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ABSTRACT: Molecular dynamics simulations have been employed to study the forma-
tion of a physical (thermoreversible) gel by amphiphilic A-B-A triblock copolymers in
aqueous solution. To mimic the structure of the hydrogel-forming polypeptides
employed in experiments [W.A. Petka et al., Science 281, 389 (1998)], the end blocks
of the polymer chains are modeled as hydrophobic rods representing the a-helical part
of the polypeptides, whereas the central B block is hydrophilic and semiflexible. We
have determined structural properties, such as the hydrophobic cluster-size distribu-
tion function, the geometric percolation point, and pair correlation functions, and
related them to the dynamic properties of the system. Upon a decrease in the tem-
perature, a network structure is formed in which bundles of end blocks act as network
junctions. Both at short and medium distances, increased ordering is observed, as
characterized by the pair correlation function. Micelle formation and the correspond-
ing onset of geometric percolation induce a strong change in dynamic quantities (e.g.,
in the diffusion constant and the viscosity) and cause the system to deviate from the
Stokes–Einstein relation. The dynamic properties show a temperature dependence
that is strongly reminiscent of the behavior of glass-forming liquids. The appearance
of a plateau in the stress autocorrelation function suggests that the system starts to
exhibit a solid-like response to applied stress once the network structure has been
formed, although the actual sol–gel transition occurs only at a considerably lower tem-
perature. �C 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 959–969, 2005
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INTRODUCTION

Solutions of polymers with attractive groups
(associating polymers) exhibit a wide range of
rheological properties that can be controlled
through the variation of the temperature and
concentration. These materials enjoy applications
ranging from viscosity modifiers in food and oil
recovery to adhesives and coatings (see ref. 1 and
references therein). Under certain conditions, the

attractive groups of the polymers associate to
form a network, and the system undergoes a sol–
gel transition. The physical bonds between the
attractive groups are reversible and, according to
their strength, can break and reform frequently
on experimental timescales. The properties of
these so-called weak or physical gels differ mark-
edly from those of chemical gels, in which the
polymers are interconnected through covalent
bonds. In comparison with chemical gels, the cur-
rent understanding of physical gelation is still
limited and even controversial.1 Scenarios for
thermoreversible gelation include the possibility
of discontinuous gelation, in which the gelation is
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accompanied by sol–gel phase separation, and
continuous gelation. The theoretical treatments
of Tanaka and Stockmayer2–5 predict that contin-
uous gelation is a thermodynamic phase transi-
tion, whereas Semenov and Rubinstein6 arrive at
the opposite conclusion.

Simulations can provide specific information
that is not easily obtained otherwise. On the one
hand, the microscopic structure of physical gels is
difficult to determine experimentally, whereas it
can be directly accessed (within the limitations of
the model used) by means of simulations. On the
other hand, the numerical calculations permit
testing of theoretical hypotheses and approxima-
tions. Two models are widely used to study asso-
ciating polymers. In the first category of models,
used in the aforementioned theories, there are
many association sites (‘‘stickers’’) distributed
along the polymer chain. This model was studied
extensively in early (off-lattice) Monte Carlo
simulations by Groot and Agterof.7–9 Kumar and
Panagiotopoulos10 investigated the thermody-
namic properties of a lattice-based version of this
model by Monte Carlo simulations and did not
find any indication that gelation is a thermody-
namic phase transition. More recently, it has
been observed that the dynamical properties of
this model are similar to those of weak glass for-
mers; the diffusion coefficient is described by an
expression with a Vogel–Fulcher form.11

The second category of models consists of tele-
chelic chains, in which the associative sites are
located at both chain ends and are typically repre-
sented by a single monomer (see ref. 12 for a con-
cise overview). At low concentrations, these chains
have been predicted to form flower-like micelles.13

Simulations have indeed confirmed this14,15 and
found that the associative groups are located in
the core of the micelles and that the nonassociative
groups are in the corona. At higher concentrations,
micelles can be connected by ‘‘bridging’’ polymers;
the associative end groups belong to different
micelles, and this leads to the formation of a micel-
lar gel. The dynamics in such a system are gov-
erned by the hopping rate of the associative groups
between different micelles.13 Simulations have
indeed found that the diffusion properties of such
solutions can be described by an Arrhenius law,15

as predicted by Tanaka and Edwards.16 If the poly-
mer chains are less flexible, qualitative structural
changes occur, as intrachain pairing is suppressed
and the formation of flower-like micelles becomes
energetically unfavorable. This promotes the for-
mation of a network structure at low polymer con-

centrations.17 However, the dynamic properties of
such solutions of semiflexible telechelic chains
seem not to have been investigated.

