decades in the crossover var
@6#, and the size of the temperature region aroundTc , within
which Ising-like behavior is observed@7#. Until now it has
turned out to be very difficult to accurately observe the f
crossover region in numerical simulations. A major effo
has been undertaken in Ref.@8# for three-dimensional poly-
mer mixtures, where crossover occurs as a function of
polymer chain length. However, despite chain lengths of
to 512 monomers, the results did not span the full crosso
region. For this reason, Mon and Binder@9# turned their
attention to the two-dimensional Ising model with an e
tended range of interaction, where a crossover from Isi

*Electronic address: erik@tntnhb3.tn.tudelft.nl
561063-651X/97/56~6!/6540~17!/$10.00
r
ss-
ch
r

-

t

be
er
-

e
;

t
r
is
ble

l
t

e
p
er

-
-

like to classical critical behavior occurs when the rangeR of
the spin-spin interactions is increased~suppressing the criti-
cal fluctuations!. In two dimensions not only one can acce
larger interaction ranges, but also both asymptotic regim
are known exactly and the variation of the critical expone
is considerably larger than in the crossover from 3D Isin
like critical behavior to classical critical behavior. Mon an
Binder derived the~singular! R dependence of the critica
amplitudes of scaling functions and carried out Monte Ca
simulations to verify these predictions numerically. Even
these two-dimensional systems, the mean-field regime tur
out to be only barely reachable.

In a recent paper@10# we rederived the predictions o
Mon and Binder from renormalization theory and also o
tained theR dependence of various corrections to scalin
such as the shift of the critical temperature with respec
the mean-field critical temperature. Furthermore, larger in
action ranges and system sizes were accessible to our
merical simulations thanks to a dedicated Monte Carlo al
rithm. This enabled us to actually verify the theoretic
predictions in two-dimensional systems. In this paper
show that the simulations presented in Ref.@10# allow a full
mapping of the finite-size crossover curves for various qu
tities. However, these curves describe thefinite-sizedepen-
dences of critical amplitudes, which~to our knowledge! have
not been observed experimentally. Therefore, we have
carried out simulations at temperatures farther from the c
cal temperature in order to observe thethermalcrossover of
these quantities. The results of these simulations, which
tially have been reported in an earlier paper@11#, are pre-
sented as well. The fact that in our model both the tempe
ture distance from the critical point and the interaction ran
can be varied turns out to be essential to observe the
crossover region.

The outline of the remainder this paper is as follows. A
ter a short recapitulation of the model under investigat
~Sec. II! we start in Sec. III with finite-size crossover scalin
We discuss the required system sizes and interaction ra
and obtain the crossover curves for the absolute magne
6540 © 1997 The American Physical Society
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56 6541CROSSOVER SCALING IN TWO DIMENSIONS
tion density, magnetic susceptibility, the spin-spin corre
tion function over half the system size, and the fourth-or
amplitude ratio. Thermal crossover scaling is treated in S
IV, where we consider the approach ofTc both in the sym-
metric phase (T.Tc) and in the state of broken symmet
(T,Tc). Again, crossover curves are obtained for the or
parameter and the susceptibility. The various aspects of t
curves are discussed in some detail. Graphs of the loga
mic derivatives of the crossover curves, which can be as
ciated with so-called effective critical exponents as measu
in experiments, are presented in Sec. V. In Sec. VI we
with a summary of our conclusions.

II. SHORT DESCRIPTION OF THE MODEL

Let us first briefly recall the model as it was introduced
Ref. @9#. This is a two-dimensional Ising system consisti
of L3L lattice sites with periodic boundary conditions. Ea
spin in the system interacts equally with itsz neighbors lying
within a distanceRm . This defines the coupling between tw
spinssi andsj at a distancer as

Ki j 5K~r ![H cRm
2d if r<Rm

0 if r .Rm .
~1!

In the absence of an external magnetic field the Hamilton
is

H/kBT52(
i

(
j . i

K~ ur i2r j u!sisj , ~2!

where the sums run over all spins in the system andr i de-
notes the position of spinsi . To suppress lattice effects w
use aneffectiveinteraction rangeR, defined as

R2[

(
j Þ i

~r i2r j !
2Ki j

(
j Þ i

Ki j

5
1

z(j Þ i
ur i2r j u2 with ur i2r j u<Rm .

~3!

For large ranges,R approaches the limiting valueRm /A2.

III. FINITE-SIZE CROSSOVER SCALING

A. General considerations

It has been shown by Binder and Deutsch@12# that cross-
over scaling can be combined with finite-size scaling by
cluding the dependence on the crossover variable in
probability distribution function of the order parameter. I
deed, just as crossover in the thermodynamic limit is
scribed as a function of the reduced temperature divided
the Ginzburg number, it can be described as the function
size-dependent crossover variableG in finite systems. In
Ref. @9# this crossover variable was derived asG
5LR24/(42d), whereL is the linear system size andd de-
notes the dimensionality. This also follows from the ren
malization treatment in Ref.@10#. In short, sufficiently close
to the Gaussian fixed point~i.e., for a sufficiently large in-
teraction rangeR) the critical behavior will be classical. In
terms of a renormalized Landau-Ginzburg-Wilson~LGW!
-
r
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Hamiltonian in momentum space, this implies that the co
ficient of thef4 term must be much smaller than that of th
f2 term, uL42d/R4!1 @cf. in particular Eq.~6! of Ref.
@10##, which again leads to the crossover parame
LR24/(42d), where for the moment we assume thatu is of
order unity.

