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Classical critical behavior of spin models with long-range interactions

Erik Luijten* and Henk W. J. Blo¨te
Department of Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

~Received 2 April 1997!

We present the results of extensive Monte Carlo simulations of Ising models with algebraically decaying
ferromagnetic interactions in the regime where classical critical behavior is expected for these systems. We
corroborate the values for the exponents predicted by renormalization theory for systems in one, two, and three
dimensions and accurately observe the predicted logarithmic corrections at the upper critical dimension. We
give both theoretical and numerical evidence that above the upper critical dimension the decay of the critical
spin-spin correlation function in finite systems consists of two different regimes. For one-dimensional systems
our estimates for the critical couplings are more than two orders of magnitude more accurate than existing
estimates. In two and three dimensions we are unaware of any other results for the critical couplings.
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I. INTRODUCTION

The critical behavior of Ising models with long-range i
teractions has attracted much attention during the last t
decades. For the one-dimensional case, some analytica
sults have been obtained,1–11 as well as a number of numer
cal results. The numerical results apply to both inver
square interactions12–15 and general algebraically decayin
interactions.16–27 The work by Anderson, Yuval, and
Hamann,28–31 which greatly stimulated the interest in sp
chains with long-range interactions, deserves special m
tion. They also developed a renormalizationlike approach
the one-dimensional~1D! inverse-square model.30,31 Further
renormalization-group studies of this particular case are
sented in Refs. 12 and 32–34. A major contribution w
made by Fisher, Ma, and Nickel35 and Sak,36 who obtained
renormalization predictions for the critical exponents
models of general dimensionalityd,4 with algebraically
decaying interactions~obtained independently by Suzukiet
al.37!. Other works concerningd.1 are two conjectures on
respectively, the boundary between long-range and sh
range behavior and the boundary between classical~mean-
field! and nonclassical behavior, both by Stell,38 a ~refuted!
conjecture by Griffiths,39 a rigorous confirmation of the up
per critical dimension by Aizenman and Ferna´ndez,10 and a
variational approach to the Ising model with long-ran
interactions.40 Furthermore, Monte Carlo simulations hav
been carried out for one particular choice of the spin-s
interaction in a two-dimensional model.41 However, to our
knowledge, neither any further verifications of the renorm
ization predictions nor any other results are available
higher-dimensional (d.1) models. To conclude this sum
mary, we mention that the one-dimensionalq-state Potts
model with long-range interactions has been stud
analytically,9,11numerically,42,43and in a mean-field approxi
mation on the Bethe lattice.44

Why are these models interesting? In the first place fr
a fundamental point of view: They enable us to study
influence of the interaction range on the critical behavi
For example, in one-dimensional systems long-range ord
only possible in the presence of spin–spin interactions wh
560163-1829/97/56~14!/8945~14!/$10.00
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decay sufficiently slowly. In the borderline~inverse-square!
case, the 1D model displays a remarkable behavior: At
critical temperature the order parameter exhibits a fin
jump ~see Sec. II!, but the free energy has an essential s
gularity such that all thermal properties are smooth. In t
sense, the phase transition can be regarded as the
dimensional analog of a Kosterlitz-Thouless transition,45,46

although the jump in the magnetization is not present the
as follows from the Mermin-Wagner theorem.47 Just asd52
is the lower critical dimension for the two-dimensionalXY
model with short-range interactions,s51 is a critical decay
rate in a one-dimensional system with interactions decay
as r 2(11s), see Ref. 32. With respect to higher-dimension
systems, we note that the decay rate of van der Waals fo
in realistic three-dimensional systems is only slightly fas
than at the boundary between short-range~Ising-like! and
long-range critical behavior. The question of criticality
ionic systems, where the~screened! Coulomb interactions
might lead to effectively algebraically decaying interaction
appears still open to debate.48–50It has also been claimed tha
exponents in the long-range universality class have been
served experimentally in a ferromagnetic phase transitio51

Recently, it has been derived that critical fluctuations m
give rise to long-range Casimir forces~decaying much more
slowly than van der Waals interactions! between uncharged
particles immersed in a critical fluid.52 Furthermore, it was
shown by Anderson and Yuval28,29 that the Kondo problem
corresponds to a one-dimensional Ising model with a com
nation of inverse-square and nearest-neighbor interacti
Yet another application follows from Ref. 22, where it w
shown that random exchange~Lévy-flight! processes can
generate effective interactions which decay algebraica
Hence, the universal critical properties of the nonequilibriu
steady state of these systems are those of the long-r
equilibrium Ising models studied in this paper. Finally, t
realization that the upper critical dimension can be varied
tuning the decay rate of the interaction led to a special
plication of these models in Ref. 53. Here, they were used
analyze a long-standing controversy on the universality
the renormalized coupling constant above the upper crit
dimension.
8945 © 1997 The American Physical Society
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In this article, we present accurate numerical results
Ising systems with algebraically decaying interactions
one, two, and three dimensions. Until now, the long-ran
character of the spin-spin interactions has been the m
bottleneck for the examination of these systems by mean
numerical methods~and, in fact, also for their analytical so
lution!. All previously published numerical results therefo
rely on various extrapolations based on data for small s
tems. However, the development of a more powerful Mo
Carlo algorithm54 enabled us to efficiently simulate thes
systems. The high accuracy of the results opens several
spectives:~i! verification of the renormalization prediction
for the critical exponents;~ii ! accurate observation of loga
rithmic corrections at the upper critical dimension;~iii ! first
estimates of the critical temperatures of two- and thr
dimensional systems with long-range interactions;~iv! veri-
fication of previously obtained estimates of the critical te
peratures of one-dimensional systems, which in addit
implies a check on the various extrapolation methods
have been developed;~v! verification of predicted bounds o
the critical temperatures;~vi! verification of a conjecture on
the behavior of the critical temperature as a function of
decay parameter. Another problem one encounters in
simulations is the large parameter space: The simulations
a set of different temperatures and system sizes have t
repeated for a range of values of the decay parameter an
d51,2,3. The total computing time dedicated to the resu
presented in this paper amounts to approximately two C
years on a modern workstation. Part of the numerical res
presented in this work have been reported in concise form
Ref. 53.

The outline of this paper is as follows. In Sec. II, we su
up the known rigorous results for the Ising chain with lon
range interactions. In Sec. III, we review the renormalizat
scenario of these models and derive the finite-size sca
behavior of several quantities. This includes the correcti
to scaling, both at and above the upper critical dimens
Our numerical results are presented and analyzed in Sec
and compared with previously obtained results. Finally,
summarize our conclusions in Sec. V. The Appendix c
tains technical details concerning the application of the lo
range Monte Carlo algorithm to the models studied in t
paper.