Recently, Petka et al.18 used genetic engineer-
ing techniques to create artificial proteins consist-
ing of a hydrophilic group flanked by two stiff
hydrophobic blocks. This triblock copolymer exhib-
ited gelation in response to the variation of the pH
or temperature. Its significance lies in the possibi-
lity of independently tuning the strength of the
end-group attractions that are responsible for
gelation and the solvent retention capability of the
chains, which is essential for the formation of a
swollen gel. However, the actual structure of the
hydrogel, which is formed at low polymer concen-
trations, could only be conjectured. Motivated by
the experimental findings, we have employed
molecular dynamics simulations to investigate the
dynamic and structural properties of a solution of
triblock copolymers that can be viewed as a greatly
simplified, coarse-grained model of the artificial
proteins. This model evidently does not capture all
relevant properties of the experimental systems
but rather should be viewed as a first attempt to
determine the generic properties of a solution of
triblock copolymers with two stiff end groups.

MODEL AND SIMULATIONAL DETAILS

To study the gelation of triblock copolymers, we
employ molecular dynamics simulations, using the
DL_POLY_2 code.19 The polymers have an A-B-A
structure; the A blocks are rigid hydrophobic rods,
and the B block is hydrophilic and semiflexible. In
our coarse-grained model, the solvent is modeled
implicitly, and each copolymer block is composed
of spherical units (‘‘monomers’’) that represent an
effective segment. The total length of each chain is
set to 15 units, consisting of three A monomers per
hydrophobic block and nine B monomers in the
hydrophilic block. This choice is mostly based on
practical considerations. At least three units are
required to represent a rodlike end block, whereas
a longer central block would pose equilibration
problems, given the computationally accessible
timescales. Monomers of type A interact via an
attractive Lennard-Jones potential:

UAA ¼ 4eAA
rAA
r

� �12
� rAA

r

� �6
� �

ð1Þ

The interactions between monomers of type B
and the interactions between unlike pairs are
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purely repulsive:

UBB ¼ 4eBB
rBB
r

� �12

UAB ¼ 4eAB
rAB
r

� �12
ð2Þ

We set eAA ¼ eBB ¼ eAB ¼ e and rAA ¼ rBB ¼
rAB ¼ r and cut off all interactions at 2.5r. To
express our results in reduced units, we use e and
r as units of energy and length, respectively. The
reduced coupling, or inverse reduced tempera-
ture, J : e/kBT (where kB is Boltzmann’s con-
stant and T the absolute temperature), is varied
between 1 and 2 in the simulations. The semiflex-
ible character of the hydrophilic block is con-
trolled by a harmonic angle-dependent potential:

Uh ¼ 1

2
khðh� h0Þ2 ð3Þ

where kh is equal to 10e/degree2 and h0 is 1758.
The value of h0 was chosen in accordance with the
model proposed in ref. 17. In combination with
the large value for kh, it cause the chains to adopt
an extended structure (but without having the
rodlike structure that would be obtained for h0 ¼
1808), and gelation is anticipated to occur at rela-
tively low polymer concentrations. We mimic the
a-helical structure in the artificial proteins18 by
making the end blocks fully rigid. All neighboring
monomer units within a chain are connected via
a harmonic bond potential:

Ubond ¼ 1

2
kbondðr� r0Þ2 ð4Þ

where kbond is equal to 170e/r2 and r0 is equal to
1.30r.