In Ref. @10# we focused our attention on the critical finite
size amplitudes in the limit ofL→`. Here we will examine
the crossover in the corresponding data forfinite system
sizes. Since the crossover regime is expected@5,6# to span
several decades in the crossover variableG5L/R2, it is nu-
merically not feasible to observe both asymptotic regimes
merely varying the system sizeL while keeping the rangeR
fixed. Therefore, we construct the curve by combining
results for various values ofR; cf. Ref. @8#. Indeed, the Ising
regime (L/R2@1) is easily reachable, although the resu
for very small ranges do not conform well to the leadingR
dependence of the critical scaling functions@9# and are thus,
at first sight, not well suited for constructing the crossov
curve. The mean-field regime (L/R2!1), however, poses
more substantial problems. If the linear system sizeL is
made too small, the numerical results exhibit strong fini
size effects. Therefore,L must be at least of the order of th
interaction range. More precisely, boundary effects will o
cur for systems for whichL'Rm and the smallest possibl
value of the crossover variableG is roughly equal to
Rm /R2'A2/R. Thus large ranges are required to reach
regime whereG!1. In a conventional Monte Carlo algo
rithm, the efficiency of simulations rapidly decreases w
increasing interaction range. This limitation has been c
cumvented by applying a dedicated cluster algorithm, as
plained in Ref.@10#. Still, a problem remains. Namely, th
finite-size crossover scaling is validat the critical tempera-
ture. Any deviation from this temperature will lead to sy
tematic errors in the analysis. Since the~range-dependent!
critical temperatures are determined in the Ising limit, i.
from system sizesL.R2, large interaction ranges requir
very large system sizes for an accurate determination ofTc .
For example, the most efficient way to obtain data forG
'0.02 is to simulate a system withL5100 andRm5100
(R'70). However, an accurate determination ofTc(R
570) requires system sizes of at leastL55000, whereas we
have carried out simulations for system sizes up to 10
31000 lattice sites. This has been solved as follows. T
renormalization treatment in Ref.@10# predicts the form of
the function describing howTc(R) deviates from the mean
field critical temperature whenR varies. By fitting this func-
tion to the accurately determined critical temperatures in
previous study an expression is obtained forTc(R) from
which the critical temperatures for very large ranges can
calculated to a relatively high accuracy. The shift ofTc is
expressed by

Tc5Tc
MF1

a1

R2
@11a2lnR2#1

a3

R4
, ~4!

whereTc
MF51 and the last term is a higher-order correcti

omitted in Ref. @10#. A least-squares fit for 16&R2&70
(32<Rm

2 <140 in Ref. @10#! yielded a1520.267(6), a2

51.14(3), anda3520.27(3). Figure 1 shows the critica
temperatures and expression~4! with the appropriate coeffi-
cients.
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6542 56ERIK LUIJTEN, HENK W. J. BLÖTE, AND KURT BINDER
FIG. 1. Critical temperature as a function o
the inverse interaction range, together with t
renormalization expression~4! fitted to it.

FIG. 2. ~a! Finite-size crossover curve for th
absolute magnetization density multiplied by th
square root of the system size.~b! Same graph,
but now the range-dependent corrections p
dicted by renormalization theory have been d
vided out. The correction factor abbreviated b
C@m# stands for the factor in square brackets
Eq. ~6!. A perfect collapse is obtained for all sys
tem sizes and interaction ranges. Both the ex
mean-field limit ~indicated by ‘‘MF’’! and the
Ising asymptote with slope 3/8 are confirmed b
the data. In this and all following figures th
numbers in the key refer to values forRm

2 .
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56 6543CROSSOVER SCALING IN TWO DIMENSIONS
FIG. 3. Critical amplitude of̂ umu& and the
renormalization prediction fitted to it. This cor
rection factor is used in Fig. 2~b!.
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B. Absolute magnetization density

In the Ising regime, the absolute magnetization den
scales~at criticality! asymptotically aŝ umu&5L21/8d0(R),
where the critical amplituded0 is a function of R, d0
}R23/4. In the mean-field regimêumu& does not depend on
R, but is simply proportional toL21/2. When plotting^umu&
as a function ofG5L/R2 a data collapse is obtained if it i
multiplied by a factorLxR2(2x21). This resulting quantity is
proportional toGx21/8 in the Ising regime and toGx21/2 in
the mean-field regime. A suitable choice isx51/2 because
this yields a quantity that is still independent ofR in the
mean-field regime. Indeed, it is shown in the Appendix t
in a two-dimensional system in which all spin-spin intera
tions are equally strong

^umu&5121/4
G~ 1

2 !

G~ 1
4 !

1

AL
1OS 1

L3/2D ~5!

and ^umu&AL will thus approach 121/4G(1/2)/G(1/4)
50.909 890 588 . . . in thelimit of G→0. We remark that
our requirementL.A2R unambiguously relates the lim
G→0 to the mean-field (R→`) limit. In Fig. 2~a! we have
plotted the absolute magnetization density multiplied by
square root of the system size versus the crossover vari
Interaction ranges fromRm

2 52 to Rm
2 510 000 were in-

cluded, where the data forRm
2 55000 andRm

2 510 000~span-
ning the range 0.02&G&0.2) have been obtained at tem
peratures calculated from Eq.~4!: Kc(Rm5A5000)
56.3746(3)31025 and Kc(Rm5A10 000)53.184 91(9)
31025. The crossover curve evidently spans approximat
three decades inG. In the limit of G→0 it gradually ap-
proaches a horizontal line. ForG@1 the picture is not very
clear. The data points for each single value ofR lie on a
straight line with slope 3/8, corresponding to the Ising
ymptote, but the asymptotes only coincide for large ran
~cf. Fig. 4 in Ref.@9#!. The reason for this is that, as me
tioned above, for small ranges the critical amplitudes do
conform to the leadingR23/4 dependence. This can be cure
by invoking the renormalization treatment of Ref.@10#. In-
deed, the theory predicts the structure of the correction
the leadingR dependence of the critical amplitude,
y

t
-

e
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-
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d05b0R23/4F11
1

R2
~b11b2lnR2!G . ~6!

This ‘‘finite-range correction’’ is very similar to the shift o
the critical temperature in Eq.~4!, but originates from a dif-
ferent term in the renormalized LGW Hamiltonian. To illu
trate this correction graphically, we have reproduced Fig
from Ref.@10# and included the result of a least-squares fit
Eq. ~6! to the data; see Fig. 3. The curve clearly yields
excellent description of the critical amplitudes, even f
small ranges. We have used this fit to construct a clear cr
over curve for the magnetization density on which the d
for all values ofR collapse. To this end, all data are divide
by the correction factor in square brackets in Eq.~6!. The
result is shown in Fig. 2~b!. One observes that in the Isin
regime all data perfectly collapse on a common asymp
with slope 3/8. ForG small, the data indeed approach th
mean-field prediction~5!. The fact that atG'0.2 the data for
Rm

2 55000 and Rm
2 510 000 coincide with those forRm

2

572,100,140 confirms that the critical temperatures for
large ranges have been estimated accurately. The cent
the crossover region lies betweenG50.1 andG51.0, which
shows that the parameteru is indeed of order unity. Finally,
it is particularly encouraging that no remaining finite-si
effects, causing deviations from the curve, are visible in F
2~b!, despite the fact that the correction factor was calcula
in the L→` limit and hence does not compensate for su
higher-order finite-size effects.

