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Abstract

Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have
been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an
accurate description of the crossover function for the susceptibility. © 1999 Published by Elsevier Science B.V. All rights

reserved.
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Recently, an accurate numerical study of the
crossover from asymptotic (Ising-like) critical behav-
ior to classical (mean-field) behavior has been per-
formed both for two-dimensional [1,2] and three-di-
mensiona [3] Ising systems in zero field on either
side of the critical temperature with a variety of
interaction ranges. It is the objective of the present
work to analyze these numerical results within the
framework of a crossover theory that is based on
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renormalization-group matching and that has already
successfully been applied to the description of
crossover in several experimental systems [4,5].
Qualitatively, the crossover is ruled by the param-
eter t/G where t = (T —T,)/T, is the reduced tem-
perature distance to the critical temperature T, and G
the Ginzburg number [6]. The Ginzburg number
depends on the normalized interaction range R as

G=GOR_2d/(4_d), (1)

where d is the dimensionality of space and G, a
constant. Hence, for d = 3 the crossover occurs as a
function of tR®. Asymptotic critical behavior takes
place for tR® < 1 and classical behavior is expected
for tR®> 1. In rea fluids the crossover is never
completed in the critica domain (where t < 1),
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since the range of interaction is of the same order of
magnitude as the distance between molecules(R= 1)
[4]. A new Monte-Carlo algorithm, developed by
Luijten and Bl6te [7], offers the advantage that the
ratio t/G can be tuned over more than eight orders
of magnitude allowing one to cover the full crossover
region in three-dimensional spin models [3].

A sensitive description of crossover behavior is
obtained from an analysis of the effective critical
exponent of the susceptibility (the third derivative of
the free energy), defined as

Yeit = — diny/ dinlt], (2)

where the scaled susceptibility y = kgT.(R(dm/
dh);, kg the Boltzmann constant, m the order pa-
rameter, h the ordering field, and where the * 4+’ sign
applies for T> T, and the * —’ sign for T<T_. As
is seen from Figs. 1 and 2, the variation of v
reproduces the Ising asymptotic critical behavior
(ysi=124) a tR® <1 as well as the mean-field
asymptote (ys = yye =1 a tR®> 1. Apparently,
all data would seem to collapse onto a universal
function of the reduced variable tR® as predicted by
a field-theoretical treatment [8,9] and by the s-ex-
pansion [10]. However, as was noted in Ref. [3], a
more careful look at the data reveals a remarkable
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Fig. 1. The effective susceptibility exponent yz; above T.. The
symbols indicate numerical simulation data [3]. The solid curves
represent vaues calculated from Eq. (5). The dashed-dotted curve
corresponds to the limit t— 0. The dotted curve is a continuation
of the crossover curve for U= 1.22. For clarity, the error bars have
been omitted; they are al of the order of 0.004.

3

1.20

%%E i

1.15

0«4 D>Jd OO0 %
N
@

eff

g/
© OO oA WN =

OX +emboam

1.10

1.054

1.00

[tIR®

Fig. 2. The effective susceptibility exponent ys; below T.. The
symbols indicate numerical simulation data [3]. The solid curves
represent values calculated from the renormalization-group match-
ing crossover model.

discrepancy between the theoretical calculations [8—
12] and the simulation results. Namely, the shape of
the crossover is sharper than predicted by the theory
[11,12], especidly for short ranges of interaction. We
will show that this discrepancy is related to the
findings of Refs. [4,5], where it was shown that there
is a fundamental problem in describing the crossover
of y4f by auniversal function which contains only a
single crossover parameter G oc R™6.

In zero-ordering field above T, the susceptibility
asymptotically close to the critical point behaves as

x=Tpt 7 (L+ Tyt + Dt* %+ at+...), (3)

where y = 1.239 + 0.002 (see, e.g., Refs. [13,14] and
references therein) and A, = 0.504 + 0.008 [15] are
universal Ising critical exponents, and where I, I,
I',, and a, are system-dependent amplitudes. Expan-
sion (3) is called the Wegner series [16].