The simulations are performed in the canoni-
cal (NVT) ensemble, in a cubic box of linear
dimension L ¼ 39r, with periodic boundary condi-
tions. The total number of chains equals N ¼ 216,
corresponding to a monomeric packing fraction of
only 0.029, that is roughly twice the overlap
threshold. The temperature is controlled by
means of a Nosé–Hoover thermostat.20 The equa-
tions of motion are integrated with a leap-frog
Verlet scheme,21 with a time step (in reduced
units) of Dt ¼ 0.00287. In all runs, the system is
first equilibrated for four million steps; for some
low temperatures, even longer equilibration peri-
ods are used. Subsequently, 40 million time steps
are carried out for high temperatures, and 200
million time steps are used for low temperatures.

After the equilibration period, the configuration
of the system is recorded every 1000 time steps
for an analysis of the structural (e.g., chain con-
formations and percolation of the system) and
dynamic (e.g., single-chain diffusion) properties.
In addition, the energies and stress tensors are
calculated and recorded every 100 time steps for
the calculation of the specific heat and the stress
autocorrelation function.

Despite the simplifications made in this coarse-
grained model, the required simulation effort is
still appreciable. The total amount of computing
time corresponds to approximately 2.5 years on a
single Intel Xeon 2.0-GHz processor.

SIMULATION RESULTS

Structural Properties

To characterize structural changes that take
place in this system upon variation of the tem-
perature, we employ an approach used in the
study of micelle formation. For each configura-
tion, bundles of end blocks are identified. An
end block is considered part of a bundle if its
center monomer lies within a distance rc from
the center monomer of an end block that is
already part of the bundle. Our results turn out
to be insensitive to the precise value of rc [ [r,
4r], and we have chosen rc ¼ 2r. A configuration
contains N(m) bundles of m end blocks, and the
bundle size distribution is defined as the ther-
mal average:17

WðmÞ ¼ hNðmÞi
hPm NðmÞi ð5Þ

Figure 1 shows W(m) for five values of the
inverse temperature J, illustrating the forma-
tion of bundles of hydrophobic blocks as the tem-
perature is lowered. At a high temperature (J ¼
1.00), the distribution function decays monotoni-
cally, with a single peak at m ¼ 1 (isolated end
blocks). This corresponds to a regular solution of
chains that are not associated. For lower tem-
peratures (J > 1.15), however, an additional
‘‘shoulder’’ appears in the distribution function,
which develops into a peak that increases in
height and shifts to larger bundle sizes if the
temperature is further reduced. This signals the
formation of bundles in which large numbers of
hydrophobic end blocks participate, resulting in
important structural changes in the solution.
The occurrence of an inflection point in W(m)
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has been taken as a criterion for the critical
micelle point.17 Here we associate the appear-
ance of a shoulder in Figure 1 with the onset of
the bundling process. The corresponding charac-
teristic inverse temperature J* lies between
1.15 and 1.20.

A similar criterion was employed in ref. 15
[but note that the quantity P(m) employed in
this reference differs from W(m)] and a compar-
able temperature dependence was observed for
the bundle size distribution. There is, however,
a marked difference in the morphology of the
bundles. The flexible telechelic polymers studied
in ref. 15 form flower-like micelles in which the
chains take the shape of a loop. Both end
groups of each chain lie in the core of the same
micelle and the central block lies in the cor-
ona.17 For more rigid chains, two effects occur.
The stiff end blocks have a tendency to align
inside the bundle, giving it the appearance of a
microcrystalline domain. In addition, the semi-
flexible character of the central block prevents
the chain from adopting a looplike conformation.
This second effect is illustrated in Figure 2, in
which we compare the average number of end
blocks per bundle to the average number of end
blocks in a bundle that belong to the same
chain. As shown, single-chain loops are essen-
tially absent at all temperatures; this confirms
the prohibitively large energy penalty incurred
by ring formation.

Instead, each chain takes an extended confor-
mation, with the hydrophobic end groups partici-
pating in different bundles. Thus, even the

formation of a continuous network becomes possi-
ble, in which the bundles of end blocks act as net-
work junction points.17 However, following the
experimental observations in ref. 18, we have
chosen a concentration markedly lower than
those in earlier simulation studies. Before inves-
tigating whether the formation of a network is
nevertheless possible, we consider the energetic
aspects of bundling. As illustrated in Figure 3,
the specific heat CV exhibits a pronounced but

Figure 2. Comparison of the average number of end
blocks per bundle (hmi) and the average number of
end blocks per bundle that form a looplike structure
(hmringi). Whereas the average bundle size increases
upon increasing coupling J (decreasing temperature),
the average number of loops remains negligibly small.
The rigidity of the chains thus prevents the formation
of ‘‘flower-like’’ micelles in the solution. The error bars
are smaller than the symbol size.

