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Abstract
The simulation of colloidal particles suspended in solvent requires an accurate representation of
the interactions between the colloids and the solvent molecules. Using the multiparticle
collision dynamics method, we examine several proposals for stick boundary conditions,
studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary
of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries
are thermally affected and in motion). In addition, our simulations compare various collision
rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the
thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of
the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude
that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally,
we generalize these ideas to create partial slip boundary conditions at both stationary and
mobile surfaces.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Stochastic rotation dynamics (SRD) is a mesoscopic fluid
simulation method developed a decade ago by Malevanets
and Kapral [1, 2]. Since then, it has garnered considerable
attention and is now, in its generalized form, commonly
referred to as multiparticle collision dynamics (MPC). The
coarse-graining of fluid elements into particle species that
are governed by simplified interaction rules, in a manner
that preserves fundamental conservation laws, leads to a
significant acceleration of fluid simulations. When an MPC
fluid is coupled to a molecular dynamics (MD) simulation of
colloids, it permits the bridging of many timescales relevant to
problems in colloidal physics [3] and can be used to represent
the hydrodynamic interactions between colloids that result
from their dispersion in a liquid medium. Recent examples
include simulations of aggregate formation [4–7], particle
sedimentation [3, 8, 9], bacteria swimming [10], membrane
dynamics [11–14], and polymer translocation [15–17]. For

a comprehensive review of the MPC method and for further
applications, see [18] and [19].

Experimentally, colloids in suspension can exhibit of
variety of interactions with the surrounding fluid. To enable
the study of such systems, we examine various methods
of imposing macroscopic fluid–solid boundary conditions in
an MPC simulation. We first compare different options
for treating stick boundary conditions at a fixed boundary,
and then extend these to colloids, which have boundaries
that move with respect to the solvent and are thermally
coupled to it. In doing so we are able to address some
issues that previous examinations of the boundary conditions
have ignored. Further, we propose a simple but effective
generalization of stick boundary conditions to obtain surfaces
of arbitrary slip coefficient. This generalization is applicable
to MPC simulations involving both stationary surfaces and
surfaces of mobile spherical particles.

The MPC method consists of two steps: the streaming
step, where particle positions and velocities are advanced in
an MD manner, and the collision step, where fluid particle
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momenta are mixed. The streaming step in MPC simulations
is governed by the velocity-Verlet algorithm,

ri, j (t + δt) = ri, j (t) + vi, j (t)δt + 1
2 fi, j (t)(δt)2, (1)

vi, j (t + δt) = vi, j (t) + 1
2 [ fi, j (t) + fi, j (t + δt)]δt, (2)

where r(t) and v(t) are the position and velocity of a fluid
particle at time t , and f (t) is the total force exerted on
the particle. The index i denotes the particle number, and
the subscript j the dimensional component. Forces on fluid
particles arise at fluid–solid boundaries, or due to an external
field. However, interactions between fluid particles are wholly
taken care of in the collision step. Here, a grid with lattice
length a0 is overlaid on the system, and fluid particles are
partitioned into these cells. The velocities of the fluid particles
are then updated by applying a randomly determined mixing
operator Ω to the relative velocity of each particle,

vi = vcm,ci + Ωci (vi − vcm,ci ). (3)

Here, ci is the cell containing particle i and vcm,ci denotes the
center-of-mass velocity of the fluid particles in ci . The mixing
operator Ωci is chosen independently for each cell. In the
original SRD algorithm, it is a rotation about a unit three-vector
drawn from a uniform distribution.

The momenta can be mixed in many ways [20], so long as
the correct macroscopic conservation laws are applied during
the collision step. Mass is always conserved, as the number of
fluid particles in each cell, and thus in the system as a whole,
is fixed during the collision step. The remaining conservation
laws are left to the choice of the operator Ω, although
momentum must always be conserved by this operator. These
two conditions are sufficient to ensure that in the large-scale
limit this algorithm recovers the continuity and Navier–Stokes
equations [15].

One must be careful applying the algorithm as constructed
above, as it is not translationally invariant. This issue is
due to the rigid grid imposed in the collision step, as was
pointed out by Ihle and Kroll [21]. At low temperatures this
is particularly evident, since particles will diffuse so slowly
that they are effectively trapped in the same cell, colliding with
the same set of particles for many time steps. This violates
molecular-chaos assumptions and leads to velocity-dependent
transport coefficients in the fluid. At high temperatures, this
problem does not arise, since the particles diffuse rapidly
enough between different cells and thus collide with different
sets of neighbors. A general solution to this problem is to
restore Galilean invariance by shifting the origin of the grid
by a random vector with components in [0, a0) prior to sorting
the fluid particles into cells in each collision step [21].

In our discussion of the MPC model we follow the
notation of [22], which we will briefly reiterate here for
completeness. A simulation of the MPC model involves the
following set of parameters: the number of fluid particles per
cell γ , the time between collision steps �tc (usually chosen as
an integer multiple of the molecular dynamics evolution time
step δt), the collision cell size a0, the linear system size L, the
particle mass mf, and the temperature T . A natural system

of units arises if a0 is chosen as the unit length and mf as
the unit mass, and Boltzmann’s constant kB is set to unity.
The characteristic velocity is then the thermal velocity of the
fluid particles, v0 = √

kBT/mf, and t0 = a0/v0 represents
a characteristic time. This in turn defines the dimensionless
mean free path λ = �tc/t0, the characteristic viscosity η0 =√

kBT mf/a2
0 , and the unit of acceleration g0 = a0/t2

0 . When
colloidal particles or additional fluid species are added to this
system, a new set of mass and length scales is introduced
(notably the colloid mass Mc, colloid–colloid diameter σcc, and
colloidal radius a). These can be incorporated naturally by
defining masses in terms of mf and length scales in terms of
a0 [22]. Finally, the collision operator Ω must be specified.
The consequences of this choice have been examined in detail
in [20, 23]. In our simulations, we employ both the original
SRD collision rule [1], as well as the Andersen thermostat (AT)
collision rule [20]. In addition to the mandatory conservation
of mass and momentum, the SRD method conserves energy,
whereas the AT method applies a local thermostat to the fluid in
each collision cell. The use of a thermostat implies that energy
conservation is no longer fulfilled, although it is retained in
a statistical sense. Both of these rules have recently been
extended to angular-momentum conserving algorithms [20].

In studying various boundary conditions on MPC fluids,
we seek the optimal rules for studying embedded colloidal
particles. To do this, we examine methods for modeling
stick boundary conditions at stationary walls that have been
presented previously, and extend them to include partial slip
effects. Finally, we examine consequences of these methods
for simulating suspended colloidal particles.

2. Viscosity in an MPC fluid

The viscosity coefficients of a fluid are a measure of its
resistance to deformations. This can be quantified by means of
the viscous stress tensor σi j . For Newtonian fluids, the stress
tensor is a linear combination of the spatial derivatives of the
fluid velocity u [24], the most general of which is [20, 25]

σi j = η̂(∂xi u j +∂x j ui)+ η̄(∂xi u j −∂x j ui)+ηb(∂xk uk)δi j . (4)

Here η̂, η̄, and ηb are the symmetric, antisymmetric, and
bulk viscous contributions, respectively. In most situations
we consider the flow of incompressible fluids which conserve
angular momentum, where only the symmetric contribution η̂

is nonzero. For unidirectional shear, this leads to a standard
relation between the stress tensor and the viscosity (now
indicated generically as η),

σi j = ηγ̇ . (5)

Here, γ̇ = ∂xi u j is the shear rate. The stress tensor in
equation (5) can in turn be related to the flux of x j -momentum
across planes of constant xi .

