
Self-Avoiding Flexible Polymers under
Spherical Confinement
Angelo Cacciuto and Erik Luijten*

Department of Materials Science and Engineering and Frederick Seitz Materials
Research Laboratory, UniVersity of Illinois at Urbana-Champaign,
Urbana, Illinois 61801

Received November 29, 2005; Revised Manuscript Received January 4, 2006

ABSTRACT

We compute the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical results allow us
to arbitrate between three competing scaling predictions. For moderate confinement, the free energy exhibits a power-law dependence on
cavity size that is different from what is observed for planar and cylindrical confinement. At high monomer concentrations, crossover to a
different scaling regime is observed, consistent with the screening of the excluded-volume interactions. We demonstrate how our findings
lead to a revised prediction for the escape time of a polymer from a spherical confinement.

Confinement of a polymer reduces its number of accessible
conformations drastically and thus results in an excess free
energy. The precise behavior of this free energy has a
relevance that extends well beyond the realm of fundamental
polymer physics. It plays an important role in various
biological problems, including the packaging of DNA inside
virus capsids1-3 and its subsequent injection into the host
cell.4 It also governs the translocation of polynucleotides5-7

and has been suggested to affect the stability of folded
proteins.8 Furthermore, confinement of polymers is encoun-
tered in numerous applications, such as filtration, colloidal
stabilization,9 flow-injection problems,10 and drug-delivery
techniques.11 The dependence of the excess free energy on
the geometry, degree of confinement, and chain length
determines the partitioning of polymer chains and the
entropic force on the polymer. Although the corresponding
scaling behavior is covered in standard texts,12,13 there is an
important lingering controversy, which we address in this
Letter.

The calculation of the entropy loss due to the confinement
of an ideal chain is indeed an old problem.14-16 For a polymer
confined between two parallel plates at separationR, the free
energy,F, increases as

whereRG is the radius of gyration of the unperturbed chain
andâ ) 1/(kBT), with kB the Boltzmann constant andT the
absolute temperature. This result can be obtained by means

of a “blob” description of the polymer16 by assuming that
â∆F scales linearly with the degree of polymerization,N,
and depends only on the ratioRG/R. Casassa14 proved that
(up to a prefactor) thesamescaling relation holds for an
ideal polymer forced inside an infinitely long capillary or a
spherical cavity of radiusR. For planar and cylindrical
geometries, eq 1 can immediately be generalized to self-
avoiding (nonideal) polymers16

whereν ≈ 0.588 is the Flory exponent17,18 and σ denotes
the monomer size. Experimentally, this prediction may be
tested by the determination of equilibrium partitioning or
possibly even via force measurements, but currently available
verifications predominantly result from numerical simula-
tions. Equation 2 indeed has been confirmed for chains
confined within slits19,20 and within tubes,21 although an
unexpectedly slow convergence toward the asymptotic
behavior has been claimed.22 However, it appears less widely
appreciated that the applicability of eq 2 tosphericalcavities
(Figure 1) is controversial. Although some studies explicitly
state23 and employ24 this relation for such a geometry, two
alternative theories have been put forward.

First, self-consistent field theory (SCFT) predicts12,25

whereφ ) N(σ/(2R))3 is the monomer volume fraction. This
mean-field estimate is just the leading correction to the free
energy of an ideal polymer due to excluded-volume interac-* Corresponding author. E-mail: luijten@uiuc.edu.

â∆F ∼ (RG

R )1/ν

∼ N(σ
R)1/ν

≈ N(σ
R)1.70

(2)
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tions.17 Second, a blob scaling description has been pro-
posed,12,26which explicitly recognizes that, unlike in a planar
or cylindrical geometry, the monomer concentration in a
spherical geometry increases upon confinement. As a result,
the free energy is predicted to exhibit the same concentration
dependence as in semidilute solutions27,28

The differences between these predictions are by no means
minor: Equation 4 predicts∆F ∝ R-3.93, compared to∆F
∝ R-3 in eq 3 and∆F ∝ R-1.70 in eq 2.