II. RIGOROUS RESULTS FOR THE ONE-DIMENSIONAL
CASE

For the one-dimensional case, the Hamiltonian is given

H5(
i j

J~ i 2 j !sisj , ~1!

where the sum runs over all spin pairs. We are particula
interested in algebraically decaying interactions, i.e.,J(n)
}n2a. To ensure that the energy of the system does
diverge, it is required thata.1. In 1968, Ruelle1 rigorously
proved the absence of long-range order in a spin chain w
ferromagnetic spin-spin couplingsJ( i 2 j ) such that the sum

(
n51

N

nJ~n! ~2!
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does not diverge in the limitN→`. For algebraically decay-
ing interactions, this implies the absence of a phase tr
sition for a.2. Shortly later, Dyson2 proved the exis-
tence of a phase transition if the sums(n51

N J(n) and
(n51

N (lnlnn)@n3J(n)#21 both converge, for positive and
monotonically decreasingJ(n). In particular, a phase trans
tion occurs forJ(n)}n2a with 1,a,2. This partly cor-
roborated the conjecture of Kac and Thompson,55 viz., that
there is a phase transition for 1,a<2. Furthermore, Dyson3

was ~as were—much later—also Rogers and Thompso6!
able to replace Ruelle’s condition with a stronger one, wh
however still left the casea52 undecided. This also hold
for an even more stringent criterion by Thouless,4 who gen-
eralized the argument of Landau and Lifshitz56 for the ab-
sence of a phase transition in an Ising chain with short-ra
interactions. However, Thouless argued on entropic grou
that if a phase transition exists fora52, the magnetization
must have adiscontinuityat the transition point. This was
later dubbed the ‘‘Thouless effect’’ by Dyson, who proved
to occur in the closely related hierarchical model.57 Simon
and Sokal made Thouless’ argument partially rigorous,5 but
later Aizenmanet al.9 showed that, although a discontinuit
in the order parameteris indeed presentif there is a phase
transition, his argument doesnot account for this. Namely,
Thouless had assumed that the spin-spin correlation func
^s0sr&2^s0&^sr& vanishes in the limitr→`, whereas actu-
ally the critical exponenth is equal to 1 in this case. Mean
while, Fröhlich and Spencer7 had been able to rigorousl
prove theexistenceof a phase transition in the borderlin
case and thus to corroborate the Kac-Thompson conjec
for a52 as well. Another interesting point is the rigorou
proof for the existence of an intermediate ordered phas
the one-dimensional model with inverse-square interactio
where the two-point correlation function exhibits power-la
decay with an exponent that varies continuously in a fin
temperature range below the critical temperature.11

III. FINITE-SIZE ANALYSIS OF THE CRITICAL
BEHAVIOR

Already in a very early stage of the history of the« ex-
pansion, Fisher, Ma, and Nickel analyzed the critical beh
ior of d-dimensional systems (d,4) with long-range inter-
actions decaying asr 2(d1s), with s.0.35 They concluded
that the upper critical dimension is given bydu52s, as was
previously conjectured by Stell38 and later rigorously proven
by Aizenman and Ferna´ndez.10 For more slowly decaying
interactions, 0,s,d/2, the critical behavior is classica
whereas the critical exponents assume nonclassical, con
ously varying values ford/2,s,2. For s.2 they take
their short-range values. Sak,36 however, found that already
for s.22hsr the critical behavior is Isinglike, wherehsr
denotes the exponenth in the corresponding model with
short-range interactions. In this article we concentrate on
classical range, for which we have performed extens
Monte Carlo simulations of spin models ind51,2,3. The
nonclassical range will be the subject of a future article.58

We briefly outline the renormalization scenario for the
models, in order to derive the finite-size scaling relatio
required to analyze the numerical data. We start from
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56 8947CLASSICAL CRITICAL BEHAVIOR OF SPIN MODELS . . .
following Landau-Ginzburg-Wilson Hamiltonian in momen
tum space,

H~fk!/kBT5
1

2(k
~ j sks1 j 2k21r 0!fkf2k

1
u

4N(
k1

(
k2

(
k3

fk1
fk2

fk3
f2k12k22k3

2hAN

2
fk50 . ~3!

The j sks term arises from the Fourier transform of the i
teractions decaying asr 2(d1s). The j 2k2 term normally rep-
resenting the short-range interactions is included becau
will appear anyway in the renormalization process and w
compete with the long-range term.36 Under a renormalization
transformation with a rescaling factorb5el , the termj sks is
transformed intoj sk8s, with k85kb. To keep the coefficien
of the ks term fixed, we rescale the fieldfk to
fk8

8 5b2s/2fk . Thus, the coefficient of thek2 term de-
creases asbs22 and the coefficient of thef4 term changes
proportional to b2s2d. Hence, the Gaussian fixed poi
dominates the renormalization flow fors,d/2, which is the
situation studied in this paper.

For the sake of generality we treat here the case of
n-component order parameter withO(n) symmetry. The
renormalization equations are then given by

dr0

dl
5sr 01a~n12!u~c2r 0!, ~4a!

du

dl
5«u2a~n18!u2, ~4b!

where (n12) and (n18) are the usual factors arising from
the tensorial structure of the interaction part of the Ham
tonian and«52s2d. These equations are not complete
second order, because theO(u2) term is missing in Eq.~4a!.

We first consider the case«,0. The solution of the sec
ond equation is given by

u~ l !5 ūe« l
1

11 ū @a~n18!/«#~e« l21!
, ~5!

where ū denotes the value ofu at l 50. This yields, to lead-
ing order inu, the following solution for the first equation:

r 0~ l !5@ r̄ 01ac~n12! ū /~d2s!#

3es lF 1

11@a~n18!/«# ū~e« l21!
G ~n12!/~n18!

2
ac~n12! ūe« l /~d2s!

11@a~n18!/«# ū~e« l21!
, ~6!

with r̄ 0[r 0( l 50). The first factor between square bracke
is proportional to the reduced temperaturet[(T2Tc)/Tc
it
ll

n

-

s

and the last term is the so-called shift of the critical tempe
ture. The factors@11a(n18) ū (e« l21)/«#21 in Eqs. ~5!
and ~6! are higher-order corrections inu. Under successive
renormalization transformations,u approaches the valu
u* 50 and the Gaussian fixed point (0,0) is thus inde
stable. The pertinent renormalization exponents are:yt5s,
yh5(d1s)/2, andyi52s2d.

At «50, the Gaussian fixed point becomes margina
stable. Solving Eq.~4b! leads to

uuc~ l !5
ū

11a~n18! ū l
, ~7!

where the superscript ‘‘uc’’ indicates that we are operating
the upper critical dimension. This solution can be used
solve, again to leading order inu, Eq. ~4a!, yielding

r 0
uc~ l !5@ r̄ 01ac~n12! ū /~d/2!#

3es lF 1

11a~n18! ū l
G ~n12!/~n18!

2
ac~n12! ū /~d/2!

11a~n18! ū l
~8!

or, in terms of the rescaling factorb,

r 0
uc5@ r̄ 01ac~n12! ū /~d/2!#

3bsF 1

11a~n18! ū lnb
G ~n12!/~n18!

2
ac~n12! ū /~d/2!

11a~n18! ū lnb
. ~9!

Since s is fixed at d/2 the factord/2 in the last term is
identical to the corresponding factor (d2s) in Eq. ~6!. Fur-
ther comparison of Eqs.~6! and ~8! shows that above the
upper critical dimension the leading shift of the critical tem
perature is proportional tob«, whereas this factor vanishes
the upper critical dimension itself and the factor (e« l21)/«
in the second-order term turns into a lnb term, yielding a
logarithmic shift of the form 1/(Alnb1B).

From the solutions of the renormalization equations
can derive the scaling behavior of the free energy and
~combinations of! its derivatives. For the case«,0 the free-
energy densityf scales, to leading order, as

f ~ t,h,u,1/L !5b2df ~byt@ t1ãubyi2yt#,byhh,byiu,b/L !1g,
~10!

where ã52ac(n12)/(d2s) and we have included a
finite-size fieldL21. g denotes the analytic part of the tran
formation. We abbreviate the first term on the right-ha
side asb2df (t8,h8,u8,b/L). However, we must take into
account the fact that, forT<Tc , the free energy is singula
at u50. This makesu a so-calleddangerousirrelevant vari-
able; see, e.g., Ref. 59. As discussed in Ref. 53, the cor
finite-size scaling properties are obtained by settingb5L



e

a
th

-

a
ca
ne
h
-

s
ve
-

f
e
d

el
g
e
c

-

t
av

-
n
pi

to

g

nd
ect
la-
t of

atio
r
lf

t

ith

8948 56ERIK LUIJTEN AND HENK W. J. BLÖTE
and making the substitutionf85f/u81/4. This leads to a
new universal function,f̃ , with

f ~ t8,h8,u8,1!1 ḡ5 f̃ ~ t̃ , h̃ !, ~11!

where t̃ 5t8/u81/2 and h̃5h8/u81/4. The analytic part of the
transformation also contributes to the singular dependenc
the free energy ont ~see, e.g., Ref. 60, Chap. VI, Sec. 3!:
Despite the regularity of this term in each single renorm
ization step, the infinite number of steps still leads to
buildup of a singularity. This contribution, denoted byḡ , is
absorbed inf̃ as well. Settingb5L and combining Eqs.~10!
and ~11! yields

f S t,h,u,
1

L D5L2d f̃ S Lyt2yi /2
1

u1/2
@ t1ãuLyi2yt#,

Lyh2yi /4
h

u1/4D ~12a!