Even in the absence of angular-momentum conservation
viscosity can still be defined as in equation (5), provided the
stress tensor only enters the equations of motion through its
divergence in the Navier–Stokes equations. For incompressible
fluids, the divergence of the stress tensor simplifies to

∂xi σi j = (η̂ + η̄)∂2
xi

u j , (6)
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and η = η̂ + η̄ is the effective viscosity. In addition, the
antisymmetric term is important for boundary conditions if
the fluid velocity is related to the tangential stress [25, 26],
although velocity-based boundary conditions (such as those
that we will consider for Poiseuille flow) remain unaffected.
It should also be noted that the MPC fluid has an ideal-gas
equation of state [18] and thus is not incompressible. If
compressibility effects are strong, explicit inclusion of all three
terms in equation (4) is necessary. In the MPC fluid these
effects can be minimized by ensuring that the Mach number
relating flow velocity to the speed of sound, Ma = vf/cs, is
small [22]. Alternatively, attempts have been made to reduce
compressibility effects by incorporating a non-ideal equation
of state [27, 28].

One can calculate the viscosity of an MPC fluid by
observing how momentum is transported through the fluid.
Momentum can be transferred in two ways, corresponding to
the two steps of the MPC algorithm. During the streaming step,
momentum is carried by each particle in its direction of motion.
During the collision step, momentum is redistributed among
particles in a collision cell. This results in two contributions
to the viscosity of an MPC fluid that depend strongly on the
particle density and on the time between collisions. At small
mean free path lengths, momentum transfer via collisions is
the dominant contribution to the viscosity, whereas at large
λ the streaming of particles dominates. If the mean free
path length is large enough to justify the molecular-chaos
assumption, the viscosity of the SRD model can be calculated
analytically [29–32], permitting an accurate test of simulation
data. More recently, analytical results for the viscosity have
been obtained for other choices of the multiparticle collision
operation as well [20].

3. Stick and slip boundary conditions

Fluid flow is strongly affected by the presence of interfaces.
For fluids in contact with a solid phase, the normal component
of the velocity at the interface must be zero, whereas
the tangential velocity inherently depends on molecular
interactions at the interface. Two ideal scenarios are those
of stick and slip boundary conditions. For stick (or ‘no-
slip’) boundary conditions, the tangential velocity of the fluid
relative to that of the boundary vanishes at the interface. For
slip boundary conditions, the tangential velocity of the fluid
is unaffected by the presence of the interface. Most real
surfaces satisfy a partial slip condition, which lies between the
two [26, 33, 34]. In this case, the relative tangential velocity of
the fluid is diminished near the surface, but remains nonzero.
The amount of slip can be quantified via the slip length, which
is the (hypothetical) distance into the surface at which the
relative tangential velocity would be zero. For shear flow in
the x-direction relative to a boundary at z = 0, this yields

λslip = ux(0)

∂zux(0)
. (7)

Note that for perfect slip boundaries λslip diverges. The
importance of slip in a macroscopic system can be expressed
through the effective Knudsen number [34]. The conventional

Knudsen number is defined as the ratio between mean free path
length and a representative physical length scale of the system,
and is useful for quantifying the viscous character of a flow.
Here we define it as the ratio between slip length and system
size,

Kn = λslip

L
. (8)

From this definition, in combination with the notion of
slip length as a distance in the surface at which stick
boundary conditions would apply, we see that a small Knudsen
number implies that stick boundary conditions are a good
approximation for the system. In physical systems, slip notably
arises from hydrophobicity or surface roughness [26, 33, 34],
and often is not evident unless the system size is on the order
of microns. In addition, the viscosity near a surface may
be altered if a fluid contains a surface-active component, or
if fluid–solid interactions near the interface modify the local
composition of the fluid. A lowered viscosity facilitates the
motion of monolayers near the interface, resulting in a so-
called apparent slip boundary condition.

Likewise, slip in an MPC fluid can be either intentional or
apparent. As will be discussed below, modifying the exchange
of tangential momentum between fluid and solid makes it
possible to change the macroscopically determined slip length
in a controlled way. This can in turn be mapped onto an
effective Knudsen number. However, one must be mindful
that simulation artifacts can affect the boundary conditions as
well. Specifically, the presence of partially filled collision
cells [18, 35], either due the shape of boundaries or due to
the Galilean-invariant lattice shifting, leads to a decreased
viscosity at the surface resulting in an apparent slip.

4. Incorporating boundary conditions in an MPC
fluid

Within a particle-based simulation, there are several ways to
incorporate physical objects, such as walls. The simplest
method is to represent a wall by means of a repulsive
potential that only varies perpendicular to the plane defining
the wall, and include the resulting forces in the Verlet update
step. Since such a potential cannot affect the tangential
velocity of the fluid, this implementation results in perfect slip
boundary conditions. To represent stick boundary conditions,
a mechanism is needed to decrease the relative tangential
velocity of the fluid at the wall. One possibility is to
implement a noncentral force on particles near the wall.
In principle, this will make it possible to create boundary
conditions with arbitrary slip by removing some fraction of
the particle momenta near a solid surface in each time step.
In this paper, we do not examine force-based conditions, but
instead impose hard walls that reflect incoming fluid particles.
Regular, specular reflections constitute the counterpart of a
repulsive potential and lead to perfect slip boundary conditions.
Other boundary conditions can be created through bounce-
back conditions, where momentum is exchanged as an impulse
between the fluid and the solid. In this section, we review
several choices for the reflection rules, and consider their
generalization from stationary walls to moving fluid–solid
interfaces.
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4.1. Bounce-back conditions

The bounce-back boundary condition was first proposed for
MPC simulations by Malevanets and Kapral [1]. It is a direct
analog of the stick boundary condition often applied in lattice-
Boltzmann simulations [36], and functions by controlling
the momentum flux at the boundary. This condition is
implemented as follows. If, at the end of a streaming step
(Verlet update), a fluid particle with velocity v is found to
overlap with a wall that has a velocity vsurface, we determine
the intersection of its trajectory and the surface and restore
the particle to the time and position of contact. Then, the
velocity of the particle relative to the surface, ṽ ≡ v − vsurface,
is completely reversed (ṽ → −ṽ) and for the remainder of the
Verlet step the particle is propagated from the point of contact
using its new velocity. As a result, the average relative velocity
of the fluid near the wall is zero, since the relative velocity
distribution of particles reflected from the wall mirrors the
corresponding distribution of particles approaching the wall.

For the case of a solid boundary in motion (e.g., a colloid)
one must determine a suitable location at which to apply
the boundary condition, as the point of contact between a
colloid and a fluid particle depends on the trajectory of both.
For simulations of a colloid embedded in a solvent, we use
the following prescription [37]: if fluid particles are found
to overlap with a colloid at the end of the streaming step,
we restore all participating fluid particles, as well as the
colloid, to their positions one half Verlet time step earlier.
This configuration is then treated as the point of contact and
velocity reflections are performed accordingly. The changes
in momentum and angular momentum of the affected fluid
particles relative to the center of the colloid are summed and
used to update the instantaneous linear and angular momentum
of the colloid. Subsequently, the fluid particles and the colloid
are propagated for the second half of the time step. If this
results in the overlap of additional fluid particles with the
colloid, the procedure is repeated, i.e., the particles are restored
to their positions halfway the second half-step and another
reflection operation is performed. This process is iterated
until either no new overlaps occur or a threshold number of
iterations is reached. In practice, only a few iterations are
necessary. In this method, it is assumed that fluid particles
do not simultaneously overlap with more than one colloid.
This can be guaranteed by choosing σcc slightly larger than
2a, similar to the method utilized in [8, 22] to compensate for
spurious depletion attractions between colloids.