C. Magnetic susceptibility

The procedure described above for the absolute magn
zation density can be applied to the magnetic susceptib
x, which we have calculated from the average square m
netization;x5Ld^m2&. At T5Tc , the susceptibility is in the
Ising regime proportional toL7/4R23/2 and in the mean-field
regime it scales proportionally toL. To obtain a data collapse
for x as a function ofG, one has to multiply the finite-size
data byLxR2(2x12), where a suitable choice is given byx
521. In the mean-field limit, x/L approaches
A12G(3/4)/G(1/4)51.170 828 66 . . . ~see the Appendix!.
As shown in Ref.@10#, the deviation from the leading rang
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FIG. 4. Finite-size crossover curve for th
magnetic susceptibility divided by the syste
size. The range-dependent correction factorC@x#
@the factor in square brackets in Eq.~7!# has been
divided out, as discussed in the text. Both t
mean-field limit and the Ising asymptote~slope
3/4) are confirmed by the data.
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dependence of the critical amplitude is very similar to that
the absolute magnetization density,

p05q0R23/2F11
1

R2
~q11q2lnR2!1

q3

R4G , ~7!

where now one additional higher-order correction is
quired. Therefore, we only show the resulting crosso
curve for the susceptibility after the data have been divid
by the correction factor in square brackets; see Fig. 4. Ag
both the mean-field asymptotic result and the Ising asym
tote ~slope 3/4) are clearly reproduced, with a perfect c
lapse for all ranges.

D. Spin-spin correlation function

Closely related to the magnetic susceptibility is the sp
spin correlation functiong(ur u). In our simulations we have
sampledg(L/2), which scales both in the Ising regime and
the mean-field regime asx/L2. Thus we obtain a data col
lapse by multiplying the finite-size data byLxR2(2x22), in
which we have setx51. After correcting for the higher-
order range-dependent corrections in the critical amplit
@which have the same structure as those in Eq.~7!# we obtain
the graph shown in Fig. 5. The full crossover curve can
f
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n,
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e

e

mapped and shows a close resemblance to that for the
ceptibility, including the approach of the asymptotic mea
field value. In the range 0.2&L/R2&1.0, the data do no
precisely coincide on a smooth curve. This is due to non
ear finite-size effects, which are, for the spin-spin correlat
function, apparently larger than for the absolute magnet
tion density or the magnetic susceptibility. We will pay mo
attention to these deviations when discussing the unive
amplitude ratio~see below!. It should be noted that the criti
cal amplitudes listed in Table V of Ref.@10# have to be
multiplied by a factor 221/450.840 896 42 . . . in order to
obtain the correct values.

E. Universal amplitude ratio

The amplitude ratioQL[^mL
2&2/^mL

4& is a size-dependen
quantity, which takes a universal valueQ in theL→` limit.
That is, it is calculated by taking the ratio of the square of
magnetization density and the fourth power of it in a fin
geometry and subsequently taking the limitL→`. For T
.Tc , Q approaches the Gaussian valueQ51/3 and forT
,Tc it approaches the maximum valueQ51. At criticality,
the amplitude ratio is known exactly in the mean-field ca
QMF50.456 946 58 . . . @13,14# and to a high accuracy in
the two-dimensional Ising model;QI'0.856 216(1)@15#. In
e
e
tor
s
it
FIG. 5. Finite-size crossover curve for th
spin-spin correlation function multiplied by th
system size. A range-dependent correction fac
~abbreviated asC@g#) has been divided out, a
discussed in the text. Both the mean-field lim
and the Ising asymptote~slope 3/4) are confirmed
by the data.
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56 6545CROSSOVER SCALING IN TWO DIMENSIONS
FIG. 6. Finite-size crossover curves for th
amplitude ratioQ[^m2&2/^m4&. ~a! shows the
curve without any additional corrections, where
in ~b! a range-dependent correction factorC@Q#
@see Eq.~8!# has been divided out. For small va
ues of the crossover variableL/R2 the mean-field
limit is reproduced and for large values ofL/R2

the Ising limit is approached. For a further dis
cussion see the text.
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Ref. @10#, QL(Kc) was plotted for a large interaction rang
(Rm

2 5140) as a function of the system size. The approach
the Ising value was clearly visible forL large, but for small
system sizesQ first decreased towardQMF and then started
to show strong nonlinear finite-size effects. Evidently, it is
better approach to construct the true crossover curve
Q(Kc) by plotting finite-size data forQ for various ranges
versus the crossover variable. This is shown in Fig. 6~a!.
Several remarks apply to this graph. First, one notes
L/R2 is indeed the appropriate crossover variable: A reas
able collapse is obtained for all values ofL andR. However,
some remarkable deviations from this scaling behavior
present, which are most clearly visible in the range
,L/R2,0.6, but also present aroundL/R2510. Similar ef-
fects were already observed in the spin-spin correlation fu
tion, but now the effects are much more pronounced beca
we have employed for the amplitude ratio a linear instead
a logarithmic vertical scale. These deviations are due to n
linear finite-size corrections, as can be seen clearly by zo
of

or

at
n-

re
2

c-
se
f

n-
-

ing in on the deviations; see Fig. 7. The data points forRm
2

55000 andRm
2 510 000 may serve as a reference for t

location of the ‘‘true’’ crossover curve. One observes that
each of the rangesRm

2 572, 100, and 140 the deviations from
this curve increase withdecreasingsystem size, which in-
deed shows that the effects are caused by finite-size co
tions. If the deviations had been caused by, e.g., an ina
rate determination of the critical temperature, the effe
would have increased with increasing system size. Unfo
nately, it is not easy to separate these corrections from
leading crossover behavior~except graphically!, unless the
full crossover function is known~which in turn would limit
the use of a numerical determination!. Of course this prob-
lem can be circumvented by determining the crossove
these values forG from systems with a larger system siz
and a larger interaction range. The deviations aroundL/R2

510 are caused by the same effect, but now for systems
small R. Although the amplitude ratio is more sensitiv
~even if one takes into account the difference in scale! to
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FIG. 7. Detailed view of Fig. 6~a! showing
the deviations from the crossover curve for ve
small system sizes.
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these finite-size effects than^m2&5x/L2 and^m4& individu-
ally ~the curve for the latter is not shown here, but
smoothness is comparable to that of the susceptibility!, Q is
less sensitive to corrections to the leading range depende
Indeed, for^m4& these corrections are again of the form@1
1R22(s11s2lnR2)1R24s3# andQ must thus be divided by

@11R22~q11q2lnR2!1R24q3#2

11R22~s11s2lnR2!1R24s3

. ~8!

The coefficientss1, s2, ands3 have been determined from
least-squares fit to the critical amplitudes of^m4& andq1, q2,
and q3 come from Eq.~7!. Figure 8 shows the correctio
factors for^m2&, ^m4&, andQ. Evidently, the latter factor~8!
is much closer to unity than the former two. Figure 6~b!
showsQL(Kc) divided by the correction factor~8!, which
indeed shows only slightly less scatter than the graph with
this correction factor. In particular, the deviations for t
larger ranges do not disappear.