Figure 1. Bundle size distribution [probability W(m)
of encountering a bundle containing m end blocks] for
five representative values of the inverse temperature
J. The appearance of a secondary peak characterizes
the formation of bundles in the solution.

Figure 3. The specific heat CV (in reduced units) as
a function of J. The maximum is indicative of bundle
formation in the system. The line serves as a guide to
the eye.
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relatively broad maximum around J ¼ 1.23, cor-
responding to the creation of bundles of attractive
end blocks. The specific-heat maximum was
found to occur at a temperature below the onset
of micelle formation (at J = J*) in ref. 15. Our
data do not permit us to conclude this unambigu-
ously. Indeed, for J * 1.20, the simulations
become almost prohibitively expensive because of
the slow dynamic evolution of the system. Thus,
the present system does not lend itself well to the
application of finite-size scaling techniques for
the determination of the nature and precise loca-
tion of the bundling transition. For example, for a
continuous phase transition, the height of the CV

maximum will increase (up to corrections to scal-
ing) as La/m ! Na/(3m). The exponent a/(3m) is typi-
cally rather small (e.g., 0.058 for Ising-type
criticality22), and so even doubling the number of
chains would only increase the peak height by an
amount comparable to the statistical accuracy of
the data.

To determine whether bundle formation
indeed leads to the emergence of a connected
network structure, we consider the percolation
probability. Geometric percolation of the poly-
mer chains in the solution is a necessary condi-
tion for gelation. However, whereas chemical
gelation coincides with the occurrence of geo-
metric percolation23, physical gelation has been
suggested to take place only far below the per-
colation point.11 We consider our polymer solu-

tion to be percolating if a connected path
(composed of chains that bridge the bundles of
end blocks) exists between any pair of opposite
sides of the simulation cell. The percolation
probability, which is defined as the probability
that a configuration is percolating, is plotted as
a function of inverse temperature in Figure 4.
The system always percolates for J * 1.15, that
is, near the characteristic inverse temperature
J* for bundle formation. As the percolation
probability certainly can exhibit strong finite-
size effects, this determination must be viewed
only as an estimate for the percolation thresh-
old in the thermodynamic limit. The observa-
tion that J* and the percolation threshold
coincide reaffirms our interpretation that the
telechelic chains become interconnected through
bundle formation and form a spanning network.
This behavior appears to differ from what was
observed for the solution of flexible telechelic
chains studied in ref. 15, which exhibited a
comparable temperature dependence in the
bundle size distribution but was reported to
exhibit geometric percolation at all tempera-
tures. Figure 5 shows a typical configuration
obtained in a simulation performed at J ¼ 1.30.
A network of interconnected hydrophobic junc-
tion points is indeed clearly discernable.

The onset of percolation affects the single-
chain conformations as well. This is illustrated

Figure 4. Percolation probability of a solution of
associative telechelic polymers at a monomeric pack-
ing fraction / of 0.029 as a function of inverse tem-
perature J. Because the percolation probability equals
unity for J * 1.15, we consider this to be a measure
for the percolation threshold.