When implementing bounce-back conditions, one must
be careful to ensure that complicated geometries are treated
properly. For example, the time step δt must be sufficiently
small to ensure that fluid particles cannot pass through small
features in a wall or through a colloid. Also, interactions
with multiple walls over the course of a single time step
(e.g., reflections in the corner of a box) require additional
consideration. If the point of contact can be determined
exactly this simply involves iterative application of the bounce-
back rule for static interfaces. Otherwise, rules similar to the
colloidal rule discussed above may be applied.

4.2. Stochastic conditions

Stochastic boundary conditions were proposed for two-
dimensional simulations of suspended solids by Inoue et al
[38], and later applied to the three-dimensional motion of
spherical colloids by Padding et al [37]. These conditions
are intended as an alternative to the bounce-back conditions
of section 4.1, providing a simple implementation of stick
boundary conditions for moving objects.

In this method, the point of contact in a fluid–colloid
collision is determined in the same manner as for the dynamic
rule discussed in the previous section, but the new relative fluid
velocities are obtained from a half-space Maxwell–Boltzmann
distribution rather than from direct velocity reversals. The
tangential components of the relative velocity are drawn from
a Gaussian distribution with zero mean and standard deviation
v0. The normal component is drawn from a degree-2 Weibull
distribution with mean v0 and standard deviation v0. Thus,
energy conservation is replaced with the use of a thermostat,
an approximation that can be justified if λa0 � σcc [5, 38]. A
variation of the stochastic condition [17] permits fluid particles
to freely enter solid regions, where the particle velocities are
then modified to follow a Maxwell–Boltzmann distribution
about the solid-body velocity. This boundary condition,
however, allows flow to penetrate small objects [25] and hence
is not considered here.

In simulations of colloidal diffusion employing stochastic
boundary conditions it was found that the autocorrelation
functions of the linear and angular velocity were well
represented by theoretical predictions for colloids with stick
boundary conditions [37]. However, since it is difficult to
accurately test for the presence of slip in a spherical geometry,
we examine the validity of this rule for plane Poiseuille flow
in section 6.1. To our knowledge, such tests were not done
previously.

4.3. Mixed bounce-back conditions

We observe that, in analogy with the idea of noncentral forces,
it is possible to control the degree of slip at a wall using
bounce-back conditions. Thus, we propose to generalize
these conditions by tuning the average amount of tangential
momentum transferred to a surface in a collision. We examine
two possible implementations. In Method 1, each particle that
impinges on a solid surface undergoes a fixed fractional change
in its relative tangential velocity determined by a parameter
	. For a fluid particle with relative velocity ṽ (defined in
section 4.1), its post-collision velocity v′ is related to the pre-
collision velocity v by

ṽ′
n = −ṽn, (9)

ṽ′
t = (2	 − 1)ṽt . (10)

The subscripts n and t refer to the normal and tangential
components of the velocity at the point of contact. This
method interpolates between bounce-back conditions (	 =
0) and specular reflection (	 = 1). It should be noted
that these boundary conditions do not conserve energy for
	 �∈ {0, 1}. If the solid is assumed large enough to
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maintain an internal temperature despite absorbing energy
from the fluid, dissipation is not an issue if an appropriate
thermostat is applied to the fluid. However, energy dissipation
could present complications for colloidal particles. As
an alternative, in Method 2 all fluid–solid collisions are
performed using either perfect stick boundary conditions
(the bounce-back condition of section 4.1) or perfect slip
boundary conditions (i.e., specular reflection), so that boundary
interactions always conserve energy. For each collision,
the applied boundary condition is determined at random:
bounce-back collisions have a probability 1 − 	 and specular
reflections occur with a probability 	. In spirit, this is very
similar to an analytical approach to generalize the ‘rough-
sphere model’ for the orientational relaxation of spherical
particles with stick boundary conditions to spheres with
arbitrary roughness [39]; comparable ideas have recently been
proposed for implementing partial slip in lattice-Boltzmann
simulations [40]. In case of interaction with a colloid, bounce-
back collisions lead to the transfer of tangential as well as
normal momentum, whereas specular reflections involve only
the transfer of normal momentum. We examine both Method 1
and Method 2 in section 6.2.

5. Collision rules to remove spurious slip

The bounce-back condition was studied in detail by Lamura
and Gompper in two dimensions [35, 41], and has been
applied in three-dimensional systems as well [25, 42]. In
studying the steady Poiseuille flow profile, it was found that the
bounce-back rule of section 4.1 is not sufficient to guarantee
absence of slip at the walls. This problem arises from the
intersection of MPC cells with the solid surface, which results
in boundary cells that contain fewer fluid particles than their
bulk counterparts. Whereas the streaming contribution to
the viscosity is not affected by this, the collisional viscosity
in boundary cells is diminished, lowering the total viscosity
compared to its bulk value. We illustrate this for cells
intersected by a planar wall in appendix A. Here, we review
several modifications to the collision step of the MPC method
that have been proposed to rectify this issue.

5.1. Bulk filling rule

The earliest solution, denoted here as the bulk filling rule
(BFR), is due to Lamura and Gompper [35] and has found
rather wide-spread application. In this rule, pseudoparticles
with Maxwell–Boltzmann distributed velocities are added to
underfilled boundary cells (i.e., boundary cells with Nfluid < γ

fluid particles) in order to match the bulk particle density. The
inclusion of these pseudoparticles (which can be represented
by a single particle of mass (γ − Nfluid)mf) in the collision step
increases the effective viscosity.

It should be noted that the number of fluid particles in each
cell fluctuates. Since, according to this rule, only underfilled
boundary cells are modified, the resulting average particle
density in boundary cells is higher than in bulk cells. To
remove this asymmetry, we propose a variation of this rule, in

which for wall cells with Nfluid > γ fluid particles the center-
of-mass velocity is modified by subtracting the velocity of a
pseudoparticle,

v′
cm = 1

γ
[Nfluidvcm − (Nfluid − γ )vMB], (11)

where vMB is drawn from a Maxwell–Boltzmann distribution
for a particle with mass (Nfluid − γ )mf. We refer to this as the
symmetrized bulk filling rule (SBR).

5.2. Alternative collision rules

Reference [35] also considered the possibility of adding
stationary pseudoparticles to underfilled boundary cells. This
approach was observed to result in an increased particle
density near the walls, which can be understood by noting
that it corresponds to a zero-temperature representation of
the walls. Accordingly, the walls act as heat sinks that
decrease the particle velocities and localize the particles near
the walls. Although this unintended consequence may render
this approach unusable, it is conceivable that the application
of a thermostat alleviates the problem. For this reason, we
will review its performance in section 6.1. However, in
analogy with the SBR proposed in section 5.1 we introduce
the following symmetric variant. If the number of particles in
a boundary cell Nfluid differs from the bulk number of particles
per cell γ , the center-of-mass velocity is rescaled by a factor
Nfluid/γ . If Nfluid < γ this is equivalent to the addition
of stationary pseudoparticles. We refer to this as the simple
rescaling rule (SRR).