5L2d f̃ S Lyt*
1

u1/2
@ t1ãuLyi2yt#,Lyh*

h

u1/4D .

~12b!

Here, we have introduced the exponentsyt* [yt2yi /25d/2
and yh* [yh2yi /453d/4. The corresponding critical expo
nents indeed assume their fixed, classical values;a50,
b51/2, g51, d53. The exponentg is singled out here as
special case; even without taking into account the modifi
tion of yt andyh due to the dangerous irrelevant variable o
obtains the classical valueg51. Since the correlation lengt
exponentn51/yt ~it is not affected by the singular depen
dence of the free energy onu), we see that hyperscaling i
violated, which is a well-known result for systems abo
their upper critical dimension.59 The rescaling of the pair
correlation function g(r ) ~decaying proportional to
1/r d221h) relates the exponenth to the rescaling factor o
the field, yieldingh522s. Note that this contrasts with th
short-range case (s52), whereh assumes its mean-fiel
value for all dimensionalitiesd>4. This implies that direct
experimental measurement of eithern or h offers a way to
discern whether the interactions in a system are mean-fi
like (n51/2, h50) or have the form of a slowly decayin
power law.Belowthe upper critical dimension, however, th
finite-size scaling behavior of the spin-spin correlation fun
tion is ~apart from a volume factor! identical to that of the
magnetic susceptibilityx. This relation yields a contradiction
above the upper critical dimension, sincex depends on the

scaled combinationtLyt* , instead oftLyt. Indeed, the suscep
tibility diverges ast2g and the finite-size behavior ofx is

thus xL}Lgyt* 5Ld/2, corresponding togL}L2d/2. On the
other hand, if one assumes that the finite-size behavior of
correlation function is identical to its large-distance beh
ior, one expects thatgL}L2(d221h)5L2(d2s). Only at the
upper critical dimension,du52s, these two predictions co
incide. We will return to this point at the end of this sectio
Furthermore, we will examine the behavior of the spin-s
correlation function in Sec. IV.
of
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e

-

d-

-
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-

.
n

At the upper critical dimension itself, i.e., at«50, the
free-energy density scales as

f S t,h,u,
1

L D5b2df S byt

~11b̃ulnb!~n12!/~n18!

3F t1ãb2yt
u

~11b̃ulnb!6/~n18!G ,

byhh,
u

11b̃ulnb
,
b

L D 1g ~13a!

5L2d f̃ S Lyt

~11b̃ulnL !~n12!/~n18!21/2

1

u1/2

3F t1ãL2yt
u

~11b̃ulnL !6/~n18!G ,

Lyh
h

u1/4
@11b̃ulnL#1/4D , ~13b!

whereb̃5a(n18) and we have setb5L in the last line.u
is now a marginal variable and although we again have
perform the substitutionf→f8 ~the Gaussian fixed point is
marginally stable!, the exponentsyt andyh coincide withyt*
andyh* , respectively, becauseyi vanishes. Thus, the scalin
relations~12b! and ~13b! differ to leading order only in the
logarithmic factors arising in the arguments off̃ .

As usual, the finite-size scaling relations are now fou
by taking derivatives of the free-energy density with resp
to the appropriate scaling fields. In the Monte Carlo simu
tions we have sampled the second and the fourth momen
the magnetization density, the dimensionless amplitude r
Q[^m2&2/^m4& ~which is directly related to the Binde
cumulant61!, and the spin-spin correlation function over ha
the system size~for even system sizes!. The second momen
of the magnetization density is~apart from a volume factor!
equal to the second derivative of the free-energy density w
respect toh,

^m2&5L2d
]2f

]h2
~ t,h,u,1/L !5L2yh* 22du21/2

3 f̃ ~2!S Lyt*
t̂

u1/2
,Lyh*

h

u1/4D , ~14!

where f̃ (2) stands for the second derivative off̃ with respect
to its second argument andt̂[t1ãuLyi2yt. At «50, loga-
rithmic factors do arise not only in the arguments off̃ (2), but
also in the prefactor,
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^m2&5L2yh22dS 11b̃ulnL

u
D 1/2

3 f̃ ~2!S Lyt

~11b̃ulnL !~n12!/~n18!21/2

1

u1/2

3F t1ãL2yt
u

~11b̃ulnL !6/~n18!G ,

Lyh
h

u1/4
@11b̃ulnL#1/4D . ~15!

For the fourth magnetization moment similar expressio
hold and in the amplitude ratioQ all prefactors divide out,
both for «,0 and «50. Thus we find that the ratioQ is

given by a universal functionQ̃,

QL~T!5Q̃S Lyt*
t̂

u1/2D 1q1Ld22yh* 1•••, ~16!

where we have omitted theh dependence ofQ̃, since we are
only interested in the caseh50. The additional term propor
tional toq1 arises from theh dependence of the analytic pa
of the free energy62 and the ellipsis stands for higher powe

of Ld22yh* ~faster-decaying terms!. At «50, t̂ must be re-
placed by the first argument within square brackets in

~13b!, multiplied by the factor (11b̃ulnL)1/22(n12)/(n18).
Finally, we may derive the finite-size scaling behavior of t
spin-spin correlation functiong(r ) by differentiating the
free-energy density to twolocal magnetic fields, which
couple to the spins at positions0 and r , respectively, and
assuming that the finite-size behavior is identical to ther
dependence ofg. If we do not take into account the dange
ous irrelevant variable mechanism, we findgL

}L2yh22d5L2(d2s), just as we found before fromh522s.
However, replacingyh by yh* yieldsgL}L2d/2, in agreement
with the L dependence of the magnetic susceptibility. T
clarifies the difference between the two predictions: At sh
distances~large wave vectors!, the j sksfkf2k term will be
the dominant term in the Landau-Ginzburg-Wilson Ham
tonian and there is no ‘‘dangerous’’ dependence onu.
Hence, the finite-size behavior of the spin-spin correlat
function will be given byL2(d221h). For k50, the coeffi-
cient of thef2 term vanishes and thus theuf4 term is re-
quired to act as a bound on the magnetization. To accoun
this singular dependence onu, we rescale the field, which

implies thatyh is replaced byyh* andgL scales asL2yh* 22d.
In a finite system, the wave vectors assume discrete va
k5(nx ,ny ,nz)2p/L, and thus it is easily seen that even f
the lowest nonzero wave vectorsj sksfkf2k constitutes the
dominant bounding term on the magnetization. Namely,
coefficient of thef4 term contains a volume factorL2d @cf.
Eq. ~3!# and this term is thus~above the upper critical dimen
sion! a higher-order contribution decaying asL2s2d.
s

.

s
rt

n

or

s,

e

IV. NUMERICAL RESULTS AND COMPARISON
WITH EARLIER RESULTS

A. Simulations

We have carried out Monte Carlo simulations for syste
described by the Hamiltonian

H/kBT52(̂
i j &

J~ ur i2r j u!sisj , ~17!

where the sum runs over all spin pairs and periodic bou
aries were employed. The precise form of the~long-range!
spin-spin interactionJ(r ) as used in the simulations wa
chosen dependent on the dimensionality. Ford51 we have
followed the conventional choiceJ(r )5K/r d1s ~with dis-
crete values for r ), as this allows us to compareall our
results~including nonuniversal quantities! to previous esti-
mates. However, as explained in Ref. 54 and the Appen
this discrete form requires the construction of a lookup tab
which becomes inefficient for higher dimensionalities. F
d52 we have thus applied an interaction which is the in
gral of a continuously decaying function,

J~ ur u!5KE
r x2 1/2

r x11/2

dxE
r y2 1/2

r y1 1/2

dy~x21y2!2~d1s!/2,

~18!

where r5(r x ,r y). In d53 the corresponding volume inte
gral was used forJur u. This modification of the interaction
does only change nonuniversal quantities like the criti
temperature, but should not influence the universal criti
properties like the critical exponents and dimensionless
plitude ratios, since the difference between the continu
and the discrete interaction consists of faster decaying te
that are irrelevant according to renormalization theory. D
tails concerning the simulations can be found in the App
dix.