In a universal single-parameter crossover theory
[8-10], the Ginzburg number is responsible both for
the range of validity of the mean-field approximation
and for the convergence of the Wegner series (3).
However, it is known [17-19], that the sign of the
first Wegner correction amplitude I'; depends on the
difference u—u”*, where u is the scaled coupling
constant and u* = 0.472 is the universal coupling
constant at the Ising fixed point [20]. Moreover, Liu
and Fisher [18] concluded that the three-dimensional
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nearest-neighbor Ising model has a negative leading
Wegner correction amplitude I}, so that i asymp-
totically approaches y = 1.24 from above. Therefore,
since the coupling constant itself depends on the
interaction range, the shape of vy cannot be repre-
sented by a universal function of the Ginzburg num-
ber, since G is not proportiona to the difference
u—u-.

In this paper we therefore present an analysis of
the numerical datafor v [3]in terms of a crossover
model based on renormalization-group matching for
the free-energy density [17,19,21]. This model con-
tains two crossover parameters Gi=u/u* and A (a
dimensionless cut-off wave number), and two
rescaled amplitudes ¢, and c, related to the coeffi-
cients of the local density of the classical Landau—
Ginzburg free energy A A:

vy d(AA) 1 )
T gy~ 28T g Uoe + 5o(Ve)
5 !

1 .
= JerM?+ Ut TAMA + 1M,
(4

with 7=(T=T)/T, M=c,eo=(8y/c,). %, ay=
c’c, Up=u"TAc), c,=cZvd/? and V=0g°V.
The average molecular volume v, and the pre-
factor v,/kgT are introduced to make the free-
energy density and al the coefficients dimension-
less. The inverse crossover susceptibility x !
= (0°AA/dM?)_, where A A is the crossover (re-
normalized) free-energy density, in zero field above
T, reads [4]

x t=clerYO TV (1 +y) (5)
with
u“v K \? A2
y= 2(—) 1+ —)
24,1\ A K
vy (@-T)Y | 2v-1)
x| — |- . (6)
A, 1-(1-T)Y A,

where v = 0.630 [15,22] is the critical exponent of
the asymptotic power law for the correlation length ¢
[4]. Note that x '=(T,/T)x ' and the relation
between vy = — diny/ din|7| and ., given by Eq.
(2), is ¥4t = v + (1 — y4)7, both above and below

the critical temperature. The crossover function Y is
defined by
A 2
1+ (_)
K

and is to be found numerically. The parameter « in
Eq. (7) isinversely proportional to the fluctuation-in-
duced portion of the correlation length and serves as
ameasure of the distance to the critical point. In zero
field above T, the expression for x? reads:

1/2

1-(1-u)Y=0 Y/ 4 (7)

k2= ctITY(Z”‘l)/AS=cttY(Z”‘l)/As. (8)
C

We modified the original expression for «2, given
by Eqg. (3) in Ref. [4], by introducing the non-
asymptotic factor T/T, in Eq. (8) so that x? be-
comes infinite at T — o« [23]. Asymptotically close
to the critical point (A/k > 1), the following ex-
pression is obtained for the first correction amplitude
I, inEq. (3):

\/C_ 244
t

r1=gl(a) (1-1), 9
where g, = 0.62 is a universal constant [21].

In the approximation of an infinite cut-off A — oo,
which physically means neglecting the discrete struc-
ture of matter, U= u,c?/(u*Aa3) — 0 and the two
crossover parameters U and A in the crossover
equations collapse into a single one, A, which is
related to the Ginzburg number G by [21]
(uA)? u2v?

o (u)aiEs
where g, = 0.028 is a universal constant [21] and
&y =0y 3c; Y2 =(c,/a,)"/? is the mean-field am-
plitude of the power law for the correlation length.
Note that the Ginzburg number does not depend
explicitly on the cut-off A or on U. This single-
parameter crossover, i.e., the crossover for U= 0, is
universal and isindicated in Fig. 1 by a dashed-dotted
curve. This simplified description of the crossover is
equivalent to the results of Bagnuls and Bervillier [9]
and of Belyakov and Kiselev [10].