Figure 5. Snapshot of a simulation at J ¼ 1.30 for a
system of linear size L ¼ 78r (monomer packing frac-
tion 0.029). The image represents approximately two-
thirds of the simulation box. The hydrophobic end
blocks are shown in red, and the hydrophilic groups
are shown in cyan. The extended structure of indivi-
dual chains and the bundling of hydrophobic blocks
(cf. the peak in Fig. 1) can clearly be seen.
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by means of the temperature dependence of the
end-to-end distance, Re (see Fig. 6). For compar-
ison, the figure also includes the end-to-end dis-
tance for an identical system in which the
monomers in the end blocks experience a purely
repulsive interaction (see eq 2). Whereas Re

increases for both systems as the temperature is
lowered, it increases more rapidly for the chains
with attractive end blocks than for the purely
repulsive chains. Because of the semiflexible
character of the chains, the relative change in
Re is only several percent, but nevertheless the
effect is clearly most pronounced for J * 1.15,
that is, near the percolation threshold J*. We
ascribe it to the conformational changes induced
by the network formation. Owing to the low
polymer concentration, the bundles are rela-
tively widely separated, forcing the connecting
chains to adopt an extended conformation. This
observation is reinforced by the spatial correla-
tions between end blocks.

Indeed, the rodlike structure of the hydropho-
bic end blocks leads to an internal structure in
the bundles that is absent in the models studied
in refs. 15, 17. Figure 7 shows the hydrophobe—
hydrophobe radial distribution function g(r) (cal-

culated from their center-of-mass separation) at
different values of J. As the temperature
decreases, two distinct features can be identified
in this distribution function. The increasing
maxima at short separations, which all lie at
distances within the bundle size (cf. Fig. 1), cor-
respond to intrabundle alignment of end blocks.
The emergence of this microcrystalline morphol-
ogy can be understood from the fact that in an
aligned bundle each end block experiences a
large number of monomer–monomer interactions
with surrounding end blocks. The cutoff distance
employed in the Lennard-Jones potential (eq 1)
is larger than the maximum distance between
monomers on fully aligned (closely packed) end
blocks, and so even a single pair of rods can
have nine pair interactions. As shown in Figure
2, the average number of rods per bundle
increases rapidly from approximately 2 at J ¼
1.15 to almost 10 at J ¼ 1.40, and this leads to
tightly bonded bundles. It is this bonding that
makes the resulting network resistant to exter-
nal stress. A second feature arises in Figure 7 at
lower temperatures. As shown in the inset, an
additional peak appears at a position that
roughly coincides with the calculated average
bundle separation, which varies from 13 at J ¼
1.15 to 15 at J ¼ 1.30. Thus, this peak charac-

Figure 7. Hydrophobe-hydrophobe radial distribution
function at different values of the inverse temperature
J. At short distances, the existing peaks increase and
new peaks emerge as J increases; this is an indication of
the alignment of the rigid hydrophobic rods within a
bundle towards a microcrystalline-like structure. At long
distances, a new peak appears at the average bundle-to-
bundle distance and grows higher at higher J; this sug-
gests the structured arrangement of the bundles.

Figure 6. Square of the end-to-end distance Re of the
telechelic chains (closed triangles) as a function of
inverse temperature J. For comparison, this graph also
shows Re for identical chains in which the end blocks
do not possess an attractive interaction (open squares).
For both chain types, Re increases upon increasing J
(decreasing temperature), reflecting the decreasing
flexibility of the center blocks. However, for J > J* �
1.15, the telechelic chains clearly exhibit a stronger
tendency to adopt an extended structure, which is
attributed to the formation of an interconnected net-
work. The error bars are smaller than the symbol size.
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terizes the ordered arrangement of the bundles
at low temperatures, and we conclude that the
radial distribution function reflects the simulta-
neous emergence of both short-range and med-
ium-range order upon cooling.

Dynamic Properties

To determine whether the structural changes
observed in the triblock copolymer solution
indeed correspond to gelation, we consider the
dynamic properties as a function of temperature.
Evidently, bundle formation and the formation of
a percolating network are anticipated to have a
strong influence on the diffusion properties of
the polymers. Figure 8 shows the mean-square
displacement of the center of mass of polymers
at different values of J. At high temperatures,
we observe the standard behavior in which the
dynamics cross over from ballistic motion at
short times to diffusive motion at long times. At
low temperatures, an intermediate regime
appears in which the dynamics are slowed down;
this is indicative of the arrested dynamics result-
ing from network formation. Comparable obser-
vations were reported by Kumar and Douglas11

in a Monte Carlo study of a lattice model of an
associating polymer solution and by Bedrov et
al.15 for micellar solutions, although it should be
noted that in both studies the polymer concen-
tration was considerably higher than in the cur-