The following system sizes have been examined: cha
of length 10<L<150 000, square systems of linear si
4<L<240, and cubic systems of linear size 4<L<64. At
the upper critical dimension simulations for even larger s
tems have been carried out in order to obtain accurate re
from the analyses:L5300 000 ind51 andL5400 ind52.
~I.e., in terms of numbers of particles the largest system s
for d52 is considerably smaller than ford51 andd53.!
For the simulations we used a new cluster algorithm
long-range interactions.54 This algorithm isO(Ld1z) times
faster than a conventional Metropolis algorithm, wherez is
the dynamical critical exponent. For systems display
mean-field-like critical behavior, we expect an exponentd/2
instead ofz and the efficiency gain in our simulations is thu
of the order of 108 for the largest system sizes. For each d
point we have generated between 106 and 43106 Wolff
clusters.

B. Determination of the critical temperatures, the amplitude
ratio Q, and the thermal exponent

The critical couplingsKc of these systems have been d
termined using an analysis of the amplitude ratioQ. The
finite-size scaling analysis was based on the Taylor exp
sion of Eq.~16!, which for «,0 reads
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QL~T!5Q1p1 t̂ Lyt* 1p2 t̂2L2yt* 1p3 t̂3L3yt1•••1q1Ld22yh*

1•••1q3Lyi1•••. ~19!

The term proportional toã in t̂ yields a contribution
q2Lyi /25q2Ls2d/2 and the termq3Lyi comes from the de-
nominator in Eq.~5!. The coefficientspi andqi are nonuni-
versal. In addition to the corrections to scaling in Eq.~19! we
have also included higher powers ofq3Lyi, which become
particularly important whenyi is small~i.e., whens is close

to d/2), higher powers ofq1Ld22yh* 5q1L2d/2, and the cross-

term proportional toLyt* 1yi.
All analyses were carried out on the same data se

used in Ref. 53, to which several data points have b
added for most values ofs. First, we have only kept fixed
the exponents in the correction terms,yi andyh* . The corre-
sponding estimates forQ and yt* are shown in the third
and fourth column of Table I. One observes that the Mo
Carlo results for bothQ and yt* are in quite good agree
ment with the renormalization predictions63,53 Q58p2/
G4(1/4)50.456947 . . . andyt* 5d/2. However, the uncer
tainties in the estimates increase considerably with incre
ing s, because the leading irrelevant exponent becomes
small. An exception is the relatively large uncertainty
yt* (d51,s50.2), which originates from the fact that th
Monte Carlo data were taken in a rather narrow tempera
region around the critical point. Furthermore, an accur
simultaneous determination ofQ and yt* is very difficult,
because of the correlation between the two quantities. Th

TABLE I. The amplitude ratioQ and the thermal exponentyt*
for systems with long-range interactions in one, two, and three
mensions, for several values of the decay parameter 0,s<d/2.
The values in the fifth column have been obtained withQ fixed at
the theoretically predicted value~see text! and the last column lists
the renormalization predictions foryt* .

d s Q yt* yt* RG

1 0.1 0.4566~8! 0.507 ~7! 0.507 ~7! 1
2

1 0.2 0.455~4! 0.54 ~4! 0.504 ~12! 1
2

1 0.25 0.457~3! 0.500 ~8! 0.500 ~5! 1
2

1 0.3 0.454~2! 0.519 ~14! 0.506 ~12! 1
2

1 0.4 0.457~3! 0.50 ~2! 0.50 ~2! 1
2

1 0.5 0.462~6! 0.51 ~5! 0.49 ~2! 1
2

2 0.2 0.4574~10! 1.01 ~2! 1.01 ~2! 1
2 0.4 0.455~2! 1.02 ~2! 1.009 ~15! 1
2 0.6 0.450~6! 1.04 ~4! 1.008 ~17! 1
2 0.8 0.454~6! 1.03 ~9! 1.03 ~3! 1
2 1.0 0.450~10! 1.02 ~3! 1.03 ~2! 1

3 0.2 0.4581~11! 1.51 ~3! 1.513 ~18! 3
2

3 0.4 0.4561~10! 1.521 ~18! 1.512 ~15! 3
2

3 0.6 0.453~3! 1.53 ~4! 1.521 ~14! 3
2

3 0.8 0.458~2! 1.48 ~2! 1.487 ~10! 3
2

3 1.0 0.453~10! 1.52 ~7! 1.508 ~9! 3
2

3 1.2 0.447~8! 1.56 ~2! 1.519 ~10! 3
2

3 1.4 0.454~5! 1.48 ~3! 1.48 ~3! 3
2

3 1.5 0.449~8! 1.53 ~5! 1.46 ~3! 3
2
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fore we have repeated the same analysis withQ fixed at its
theoretical prediction—as appears justified by the values
Q in Table I—in order to obtain more accurate estimates
yt* . The results, shown in the fifth column of Table I, a
indeed in good agreement with the theoretically expec
values~last column!. Thus, we have kept the thermal exp
nent fixed at its theoretical value in the further analysis, j
as in Ref. 53. The corresponding results forQ and Kc are
shown in Table II. As discussed in Ref. 53, over the f
range ofs andd the Monte Carlo results forQ show good
agreement with the renormalization prediction, thus confir
ing the universality of this quantity above the upper critic
dimension. In comparison with the estimates presented
Table I of Ref. 53, some minor remarks apply. F
Q(d53,s50.4) one decimal place too much was quote
suggesting a too high accuracy. Furthermore we note tha
newest result forKc(d53,s51.2) deviates two standard de
viations from the earlier estimate and that the accuracy
Q(d53,s51.4) is less than in Ref. 53. The latter differen
is due to the fact that we have taken into account more c
rections to scaling.

The universality ofQ is illustrated graphically in Figs.
1~a!–1~c!, where the increasing importance of corrections
scaling upon approaching the upper critical dimens
clearly follows from the size of the error bars. At the upp
critical dimension itself («50) this culminates in the ap
pearance of logarithmic corrections, where the finite-s
scaling form ofQL is given by

i-
TABLE II. The amplitude ratioQ and critical couplingsKc for

systems with long-range interactions in one, two, and three dim
sions, for several values of the decay parameter 0,s<d/2. The
thermal exponent~see Table I! was kept fixed at its theoretica
value in all analyses. The estimates forKc in the last column have
been obtained by fixingQ at its renormalization prediction. The
numbers between parentheses represent the errors in the last
mal places.

d s Q Kc Kc

1 0.1 0.4565~8! 0.0476162~13! 0.0476168~6!

1 0.2 0.4579~7! 0.092234~2! 0.0922314~15!

1 0.25 0.4579~15! 0.114143~4! 0.1141417~19!

1 0.3 0.4567~15! 0.136113~4! 0.136110~2!

1 0.4 0.457~3! 0.181151~8! 0.181150~3!

1 0.5 0.463~5! 0.229157~8! 0.229155~6!

2 0.2 0.4573~10! 0.028533~3! 0.0285324~14!