In the simulations [3], each spin interacts equally
with its z neighbors lying within a distance R, on a
three-dimensional cubic lattice. The effective range

% (10)
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of interaction R is then defined as R*=z"'%, Ir,
—rjI2 with Iri—rjls R, [1]. We have approxi-
mated the relation between R and R, by R?
= 3R2(1+ 2R_?), asindicated in the insert in Fig.
3. In order to compare the numerical results to the
theoretical prediction Eqg. (5), we need the range
dependence of the parameters ¢, and U. Indeed, the
asymptotic R dependence of U follows directly from
smple scaling arguments [1], T=T,R™*, and c,
varies as its square root, ¢, = ¢,, R 2. For a three-di-
mensional simple cubic lattice, A = 7 [18,24], and
we obtain for the Ginzburg number

G = GoR °=0.28(T2/c},)c}
=0.28(02/c,o)R™°. (11)

The non-universal parameters c,, and U, have to be
determined from a least-squares fit to the numerical
data for y4;, which yielded ¢,y = 1.72 and T, = 1.22
and hence G,=0.24. The solid lines in Fig. 1
indicate the corresponding theoretical curves. It
should be noted that these curves are calculated for
each value of R, separately; the piecewise continu-
ous character of this description directly reflects the
fact that the crossover cannot be described by a
universal single-parameter function. Indeed, Fig. 1
also shows two attempts to describe the data in terms
of such a function. The dash-dotted line corresponds
to the limit Ut — 0, whereas the dotted curve corre-
sponds to T, = 1.22 and A = o (a continuation of
the theoretical curve for R=1). We see that the
actual crossover lies between these two bounding
curves, with =0 for larqge R and u=12 for
R=1. Thus, it is clearly seen that without including
the R dependence of U it is impossible to describe
data for short interaction ranges R2, < 5. The depen-
dence of U on R is shown in Fig. 3. The two
adjustable parameters c,, and U, are strongly corre-
lated and if one of them is fixed at a predicted value,
the quality of the description remains the same. We
hence tried to fit the data while keeping c,, fixed at
the theoretically predicted value c,, = 2d = 6[25,26].
In this case a fit of the same quality is obtained with
U, = 1.22, provided that A = 27. The value of G,
= 0.24 then remains unchanged.

To describe the data below the critica tempera-
ture, a connection between M and 7 in zero field is
to be found from the condition (JA A/dM), = 0. The

Fig. 3. Dependence of the normalized coupling constant T on the
normalized interaction range R. Note that T becomes larger than
unity for very short interaction ranges. Insert: Effective range of
interaction R (open circles) plotted as a function of R;,. The solid
line corresponds to the approximation mentioned in the text and
the dashed line represents the asymptotic behavior for large R.

relation between M and 7 appears to be implicit and
x as a function of 7 cannot be expressed in an
explicit form either. Of course, the parameters c,,
and U, should be the same as for T> T. and we
hence kept them fixed at the above-mentioned val-
ues. However, the parameter G, appearing in Eq.
(1) will take a different value. We took this into
account by introducing a factor G; /G, into the
temperature scale: t—t-(Gg /Gy ). Fig. 2 shows
the results for T < T, where the factor Gj /G, was
included as an adjustable parameter. Our estimate
Gy /Gg = 2.58 must be compared with the theoreti-
ca result Gy /Gg=3.125 [27]. Interestingly, g
clearly shows a minimum around |t|R® ~ 102, This
corroborates the non-monotonic character of the
crossover of v, earlier observed for the two-dimen-
sional Ising lattice [2], where the effect is much more
pronounced. We note that already in Ref. [28] a
field-theoretic calculation of the crossover in the
low-temperature regime has been given (in the limit
U— 0), but only recently this has been extended to
cover the full crossover region [29]. Actualy, also
here a non-monotonicity in yy; has been observed.
In summary, we remark that athough in general
the theory contains two crossover parameters u and
A, only one parameter (T) changes with the range of
interaction. However, this does not mean that the
crossover is a universal function of tR®. Indeed, the
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effective range of interaction R affects the behavior
of v in a twofold way: through the Ginzburg
number, which is proportional to ¢, and through the
first Wegner correction, with an amplitude I'; that is
proportional to (1 —T) [Eq. (9)]. Hence, there is no
way to describe the data for short interaction ranges
without alowing for U to become larger than unity
and correspondingly I; to change its sign between
R,=2and R, =1 asindicated in Fig. 3. In previ-
ous publications we have shown that Eqg. (5), derived
from renormalization-group matching, gives an ex-
cellent representation of the experimentally observed
crossover behavior in simple and complex fluids
[4,5,30]. From the evidence presented in this paper,
we conclude that the same crossover model also
yields a quantitative description of the crossover
critical behavior of a three-dimensional Ising lattice.
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