rent system (which has c/c* � 2) and that in the
micellar system the change in the dynamic beha-
vior was not associated with the formation of a
network structure. The dynamic behavior seen
in the low-density gel is similar to that found in
glass-forming materials, but the underlying
mechanism is different. The temporary localiza-
tion of the triblock copolymers is caused by the
strong intrabundle interactions experienced by
the end blocks, rather than by caging or jam-
ming effects. We also note that the width of the
ballistic regime depends on the simulation
model. If water molecules are included explicitly
or implicitly via a friction coefficient (Brownian
dynamics), the ballistic regime may be rather
narrow or even not observable at all. For all
investigated temperatures, the polymers even-
tually diffuse, and we extract the diffusion coeffi-
cient D from this long-time behavior (see Fig. 9).
At low temperatures, a second (narrow) diffusive
regime arises for times between the ballistic and
the intermediate regime. This corresponds to
intradomain motion of the end blocks.

The diffusion coefficient exhibits an exponen-
tial dependence on the inverse temperature over
the entire temperature range that we have
investigated, but two regimes can be discerned,

Figure 8. Mean-square displacement hr(t)2i of the
single-chain center of mass, for J values of 1.00, 1.15,
1.20, 1.24, 1.28, 1.32, 1.36, 1.40, and 1.44 (only the
lowest and highest values are labeled). In addition to
ballistic motion at short times and diffusive motion at
long times, a slow intermediate regime appears at low
temperatures.

Figure 9. Diffusion coefficient D as a function of
inverse temperature J on a log–linear scale. There
are two regimes with a different exponential depen-
dence on J, which are joined near the percolation
point J* � 1.15. Although the high-temperature data
(J < J*) only permit an approximate fit, the diffusion
coefficient in the low-temperature regime is clearly
well described by an Arrhenius law, suggesting that
activated processes control the relaxation of the sys-
tem. The error bars are of the order of the symbol size
or less.
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separated near J* � 1.15. Because both percola-
tion and micelle formation occur near this tem-
perature, it is not possible to uniquely attribute
the strong decrease of D to either of these two
phenomena. For the sticker model of ref. 11, in
which association sites are distributed along the
polymer chain, the diffusion coefficient is well
described by a Vogel–Fulcher law. In our sys-
tem, the diffusive dynamics follow an Arrhenius
law, D ! exp(�E/kBT), where E is the effective
activation energy, similarly to strong glass-for-
mers (cf. ref. 24) and micelle-forming telechelic
polymers.15 The Arrhenius-type behavior sug-
gests that dynamic relaxation, which takes place
through the exchange of an end block between
two bundles (network junctions), is controlled by
an energetic barrier. The barrier has a clear ther-
modynamic origin, namely, the strong attraction
between end blocks. From Figure 9, E is esti-
mated to be approximately 10e in the low-tem-
perature regime; this is consistent with our
earlier estimate of the number of interacting
monomers in a pair of hydrophobic rods. Interest-
ingly, the similarity between the dynamic proper-
ties observed in this system and those of the
micellar system studied in ref. 15 suggest that
although the semiflexible character of the center
blocks and the presence of rodlike hydrophobic
end blocks change the structural properties of
the solution, these differences do not qualita-
tively affect the dynamic behavior.

Since gelation will be accompanied by a dramatic
increase in viscosity g, we compute this quantity by
integrating the stress autocorrelation functionG(t):25

g ¼
Z þ1

0

GðtÞdt ð6Þ

Here, G(t) is defined as

GðtÞ ¼ V

3kBT

X
ab

hrabðt0Þrabðt0 þ tÞi ð7Þ

where V is the volume of the system and ab
assumes the values xy, yz, and zx. The average
h� � �i is taken over all time origins t0. rab is the
stress tensor of the system:25

rab ¼ m
XN
i¼1

viavib þ 1

2

XN
i 6¼j

rijbFija ð8Þ

where m is the monomer mass, via is the a compo-
nent of the velocity of atom i, rijb is the b compo-

nent of the vector rij separating monomers i and
j, and Fija is the a component of the force exerted
on monomer i by monomer j. The sum runs over
all N monomers. For the calculation of G(t) we
employ a fast Fourier transform21, which acceler-
ates the calculation by several orders of magni-
tude in comparison with the direct calculation
method.