2 0.4 0.4565~17! 0.051824~4! 0.0518249~14!

2 0.6 0.456~4! 0.071364~7! 0.071366~2!

2 0.8 0.458~5! 0.088094~7! 0.088094~2!

2 1.0 0.447~8! 0.102556~5! 0.102558~5!

3 0.2 0.4584~9! 0.0144361~10! 0.0144354~6!

3 0.4 0.4569~8! 0.0262927~16! 0.0262929~7!

3 0.6 0.4581~9! 0.036050~2! 0.0360469~11!

3 0.8 0.4562~13! 0.044034~2! 0.0440354~10!

3 1.0 0.4571~14! 0.050515~2! 0.0505152~12!

3 1.2 0.457~3! 0.055682~3! 0.0556825~14!

3 1.4 0.455~5! 0.059666~2! 0.0596669~11!

3 1.5 0.449~7! 0.061251~2! 0.061253~2!
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QL~T!5Q1p1Lyt~ lnL !1/6F t1v
L2yt

~ lnL !2/3G1p2L2yt~ lnL !1/3

3F t1v
L2yt

~ lnL !2/3G 2

1q1Ld22yh1•••1
q3

lnL
1•••.

~20!

The ellipses denote terms containing higher powers
Ld22yh and 1/lnL. The extremely slow convergence of th

FIG. 1. The amplitude ratioQ as a function of the decay param
eter s in ~a! d51, ~b! d52, and~c! d53 dimensions. The solid
line marks the renormalization prediction.
f

series is reflected in the uncertainty in the resulting estima
for Q at the upper critical dimension. To illustrate the depe
dence of the finite-size corrections on« more directly, Fig.
2~a! displays~for various values ofs) the finite-size scaling
functions as they follow from a least-squares fit of the d
for d51 to Eqs.~19! and ~20!, respectively. Although one
clearly observes the increase of finite-size corrections w
s→d/2, the true nature of the logarithmic corrections in E
~20! cannot be appreciated from this graph. To emphas
the difference between«50 and «,0, we therefore also
show @Fig. 2~b!# the same plot for the enormous rang
0,L,1010. Now it is evident how strongly the case«50
differs even from a case with strong power-law correctio
such ass50.4 («520.2).

We have used the universality ofQ to considerably nar-
row the error margins onKc by fixing Q at its theoretical
value in the least-squares fit. The corresponding coupli
are shown in Table II as well. The relative accuracy of t
critical couplings lies between 1.531025 and 5.031025.
For the one-dimensional case, we can compare these re
to earlier estimates, see Table III. One notes that the new
estimates are more than two orders of magnitude more a
rate than previous estimates. The first estimates18 were ob-
tained by carrying out exact calculations for chains of 1 to

FIG. 2. The amplitude ratioQ in a one-dimensional system as
function of the system sizeL for various values ofs. ~a! illustrates
the increase of the finite-size corrections when the upper crit
dimension (s5d/2) is approached.~b! emphasizes the differenc
between finite-size correctionsabovethe upper critical dimension
~power-law! and at the upper critical dimension itself~logarithmic!.
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TABLE III. Comparison between our best estimates of the critical couplingsKc for the one-dimensiona
system and earlier estimates.

s This work Ref. 18 Ref. 19 Ref. 20 Ref. 42 Ref. 21 Ref. 27 Ref.

0.1 0.0476168~6! 0.0478468 0.0505~5! 0.04635 0.04777~12! 0.0469 0.0481
0.2 0.0922314~15! 0.0926 ~5! 0.0933992 0.0923~9! 0.09155 0.0928~3! 0.0898
0.25 0.1141417~19! 0.1106
0.3 0.136110~2! 0.1370 ~7! 0.138478 0.1362~14! 0.1359 0.1375~10! 0.1314 0.144
0.4 0.181150~3! 0.1825 ~10! 0.184081 0.1815~18! 0.1813 0.183~2! 0.1750
0.5 0.229155~6! 0.2307 ~14! 0.230821 0.230~2! 0.2295 0.231~4! 0.2251 0.250
Pa
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spins and subsequently extrapolating these results usinǵ
approximants. Note that the estimates forTc in Ref. 18 are
expressed in units of the inverse of the Riemann zeta fu
tion and thus must be multiplied byz(11s). All couplings
are somewhat too high, but still in fair agreement with o
estimates. The results of Doman19 have no error bars. Still
his results concern us, since he carries out a cluster appro
obtaining critical couplings which start at the mean-fie
value for cluster size zero and increase monotonically w
increasing cluster size, as they should, since mean-
theory yields a lower bound on the critical couplings~see
below!. Thus, he argues that the true couplings will
higher than his best estimates~obtained for cluster size 10)
However, all these best estimates lie alreadyaboveour esti-
mates, which seems to indicate a problem inherent in
approach. Reference 20 presents results of an approxim
coined ‘‘finite-range scaling’’ with error margins of 1%. Fo
s50.1 the error is considerably underestimated, but for
other values of the decay parameter the couplings agree
our results well within the quoted errors. The same techni
was applied in Ref. 42, but now the uncertainty in the co
plings was estimated to be less than 10%, for smalls a few
times larger. This is clearly a too conservative estimate
the difference with our results is only a few percent f
s50.1 and considerably less for largers. In Ref. 21, the
coherent-anomaly method was used to obtain two differ
estimates without error margins. We have quoted the ave
of the two results, with their difference as a crude meas
for the uncertainty. The agreement is quite good, although
results lie systematically above our values. Yet another
proach has been formulated in Ref. 27, where the Ons
reaction-field theory was applied to obtain a general exp
sion for the critical coupling,

Kc~s!5
G~11s!sin~ps/2!

~12s!p11s
. ~21!

Unfortunately, no estimate for the accuracy of this expr
sion is given, but it seems to generally underestimate
critical coupling by a few percent. Finally, some estima
have recently been obtained by means of the real-sp
renormalization-group technique.43

In addition, Monroe has calculated various bounds on
critical couplings as shown in Table IV. The Bethe latti
approximation24 was used to obtain both upper and low
bounds, to which our results indeed conform, although
must be said that the upper bounds do not constitute a
de
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stringent criterion. Furthermore, the application of Vigfu
son’s method25 has yielded even closer lower bounds f
s50.1 ands50.2.

Apart from these approximations, one may also use me
field theory to make some predictions concerning the criti
coupling in the limits↓0. It was shown by Brankov64 that in
this limit the d-dimensional system with an interaction p
tential }s/r d1s is equivalent to the Husimi-Temperle
mean spherical model. More specifically, it was conjectu
by Cannas26 that for the one-dimensional cas
lims→0Kc;s/2, which is also the first term in the Taylo
expansion of Eq.~21!. Indeed, in mean-field theory one ha
zKc

MF51, wherez is the coordination number. Ford51 this
corresponds to the requirement

2Kc
MF~s! (

n51

`
1

n11s
52Kc

MF~s!z~11s!51, ~22!

wherez(x) denotes the Riemann zeta function. The exp
sion of z(x) around x51 yields the conjectured relatio
lims↓0Kc

MF5s/2. Figure 3~a! shows the critical coupling as
function of the decay parameters along with Kc

MF(s) and
the asymptotic behavior fors↓0. One observes thatKc(s)
indeed approachesKc

MF(s) when s approaches zero. Fur
thermore,Kc

MF(s) is smaller thanKc(s) for all s, as one
expects from the fact that mean-field theoryoverestimates
the critical temperature. It is interesting to note that f
s50.1 (Kc

MF'0.047239) this lower bound already exclud
the estimates given in Refs. 42 and 27~cf. Table III!. Re-
placingzKc

MF by the integrated interaction, we can general
such estimates to higher dimensionalities,

Kc
MF~s!

2pd/2

GS d

2D Em0

`

dr
1

r 11s
51. ~23!