In [25], it was proposed to place randomly distributed
pseudoparticles within the parts of boundary cells that overlap
with the solid. The velocity of each pseudoparticle is drawn
from a Maxwell–Boltzmann distribution centered around the
velocity of the wall at the particle position. As in the other
rules involving pseudoparticles, their density is equal to the
bulk particle density. However, rather than on a cell-wise basis,
we choose the total number of pseudoparticles according to
the total overlap volume of boundary cells with solid regions
in the system. This has the benefit that the fluctuations in
the number of pseudoparticles per cell approximate the cell-
wise fluctuations in the bulk particle density. This collision
rule, which we refer to as the virtual particle condition (VPC),
allows a natural extension to angular-momentum conserving
implementations of the MPC algorithm, since pseudoparticles
have both position and velocity, unlike pseudoparticles in the
BFR [25]. A potential complication in the VPC is that it can
be computationally costly to disperse pseudoparticles in solids
with complex geometry.

When determining velocities in the virtual particle
condition in combination with the mixed bounce-back rule
proposed in section 4.3 for surfaces with partial slip, we
employ the slip parameter 	. The velocity of a pseudoparticle
at position r within the rigid body is drawn from a Maxwell–
Boltzmann distribution centered around an average velocity

〈v〉 = 	〈vavg〉 + (1 − 	)v(r), (12)

5



J. Phys.: Condens. Matter 22 (2010) 104106 J K Whitmer and E Luijten

where v(r) denotes the rigid-body velocity at the position r and
〈vavg〉 is the average of the real fluid particle velocities in the
boundary cell. For perfect stick boundary conditions (	 = 0)
this reduces to a distribution centered around the local rigid-
body velocity, whereas for perfect slip boundary conditions
(	 = 1) the average velocity of the pseudoparticles matches
the local fluid flow.

5.3. Notes on collision rules for moving boundaries

The generalization of the rules in this section to moving solids
poses some problems. For example, in the BFR (section 5.1)
pseudoparticle velocities may be drawn from a Maxwell–
Boltzmann distribution whose average velocity is the solid-
body surface velocity in that cell. For an object with center-
of-mass position rcm, center-of-mass velocity vcm, and angular
velocity ω, the surface velocity at position r is given by

vsurface(r) = vcm + ω × (r − rcm). (13)

The average surface velocity can be obtained by Monte Carlo
integration of vsurface over the manifold of intersection between
the solid surface and the MPC cell. In the limit of a
stationary wall, this reduces to the stationary BFR, so we
would expect similar slip behavior from this rule. When this
approach is applied to colloids, momentum gained by the
pseudoparticles during the collision step must be explicitly
accounted for to ensure our system conserves momentum.
Since pseudoparticles are located inside the colloidal surface,
it is natural to add this momentum to the colloid. If F denotes
the set containing all pseudoparticles i interacting with colloid
j , the net momentum changes are

�P j = −
∑

i∈F

mf�vi , (14)

�L j =
∑

i∈F

mf�vi × (ri − r j ). (15)

Here P j and L j are the colloid’s linear and angular
momentum, respectively, and �vi is the change in velocity
of fluid particle i during the collision step. Conceptually,
this momentum transfer is only correct in case of perfect
stick boundary conditions, a notion that we will address
in section 7. Alternatively, one can restore momentum
conservation by compensating the change in momentum
and angular momentum (if using an angular-momentum
conserving rule) of the pseudoparticles in each collision step
by an equal and opposite change in the real fluid particles in
that cell. However, this process amounts to neglecting the
pseudoparticles entirely and thus offers no improvement over
standard bounce-back conditions for removing spurious slip.

6. Plane Poiseuille flow

In this section, we investigate the performance of the bounce-
back and stochastic boundary conditions reviewed in section 4
in combination with the various methods for removing
spurious slip reviewed in section 5. We do so in a simulation
of fluid flow between two parallel stationary walls, where the

fluid experiences a constant pressure gradient or a uniform
body force (e.g., gravitation). This plane Poiseuille flow has
the advantage that the velocity profile is known analytically,
even when slip is present [24, 43].

Assuming a low Mach number, we can apply the
(incompressible) Navier–Stokes equations,

ρ(∂t + u ·∇)u = −∇ p + η∇2u + ρg, (16)

∇ · u = 0, (17)

where ρ is the fluid density, p the (spatially dependent) fluid
pressure and g the acceleration resulting from an external force
on the fluid. Upon alignment of the Cartesian coordinates such
that x̂ is the direction of flow and ŷ is perpendicular to the
two walls, this reduces to a two-dimensional problem. When
stick boundary conditions are imposed at y = 0 and y = L,
the steady-state solution (∂t u = 0) yields the well-known
parabolic profile

ux(y) = −�p + ρg

2η
(L − y)y. (18)

Here, �p is the magnitude of the pressure gradient and g =
|g|. In the case of uniform slip at both walls, we can utilize
the boundary condition equation (7) (with y replacing z and
a corresponding condition at y = L) and obtain the same
velocity profile with the addition of a constant velocity across
the channel [34],

u′
x(y) = −�p + ρg

2η
(L − y)y + (−�p + ρg)λslip L

2η
. (19)

6.1. Results for plane Poiseuille flow

Our simulations employ an MPC fluid with the SRD collision
rule. We use γ = 32 particles per cell in a rectangular
geometry 25a0 ×25a0 ×50a0, similar to the systems examined
in [42]. The rotation angle in the SRD operator is set to α =
π/2 and the mean free path length equals λ = 0.2, resulting
in a viscosity η = 10.91η0. Flow strength is controlled by a
gravitational force on the fluid particles, with g = 0.005g0.
Because the gravitational force imparts energy to the system,
a thermostat is required. We use both Galilean-invariant
global velocity rescaling [22] and a simple extension of this
thermostat in which the rescaling parameter is calculated on a
cell-wise basis.

As illustrated in figure 1, all simulations lead to a parabolic
velocity profile, but there are important differences between
the results obtained from different algorithms. As noted earlier
for a two-dimensional implementation [35], the bounce-back
condition of section 4.1 (filled squares), when applied without
special treatment of the boundary cells, leads to significant slip
at x = 0 and 25a0 and a velocity profile that is enhanced
compared to the theoretical prediction (equation (18)) across
the entire channel width. Application of the BFR (open
squares) removes the slip, but an enhancement of the velocity
profile away from the walls remains, contrary to what was
found for two-dimensional flow [35]. We believe that this can
be explained from the use of our velocity rescaling scheme.
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Figure 1. Comparison of plane Poiseuille flow profiles for various
boundary conditions defined in section 5. All simulation data were
obtained use the bounce-back condition (BB), except those indicated
as ‘stochastic’. See the text for a detailed discussion of each method.
Except for ‘BB + VPC + CWT’, the key lists all data sets in order of
decreasing magnitude of the velocity profile. The data sets for
‘BB + BFR’ (open squares), ‘BB + SBR’ (diamonds), and
‘BB + VPC’ (open circles) lie almost exactly on top of each other for
all x .