IV. THERMAL CROSSOVER SCALING

A. General considerations

The finite-size crossover scaling studied in the preced
section is an intrinsic finite-size effect that is not observa
ce.

ut

g
e

in thermodynamic systems. For this reason it is importan
study its temperature-dependent counterpart as well. This
calledthermalcrossover, which was from a phenomenolog
cal scaling point of view already considered in Ref.@16#, is
of course closely related to finite-size crossover: In fin
systems crossover to mean-field-like behavior occurs w
the system sizehas been decreased to the appropriate po
of the interaction range~i.e., L;R4/(42d) or L;R2 for d
52), whereas in the temperature-dependent case this c
over occurs when the temperature distance to the crit
point is such thecorrelation lengthhas become of the orde
of an appropriate power of the interaction range. In the la
case, the precise crossover location is determined by
Ginzburg criteriont (42d)/2Rdu21'1, whereu is the coeffi-
cient of thef4 term in the LGW Hamiltonian. It should be
kept in mind that these considerations are valid onlywithin
the critical region, i.e., care must be exercised to keep t
reduced temperaturet[@T2Tc(R)#/Tc(R) sufficiently
small. When studying thermal crossover in practical simu
tions one has the additional complication that sufficien
close toTc the correlation length will always be bounded b
the finite system size, which is precisely the situation o
wants to avoid. So relatively large system sizes are requi

As follows from the Ginzburg criterion, the appropria
scaling variable in two dimensions istR2 and one can there
rs

t-
ed
is
FIG. 8. Range-dependent correction facto
C@m2#5C@x#, C@m4#, andC@Q# in ^m2&, ^m4&,
and Q, respectively, as determined by leas
squares fits to the critical amplitudes extract
from the Monte Carlo data. The line at height 1
drawn for reference. One observes thatC@Q# lies
very close to, although not exactly at, unity.
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TABLE I. Some properties of the additional ranges used to span the full thermal crossover regioRm
2

55000 has been included for completeness; it has only been used for the finite-size crossover scal
first three columns list the squared range of interactionRm

2 , the corresponding number of neighborsz, and the
squared effective range of interactionR2, respectively. In addition, the critical couplingKc as calculated from
Eq. ~4! and the mean-field approximation for the critical couplingKc

MF51/z are shown.

Rm
2 z R2 Kc Kc

MF

500 1580 99449
395 '251.770 6.379(2)31024 6.329113931024

1000 3148 394530
787 '501.309 3.1904(6)31024 3.176620131024

4000 12580 1259568
629 '2002.49 7.9594(5)31025 7.949125631025

5000 15704 9813759
3926 '2499.68 6.3746(3)31025 6.367804431025

10000 31416 6545445
1309 '5000.34 3.18491(9)31025 3.183091431025
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fore study thermal crossover effects by varying the inter
tion range as well. This is essential because of the follow
For small values ofR, t has to be made rather large to cro
over to classical critical behavior and it is possible that o
leaves the critical region before reaching the classical
gime. On the other hand, if one only studies systems w
large interaction ranges,t has to be made very small to ob
serve Ising-like critical behavior. However, for such sm
values oft extremely large system sizes are required to av
finite-size effects. Therefore, we have constructed, just a
Sec. III, crossover curves from results for various ranges.
have carried out simulations for the interaction ranges s
ied in Ref. @10# at temperatures further belowTc and also
generated data for the interaction rangesRm

2 5500, 1000,
4000, and 10 000. Table I summarizes some propertie
these systems. Simulations have been carried out dow
temperatures as low asT'0.5Tc . For the order paramete
crossover can only be studied in the phase of broken s
metry, but for the susceptibility we have also considered
symmetric (T.Tc) phase. Since in this phase no saturat
effects occur, much smaller interaction ranges suffice to s
the full crossover region, as we will show below.

B. Absolute magnetization density

As derived in Refs.@9,10#, the absolute magnetizatio
density scales, sufficiently close to the critical point,
^umu&}(2t)bR(2db2d)/(42d) (t,0), which for the two-
dimensional case yieldŝumu&}(2t)1/8R23/4. In the mean-
field regime, on the other hand, the magnetization densit
simply proportional to (2t)1/2. When plotted as a function o
tR2, a data collapse for all ranges is now obtained if t
magnetization density is multiplied byR. Figure 9~a! shows
the corresponding plot. We will discuss the various aspe
of this graph in more detail. The overall picture suggests t
the data roughly follow the Ising asymptote~slope 1/8) for
small values oftR2 and then gradually approach the mea
field asymptote~slope 1/2) for large values oftR2. Here
‘‘small’’ and ‘‘large’’ refer to the absolute value oftR2 and
‘‘slope’’ is generally used for the logarithmic derivativ
dln^umu&/dlnutu. For very small values oftR2 the data start to
deviate from the Ising asymptote at anL-dependent location
and approximately follow~for temperatures closer toTc) a
horizontal line. Here one has entered the finite-size regi
where the correlation length is limited by the system si
This is the case that was studied in Sec. III. The width of t
regime depends~for generald) on both the system siz
-
.
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and the interaction range, as can be read off from the uni
sal scaling functions derived in Ref.@10#. Indeed, the
temperature-dependent argument of these functions
tLytR22(2yt2d)/(42d) (yt51 in the 2D Ising universality
class! and the width of the finite-size regime is thus propo
tional to L2ytR2(2yt2d)/(42d)5L21. Note that the absence o
any range dependence isnot a general feature and even fo
the two-dimensional Ising model only true to leading ord
~cf. Fig. 5 of Ref.@10#!. Higher-order terms will entail range
dependent factors that involve~for d52) logarithms ofR.
Outside the finite-size regime, the data for each individ
range first lie approximately on the Ising asymptote, wh
has been drawn with an amplitude such that it coincides w
the data forRm

2 52. For the smaller ranges the amplitudes
the asymptotes show a considerable range depende
whereas for larger ranges the amplitudes converge. U
further decrease of the temperature~increase of the absolut
value of t) several types of behavior occur: For the small
range (Rm

2 52) the data points still lie on the Ising asymp
tote. ForRm

2 54 andRm
2 510 the data leave the Ising asym

tote at sufficiently low temperatures and then follow a nea
straight line with a slope that lies between the Ising and
mean-field asymptote. In these cases one has left the cri
region without ever reaching the asymptotic mean-field
gime. For each range the data for all system sizes coinc
as they should outside the finite-size regime. ForRm

2 572 and
Rm

2 5140 the mean-field asymptote is approached much m
closely. However, if the temperature is decreased further
low the critical temperature the data points start to devi
from the asymptote again. This effect is caused by satura
of the magnetization and can be quantitatively describ
with mean-field theory, as we will show below. Turning
even larger ranges, we see that the data now really reach
asymptote with slope 1/2 and follow it for up to one deca
in the crossover variable~for the largest range we have stu
ied! before saturation sets in. Also the exact amplitudeA3
~see below! of the asymptote is precisely reproduced, whi
shows again that the critical temperatures of the systems
large interaction ranges have been accurately determine
deviation would have shifted the graph along the horizon
axis.