TABLE IV. Comparison of our best estimates of the critic
couplings for the one-dimensional system with some lower and
per bounds.

s This work Ref. 24 Ref. 24 Ref. 25

0.1 0.0476168~6! >0.04726 <0.09456 >0.04753
0.2 0.0922314~15! >0.08947 <0.1792 >0.09162
0.3 0.136110~2! >0.1273 <0.2558
0.4 0.181150~3! >0.1615 <0.3258
0.5 0.229155~6! >0.1923 <0.3903 —
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For d.1, the lower distance cutoffm0 of the integral, i.e.,
the minimal interaction distance with the nearest neighbor
does not have an isotropic value, since there is no interacti
within an elementarycubearound the origin. Nevertheless, a
constant valuem0, e.g.,m051/2, is a good approximation.
Furthermore, ford51 the integral is only a first-order ap-
proximation of Eq.~22!, but for d52 andd53 it precisely
corresponds to the interaction~18! and its generalization to
d53, respectively. As a first estimate one thus obtains

FIG. 3. The critical couplingKc as a function of the decay
parameters for ~a! d51, ~b! d52, and~c! d53. Also shown is the
asymptotic behavior fors↓0 as predicted by mean-field theory and
mean-field values forKc over the full range of 0,s,d/2 ~for d52
andd53 only approximately!.
s,
on

lim
s↓0

Kc
MF~s!5

G~d/2!

2pd/2
sm0

s . ~24!

An expansion in terms ofs shows that the first term is in
dependent ofm0. For d51,2,3 one finds, respectively
Kc

MF;s/2, Kc
MF;s/(2p), Kc

MF;s/(4p). Figures 3~b! and
3~c! showKc(s) for d52 andd53, the corresponding as
ymptotes and Eq.~24! with m051/2.

The deviation ofKc(s) from Kc
MF(s) is also expressed

by the last term in the renormalization expression~6!. How-
ever, in order to assess thes dependence of this term one ha
to calculate thes dependence of the coefficientsa and c,
arising from the integrals over thes-dependent propagators

C. Determination of critical exponents

1. Magnetic susceptibility

The magnetic susceptibilityx is directly proportional to
the average square magnetization density,

x5Ld^m2&, ~25!

and thus we can use Eq.~14! to analyze the finite-size data
Expanding this equation int andu we obtain for«,0

x5L2yh* 2d~a01a1 t̂ Lyt* 1a2 t̂2L2yt* 1•••1b1Lyi1••• !,
~26!

and for«50

x5L2yh2dAlnLFa01a1Lyt~ lnL !1/6S t1v
L2yt

~ lnL !2/3D
1a2L2yt~ lnL !1/3S t1v

L2yt

~ lnL !2/3D 2

1•••1
b1

lnL
1•••G .

~27!

The analytic part of the free energy might give rise to
additional constant, but this could not be observed in
simulations, because it is dominated by the corrections
scaling. In Table V we list the results of an analysis of t
numerical data. For all examined systems we have de
mined the exponentyh* and the critical coupling. The esti
mates for the latter are in good agreement with those
tained from the analysis of the universal amplitude ratioQ.
Furthermore, the exponents agree nicely, for all dimensi
alities, with the renormalization predictionyh* 53d/4. Just as
before, the uncertainties increase with increasings, although
the analyses at the upper critical dimension itself seem
yield better results than those just above it. Compare in p
ticular the results fors51.4 (yi520.2) ands51.5. The
logarithmic prefactor in Eq.~27! can be clearly observed in
the sense that the quality of the least-squares fit decre
considerably when this factor is omitted. To reduce the
certainty in the exponents we have repeated the analysis
Kc fixed at the best values in Table II, i.e., those obtain
with fixed Q. The corresponding estimates ofyh* are also
shown in Table V and are indeed in good agreement with
renormalization predictions.

Now we can calculate the critical exponents and comp
them to earlier estimates ford51. We do this for the corre-
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8954 56ERIK LUIJTEN AND HENK W. J. BLÖTE
lation length exponentn51/(yt* 1yi /2) and the magnetiza
tion exponentb5(d2yh* )/yt* . The results are shown in
Tables VI and VII. Since all our estimates foryt* and yh*
agree with the renormalization values, alson and b are in
agreement with the classical critical exponents. Unfor
nately, the accuracy in both exponents is seriously hamp
by the uncertainty inyt* , which has only been determine
from the temperature-dependent term inQ. In particular the
results forn from Ref. 42 are, for smalls, in better agree-
ment with the theoretically predicted values than our e
mates. However, all previous results, both forn and for b,
deviate seriously from the predicted values whens ap-
proaches 1/2, which is not the case for our values. This
probably be attributed to the fact that corrections to sca
have been taken into account more adequately.

2. Spin-spin correlation function

In Sec. III two different decay modes for the spin-sp
correlation function were derived. The relative magnitude

TABLE V. Estimates for the critical couplingKc and the expo-
nentyh* as obtained from the analysis of the magnetic susceptibi
The values foryh* in the fifth column have been obtained by fixin
Kc at their best estimates from Table II; the error margins do
include the uncertainty in these values forKc .

d s Kc yh* yh* RG

1 0.1 0.0476161~19! 0.7487 ~14! 0.7493 ~6! 3
4

1 0.2 0.092239~4! 0.752 ~2! 0.7504 ~10! 3
4

1 0.25 0.114145~4! 0.7477 ~15! 0.7468 ~16! 3
4

1 0.3 0.136110~5! 0.747 ~3! 0.7490 ~17! 3
4

1 0.4 0.181170~10! 0.749 ~5! 0.746 ~3! 3
4

1 0.5 0.229153~6! 0.748 ~2! 0.7490 ~8! 3
4

2 0.2 0.028537~5! 1.500 ~6! 1.495 ~3! 3
2

2 0.4 0.051830~6! 1.498 ~9! 1.496 ~3! 3
2

2 0.6 0.071370~5! 1.497 ~6! 1.498 ~2! 3
2

2 0.8 0.088095~10! 1.496 ~5! 1.495 ~3! 3
2

2 1.0 0.102556~3! 1.495 ~4! 1.497 ~2! 3
2

3 0.2 0.0144347~9! 2.249 ~2! 2.2504 ~8! 9
4

3 0.4 0.026296~2! 2.250 ~6! 2.246 ~3! 9
4

3 0.6 0.036046~3! 2.246 ~7! 2.244 ~5! 9
4

3 0.8 0.0440349~17! 2.243 ~4! 2.246 ~3! 9
4

3 1.0 0.050516~3! 2.239 ~9! 2.243 ~7! 9
4

3 1.2 0.055679~2! 2.247 ~11! 2.251 ~7! 9
4

3 1.4 0.0596636~18! 2.27 ~3! 2.26 ~2! 9
4

3 1.5 0.061251~2! 2.257 ~12! 2.249 ~5! 9
4

TABLE VI. The correlation length exponentn as a function of
s for the one-dimensional model, together with earlier estima
and the renormalization predictions.

s This work Ref. 20 Ref. 42 Ref. 43 RG

0.1 9.3 ~6! 9.12 9.9 10.48 10.0
0.2 4.9 ~3! 4.90 4.95 5.0
0.25 4.00 ~8! 4.0
0.3 3.27 ~12! 3.41 3.32 3.90 3.3 . . .
0.4 2.50 ~13! 2.71 2.68 2.5
0.5 2.04 ~8! 2.34 2.33 2.81 2.0
-
ed

i-

n
g

f

r andL determines which of the modes applies. In the bu
of our simulations we have restrictedr in g(r ) to r 5L/2.
Since this quantity reflects thek50 mode of the correlation
function, we write for«,0 an expression analogous to th
for the magnetic susceptibility,

g~L/2!5L2yh* 22d@c01c1 t̂ Lyt* 1c2 t̂2L2yt*

1•••1d1Lyi1•••# ~28!

and for«50

g~L/2!5L2yh22dAlnLFc01c1Lyt~ lnL !1/6S t1v
L2yt

~ lnL !2/3D
1c2L2yt~ lnL !1/3S t1v

L2yt

~ lnL !2/3D 2

1•••1
d1

lnL
1•••G . ~29!