Since the real fluid particles in boundary cells experience a net
flow, pseudoparticles that participate in the fluid collision step
will remove momentum and energy from these cells, leading
to a local temperature decrease during the collision step. Fluid
in the bulk cells remains at the correct temperature, as the
SRD collision rule conserves energy. Thus, subsequent global
velocity rescaling performed by the thermostat leads to an
overheating of the bulk fluid and a consequent decrease in the
viscosity. This effect can be suppressed by choosing smaller
cells, so that the fluid particles in the boundary cells have a
smaller net velocity. The symmetric version of this rule, SBR
(filled diamonds), yields almost identical results. This can be
understood from the fact that overfilled boundary cells occur
very rarely. For the stationary walls examined here, the virtual
particle condition of section 5.2 (open circles) only differs from
SBR in the manner in which the pseudoparticles are distributed
over the boundary cells (i.e., fluctuations in the total number of
particles and pseudoparticles per cell are permitted in VPC, but
do not occur in SBR). The resulting velocity profile is indeed
indistinguishable from that obtained via SBR. Apart from the
deviations ascribed to the global thermostat, it is noteworthy
that BFR, SBR, and VPC all properly remove the spurious slip
at the walls.

The last rule applied in conjunction with the bounce-
back condition, SRR (filled circles), appears to match the
analytical prediction remarkably well. However, this is a
spurious effect, in which the velocity enhancement resulting
from the thermostat coincidentally cancels the suppression
of the velocity profile one would otherwise observe when
using this rule. For other parameter choices, the agreement
disappears. Conversely, we found excellent agreement with
the theoretical velocity profile for BFR, SBR, and VPC when
decreasing the magnitude of the gravitational driving force
or increasing the mean free path length λ (keeping in mind
limitations on the Mach number).

On the other hand, the spurious velocity enhancement
completely disappears, independently of parameter choice,
upon application of a cell-wise thermostat (data indicated as
VPC + CWT in the graph, filled triangles). Here, the velocity
rescaling factor is calculated per cell, based upon the strength
of the velocity fluctuations about the mean particle velocity
in each cell. The distinction between a global and a cell-
wise thermostat only applies to the SRD collision rule. In an
MPC fluid with the AT collision rule, all cells are thermostatted
individually in the collision step. Therefore, we have chosen to
exclusively employ the MPC-AT fluid in sections 6.2 and 7.
Note, however, that spurious slip is still present in these
simulations unless corrected for by, e.g., the VPC.

Lastly, we have also tested the stochastic bounce-back
condition of section 4.2 (inverted filled triangles). This
condition was specifically proposed to be used without
pseudoparticles to facilitate the treatment of complex, moving
geometries. However, as illustrated in figure 1, the resulting
velocity profile suffers from even greater spurious slip
than the profile obtained with the standard bounce-back
condition. Indeed, this slip persists even if pseudoparticles
are added to the collision step (not shown). This appears
to be in contradiction with the agreement found in colloid
simulations employing this method and analytical predictions
of velocity autocorrelation functions [37]; we will elucidate
this discrepancy in section 7.3 and appendix B.

6.2. Plane Poiseuille flow with partial slip

Having established the performance of the bounce-back
condition in conjunction with various collision rules, we now
proceed to investigate the mixed bounce-back rules proposed
in section 4.3 for the implementation of partial slip boundary
conditions.

We use an MPC-AT fluid with a system geometry and
particle density identical to those in section 6.1. The mean free
path length is set to λ = √

2 (yielding a viscosity η = 25.91η0)
and the driving force corresponds to g = 0.01g0. The slip
coefficient 	 is varied from 0 (stick boundary conditions)
to 0.9 (near perfect slip). For both methods described
in section 4.3 we confirm that the degree of slip can be
increased monotonically by increasing 	. In accordance with
equation (19), we obtain the same parabolic velocity profile for
all choices of 	, shifted by an additive constant that depends
only on the effective Knudsen number (equation (8)) and the
maximum channel velocity umax ≡ ux(L/2) (cf equation (18)).
Figure 2 illustrates this for simulation results obtained by
means of Method 2 (in which the bounce-back condition and
specular reflection are mixed with probabilities 1 − 	 and 	,
respectively) without the application of any pseudoparticles.

The effective Knudsen number corresponding to these
results is plotted in figure 3. To clarify the apparent slip
resulting from the omission of pseudoparticles, we also
determine Kn in simulations with fixed 	 = 0 as a function
of cell resolution in systems of dimension L × L × 2L.
We maintain the values for particle density and mean free
path length, while increasing the number of cells across the
channel width by increasing L. Simultaneously, we decrease
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Figure 2. Slipping Poiseuille flow profiles in a channel of width
25a0. The slip coefficient is varied from 	 = 0 (stick boundary
conditions) to 0.9 (near perfect slip). For clarity, some of the profiles
are omitted.

the gravitational constant such that the Reynolds number, Re =
ρumax L/η, remains constant. This is equivalent to variation
of the cell resolution, since systems with equal Reynolds
number are described by the same solutions to the Navier–
Stokes equations. We investigate resolutions ranging from 6
to 50 cells across the channel width, for two choices of the
Reynolds number, Re = 30 and 3 (for L = 25a0, these choices
correspond to gravitational constants g = 0.01g0 and g =
0.001g0). As shown in the inset of figure 3, slip decreases with
increasing resolution (albeit at a rate that is weakly dependent
on Re), with Kn < 10−3 for the largest resolution studied at
Re = 30. This confirms that spurious slip in the MPC method
can also be mitigated by increasing the cell resolution, although
it must be noted that this is a computationally demanding
approach. Our simulation for L/a0 = 50 involved 8 × 106

fluid particles.

7. Partial slip at the surface of particles in motion

7.1. Thermal behavior

We now proceed to test the mixed bounce-back conditions
for partial slip at the surface of mobile colloidal particles.
We consider three different approaches: (i) Method 1
(cf section 4.3) for the mixed bounce-back conditions, in
combination with pseudoparticles to remove spurious slip; (ii)
Method 1, without employing pseudoparticles; (iii) Method 2,
again without pseudoparticles.

Since energy and momentum conservation are affected
by Method 1 and also require particular attention when
pseudoparticles are used (cf section 5.3), we first investigate
the thermal properties of a single colloid of radius a = 2a0

and mass Mc = 125mf, diffusing in a cubic system of linear
dimension L = 24a0. The system is filled with an MPC-AT
fluid with λ = 0.1 and γ = 5. We perform 106 MD time steps
of length 0.025t0, for different choices of 	. For all cases, we
determine the distributions of linear and angular momentum
of the colloid, and compare these to the expected Maxwell–
Boltzmann distributions.

Figure 3. Effective Knudsen number Kn as a function of slip
parameter 	. Note how Kn diverges as 	 approaches unity. Inset:
Knudsen number as a function of channel resolution L/a0. In these
simulations, 	 = 0 and the gravitational constant is varied as 1/L3 to
maintain a constant Reynolds number Re (see text). For both Re = 3
and 30, Kn tends toward 0 as the resolution is increased, confirming
that apparent slip can be mitigated by increasing the cell resolution in
MPC simulations.

In figure 4, we show the results obtained using Method 1,
with pseudoparticles placed according to the VPC. The
momentum change experienced by the pseudoparticles in the
collision step is transferred to the colloid, in accordance with
equations (14) and (15). This leads to serious deviations
in the thermal behavior, as is evident from the velocity
distributions. With increasing 	, the pseudoparticle velocities
(equation (12)) become less determined by the colloid velocity
and more by the velocity of the real fluid particles, leading to a
larger momentum transfer to the colloid and more pronounced
overheating of the colloid. The seriousness of this effect
becomes particularly evident if one realizes that the fluid–
colloid coupling should decrease, rather than increase, with
increasing 	.