To the best of our knowledge, this discrepancy has not
been addressed either by experiments or by computer
simulations. It is the purpose of the present work to resolve
the controversy by means of a systematic, accurate numerical
study of the free-energy cost of confinement of nonideal,
linear chains in a spherical geometry.

To be able to study long chains, we adopt a simple bead-
spring model, in which the polymer is represented by a linear
series ofN spherical beads of diameterσ connected by bonds
of maximal extensionlmax ) 1.9σ. All monomers interact
via a hard-core repulsion

whererij is the pair separation. The nearest-neighbor bonds
are described as

We explore the statistical properties of the model by means
of Monte Carlo simulations involving local monomer moves.
To demonstrate that this model reproduces the proper scaling
dimensions, we compute the radius of gyration,RG, for
unconfined chains with 32e N e 1024. We find a power-
law dependenceRG ∝ N0.594(0.005, in good agreement with
the renormalization-group result.18

We encapsulate the chain in a spherical cavity mimicked
by a confining potential centered around the origin

so thatri is the distance of monomeri from the center of the
sphere andλ represents the radius of the cavity (all distances
are expressed in units of monomer diameterσ). The free
energy of confinement can now be computed via thermo-
dynamic integration.29 The free energydifferencebetween
two states identified byλ1 andλ2 is given by

where〈...〉λ denotes the ensemble average in the presence of
the potentialuR(λ) at fixed sphere radiusλ. Becauseλ1 .
RG represents the limit of an unconfined chain,∆F(R) can
be obtained by integrating over the range [∞, R]. The
normalized integrand,fR(λ) ≡ N-1〈∂uR(λ)/∂λ〉λ, represents the
force per monomer exerted by the polymer on the wall of
the cavity. To ensure that our choice ofR in eq 7 does not
affect the functional dependence of∆F on the size of the
cavity, we measurefR(λ) as a function ofλ for different
values ofR. As shown in Figure 2, even forN ) 256, the
shortest chain length employed in this study,fR(λ) converges
rapidly with increasingR (i.e., when the confining potential
becomes sufficiently steep). Thus, we adoptR ) 12 for all
further calculations.

Because the thermodynamic integration in eq 8 needs to
be carried out numerically, we perform accurate simulations

Figure 1. Snapshot of a polymer chain ofN ) 2048 monomers
confined within a spherical cavity at monomer concentrationφ ≈
0.03. For clarity, we depict the monomers smaller than their actual
size.

Figure 2. Force per monomer exerted by a polymer of lengthN
) 256 against the confining walluR(λ) (eq 7) for different values
of R.

uR(λ) ) kBT ∑
i)1

N 1

(λ - ri)
R
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∆F ≡ F(λ2) - F(λ1) ) ∫
λ1

λ2 〈∂uR(λ)
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λ
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â∆F ∼ (RG

R )3/(3ν-1)

∼ Nφ
1/(3ν-1) (4)

um(rij) ) {0 if rij > σ
∞ if rij e σ (5)

ub(ri,i-1) ) {0 if ri,i-1 e lmax

∞ if ri,i-1 > lmax
(6)
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for a large number of sphere sizes with densely spaced values
of λ. We fit the force per monomer,f (λ), to a power law
A/λx and integrate this expression to obtain∆F/N. Although
the confining potential decays quite rapidly forR ) 12, it is
important to take into account that the effective radius,R, is
smaller thanλ. Because a monomer has a potential energy
kBT at r ) λ - 1, we define the radius,R, as (λ - 1) + 1/2,
where the term1/2 is added to account for the finite size of
the monomers.