For values ofr such thatg(r ) doesnot correspond to this
mode of the correlation function, thes-dependent exponen
yh will appear in Eq.~28! instead ofyh* . Furthermore, the
logarithmic prefactor in Eq.~29! will be absent, as it arises
from the dangerous irrelevant variable@cf. Eq. ~15!#. The
results of our analysis are shown in Table VIII. They ev
dently corroborate that the exponentyh* coincides with that
appearing in the susceptibility. Also the factorAlnL in Eq.
~29! was clearly visible in the least-squares analysis. T
critical couplings agree with the estimates fromQ andx and
we have again tried to increase the accuracy inyh* by repeat-
ing the analysis withKc fixed at their best values in Table II
The accuracy of the results is somewhat less than of th
obtained from the magnetic susceptibility, because we h
now only used numerical data for even system sizes. The
that theL dependence ofg(L/2) is determined by thek50
mode raises the question whether one can also observe
power-law decay described byh in finite systems. To this
end, we have sampledg(r ) as a function ofr in the one-
dimensional model. In order to clearly distinguish the tw
predictions for the decay ofg(r ) we have examined a system
far from the upper critical dimension, viz., withs50.1. It
turned out to be necessary to samplevery large system sizes
to observe the regime whereg(r )}r 2(d2s). Figure 4 dis-
plays the spin-spin correlation function scaled withLd/2 ver-
susr /L. The scaling makes the results collapse forr of the

.

t

s
TABLE VII. The magnetization exponentb as a function ofs

for the one-dimensional model, together with earlier estimates
the renormalization predictions.

s This work Ref. 18 Ref. 21 RG

0.1 0.494 ~8! 0.495 1
2

0.2 0.495 ~13! 0.5 0.482 1
2

0.25 0.506~8! 1
2

0.3 0.497 ~15! 0.48 0.460 1
2

0.4 0.51 ~2! 0.45 0.435 1
2

0.5 0.51 ~2! 0.39 0.408 1
2
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order of the system size. Here, the correlation function lev
off. This is the mean-field like contribution to the correlatio
function, which dominates in the spatial integral yielding t
magnetic susceptibility. For smallr the data do not collaps
at all, which shows thatg(r ) exhibits different scaling be
havior in this regime. Indeed, the correlation function dec
here asr 2(d2s)5r 20.9 and not asr 2d/2. Note, however, that
this regime is restricted to a small region ofr and can only
be observed for very large system sizes.

It is interesting to note that already Nagle and Bonne18

have tried to calculateh in a spin chain with long-range
interactions from finite-size data for the susceptibility. B

FIG. 4. The spin-spin correlation function versusr /L in the
one-dimensional model withs50.1. Results for various system
sizes are shown. For a discussion see the text.

TABLE VIII. Estimates for the critical couplingKc and the
exponentyh* as obtained from the analysis of the spin-spin corre
tion function. The values foryh* in the fifth column have been
obtained by fixingKc at their best estimates from Table II; the err
margins do not include the uncertainty in these values forKc .

d s Kc yh* yh* RG

1 0.1 0.047619~3! 0.750 ~2! 0.7488 ~9! 3
4

1 0.2 0.092233~7! 0.749 ~3! 0.7513 ~16! 3
4

1 0.25 0.114148~10! 0.750 ~5! 0.747 ~2! 3
4

1 0.3 0.136116~7! 0.753 ~5! 0.752 ~3! 3
4

1 0.4 0.181158~15! 0.747 ~7! 0.750 ~4! 3
4

1 0.5 0.229150~7! 0.749 ~2! 0.7503 ~10! 3
4

2 0.2 0.028535~7! 1.499 ~9! 1.496 ~3! 3
2

2 0.4 0.051831~6! 1.505 ~6! 1.499 ~4! 3
2

2 0.6 0.071369~6! 1.507 ~4! 1.502 ~4! 3
2

2 0.8 0.088091~6! 1.495 ~7! 1.497 ~3! 3
2

2 1.0 0.102554~4! 1.490 ~6! 1.496 ~3! 3
2

3 0.2 0.0144348~16! 2.256 ~6! 2.254 ~4! 9
4

3 0.4 0.026296~3! 2.257 ~8! 2.245 ~5! 9
4

3 0.6 0.036053~4! 2.262 ~10! 2.246 ~4! 9
4

3 0.8 0.044035~4! 2.252 ~11! 2.250 ~5! 9
4

3 1.0 0.050511~5! 2.228 ~15! 2.249 ~9! 9
4

3 1.2 0.055680~3! 2.253 ~14! 2.257 ~9! 9
4

3 1.4 0.059667~2! 2.22 ~4! 2.31 ~4! 9
4

3 1.5 0.061251~5! 2.26 ~3! 2.248 ~7! 9
4

ls

s

-

cause this calculation relied on the assumption t
x(L,Kc)2x(L21,Kc);g(L);L2(d221h), they called the
corresponding exponenth̃ . The results forh̃ turned out to
assume a constant value approximately equal to 1.50
0,s<0.5. Thus, the identification ofh̃ with h was assumed
to be invalid in Ref. 35. Now we see thath̃ is in excellent
agreement withh* [d1222yh* 522d/2.

V. CONCLUSIONS

In this paper we have studied systems with long-ran
interactions decaying asr 2(d1s) in one, two, and three di-
mensions in the regime where these interactions exhibit c
sical critical behavior, i.e., for 0,s<d/2. From the renor-
malization equations we have derived the scaling behav
including the corrections to scaling, for various quantitie
These predictions, in particular the critical exponents and
scaling behavior of the amplitude ratiôm2&2/^m4&, have
been verified by accurate Monte Carlo results. At the up
critical dimension, the logarithmic factors appearing in t
finite-size scaling functions could be accurately observ
The Monte Carlo results have been obtained with a dedica
algorithm. This algorithm is many orders of magnitude fas
~up to the order of 108 for the largest examined system! than
a conventional Monte Carlo algorithm for these systems. O
analysis has also yielded estimates for the critical couplin
For d51 these values have an accuracy which is more t
two orders of magnitude better than previous estimates
could thus serve as a check for half a dozen different
proximations. Ford52 and d53 we have, to our bes
knowledge, obtained the first estimates for the critical co
plings. Finally, we have given both theoretical and numeri
arguments that above the upper critical dimension the de
of the critical spin-spin correlation function in finite system
consists of two regimes: One where it decays asr 2(d221h)

and one where it is independent of the distance.
As an outlook we note that many interesting results m

be expectedbelow the upper critical dimension, where ne
ther any rigorous results nor any accurate numerical res
are available. This regime will be the subject of a futu
investigation.58

APPENDIX: DETAILS OF THE MONTE CARLO
ALGORITHM FOR LONG-RANGE INTERACTIONS

The cluster algorithm applied in this study has been
scribed for the first time in Ref. 54. A somewhat more elab
rate treatment of the mathematical aspects was given in
65. Although conceptually no new aspects arise in the ap
cation to algebraically decaying interactions in more th
one dimension, several important practical issues mus
taken care of in actual simulations. It is the purpose of t
appendix to discuss these issues and their solutions in s
more detail. We do not repeat the full cluster algorithm he
but only describe how the cluster formation process proce
from a given spinsi which has already been added to t
cluster~the so-calledcurrent spin!.