Based upon these findings, we repeat the simulation
utilizing Method 1 without pseudoparticles. For pure stick
boundary conditions (	 = 0) the velocity distributions
(figure 5) match the theoretical predictions, and also for
pure slip boundary conditions (	 = 1) the linear velocity
distribution shows excellent agreement. However, for
intermediate values (	 = 0.25, 0.50, 0.75) pronounced cooling
effects are observed, as borne out by distributions that are more
narrow than expected. These effects are particularly strong for
the angular velocity distribution at 	 = 0.75. The origin of this
discrepancy lies in the dissipative interactions at the colloidal
surface, which lead to violation of energy conservation.

Lastly, to overcome the deficiencies observed in figures 4
and 5, we perform the diffusion simulation using Method 2
(probabilistic mixing of stick and slip behavior) without
pseudoparticles. Since all fluid–colloid collisions now
conserve energy, the distributions shown in figure 6 agree
with the theoretical prediction for all choices of 	. Although
Method 2 used without pseudoparticles is still susceptible to
spurious slip resulting from underfilled cells, we consider this
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Figure 4. Distribution of (a) linear and (b) angular velocity of a
colloid (radius a = 2a0, mass Mc = 125mf) suspended in an
MPC-AT fluid, for different choices of the slip length at the colloidal
surface. The system size is L = 24a0 and the fluid particle density
γ = 5. The simulations employ Method 1 for the mixed
bounce-back conditions (section 4.3), in combination with the VPC
(section 5.2) to eliminate spurious slip. For all values of the slip
coefficient 	, the simulation results deviate from the expected
Maxwell–Boltzmann distribution. Note that P(ω) is omitted for
	 = 1.0, since the angular momentum of the colloid cannot be
affected by the fluid in case of perfect slip.

the method of choice because of its proper representation of
the thermal behavior of the colloid.

7.2. Drag forces

We still have to determine how well slip can be controlled at
spherical surfaces using mixed bounce-back conditions (which
we now exclusively implement using Method 2), in particular
because our findings in section 7.1 indicate that it is preferable
to omit pseudoparticles. Here, we address this question by
varying the slip coefficient 	 and determining the effect on
the particle drag. In low Reynolds number flow, a spherical
particle with stick boundary conditions experiences a uniform
hydrodynamic drag force,

Fdrag = −ζvv, (20)

where ζv = 6πηa [24, 43] varies linearly with both the fluid
viscosity η and the colloidal radius a. For slip boundary
conditions, the same equation holds, with ζv = 4πηa.

Figure 5. Distribution of (a) linear and (b) angular colloidal velocity,
for the same parameters as in figure 4. The simulations employ
Method 1 for the mixed bounce-back conditions, without using any
pseudoparticles. For 	 �∈ {0, 1}, the presence of dissipative
interactions at the colloid surface decreases its effective temperature,
reflected in velocity distributions that are too narrow compared to the
Maxwell–Boltzmann distribution.

Partial slip conditions interpolate between these two values.
To measure the drag of a colloid with partial slip boundary
conditions we study sedimentation of a set of eight colloids in a
periodic box of dimensions L×L×3L, where L = 32a0. Both
the MPC fluid and the colloids are identical to those employed
in section 7.1. Colloid–colloid interactions are represented by
a steep, purely repulsive potential,

U(r)

kBT
= 10

[(
σcc

r

)48

−
(

σcc

r

)24]
+ 5

2

for r < 21/24σcc. (21)

The colloid–colloid diameter is set to σcc = 2.15a, i.e., slightly
larger than the colloidal diameter 2a as seen by the fluid
particles, to ensure that fluid particles do not simultaneously
overlap with multiple colloids (cf section 4.1). The colloid
volume fraction is small enough that mutual hydrodynamic
effects are unimportant [8], so that the sedimentation velocity
is inversely proportional to the single-particle drag. We choose
the Péclet number Pe = Mcga/kBT = 10 to rapidly obtain a
steady-state sedimentation velocity.

Figure 7 illustrates that the sedimentation velocity
increases with increasing 	, in accordance with the decreasing
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Figure 6. Distribution of (a) linear and (b) angular colloidal velocity,
for the same parameters as in figure 4. The simulations disregard
pseudoparticles (to avoid the deviations exhibited in figure 4) and use
the energy conserving mixed bounce-back conditions according to
Method 2 (to avoid the deviations found in figure 5). For all choices
of the slip parameter 	 the thermal behavior of the colloid agrees
with the analytical prediction.

drag as the degree of slip increases. Although a velocity
increase by a factor 3/2 is expected from continuum
hydrodynamics if 	 is varied from 0 to 1, our simulations
exhibit an increase by a factor 1.7. It should be noted that
in our system, due to the coarse-graining of length scales
inherent in the MPC method [22], there are two appreciable
sources of friction. The short-time dynamics are dominated
by the ballistic collisions between the colloid and fluid
particles, which can be described by Enskog dense-gas kinetic
theory [22, 37, 39, 44–47]. The long-time behavior, on the
other hand, is dominated by hydrodynamic effects. If one
assumes that these timescales are well separated, an estimate
for the total friction coefficient of fluid acting on a colloidal
particle can be obtained from the Green–Kubo relation for the
self-diffusion coefficient of the colloid,

Dself = kBT

ζv
= 1

3

∫ ∞

0
dt〈v(t) · v(0)〉

≈ 1

3

∫ ∞

0
dt (〈v(t) · v(0)〉E + 〈v(t) · v(0)〉H)

≈ kBT

ζv,E
+ kBT

ζv,H
. (22)

Thus, the total friction can be estimated by summing the
Enskog (subscript E) and hydrodynamic (subscript H) frictions

Figure 7. Sedimentation velocity of colloids of radius a = 2a0, as a
function of the slip coefficient 	. The colloids settle under the
influence of a gravitational force characterized by a Péclet number
Pe = 10. Sedimentation velocities are determined by block
averaging, and normalized by the measured velocity at 	 = 0 (stick
boundary conditions). The lines indicate the slip ratio (3/2) expected
from continuum hydrodynamics and the slip ratio adjusted for
Enskog effects (cf equation (22)).

in parallel [22, 37]. Using an explicit calculation of the Enskog
contribution (see appendix B) we find that the sedimentation
velocity increases by a factor 1.66 when 	 is increased from 0
to 1, in closer agreement with the results of figure 7. We expect
that a more accurate accounting for the crossover between
Enskog and hydrodynamic effects, and subsequent integration
of the velocity autocorrelation function, would further improve
the agreement.

7.3. Friction and autocorrelation functions

The crossover between Enskog and hydrodynamic behavior
can be explicitly shown by examining the autocorrelation
functions of velocity and angular velocity for colloids
embedded in an MPC fluid [37]. Under the same assumptions
as in section 7.2, equivalent forms to equations (20) and (22)
are satisfied for the rotational degrees of freedom, with ζω,H

equal to 8πηa3 for stick conditions and equal to 0 for slip
conditions.

At long times, the autocorrelation functions are described
by hydrodynamic mode-coupling theory (MCT), which
predicts that the autocorrelation functions for the linear and
angular velocity exhibit a power-law decay [37, 48],

lim
t→∞〈v(t)v(0)〉 = kBT

12mfγ [πa−2
0 (ν + Dself)t]3/2

, (23)

lim
t→∞〈ω(t)ω(0)〉 = πkBT

mfγ [4πa−2
0 (ν + Dself)t]5/2

, (24)

where ν = η/ρ is the kinematic viscosity. Any dependence on
	 can only enter through the self-diffusion constant. However,
in our systems Dself � ν, so that these effects are negligibly
small. Consequently, the MCT result applies to both stick
and partial slip boundary conditions at late times [48, 49],
independent of 	.
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The short-time Enskog friction coefficients for the
rotational and translational degrees of freedom of a colloidal
particle in an MPC fluid are derived in appendix B. For
Mc/mf → ∞ they reduce to equations (B.13) and (B.14),

ζv,E = 8
3

√
2πkBT mfγ a2(2 − 	), (25)

ζω,E = 8

3

√
2πkBT mfγ a2 1 − 	

χ
. (26)

In these expressions, χ = 2/5 is the gyroscopic ratio for
uniform spheres. This friction describes the initial exponential
decay rate of the correlation function.

