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Abstract

Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have
been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an
accurate description of the crossover function for the susceptibility. q 1999 Published by Elsevier Science B.V. All rights
reserved.
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Recently, an accurate numerical study of the
Ž .crossover from asymptotic Ising-like critical behav-

Ž .ior to classical mean-field behavior has been per-
w xformed both for two-dimensional 1,2 and three-di-

w xmensional 3 Ising systems in zero field on either
side of the critical temperature with a variety of
interaction ranges. It is the objective of the present
work to analyze these numerical results within the
framework of a crossover theory that is based on
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renormalization-group matching and that has already
successfully been applied to the description of

w xcrossover in several experimental systems 4,5 .
Qualitatively, the crossover is ruled by the param-

Ž .eter trG where ts TyT rT is the reduced tem-c c

perature distance to the critical temperature T and Gc
w xthe Ginzburg number 6 . The Ginzburg number

depends on the normalized interaction range R as

GsG Ry2 d rŽ4yd . , 1Ž .0

where d is the dimensionality of space and G a0

constant. Hence, for ds3 the crossover occurs as a
function of tR6. Asymptotic critical behavior takes
place for tR6

<1 and classical behavior is expected
for tR6

41. In real fluids the crossover is never
Ž .completed in the critical domain where t<1 ,
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since the range of interaction is of the same order of
Ž .magnitude as the distance between molecules R,1

w x4 . A new Monte-Carlo algorithm, developed by
w xLuijten and Blote 7 , offers the advantage that the¨

ratio trG can be tuned over more than eight orders
of magnitude allowing one to cover the full crossover

w xregion in three-dimensional spin models 3 .
A sensitive description of crossover behavior is

obtained from an analysis of the effective critical
Žexponent of the susceptibility the third derivative of

.the free energy , defined as

" < <g 'y dln xr dln t , 2Ž .ˆeff

Ž .Žwhere the scaled susceptibility xsk T R E mrˆ B c
.E h , k the Boltzmann constant, m the order pa-T B

rameter, h the ordering field, and where the ‘q’ sign
applies for T)T , and the ‘y’ sign for T-T . Asc c

is seen from Figs. 1 and 2, the variation of g "
eff

reproduces the Ising asymptotic critical behavior
Ž " . 6g ,1.24 at tR <1 as well as the mean-fieldeff

Ž " . 6asymptote g sg s1 at tR 41. Apparently,eff MF

all data would seem to collapse onto a universal
function of the reduced variable tR6 as predicted by

w xa field-theoretical treatment 8,9 and by the ´-ex-
w x w xpansion 10 . However, as was noted in Ref. 3 , a

more careful look at the data reveals a remarkable

Fig. 1. The effective susceptibility exponent gq above T . Theeff c
w xsymbols indicate numerical simulation data 3 . The solid curves

Ž .represent values calculated from Eq. 5 . The dashed-dotted curve
corresponds to the limit u™0. The dotted curve is a continuation
of the crossover curve for us1.22. For clarity, the error bars have
been omitted; they are all of the order of 0.004.

Fig. 2. The effective susceptibility exponent gy below T . Theeff c
w xsymbols indicate numerical simulation data 3 . The solid curves

represent values calculated from the renormalization-group match-
ing crossover model.

wdiscrepancy between the theoretical calculations 8–
x12 and the simulation results. Namely, the shape of

the crossover is sharper than predicted by the theory
w x11,12 , especially for short ranges of interaction. We
will show that this discrepancy is related to the

w xfindings of Refs. 4,5 , where it was shown that there
is a fundamental problem in describing the crossover
of g " by a universal function which contains only aeff

single crossover parameter GARy6.
In zero-ordering field above T the susceptibilityc

asymptotically close to the critical point behaves as

xsG tyg 1qG t Ds qG t 2 Ds qa tq . . . , 3Ž .Ž .0 1 2 1

Ž w xwhere gs1.239"0.002 see, e.g., Refs. 13,14 and
. w xreferences therein and D s0.504"0.008 15 ares

universal Ising critical exponents, and where G , G ,0 1

G , and a are system-dependent amplitudes. Expan-2 1
Ž . w xsion 3 is called the Wegner series 16 .

In a universal single-parameter crossover theory
w x8–10 , the Ginzburg number is responsible both for
the range of validity of the mean-field approximation

Ž .and for the convergence of the Wegner series 3 .
w xHowever, it is known 17–19 , that the sign of the

first Wegner correction amplitude G depends on the1

difference uyu) , where u is the scaled coupling
constant and u) s0.472 is the universal coupling

w xconstant at the Ising fixed point 20 . Moreover, Liu
w xand Fisher 18 concluded that the three-dimensional
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nearest-neighbor Ising model has a negative leading
Wegner correction amplitude G , so that g " asymp-1 eff

totically approaches g,1.24 from above. Therefore,
since the coupling constant itself depends on the
interaction range, the shape of g " cannot be repre-eff

sented by a universal function of the Ginzburg num-
ber, since G is not proportional to the difference
uyu).