We will now first consider the offset of the asymptotes
the Ising regime. Although this effect occurs outside t
finite-size regime, we may well hope that the so-called fini
range corrections applied in Sec. III@Eq. ~6!# can be used
here as well. Indeed, these corrections are part of the uni
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FIG. 9. Thermal crossover for the absolu
magnetization density for various ranges and s
tem sizes, where the reduced temperaturet is de-
fined as@T2Tc(R)#/Tc(R). In ~a! no additional
correction terms have been used, whereas in~b!
the factorC@m# has been divided out. In~c! the
data for Rm

2 >72 have also been corrected fo
saturation effects and data points in the finite-s
regime have been omitted. For an extensive d
cussion of the various features of these graphs
reader is referred to the text.
pe

On

ac-
sal scaling functions and although the amplitudeb0
5 limR→`limL→`R3/4L1/8^umL(Kc)u& is a specific limiting
value, the range-dependent correction factor does not de
on this limit. Especially the collapse obtained in Fig. 2~b!
nd

makes it very tempting to apply a similar correction here.
the other hand, these corrections were calculated in theIsing
regime, which we here are gradually leaving. In Fig. 9~b! we
show the same data, but now divided by the correction f
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56 6549CROSSOVER SCALING IN TWO DIMENSIONS
tor. Although a perfect collapse is not obtained, the asym
totes lie together much more closly than without this corr
tion.

Also the critical amplitude of the Ising asymptote
known exactly. Indeed, by expanding Onsager’s expres
for the spontaneous magnetization@17,18#

m5F12
1

sinh4~2J/kBT!
G 1/8

~9!

around the critical pointJ/kBTc5 1
2 arcsinh(1), weobtain for

t,0

m5@4A2arcsinh~1!~2t !1O~ t2!#1/8'1.222 409 95~2t !1/8.
~10!

For the nearest-neighbor Ising modelR5Rm51, so the fact
that in Fig. 9 along the horizontal axistR2 is used instead o
t and along the vertical axiŝumu&R instead of̂ umu& does not
affect the amplitude of the asymptote. However, the corr
tion factor C@m# @denoting the factor in square brackets
Eq. ~6!# must of course be taken into account. This corr
tion factor describes the deviation of the critical amplitu
d0(R) from the leading scaling behavior in terms of a pow
series inR22 ~with coefficients that depend on lnR) and it is
not a priori clear whetherC@m# converges forR51. It is
certainly unlikely that a single term@the term proportional to
b2 in Eq. ~6! vanishes# describes the deviation very well. N
exact result ford0(R51)5 limL→`mL(Kc)L

1/8 is known to
us, but from a modest Monte Carlo simulation we fou
d0(R51)51.0092(4). On theother hand, from Eq.~6! with
b051.466(2) and b1520.305(1) we find d0(R51)
51.018(4), which differs approximately two standard devi
tions from the numerical result. Recall thatb0 andb1 were
obtained from a least-squares fit to the critical finite-size a
plitudes for 2<Rm

2 <140. Nevertheless, the relative diffe
ence lies below the 1% level, which cannot be distinguish
in our graph. Therefore, we have drawn the Ising asymp
with amplitude@4A2arcsinh(1)#1/8/(12b1) in Fig. 9~b! and
it indeed turns out to be a precise tangent to the cross
curve.

As mentioned above, also the saturation effects can
described with mean-field theory. Namely, the magnetiza
follows from the well-known expression@19,20#

m5tanhS Tc

T
mD . ~11!

Rewriting this asm5(11t)arctanh(m) and solving form,
one obtains belowTc for small t

m5A3~2t !1/22
2

5
A3~2t !3/22

12

175
A3~2t !5/2

2
2

125
A3~2t !7/21

166

67 375
A3~2t !9/21O„~2t !11/2

….

~12!

The leading term shows the classical valueb51/2 and the
critical amplitude A3. To describe the saturation effec
in Fig. 9, the first three terms of this series suffic
-
-

n

-

-

r

-

d
te

er

e
n

.

Figure 9~b! shows for the five largest range
(Rm

2 5140,500,1000,4000,10 000) the curves

^umu&R5A3~2tR2!1/2

3F12
2

5R2
~2tR2!2

12

175R4
~2tR2!2G .

~13!

For Rm
2 5140 this expression does not precisely coinc

with the numerical data, but for the remaining values t
curves accurately describe the saturation effects. For th
cases the interaction ranges are apparently large enoug
suppress the critical fluctuations to a large extent. The low
temperatures shown in the figure areT/Tc50.52, 0.60, 0.60,
0.68, and 0.50 forRm

2 5140, 500, 1000, 4000, and 10 00
respectively. Saturation effects become visible in Fig. 9
t&20.15, i.e.,T/Tc&0.85. According to Eq.~12!, the mag-
netization deviates here approximately 5% from the asym
tote. Using Eq.~12!, we can perform another operation o
the numerical data. Namely, the influence of saturation
fects in the mean-field model is described by the ratio of
full series expansion on the right-hand side of Eq.~12! to its
first term. As the mean-field expression constitutes an ac
rate description of the saturation effects forRm

2 >500, the
factor in square brackets in Eq.~13! will give an accurate
description of therelativesaturation effects~i.e., the ratio of
the saturated magnetization and the crossover curve! down to
probably even lower interaction ranges. To illustrate this
have divided the data forRm

2 >72 by the corresponding fac
tor. The resulting graph@Fig. 9~c!#, in which also the data
points in the finite-size regime have been omitted, shows
the data for these large ranges now nicely coincide on
curve, which is the actual crossover curve for the order
rameter.