We examine the velocity autocorrelation functions for the
same system as described in section 7.1. Slip is controlled via
Method 2 without pseudoparticles, with values for 	 ∈ [0, 1],
spaced at intervals of 0.2. To properly resolve the long-time
behavior, the runs are performed for 108 time steps. The results
for three representative choices of 	 (0.0, 0.6, 1.0) are shown
in figure 8. The short-time behavior of both the linear and
the angular velocity is in excellent agreement with the Enskog
behavior of equations (25) and (26), and the simulation results
exhibit the predicted 	 dependence. For longer times the
autocorrelation functions cross over to the power-law decay
predicted by mode-coupling theory. It should be noted that the
agreement between simulation data and analytical predictions
is not the result of a fit; all of the variables in equations (23)–
(26) are accounted for by the parameters chosen in the MPC
simulation.

We note that for the rotational friction the crossover from
short-time to long-time behavior increases with increasing 	.
This is due to the fact that partial slip boundary conditions
interpolate between a finite rotational drag and no rotational
drag. In particular, this implies that systems in which colloidal
rotational effects are important require long simulation times,
to ensure that these degrees of freedom are accurately explored.

Lastly, we point out that our equations (25) and (26) are of
a different form than those in [37], where the Enskog result for
the rough-sphere model [39, 44, 46] was applied. As noted in
appendix B, this result is inapplicable to MPC dynamics, since
only the colloidal species has rotational degrees of freedom.
Numerically, the rough-sphere model (which represents perfect
stick boundary conditions) coincides with our equations if 	 is
set to 5/7; indeed, empirically we found that our simulation
data match the rough-sphere model for a slip coefficient 	 ∈
[0.6, 0.8]. Correspondingly, the conclusion of [37] that the
rough-sphere model provides a good description of colloids
simulated with the stochastic boundary condition (section 4.2)
in fact reconfirms that such boundary conditions produce
spurious slip, consistent with our findings in section 6.1.

8. Conclusion

In conclusion, we have tested various boundary conditions for
an MPC fluid interacting with solid walls or suspended solid
particles. We confirmed earlier observations of apparent slip
near the surface, and explicitly showed how this slip arises
from a viscosity reduction resulting from the fact that boundary
cells have a lower fluid particle density than bulk cells. While

Figure 8. Autocorrelation functions Cxx (t) = 〈x(t)x(0)〉, for (a) the
linear velocity (x = v) and (b) the angular velocity (x = ω) of a
colloid embedded in an MPC fluid. Three different boundary
conditions are examined: perfect stick (	 = 0), partial slip
(	 = 0.6), and perfect slip (	 = 1). Parameter values are provided in
the text. Dashed curves correspond to the exponential short-time
decay derived from Enskog theory (appendix B) and the solid lines
are the long-time power-law decay predicted by mode-coupling
theory.

this can be mitigated by means of virtual particles in situations
where momentum transfer at the surface does not affect the
solid (e.g., massive walls), this solution leads to systematic
deviations in case of thermally responsive surfaces, such as
mobile colloids. Furthermore, we found that a stochastic
algorithm for implementing stick boundary conditions in fact
leads to significant slip in plane Poiseuille flow. These findings
lead us to the conclusion that stick boundary conditions in
MPC-based simulations are best represented by the bounce-
back rule. When virtual particles are omitted, spurious slip can
be reduced by increasing the resolution of the MPC cell grid.
In addition, we have proposed an implementation of partial
slip boundary conditions, in which bounce-back collisions
and specular reflections are mixed on a stochastic basis. For
plane Poiseuille flow we have demonstrated that this provides
an accurately tunable slip length, whereas for colloids we
have verified its effectiveness by means of the sedimentation
velocity. Building upon earlier results, we have derived the
Enskog friction describing the short-time behavior of the linear
and angular velocity autocorrelation functions of a colloid
embedded in an MPC fluid, and demonstrated that these results

11



J. Phys.: Condens. Matter 22 (2010) 104106 J K Whitmer and E Luijten

are in good agreement with simulations employing our partial
slip boundary conditions.
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Appendix A. Calculation of the collisional viscosity
near a wall

Here, we calculate how the collisional viscosity (i.e., the
viscosity contributed by the collision step of the MPC method)
is affected by the partial filling of cells that are intersected by
a solid–fluid interface. Since this is an immediate extension of
the calculation presented in [29] for bulk cells, we first review
the essential steps of that work, following the notation of the
present paper.

Recall from equation (5) that the shear viscosity is defined
by the relation

σxz = η∂zux, (A.1)

so that the collisional viscosity can be computed from the stress
contribution and the shear rate in the collision step.

Consider a single, cubic collision cell, with boundaries
[0, a0] in all three dimensions. The cell contains n fluid
particles which have a center-of-mass velocity u, whose x-
component is denoted as ux . We define two subcells by
dividing this cell with a plane at constant z = z0 ∈ [0, a0]. The
cells S1 = {z | 0 � z � z0} and S2 = {z | z0 < z � a0} have
n1 and n2 particles, respectively, with center-of-mass velocities
ux,1 and ux,2. Independent of z0, the average distance between
the center of mass of the two subcells is a0/2, so that

γ̇ = ∂zux ≈ �ux

�z
= 2

ux,2 − ux,1

a0
. (A.2)

Since the center-of-mass velocities in the subcells are related
via ux,2 = (nux − n1ux,1)/(n − n1), the shear rate can be
written as

γ̇ = 2n

a0(n − n1)
(ux − ux,1). (A.3)

Next, we calculate the stress tensor from the momentum
flux across the plane dividing S1 and S2 during the collision
step,

σxz = 1

a2
0�tc

∑

i∈S1

�pi
x, (A.4)

where �pi
x is the change in x-momentum of particle i . Since

the MPC operator Ω affects only the particle momenta relative
to the cell center-of-mass (cf equation (3)), we find

σxz = mfn1

a2
0�tc

(1 − 〈Ω〉)(ux − ux,1), (A.5)

where 〈Ω〉 indicates the average over all realizations of the
collision operator. Substitution of equations (A.3) and (A.5)
in equation (A.1) yields the viscosity due to the collision step,

ηcol = mfn1

a2
0�tc

(1 − 〈Ω〉)a0

2

n − n1

n
. (A.6)

Figure A.1. Ratio χw of the collisional viscosity in boundary cells,
ηw

col, to the bulk collisional viscosity, ηcol, for MPC simulations, as a
function of the average number of fluid particles per cell, γ .