In this paper we therefore present an analysis of
" w xthe numerical data for g 3 in terms of a crossovereff

model based on renormalization-group matching for
w xthe free-energy density 17,19,21 . This model con-

) Žtains two crossover parameters usuru and L a
.dimensionless cut-off wave number , and two

rescaled amplitudes c and c related to the coeffi-t r

cients of the local density of the classical Landau–
Ginzburg free energy D A:

Õ d D A 1Ž .0 21 12 4s a tw q u w q c =wŽ .0 0 02 2k T dV 4!B

1 21 12 ) 4 ˜s c t M q u uLM q =M ,Ž .t2 24!
4Ž .

Ž . 1r2with ts TyT rT , Msc ws a rc w, a sŽ .c r 0 t 0
2 ) 4 2 2r3 1r3˜c c , u su uLc , c sc Õ , and =sÕ =.r t 0 r 0 r 0 0

The average molecular volume Õ and the pre-0

factor Õ rk T are introduced to make the free-0 B

energy density and all the coefficients dimension-
less. The inverse crossover susceptibility xy1

2 ˜ 2 ˜ Žs E D ArE M , where D A is the crossover re-Ž .t

.normalized free-energy density, in zero field above
w xT reads 4c

xy1 sc2c t Y Žgy1.r Ds 1qy 5Ž . Ž .r t

with

2) 2u n k L
ys 2 1qž / ž /½2 D L ks

=

y1
n 1yu Y 2ny1Ž .

q y , 6Ž .5D 1y 1yu Y DŽ .s s

w xwhere n,0.630 15,22 is the critical exponent of
the asymptotic power law for the correlation length j

w x y1 Ž . y14 . Note that x s T rT x and the relationˆc
< < "between g 'y dln xr dln t and g , given by Eq.eff eff

Ž . " Ž .2 , is g sg q 1yg t , both above and beloweff eff eff

the critical temperature. The crossover function Y is
defined by

1r22
L

n r Ds1y 1yu Ysu 1q Y 7Ž . Ž .ž /k

and is to be found numerically. The parameter k in
Ž .Eq. 7 is inversely proportional to the fluctuation-in-

duced portion of the correlation length and serves as
a measure of the distance to the critical point. In zero
field above T the expression for k 2 reads:c

T
2 Ž2 ny1.r D Ž2 ny1.r Ds sk sc t Y sc tY . 8Ž .t tTc

We modified the original expression for k 2, given
Ž . w xby Eq. 3 in Ref. 4 , by introducing the non-

Ž . 2asymptotic factor TrT in Eq. 8 so that k be-c
w xcomes infinite at T™` 23 . Asymptotically close

Ž .to the critical point Lrk41 , the following ex-
pression is obtained for the first correction amplitude

Ž .G in Eq. 3 :1

2 Dsc( t
G sg 1yu , 9Ž . Ž .1 1 ž /uL

w xwhere g ,0.62 is a universal constant 21 .1

In the approximation of an infinite cut-off L™`,
which physically means neglecting the discrete struc-

2 ) 2Ž .ture of matter, usu c r u La ™0 and the two0 t 0

crossover parameters u and L in the crossover
equations collapse into a single one, uL, which is

w xrelated to the Ginzburg number G by 21
2 2 2uL u ÕŽ . 0 0

Gsg sg , 10Ž .0 0 2
) 4 6c u a jŽ .t 0 0

w xwhere g ,0.028 is a universal constant 21 and0
1r3 y1r2 1r2Ž .j sÕ c s c ra is the mean-field am-0 0 t 0 0

plitude of the power law for the correlation length.
Note that the Ginzburg number does not depend
explicitly on the cut-off L or on u. This single-
parameter crossover, i.e., the crossover for us0, is
universal and is indicated in Fig. 1 by a dashed-dotted
curve. This simplified description of the crossover is

w xequivalent to the results of Bagnuls and Bervillier 9
w xand of Belyakov and Kiselev 10 .