Figure 10 shows g as a function of J. Above the
percolation threshold (J & 1.15), the viscosity
increases gradually with decreasing tempera-
ture. However, in accordance with the behavior of
the diffusion coefficient, g starts to increase
rapidly at the onset of percolation and micelle for-
mation and can be described by an Arrhenius
law. Experimentally, gelation is characterized by
the appearance of a plateau in the stress autocor-
relation function G(t). In our simulations, we
observe such a plateau for all temperatures below
the percolation threshold. The plateau extends to
longer times upon decreasing temperature, but
eventually G(t) decays to zero. Since we use the
‘‘atomistic’’ (i.e., monomer-based) representation
of the stress tensor rab in eq 7, the results exhibit
relatively large fluctuations. Figure 11 shows a
representative example. The plateau value G0 is
small but clearly non-zero, as shown in the inset.
G0 is only weakly dependent on the temperature,
and no clear trend can be identified; this implies
that the rapid increase in g (Fig. 10) arises from

Figure 10. The viscosity g at different couplings on
a log–linear scale. Similarly to D, g behaves differ-
ently in two regions divided at the percolation point
J* ¼ 1.15. In both regions, g can be well described by
an Arrhenius law. Scatter in the data at low tempera-
tures is caused by uncertainties in the numerical inte-
gration (eq 6).

966 GUO AND LUIJTEN



an increase in the relaxation time rather than
from a variation in G0. The integration (eq 6) par-
tially suppresses the statistical fluctuations pre-
sent in G(t), but the uncertainties in g still reflect
the computational challenges, particularly at low
temperatures. Although the strong increase in
viscosity follows unambiguously from Figure 10,
we emphasize that the largest relaxation times
(discussed later) are still much smaller than the
experimentally observed relaxation times for
physical gels, which range from microseconds to
seconds.1 Thus, only for (computationally inac-
cessible) temperatures far below the percolation
threshold would the system investigated here
undergo a sol–gel transition.

Following ref. 11, we employ the non-Gaussian
parameter a2 for the single-chain center-of-mass
displacement to estimate a characteristic time:26

a2 � 3

5

hrðtÞ4i
hrðtÞ2i2 � 1 ð9Þ

This parameter equals zero for both the ballistic
and the diffusive regime. As shown in Figure 12,
a2 increasingly deviates from zero as the tempera-
ture is decreased; this reflects the heterogeneous
dynamics resulting from the hopping of end blocks
between bundles. Also, the maximum in a2, from
which we extract a characteristic time s, shifts to
larger times upon cooling. At short and long times,
a2 goes to zero, confirming the expected behavior
for the ballistic and diffusive regimes, respec-
tively. At intermediate times, however, a2 deviates
from zero, and the deviation increases as the tem-

perature is lowered. The positive deviation indi-
cates the presence of anomalously fast chains,
very similar to the heterogeneous dynamics
observed in glass-forming liquids.27 Figure 13 dis-
plays s as a function of J on a log–linear scale. We
see that the values of s, which extend up to
approximately 500s0 for the lowest temperatures,
also follow an Arrhenius law, with a change in the
slope similar to that observed for D and g. The
mean-square displacement corresponding to s (cf.
Fig. 8) is much smaller than the typical ‘‘hopping
distance’’ or bundle separation (cf. Fig. 7), compar-
able to what is observed for glassy systems. Like-
wise, the observed values of s are much smaller
than the relaxation times that follow from the
extent of the plateau in G(t), which are approxi-
mately given by g/G0(J).