The fact that for different interaction ranges the da
~which overlap for considerable intervals oftR2) coincide on
one curve lends strong support to the hypothesis that
crossover curve is universal. Indeed, nonuniversal effe
may occur once one has left the critical region. Then mic
scopic cutoff effects are no longer negligibly small compar
to thefinite correlation lengthj, which implies that the form
of the crossover curve depends on the ratio betweenj and
the lattice spacinga. In our simulations we have not mea
sured the correlation length directly, but we can still mak
rough estimate from the data. Namely, at the locations ma
ing the boundaries of the finite-size regime for different
teraction ranges and system sizes in Fig. 9, the correla
length is approximately equal to the system size. From
magnetization densities forRm

2 >72 we conclude thatj
'0.5/(2t), independent of the interaction range. The lat
conclusion is in agreement with the above-mentioned ren
malization prediction that the width of the finite-size regim
is to leading order independent of the interaction ran
Thus, at a fixed value of the crossover variabletR2 the cor-
relation lengths for different ranges havedifferent values.
However, the crossover curves coincide at fixedtR2 and
hence are independent of the ratioj/a.

Finally, we make some observations concerning the s
of the crossover region. It is clear that it takes between t
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FIG. 10. Critical amplitude for the connecte

susceptibility x̃5Ld(^m2&2^umu&2)/kBT as ex-
tracted from the thermodynamic limit o

L27/4x̃L(Kc). The dashed curve indicates th
renormalization prediction fitted to the numeric
data. Also the critical amplitude of the scaled su

ceptibility kBTcx̃ is shown, which for small
ranges deviates considerably stronger from
asymptotic behavior.
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and three decades in the crossover variable to cross
from Ising-like to classical critical behavior. Thus, unle
one studies systems with a rather large interaction range,
has to go to such a large temperature distance fromTc to
sufficiently decrease the correlation length compared to
interaction range that one has already left the critical reg
before observing classical critical behavior. The center of
crossover region lies in the neighborhood ofutR2u51, con-
sistent with a value foru of order unity.

C. Magnetic susceptibility

Unlike the order parameter, the magnetic susceptibi
displays crossover upon approaching the critical point eit
from below or from above. We will discuss these two situ
tions separately. In the ordered phase,T<Tc , we approxi-
mate the magnetic susceptibility by the so-called connec
susceptibility

x̃5Ld ^m2&2^umu&2

kBT
. ~14!

In the two-dimensional Ising model with interaction rangeR
this quantity will, close to the critical point, diverge as
(2t)27/4R23/2. Further belowTc it will cross over to classi-
cal critical behavior, wherex̃}(2t)21. In a graph showing
results for various ranges as a function of the crossover v
abletR2 a data collapse is obtained forx̃ /R2. However, just
as for previous crossover curves, the data for smallR will
display an offset because of corrections to the leadingR23/2

dependence. To determine these deviations we first study
critical amplitude of the connected susceptibility, which w
not considered in Ref.@10#; see Fig. 10. The statistical un
certainty of this amplitude is notably larger than for^umu&
and^m2& ~cf., e.g., Fig. 3!, but one can still observe that th
asymptotic regime is reached. In this figure we have a
plotted the critical amplitude of the so-called scaled susc
tibility kBTx̃ , which was studied in, e.g., Ref.@9#. Evidently,
the latter amplitude shows a much stronger deviation fr
the leading range dependence, due to the fact that alsoTc(R)
deviates fromTc

MF ~Fig. 1!. Thus, although both amplitude
have the same asymptotic behavior for large interac
ranges, it is much more difficult to extract this behavior fro
er

ne
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medium-range results forkBTx̃ than from the corresponding

results forx̃ . This may partially explain the difficulties ex
perienced in Ref.@9#. The deviations have been fitted to
correction factor of the form@11R22(v11v2lnR2)#, which

we abbreviate asC@ x̃ #. Indeed, the fact that the finite-rang

corrections forx̃ are so small allowed us to neglect the
altogether in Ref.@11#, where only logarithmic scales hav
been employed.

In Fig. 11~a! we show the connected susceptibility, appr
priately scaled withR and divided by the correction facto

C@ x̃ #, as a function of the crossover variable. Just as for
magnetization density, deviations from the crossover cu
are present even after the finite-range corrections have b
applied. These effects are either caused by finite-size eff
~close toTc) or by systems that leave the critical region.
the latter case, saturation effects start to come into play.
finite-size effects are clearly recognizable in the rightm
part of the graph, where the curves start to follow horizon
lines. Once the temperature has been sufficiently decrea
the graphs start following an asymptote with slope27/4, on
which the data for various ranges quite accurately collap
The amplitude of this asymptote is simply related to the
actly known amplitudeA250.025 537 . . . @21,22# of the
reducedsusceptibilityx0. This reduced susceptibility is de
fined asx0[kBTx̃ /m2, wherem denotes the magnetic mo
ment of a spin. This magnetic moment has been divided
implicitly in our calculations as well. However, we shou
keep in mind that we have expressed all temperature
terms of the mean-field critical temperature, i.e.,Tc
51/zKc , where z is the coordination number. For th
nearest-neighbor model this yields an additional factor 4
we thus expect a critical amplitude 2arcsinh(1)A2. In addi-
tion, we have to take into account the finite-range correct
factor that has been divided out. The question whether
factor is applicable forR51 has already been discussed
Sec. IV B @below Eq.~10!#. Here the difference between th
deviation from the leading scaling behavior as predicted
C@ x̃ # and the numerical result is approximately 3%, where
the smallest differences that can be discerned on the loga
mic scale of Fig. 11~a! are of the order of 5%. The asympto
with the above-mentioned amplitude divided byC@ x̃ # in-
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FIG. 11. Thermal crossover for the connect

susceptibility x̃ for various ranges and system

sizes. A finite-range correction factorC@ x̃ # has
been divided out.~b! has also been corrected fo
saturation effects forRm

2 >72 and data points in
the finite-size regime have been omitted. For
discussion see the text.
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deed lies tangential to the crossover curve, confirming
data. As the temperature is further decreased, the data
systems with small interaction ranges start to follow a l
with a slope between that of the Ising and the mean-fi
asymptotes. This effect is caused by the fact that these
tems have left the critical region. For sufficiently large inte
action ranges, however, the curves coincide and have a s
that gradually decreases~in the absolute sense!. Although the
crossover curve at first varies more rapidly than for the m
netization density, it subsequently only slowly approach
the classical regime and the overall size of the crosso
region is again between two and three decades. Remark
the slope of the crossover curve passes eventhrough the
mean-field value21 before settling at this value for suffi
ciently low temperatures. In other words, the derivative
the connected susceptibility appears to change nonmono
cally from its asymptotic Ising value27/4 to its classical
value 21. Several explanations may be considered for t
behavior. Either it is an intrinsic effect of the crossover fun
tion or it might be explained from the fact thatx̃ is the
difference between̂m2& and ^umu&2, which each separatel
are described by a monotonically varying curve.
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The saturation effects can, just as for the magnetiza
density, for large ranges be described with mean-field the
In a mean-field model the magnetic susceptibility is given

x5
12m2

t1m2
. ~15!