As explained in Ref. 54, the key element of the algorith
lies in splitting up the so-called bond-activation probabil
p(si ,sj )5dsisj

pi j 5dsisj
@12exp(22Jij)# into two parts,

-
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namely the Kronecker delta testing whether the spinssi and
sj are parallel and the ‘‘provisional’’ bond-activation prob
ability pi j . This enables us to define acumulative bond
probability C(k), from which we can read off which bond i
the next one to be provisionally activated

C~ j ![ (
n51

j

P~n! ~A1!

with

P~n!5~12p1!~12p2!•••~12pn21!pn . ~A2!

pj[12exp(22Jj) is an abbreviation forp0 j , i.e., we define
the origin at the position of the current spin. When comp
ing the expressions to those in Ref. 54 one must take
account that we now are working with Ising instead of Po
couplings.P(n) is the probability that in the first stepn21
bonds are skipped and thenth bond is provisionally acti-
vated. Now the next bondj that is provisionally activated is
determined by a random numbergP@0,1&: j 21 bonds are
skipped if C( j 21)<g,C( j ). The numberj can be easily
determined fromg once we have tabulated the quantityC( j )
in a lookup table. If thej th bond is placed to a spinsj that is
indeed parallel to the current spinsi thensj is added to the
cluster~i.e., thej th bond is activated!. Subsequently we skip
again a number of bonds before another bond at a dista
k. j is provisionally activated. The appropriate cumulati
probability is now given by a generalization of Eq.~A1! ~see
Ref. 54!,

Cj~k!5 (
n5 j 11

k F )
m5 j 11

n21

~12pm!Gpn

512expS 22 (
n5 j 11

k

JnD . ~A3!

In principle we need now for each value ofj another lookup
table containing theCj (k). This is hardly feasible and fortu
nately not necessary, as follows from a comparison of E
~A1! and ~A3!. Namely,

C~k!5C0~k!5C~ j !1F)
i 51

j

~12pi !GCj~k!

5C~ j !1@12C~ j !#Cj~k! ~A4!

or Cj (k)5@C(k)2C( j )#/@12C( j )#. So we can calculate
Cj (k) directly from C(k). In practice one realizes this b
using the bond distancej of the previous bond that wa
provisionally activated to rescale the~new! random number
g to g8P@C( j ),1&; g85C( j )1@12C( j )#g. Since we con-
sider only ferromagnetic interactions, limj→`C( j ) exists and
is smaller than 1, cf. Eq.~A3!. Still we can accommodate
only a limited number of bond distances in our lookup ta
and must therefore devise some approximation schem
handle the tail of the long-range interaction, which is ess
tial for the critical behavior. This issue is addressed belo
Furthermore, this description only takes into account
bonds placed in one direction. The actual implementation
the algorithm must of course allow for bonds in both dire
tions ~assuming thatd51).
-
to
s

ce

s.

to
-
.
e
f

-

An alternative for the lookup table exists for interactio
which can be explicitly summed. In those cases, Eq.~A3!
can be solved fork, yielding an expression for the bon
distance in terms ofCj (k), i.e., in terms of the random num
ber g. For the interaction defined in Sec. II the sum appe
ing in the right-hand side of Eq.~A3! is ~for j 50) the trun-
cated Riemann zeta function,

(
n51

k

Jn5K (
n51

k
1

nd1s
, ~A5!

which cannot be expressed in closed form. In more than
dimension, a lookup table is very impractical and an inter
tion which can be summed explicitly becomes very des
able. Therefore we have taken an isotropic, continuous in
action of the formJ5K/r d1s. The interaction with a spin a
lattice site n is then given by the integral ofJ over the
elementary square~cube! centered aroundn @cf. Eq. ~18!#
and the cumulative bond probability yields the~not necessar-
ily integer-valued! distancek at which the first provisional
bond is placed. To this end, the sum in Eq.~A3! is replaced
by a d-dimensional integral over the couplingJ. As J is
isotropic, only an integral over the radius remains, wh
runs from the minimal bond distance up tok. Thus ford52
Eq. ~A3! reduces to

Cj~k!512expF22
2pK

s S 1

j s
2

1

r sD G ~A6!

and ind53 the factor 2p is simply replaced by 4p. Equat-
ing Cj (k) to the random numberg we find

k5F j 2s1
s

4pK
ln~12g!G21/s

. ~A7!

Rescaling of the random number is no longer required: T
lowest value,g50, leads to a provisional bond at the sam
distance as the previous one,k5 j . If g5Cj (`)51
2exp@2(4pK/s)j2s# the next provisional bond lies at infin
ity and thusgP@Cj (`),1& yields no bond at all. Once the
distancek has been obtained,d21 further random numbers
g1 ,g2 , . . . are required to determine thedirection of the
bond. Ind52, we setf5g1 /(2p). The coordinates of the
next provisional bond~relative to the current spin! are then
(r x ,r y)5(kcosf,ksinf), which are rounded to the neare
integer coordinates. Finally, the periodic boundary con
tions are applied to map these coordinates onto a lattice
For the next provisional bond,j is set equal tok ~not to the
rounded distance! and a newk is determined. If no bond ha
been placed yet,j is set to 1/2, the lowest possible bon
distance. Hence it is possible to find a 1/2<k,A2/2 and an
anglef such that the corresponding lattice site is the orig
This does not affect the bond probabilities, but it is of cou
a ‘‘wasted’’ Monte Carlo step. Ford53 the process is simi-
lar, except that we need another random numberg2 to deter-
mine a second angle2p/2,c<p/2, such that sinc is dis-
tributed uniformly; sinc5122g2. The bond coordinates ar
given by (kcosc cosf,kcosc sinf,ksinc).

This approach can also be applied in the one-dimensio
case, where the geometrical factor 2p in Eq. ~A6! must be
replaced by 2, which reflects the fact that bonds can be pu
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the left and to the right of the origin. The direction of th
bond is then simply determined by another random numb
As has already been mentioned in Ref. 54, this can be u
to cope with the limited sizeM of the lookup table. Beyond
the bond distanceM the sum in Eq.~A3! is approximated by
an integral. I.e., if the random numberg lies in the interval
@C(M ),C(`)&, the bond distancek is determined from the
one-dimensional version of Eq.~A7!, where the lower part of
the integral is replaced by an explicit sum

k5F S M1
1

2D 2s

1sS 1

2K
ln~12g!1 (

n51

M
1

n11sD G21/s

.

~A8!

Here, the geometrical factor is absent, as we have op
to treat ‘‘left’’ and ‘‘right’’ separately in our simulations
~no additional random number is required in that case!. The
approximation ~A8! effectively introduces a modification
of the spin-spin interaction, which however can be ma
arbitrarily small by increasingM . Note that the offset 1/2
in the first term ensures a precise matching of the disc
sum and the integral approximation: the random num
g5C(M )512exp@22K(n51

M n2(11s)] yields k5M11/2
which is precisely the lowestk that is rounded to the intege
bond distanceM11.
r.
ed

ed

e

te
r

The accuracy of this procedure is further limited by t
finite resolution of random numbers. For example, in o
simulations the original random numbers are integers in
range @0,23221#. Thus, for bond distancesl such that
C( l )2C( l 21) is of the order 2232, the discreteness of th
random numbers is no longer negligible. Ford52 andd53,
the discreteness of the angles also limits the lattice sites
can be selected for a provisional bond, but this gener
occurs at distances larger thanl . Once the value ofl has been
determined, with a safe margin, there are various approa
to this limitation. One may, e.g., draw another random nu
ber to determine the precise bond distance. A simpler
proach is to distribute all bonds beyondl uniformly over the
lattice, in order to prevent that certain lattice sites are ne
selected. However, one should take care that such sim
approaches do not essentially modify the critical behavio
l is relatively small, the error introduced by a random dis
bution of the bond distances might be larger than the ef
of an interaction which decreases slightly nonmonotonic
at large distances. Furthermore, in order to preserve the s
metry of the lattice, such a uniform distribution of the bon
should occur outside a square~cube! instead of a circle
~sphere! with radiusl .
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