Since the number of particles in the cell is typically small,
we must take into account fluctuations. For a given value of n,
n1 is binomially distributed with probability p = z0/a0. Using
the binomial mean 〈n1〉 = np and variance 〈(n1 − 〈n1〉)2〉 =
np(1 − p), we obtain

ηcol = mf(n − 1)

2a0�tc
(1 − 〈Ω〉)

(
z0

a0

)(
1 − z0

a0

)
. (A.7)

The total number of particles in the cell fluctuates as well and,
for large enough systems, will follow a Poisson distribution
with mean γ . If, in addition, we average over the position z0

of the dividing plane, we recover equation (14) of [29],

ηcol = mf

12a0�tc
(1 − 〈Ω〉)[γ − 1 + e−γ ]. (A.8)

In the presence of a wall at z = zw, particles are excluded
from the region [0, zw] and the location z0 of the dividing
plane between the two subcells must be chosen in the range
[zw, a0]. Thus, in equation (A.3) the average center-of-mass
distance a0/2 between the subcells is replaced by (a0 − zw)/2.
The binomial distribution of n1 has a probability p = (z0 −
zw)/(a0 − zw) so that equation (A.7) is replaced by

ηw
col = mf(n − 1)

a2
0�tc

(
a0 − zw

2

)
(1 − 〈Ω〉)

×
(

z0 − zw

a0

)(
1 − z0 − zw

a0

)
. (A.9)

Upon averaging over the particle number, which now has a
lower mean value γ ′ = γ (a0 − zw)/a0, and over z0, we find

ηw
col = mf

12a0�tc

(a0 − zw)

a0
(1 − 〈Ω〉)

×
(

γ
a0 − zw

a0
− 1 + e−γ

a0−zw
a0

)
. (A.10)

Finally, we integrate over all wall positions zw to obtain the
collisional viscosity in a boundary cell,

ηw
col = mf

12a0�tc
(1−〈Ω〉)

[
γ

3
−1

2
+1 − (1 + γ )e−γ

γ 2

]
. (A.11)
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Comparison of the factor in square brackets in equations (A.8)
and (A.11) shows that, in the limit of a large number of fluid
particles per MPC cell, the collisional viscosity is reduced to
1/3 of its bulk value, explaining the occurrence of spurious
slip near walls. As illustrated in figure A.1, ηw

col is reduced even
more for values of γ that are typical in actual simulations.

Appendix B. Corrections to Enskog friction for the
MPC model

The short-time ballistic behavior of colloids in an MPC solvent
is well described by Enskog kinetic theory for smooth spheres
when colloid–solvent interactions do not transfer angular
momentum. When bounce-back conditions are used, rotational
degrees of freedom must be accounted for. One might
interpret bounce-back collisions as interactions between rough
spheres, and use the rough-sphere result to determine the short-
time behavior under stick boundary conditions, but this is
conceptually incorrect. The strength of friction depends on
the impulse received by a colloid during a collision with an
MPC particle. Application of the rough-sphere result tacitly
assumes that the MPC particle has a moment of inertia. Since
MPC particles are point particles, such an assumption leads to
incorrect results. Using conservation of momentum together
with previous results [39, 44–47], we show here that properly
accounting for the lack of rotational inertia in the MPC particle
leads to a corrected equation which is mathematically similar
to the rough-sphere result, but includes a multiplicative factor
that is the ratio between the colloidal mass and the MPC fluid
particle mass.

We start from the equations for momentum conservation.
The vector n̂ is defined as the unit vector pointing from the
center of the colloid to the point of contact between the colloid
and the fluid particle. We denote the fluid mass by mf, and the
colloid mass and moment of inertia by Mc and Ic, respectively.
The linear and angular velocities of the fluid particle and the
colloid are distinguished by means of the subscripts f and c.
The impulse J exerted on the colloid in a collision then satisfies

mfv′
f = mfvf − J, (B.1)

Mcv′
c = Mcvc + J, (B.2)

Icω
′
c = Icωc + a(n̂ × J), (B.3)

where the primed quantities denote velocities after the
collision. Note that there is no equation for the angular
momentum of the MPC point particle. The relative velocity
at the point of contact between the two particles is

ṽ = vf − vc − ωc × an̂. (B.4)

For the general case of mixed boundary conditions (sec-
tion 4.3), the post-collision relative velocity is specified by
equations (9) and (10) for Method 1. For Method 2, equa-
tion (10) must be interpreted as a time average. Combining
these equations with equations (B.1)–(B.3) we can relate the
normal and tangential components of J and ṽ,

Jn = 2μṽn, (B.5)

Jt = 2(1 − 	)μ
Mcχ

μ + Mcχ
ṽt , (B.6)

with μ = (1/mf + 1/Mc)
−1. The gyroscopic ratio χ =

Ic/(Mca2) equals 2/5 for uniform spheres. Note that this is
the analog of equation (4.2) of [46] for two partially slipping
spheres where the constant κ12 in that equation has been
replaced by

κfc = Mcχ

μ + Mcχ
= χ(Mc/μ)

1 + χ(Mc/μ)
. (B.7)

Indeed, if the fluid particle were replaced by a sphere of
uniform density, the ratio (Mc/μ) in equation (B.7) would
reduce to μ/μ, recovering the result κ12 = χ/(1 + χ) of [46].

From this, we can apply exactly the methods of [39, 46],
to obtain

ζv = ζ smooth
v

[
1 + (2 − 	)χ Mc/μ

1 + χ Mc/μ

]
, (B.8)

ζω = ζ smooth
v

1

χ

[
(1 − 	)

χ Mc/μ

1 + χ Mc/μ

]
, (B.9)

where the smooth-sphere Enskog result is

ζ smooth
v = 8

3

√
2πkBTμγ a2. (B.10)

Here we have omitted the subscript E used in section 7.2,
since our only interest is in the Enskog contribution. As
a consistency check, we confirm that for Mc/μ → 1,
equations (B.8) and (B.9) coincide with equations (5.3a)
and (5.3b) of [46]. If, in addition, 	 = 0, they reduce to the
rough-sphere results (equations (4.4) and (4.5) of [44]),

ζ rough
v = ζ smooth

v
1 + 2χ

1 + χ
, (B.11)

ζ rough
ω = ζ smooth

v
1

1 + χ
. (B.12)

However, for suspended colloids, the relevant limit is
Mc/mf → ∞. Then, equations (B.8) and (B.9) reduce to

ζv = ζ smooth
v (2 − 	), (B.13)

ζω = ζ smooth
v

1

χ
(1 − 	). (B.14)

Comparison of these equations to equations (B.11) and (B.12)
shows that numerically our results match the rough-sphere
results if we use the uniform-sphere value for χ and set
	 = 5/7. Thus, improper application of equations (B.11)
and (B.12) to simulations of a colloid embedded in an MPC
fluid will lead to spurious agreement in case of partial slip
boundary conditions.

References

[1] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[2] Malevanets A and Kapral R 2000 J. Chem. Phys. 112 7260
[3] Padding J T and Louis A A 2008 Phys. Rev. E 77 011402
[4] Hecht M, Harting J, Bier M, Reinshagen J and

Herrmann H J 2006 Phys. Rev. E 74 021403

13

http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.481289
http://dx.doi.org/10.1103/PhysRevE.77.011402
http://dx.doi.org/10.1103/PhysRevE.74.021403


J. Phys.: Condens. Matter 22 (2010) 104106 J K Whitmer and E Luijten

[5] Hecht M, Harting J, Ihle T and Herrmann H J 2005 Phys. Rev.
E 72 011408

[6] Ko S Y and Lee S H 2003 Bull. Korean Chem. Soc. 24 771
[7] Lee S H and Kapral R 2005 J. Chem. Phys. 122 214916
[8] Padding J T and Louis A A 2004 Phys. Rev. Lett. 93 220601
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