Using Eq.~12! we find for T,Tc

x5
1

22t
2

9

10
1

18

175
~2t !1

18

175
~2t !21

6714

67 375
~2t !3

1O„~2t !4
…, ~16!

which exhibits the classical value for the susceptibility exp
nentgMF51 and the critical amplitude12. Figure 11~a! shows
the asymptote with this amplitude and one can observe
the crossover curve approaches this asymptote frombelow
aroundtR2521. Also the mean-field curves~16! are shown
for Rm

2 5140, 500, 1000, 4000, and 10 000 and they ac
rately describe the numerical data. Thus we have used
ratio between the series expansion~16! and the asymptotic
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FIG. 12. Critical amplitude for the suscept
bility x85Ld^m2&/kBT as extracted from the
thermodynamic limit ofL27/4xL8(Kc). The dashed
curve indicates the renormalization prediction fi
ted to the numerical data. Also the critical amp
tude of the scaled susceptibilitykBTcx8 is shown,
which for small ranges deviates considerab
stronger from the asymptotic behavior.
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behavior 1/(22t) to remove the saturation effects in Fi
11~a!. The resulting graph is shown in Fig. 11~b!, in which
also the data points in the finite-size regime have been o
ted in order to obtain a clear crossover curve. The nonmo
tonic variation of the slope of this curve is clearly visible.

In the disordered~symmetric! phase, we encounter a di
ferent situation. The susceptibility is now given byx8
[Ld^m2&/kBT. This is identical to the expression we ha
used for the finite-size crossover scaling, except that
temperature-dependent factor has been omitted in Sec. I
Figure 12 shows the critical finite-size amplitudes of bothx8
and x5Ld^m2& as a function of the interaction range. W
have fitted an expression of the form~7! to the data forRm

2

>2. This expression describes the data well, except for
data point atRm

2 51, where the deviation is approximate
10%. Just as for the connected susceptibility, the finite-ra
corrections to the critical amplitude ofx8 are much smaller
than forx. In fact, they are so small that they can be co
pletely omitted in the thermal crossover scaling, as illustra
in Fig. 13. This graph showsx8/R2 as a function of the
crossover variabletR2 for various interaction ranges and sy
tem sizes. Outside the finite-size regime, the data follow
Ising asymptote with slope27/4. The exactly known ampli-
tude 2arcsinh(1)A1, where A150.962 58 . . . @21,22#, of
this asymptote is accurately reproduced by the numer
it-
o-

e
C.

e

e
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e
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data. For larger temperatures, the curves gradually appro
an asymptote with the mean-field slope21. However, some
care has to be exercised when interpreting this behav
Above Tc , no saturation of the order parameter occurs a
the system smoothly passes over to regular~noncritical! be-
havior. In this high-temperature region the susceptibility d
creases proportionally to 1/T. For small interaction ranges i
is this behavior that one observes in the graph. Only
larger interaction ranges one actually observes classicalcriti-
cal behavior. The latter systems indeed reproduce the me
field critical amplitude, which is equal to 1@as follows from
Eq. ~15! with m50#. Note that, due to the absence of sa
ration effects, interaction ranges up toRm

2 51000 are amply
sufficient to observe the full crossover region.

V. EFFECTIVE EXPONENTS

In several papers~see, e.g., Refs.@5,2#! the slopes of
the crossover functions are described by so-called ef
tive exponents. These exponents can be defined
beff[dln^m&/dlnutu5t dln^m&/dt and geff[2dlnx/dlnutu5
2t dlnx/dt. In fact, this concept has been familiar from th
analysis of experimental data for a long time@23#, but only a
limited amount of theoretical work has addressed these
sues. Of course, these exponents change from their Ising
ti-
s
ec-
the
FIG. 13. Thermal crossover for the suscep
bility x8 in the symmetric phase for variou
ranges and system sizes. No finite-range corr
tions have been applied. For a discussion see
text.
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FIG. 14. Effective exponent@2b/(22a)#eff

as obtained from the finite-size crossover cur
for ^umu&AL.
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ues to the classical values in the crossover region. Howe
the precise variation in the crossover region is unclarifi
and partially subject to debate. Although these exponents
be read off from the form of the crossover curves presen
in Sec. IV, we consider it worthwhile to present separ
graphs displayingbeff , geff

2 , andgeff
1 , where the superscript

denote the casest,0 andt.0, respectively. The additiona
advantage of these exponents is that they follow from d
with the same range and hence are not affected by any ra
dependent correction factors.

As the graph in Fig. 2~b! is particularly smooth, it is
tempting to consider its derivative as well. As derived in R
@10#, ^umu&AL}(L/R2)yh23/2. This relation also holds in the
mean-field regime, provided that one replaces the magn
exponentyh by its starred counterpartyh* [3d/453/2. The
asterisk indicates that the exponent is modified due to
dangerous-irrelevant-variable mechanism, as explained
e.g., Ref. @24#. Thus, while we can rewrite the above
mentioned relation in the Ising regime in terms of conve
tional critical exponents aŝumu&AL}(L/R2)2b/n11/2, this is
not possible in the mean-field regime sincenMF is not af-
fected by the dangerous-irrelevant-variable mechanism.
an alternative we employ the specific-heat exponenta:
^umu&AL}(L/R2)22b/(22a)11/2. The fact that the latter rela
r,
d
an
d

e

ta
e-

.

tic

e
in,

-

s

tion holds in the mean-field regime while the former does
is a direct manifestation of the violation of hyperscalin
Thus we define @2b/(22a)#eff[

1
2 2dln(^umu&AL)/dln(L/

R2). This quantity is shown as a function ofL/R2 in Fig. 14.
Although the error bars are considerable, the crossover f
the Ising value 1/8~for large values ofL/R2) to the classical
value 1/2~for small values ofL/R2) is clearly visible.