To check the validity of our approach, we also apply it to
two cases that are known to be described by eq 2, namely,
a polymer chain between two parallel plates and a chain
confined within an infinitely long cylindrical shell. Figure 3
summarizes the findings forN ) 256 and permits two crucial
observations.30 First, it confirms that∆F exhibits thesame
power-law dependenceR-γ for planar and cylindrical con-
finement and shows that our approach yields a quite accurate
estimate of this power law: (RG/R)1.69(0.06 for parallel plates
and (RG/R)1.65(0.06 for a cylinder, both in good accordance
with (RG/R)1/ν. For both geometries, these results appear to
be among the most accurate currently available and certainly
in better agreement with the prediction thanγ ) 1.4 ( 0.1
(2.4( 0.1 for the force) observed for chain lengths as large
as N ) 8000 in a simple cubic lattice model.22 Second,
spherical confinement clearly shows amuch strongerincrease
of the free energy with decreasingR. To accurately determine
the corresponding power law and to minimize possible
artifacts due to the use of short chains, we present results
for N ) 2048 in Figure 4. At small values ofRG/R, there are
significant error bars. This is a physical effect: at weak
confinement, the spherical cavity poses only a minor
perturbation to the chain and thus there are considerable
fluctuations. Nevertheless, we are able to follow the increase
of the free energy over 2 orders of magnitude and observe
a clear power-law dependence

which is fully consistent with the predictionγ ) 3/(3ν - 1)

) 3.93 (eq 4). In fact, the agreement is even better if one
realizes that the finite chains employed here have a slightly
larger effective Flory exponent,ν ) 0.594, corresponding
to γ ) 3.84. Figure 4 also shows the alternative predictions,
eq 2 (γ ) 1.70) and the SCFT result eq 3 (γ ) 3). Clearly,
neither of these alternatives provides a valid description. This
unambiguous confirmation of the revised blob scaling
prediction (eq 4) is the central result of this Letter.

To ensure that no spurious nonuniversal effects are
introduced by the monomer-wall interactions, we also
employ a different method to obtain the free-energy density
of confinement. We perform simulations in the conjugate
(NPT) ensemble,29 in which a uniform external pressure,P,
is imposed and the volume is allowed to fluctuate. The free
energy difference is then recovered by determining the
equation of state,P(F), of the polymer and integrating it over
the densityF ) 6/π φ

In this ensemble, the spherical boundary is described as a
hard wall, which eliminates any ambiguity in determining
the effective volume of the cavity.

Figure 5 presents the free energy of confinement as a
function of monomer volume fractionφ for three different
chain lengths (N ) 512, 1024, 2048), for theNPT as well
as theNVTensemble. It is rewarding that the results for both
ensembles are in good agreement, ruling out ensemble-
dependent artifacts. Furthermore, upon normalization per
monomer, all curves collapse,31 confirming the extensive
character of the free energy at fixedφ. For moderate values
of φ, all data coincide on a line with slopex ) 1.28( 0.06,
in agreement with the prediction of eq 4,x ) 1/(3ν - 1) )
1.31, and in contrast with the linear concentration dependence
predicted by SCFT (eq 3).

Figure 3. Free-energy cost of planar, cylindrical, and spherical
confinement of a self-avoiding flexible polymer chain ofN ) 256
monomers as a function of the compression parameter,RG/R.

â∆F ∝ (RG

R )3.8(0.1

(9)

Figure 4. Free energy of confinement for a self-avoiding flexible
polymer (N ) 2048 monomers) in a spherical cavity of radiusR as
a function of the compression parameter,RG/R. Along with the
numerical data, three different scaling predictions are plotted as
well.

∆F
N

) ∫
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It is of interest to also discuss the limitations of the scaling
prediction. For concentrations exceeding approximately 0.2,
the data cross over to a power-law behavior with an exponent
x ≈ 2. Although this crossover is consistent with the
screening of the excluded-volume interactions in concentrated
solutions (as discussed below), it is also important to
emphasize the breakdown of the blob scaling description at
sufficiently high concentrations. Indeed, we can estimate the
number of monomers per blob,Nb, from scaling argu-
ments.12,26 The key ingredient is that the average monomer
concentration,Nb/(2ê)3, within a blob of radiusê must equal
the global monomer concentration inside the cavity,φ )
N/(2R)3, where we recall that all lengths are expressed in
terms of the monomer diameter. For the self-avoiding
polymers in our simulation,Rg ) A0Nν with A0 ≈ 0.6, so
that the blob radius can be estimated asê ) A0Nb

ν.
Consequently, the typical number of monomers per blob
reduces rapidly with increasing concentration,

For φ ) 0.1 we findNb ≈ 10, but already forφ ) 0.25,Nb

is as small as three. These estimates indeed confirm that one
cannot expect the scaling regime to hold above a threshold
φ̃ ≈ 0.15. Conversely, in the dilute regime we anticipate
considerable finite-size effects because the total number of
blobs becomes very small. For example, atφ ) 0.01 there
are approximately 200 monomers per blob so that even our
longest chain (withN ) 2048) consists of only 10 blobs.