Finally, we demonstrate the similarity of our
dilute polymer solution to a glass-forming liquid
by considering how well the Stokes–Einstein
relation is obeyed. For a Newtonian fluid, we
expect the product of the diffusion coefficient
and the viscosity to obey Dg ¼ kBT/4pRh, where
Rh is the hydrodynamic radius. The product of
D and g is plotted as a function of J in
Figure 14. The behavior of the end-to-end dis-
tance (Fig. 6) suggests that Rh will change only
weakly with temperature and may even increase
as the temperature is lowered. In combination
with the linear temperature dependence of the
numerator of the Stokes–Einstein relation (i.e.,

Figure 12. The non-Gaussian parameter a2 as a
function of time t at different values of J. The devia-
tion of a2 from zero is indicative of the heterogeneous
dynamics caused by the hopping of end blocks
between bundles. The peak positions (squares) are
used to define a characteristic time s.

Figure 11. Normalized stress autocorrelation func-
tion G(t) for J ¼ 1.22. The plateau value G0 is small but
distinctly nonzero, as shown in the inset. In addition,
G0 does not exhibit a clear temperature dependence.
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inverse dependence on J), the steep increase in
Dg for J * J* indicates a clear breakdown of
this relation once micellization and network for-
mation set in. The diffusion coefficient is larger
than would be predicted on the basis of the visc-
osity shown in Figure 10. The precise micro-
scopic origin of this behavior, however, remains
to be determined. As shown in the inset of Fig-
ure 11, this breakdown does not result from a
temperature dependence of the modulus G0.

CONCLUSIONS

We have studied the structural and dynamic
properties of a solution of associative A-B-A
triblock copolymers. The semiflexible character
of the center (B) blocks, in combination with the
attraction between end groups, allows these
polymers to form a gel at remarkably low con-
centrations. The molecular dynamics simula-
tions presented here form a natural extension of
earlier work on semiflexible chains,17 which,
however, only addressed structural properties.
In addition, we observe dynamic effects that
bear a close resemblance to those reported in
ref. 11 for a lattice-based model studied by
Monte Carlo simulations and to those reported
in ref. 15 for micelle formation. However, the
solutions in either of these studies had a signifi-
cantly higher polymer concentration. Further-
more, the micelle solution exhibited geometric
percolation at all temperatures, and the

dynamic changes were linked to the thermody-
namic micelle transition. We observe that all
dynamic changes can be correlated with micelli-
zation and the simultaneous emergence of a per-
colating network of polymer chains, in which
bundles of rigid end blocks act as network junc-
tions. Upon a further decrease in the tempera-
ture, the hydrophobic blocks tend to align
within a bundle, forming a microcrystalline-like
structure. The resulting strong binding of the
chains is responsible for the mechanical stability
of the gel-like network. On a larger scale, the
bundles distribute more regularly at a lower
temperature, as indicated by the appearance of
a peak at the average bundle separation in
the hydrophobe–hydrophobe radial distribution
function.

The change in the dynamic behavior of the
solution that occurs upon micellization and net-
work formation is reflected in the diffusion con-
stant, the viscosity, and the maximum in the
non-Gaussian parameter. The temperature de-
pendence of all these properties changes near
the percolation threshold and is well described
by an Arrhenius law; this is similar to what is
observed for strong glass formers. The activation
barrier in our system has a clear thermod-
ynamic origin, namely, the strong attraction
between end blocks that are part of the same
microdomain or ‘‘bundle.’’ Thus, there are similari-
ties with the diffusion of diblock copolymers in a

Figure 14. The product Dg as a function of J. Below
J* ¼ 1.15, Dg varies weakly; this is consistent with
the prediction of the Stokes–Einstein equation. Above
J*, an order-of-magnitude increase of Dg within a nar-
row temperature window clearly deviates from the
Stokes–Einstein equation.

Figure 13. The characteristic time s, as extracted
from Figure 12, as a function of inverse temperature J
on a log–linear scale. Two relaxation regimes can be dis-
cerned, separated by the percolation threshold J*� 1.15.

968 GUO AND LUIJTEN



lamellar phase, which also exhibits an exponential
decay with temperature.28–30 Recently, this type of
dynamics has attracted attention in the context of
slow dynamics in systems with frustration-limited
domains (see ref. 31 and references therein).

Finally, we note that although we have
observed a finite plateau in the stress autocorre-
lation function, as would be expected for a gel-
forming material, the dynamics in our systems
are still faster than in actual experimental gels.
Thus, the sol–gel transition only occurs at a
temperature far below the percolation threshold.
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