Turning to thermal crossover, we display in Figs. 15, 1
and 17 the exponentsbeff , geff

2 , and geff
1 , respectively, as

defined above. The effective magnetization exponentbeff in-
creases monotonically from its Ising value 1/8 to the clas
cal value 1/2. In particular, the data for different interacti
ranges roughly fall onto the same curve, which supports
hypothesis that the crossover curve is universal. Howe
one observes that for systems with relatively small inter
tion ranges the effective exponent doesnot follow this curve.
This effect, caused by saturation of the order parameter,
clearly lead to misleading results in experiments. In Fig.
the nonmonotonic variation ofgeff

2 between 7/4 and 1 is
clearly visible. This may be considered as a manifestation
what Fisher@5# calls an ‘‘underswing.’’ The occurrence o
such a nonmonotonic crossover has been predicted by
ous renormalization calculations for the crossover from Is
t
e
ty.
FIG. 15. Effective magnetization exponen
beff describing the logarithmic derivative of th
crossover function for the magnetization densi
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FIG. 16. Effective susceptibility exponentgeff
2

describing the logarithmic derivative of the cros
over function for the connected susceptibilit
The results on the left-hand side lie somewh
above the mean-field exponent due to saturat
effects.
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m-
to XY and Heisenberg critical behaviorabove Tc ; see, e.g.,
Refs.@25–27# and references therein. Furthermore, an ex
nent geff50.88(3) has been measured in the symme
phase in micellar solutions@28#. Fisher@5# has suggested tha
an effective susceptibility exponent that takes a valuegeff
,1 in the crossover region might be a general feature
crossover from 3D Ising to classical critical behavior a
noted that concrete calculations yielding such an effec
exponent would be valuable. In Ref.@5#, a first-order« ex-
pansion is quoted for the exponent crossover function

geff511~g I2gMF!E@ ln~ ut/Gu!# , ~17!

whereG is the crossover temperature or Ginzburg num
and

E~ lny!51/~11y«/2! . ~18!

In our case,t/G is directly proportional to the crossove
variabletR2. To describe the experimental results from R
@28#, Fisher used an extension of Eq.~18!,

E~ lny!5~11py«/2!/@11~p11!y«/21qy«#. ~19!

Even though one may not expect such an expansion to
verge ford52, we have drawn expression~17! in Fig. 16,
-
c

f

e

r

.

n-

where we have taken the functionE(lny) from Eq. ~19!, set
«52, and adjustedp andq such that the curve constituted
reasonable description of the data. Clearly, no conclusi
should be drawn from this curve, especially because Eq.~19!
has been proposed for the symmetric phase. In addition
d52 the exponent«/2 is a very poor approximation for th
exponentu[2yi /yt52, which is actually expected to ap
pear in the functionE(lny). As follows from Fig. 17, the
behavior aboveTc is completely different. Here we hav
used expression~17! with Eq. ~18! to describe the data. Ex
cept for a shift along the horizontal axis~a proportionality
constant in the Ginzburg number!, no adjustable parameter i
present and it is surprising how well the data agree with
theoretical prediction. It would be interesting to calculate t
amplitude of the first Wegner correction as a function ofR.
However, even with the present techniques this would,
the large values ofR, require prohibitively large system size
~to avoid finite-size effects! and thus has not been attempte

Sometimes experiments have yielded effective expone
in disagreement with the known@29# universality classes, bu
still satisfying the scaling relations, such asgeff12beff52
2aeff . Hereaeff denotes the effective exponent of the sp
cific heat, which in our case is expected to be always~close
to! zero, as both the classical and the 2D Ising value ofa are
equal to zero. This is also confirmed by the close rese
s-

FIG. 17. Effective susceptibility exponentgeff

1

describing the logarithmic derivative of the cros
over function for the susceptibility aboveTc .
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blance between Figs. 14 and 15. Thus it is interesting to n
that this scaling relation is strongly violated in the pres
case: From Figs. 15 and 16 we can estimate thatgeff
12beff reaches a minimum of approximately 1.4 attR2'
21.

VI. CONCLUSIONS

In this paper we have presented numerical results for s
ing functions describing the crossover from Ising-like
classical critical behavior in two-dimensional systems. Wh
the general concepts describing this crossover have bee
veloped many years ago, only a limited amount of progr
has been made for a long time. In the present paper
demonstrated that one can obtain accurate quantitative in
mation on crossover scaling from computer simulations. T
full crossover region was covered for both finite-size cro
over and thermal crossover above and belowTc . A data
collapse has been obtained for all system sizes and inte
tion ranges, which supports the hypothesis that these cr
over functions are universal. Deviations from this curve
present, but can be understood from finite-size and satura
effects. The results are in agreement with the previously
rived renormalization scenario for these systems.

Working in two dimensions offers the advantage that
exponents and the critical amplitudes are known exac
More importantly, critical fluctuations are very large in tw
dimensions, which leads to critical behavior that stron
differs from classical behavior and hence to a clearly visi
crossover between the two universality classes. We h
shown that the magnetization density is described b
smooth crossover curve. The effective exponent, define
the logarithmic derivative of this curve, increases monoto
cally from the Ising value to the classical value in two
three decades in the reduced temperature. On the other h
the effective exponent for the susceptibility has a logarithm
derivative that varies monotonically above the Curie te
perature and nonmonotonically below it. The occurrence
nonmonotonic behavior in the symmetric phase has been
ferred from renormalization-group calculations in three
mensions and found long-standing interest. An extension
the present study tod53 is therefore highly desirable an
has been planned for the near future.
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APPENDIX: EXACT CALCULATION
OF SOME FINITE-SIZE EFFECTS

IN A MEAN-FIELD SYSTEM

In Ref. @14# the universal amplitude ratioQ has been
calculated for a system in which all spins interact equa
strongly, including the leading finite-size correction. It w
shown that the relevant integrals can be expressed in term
a quantityI k , which we here generalize to odd powers of t
magnetization density,

I k[E
2`

`

dmumukexpS 2
1

12
Nm4D5S 12

N D ~k11!/41

2
GS k11

4 D ,

~A1!

whereN denotes the number of spins. In a similar fashion
can also calculate other finite-size effects to leading orde
N. Expanding the terms in the partition function and repla
ing the sum over all possible states by an integral, we find
the absolute magnetization density

^umu&5
1

ZE2`

`

dmumuexpS 2
1

12
Nm4D F12

1

30
Nm61

1

2
m2

1O~Nm8,m4!G , ~A2!

in which Z denotes the partition function@except for a pref-
actor that has been divided out; cf. Eq.~31! in Ref. @14##.
Elementary algebra then leads to

^umu&5121/4
G~ 1

2 !

G~ 1
4 !

1

N1/4
1OS 1

N3/4D , ~A3!

which for d52 yields expression~5!. Along the same lines
one finds

^m2&5A12
G~ 3

4 !

G~ 1
4 !

1

N1/2
1OS 1

ND , ~A4!

i.e., the susceptibility diverges asAN, and

^m4&512
G~ 5

4 !

G~ 1
4 !

1

N
1OS 1

N3/2D 5
3

N
1OS 1

N3/2D . ~A5!
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