In experiments on the partitioning of poly(ethylene glycol)
in protein nanopores32 a strongly nonlinear chain-length
dependence for the free energy was observed,∆F ∝ N3.1(0.2

(indeed in disagreement with eq 2). Sakaue and Raphae¨l26

argued that the chains are effectively confined in a spherical
cavity, implying (from eq 4)∆F ∼ N3ν/(3ν-1) ) N2.31, and
tentatively attributed the deviation to finite-size effects. We

observe that the deviation may also arise from comparatively
high monomer concentrations within the pore. Indeed, for
0.2e φ < 0.35,∆F in our model is described by an effective
power law∆F ∼ Nφ1.97(0.07 ∝ N2.97(0.07, remarkably con-
sistent with the experimental findings. Although the onsetφ̃

of this regime is nonuniversal, the power law can be
understood from the screening of the excluded-volume
interactions in concentrated solution,16,27 which reduces the
effective Flory exponent to its Gaussian value. Thus, the
exponentν in eq 4 must be set to1/2, yielding ∆F ∼ Nφ2.
The data in Figure 5 confirm this crossover from the
semidilute to the concentrated regime.

One problem directly affected by our confirmation of eq
4 is the escape of a polymer from a spherical cavity. On the
basis of classical nucleation theory and eq 2 it has been
predicted24 that, for a sufficiently strong entropic driving
force, the average escape time scales asτ ∼ N(N/φ)1/(3ν). In
light of our results, this prediction must be altered to

where∆µ is the chemical potential gradient per monomer.
Thus, the escape time has a much stronger concentration
dependence than predicted in ref 24 and at fixed concentra-
tion the escape time islinearly proportional to the length of
the polymer rather than superlinearly. The chain-length
dependence must be treated with some caution because it
implies, for long chains, a translocation time that is smaller
than the equilibration time. For translocation through a planar
membrane, Kantor and Kardar33 proposed the unimpeded
motion of a polymer coil as a lower bound, yieldingτ ∼
N1+ν/∆µ. Applied to a spherical cavity, this implies that eq
12 is modified further as

Coincidentally, for self-avoiding chains in three dimensions
the power-law behavior,N1+ν, is numerically very close to
the prediction24 N1+1/3ν, but the physical origin of the
exponent is very different. In addition, the corrected con-
centration dependence of eq 12 remains unaltered in eq 13.

In conclusion, we have demonstrated, for the first time,
that the free energy of a flexible self-avoiding polymer
confined to a spherical cavity exhibits a different dependence
on pore size than the free energy of a polymer confined
between parallel plates or within a cylindrical geometry. For
moderate monomer concentrations, the free energy of
confinement is in good agreement with the scaling law first
introduced by Grosberg and Khokhlov,12 â∆F ∼ Nφ1/(3ν-1).
At strong confinement, excluded-volume interactions are
screened and a crossover to a different scaling behavior is
observed.

Acknowledgment. This material is based upon work
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Materials Sciences under Award no. DEFG02-91ER45439,

Figure 5. Concentration dependence of the free energy of
confinement per monomer, obtained at constant volume (NVT) and
constant pressure (NPT). The coinciding curves for different chain
lengths confirm the extensive character of the free energy. Forφ
< 0.15, the data exhibit a power-law behavior∆F ∝ φ1.28 (dashed
line), in agreement with eq 4. The dotted line is a guide to the eye,
indicating the systematic deviations at high concentrations (see the
text).

τ ∼ N
∆µ

) N
∆F/N

∼ Nφ
-1/(3ν-1) (12)

τ ∼ N1+ν

∆µ
) N1+ν

∆F/N
∼ N1+ν

φ
-1/(3ν-1) (13)

Nb ) (8A0
3
φ)-1/(3ν-1) (11)
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