w xIn the simulations 3 , each spin interacts equally
with its z neighbors lying within a distance R on am

three-dimensional cubic lattice. The effective range
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2 y1 <of interaction R is then defined as R sz Ý rj/ i i
< 2 < < w xyr with r yr FR 1 . We have approxi-j i j m

mated the relation between R and R by R2
m

3 22 y2Ž .s R 1q R , as indicated in the insert in Fig.m m5 3

3. In order to compare the numerical results to the
Ž .theoretical prediction Eq. 5 , we need the range

dependence of the parameters c and u. Indeed, thet

asymptotic R dependence of u follows directly from
y4w xsimple scaling arguments 1 , usu R , and c0 t

varies as its square root, c sc Ry2 . For a three-di-t t 0
w xmensional simple cubic lattice, Lsp 18,24 , and

we obtain for the Ginzburg number

y6 2 4 3GsG R s0.28 u rc cŽ .0 0 t 0 t

2 y6s0.28 u rc R . 11Ž .Ž .0 t 0

The non-universal parameters c and u have to bet 0 0

determined from a least-squares fit to the numerical
qdata for g , which yielded c s1.72 and u s1.22eff t 0 0

and hence G f0.24. The solid lines in Fig. 10

indicate the corresponding theoretical curves. It
should be noted that these curves are calculated for
each value of R separately; the piecewise continu-m

ous character of this description directly reflects the
fact that the crossover cannot be described by a
universal single-parameter function. Indeed, Fig. 1
also shows two attempts to describe the data in terms
of such a function. The dash-dotted line corresponds
to the limit u ™0, whereas the dotted curve corre-

Žsponds to u s1.22 and Lsp a continuation of0
.the theoretical curve for Rs1 . We see that the

actual crossover lies between these two bounding
curves, with u,0 for large R and u,1.2 for
Rs1. Thus, it is clearly seen that without including
the R dependence of u it is impossible to describe
data for short interaction ranges R2 F5. The depen-m

dence of u on R is shown in Fig. 3. The two
adjustable parameters c and u are strongly corre-t 0 0

lated and if one of them is fixed at a predicted value,
the quality of the description remains the same. We
hence tried to fit the data while keeping c fixed att 0

w xthe theoretically predicted value c s2 ds6 25,26 .t 0

In this case a fit of the same quality is obtained with
u s1.22, provided that L,2p . The value of G0 0

f0.24 then remains unchanged.
To describe the data below the critical tempera-

ture, a connection between M and t in zero field is
˜Ž .to be found from the condition ED ArE M s0. Thet

Fig. 3. Dependence of the normalized coupling constant u on the
normalized interaction range R. Note that u becomes larger than
unity for very short interaction ranges. Insert: Effective range of

Ž .interaction R open circles plotted as a function of R . The solidm

line corresponds to the approximation mentioned in the text and
the dashed line represents the asymptotic behavior for large R.

relation between M and t appears to be implicit and
x as a function of t cannot be expressed in an
explicit form either. Of course, the parameters ct 0

and u should be the same as for T)T and we0 c

hence kept them fixed at the above-mentioned val-
ues. However, the parameter G appearing in Eq.0
Ž .11 will take a different value. We took this into
account by introducing a factor GqrGy into the0 0

Ž q y.temperature scale: t™ tP G rG . Fig. 2 shows0 0

the results for T-T , where the factor GqrGy wasc 0 0

included as an adjustable parameter. Our estimate
GyrGqs2.58 must be compared with the theoreti-0 0

y q w x ycal result G rG s3.125 27 . Interestingly, g0 0 eff
< < 6 2clearly shows a minimum around t R ;10 . This

corroborates the non-monotonic character of the
crossover of gy, earlier observed for the two-dimen-eff

w xsional Ising lattice 2 , where the effect is much more
w xpronounced. We note that already in Ref. 28 a

field-theoretic calculation of the crossover in the
Žlow-temperature regime has been given in the limit

.u™0 , but only recently this has been extended to
w xcover the full crossover region 29 . Actually, also

here a non-monotonicity in gy has been observed.eff

In summary, we remark that although in general
the theory contains two crossover parameters u and

Ž .L, only one parameter u changes with the range of
interaction. However, this does not mean that the
crossover is a universal function of tR6. Indeed, the
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effective range of interaction R affects the behavior
of g " in a twofold way: through the Ginzburgeff

number, which is proportional to c3, and through thet

first Wegner correction, with an amplitude G that is1
Ž . w Ž .xproportional to 1yu Eq. 9 . Hence, there is no

way to describe the data for short interaction ranges
without allowing for u to become larger than unity
and correspondingly G to change its sign between1

R s2 and R s1 as indicated in Fig. 3. In previ-m m
Ž .ous publications we have shown that Eq. 5 , derived

from renormalization-group matching, gives an ex-
cellent representation of the experimentally observed
crossover behavior in simple and complex fluids
w x4,5,30 . From the evidence presented in this paper,
we conclude that the same crossover model also
yields a quantitative description of the crossover
critical behavior of a three-dimensional Ising lattice.
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