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Abstract. 'We investigate three Ising models on the simple cubic lattice by means of Monte
Carlo methods and finite-size scaling. These models are the spin-% Ising model with nearest-
neighbour interactions, a spin-% model with nearest-neighbour and third-neighbour interactions,
and a spin-} model with nearest-neighbour interactions. The results are in accurate agreement
‘with the hypothesis of universality. Analysis of the finite-size scaling behaviour reveals
corrections beyond those caused by the leading irrelevant scaling field. We find that the
comection-to-scaling amplitudes are strongly dependent on the introduction of further-neighbour
interactions or a third spin state. In a spin-1 Ising model, .these corrections appear to be
vety small. This is very helpful for the determination of the universal constants of the Ising
model. The renormalization exponents of the Ising model are determined as y, = 1.587 (2),
¥h = 2.4815 (15) and y; = —0.82 (6). The universal ratio @ = {(m?)2/{m*) is equal to 0.6233 (4)
for periodic systems with cublc symmetry., The critical point of the nearest-neighbour spin-é
model is K; = 02216546 (10).

1. Introduction

According to insights such as the universality hypothesis, the nature of a phase transition
does not depend on the microscopic details of a system but only on global properties such as
dimensionality and symmetry of the order parameter. Thus, it is believed that most three-
dimensional systems with short-range interactions and a scalar order parameter (such as
density or unidirectional magnetization) belong to the Tsing universality class. This implies
that the critical exponents, as well as other universal quantities, are identical for all these
models. This universality class comprises, in addition to anisofropic magnetic systems, also
models for alloys, gas-liquid systems and liquid mixtures.

In the case of two-dimensional Ising-like models, the evidence that universality holds
is very strong. However, in three dimensions, whers exact results are scarce and numerical
techniques tend to be less accurate than in two dimensions, the situation is less satisfactory.
Numerical uncertainties in the renormalization exponents amount to the order of several
times 1073, For many years the most accurate results have been those cbtained by &-,
coupling-constant and series expansions [1-10], whereas recently quite accurate estimates
have also been obtained by the coherent-anomaly method [11]. However, new possibilities
of investigating Ising-like models are now arising in parallel with the availability of fast
and relatively cheap computers. While many systems in the supposed Ising class may be
simulated with the help of these, spin models offer a clear advantage, at least as far as a
study of the universal properties is concerned. This is because of the ease and efficiency
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of the Monte Carlo method, in particular of cluster algorithms. Thus, results from Monte
Carlo-based methods [12-21] tend to become increasingly accurate.

However, slight differences occur between recent results for the scaling dimensions.
One possible explanation is that universality is not satisfied. In order to solve the issue of
whether these deviations are real, it is desirable to obtain more accurate Monte Carle data
for the suppased universal quantities.

One problem that poses an obstacle to higher accuracies of these analyses is the
‘presence of corrections to scaling. The dominant correction is attributed to an irrelevant
renormalization exponent with an approximate value y; =~ —0.83 [R]. This means that the
corrections decay relatively slowly and thus jeopardize the accuracy of the analysis. For
this reason, we explore which modifications of the simple cubic Ising model with nearest-
neighbour interactions can influence the amplitude of these corrections to scaling. If we can,
in this way, suppress the irrelevant field, we may expect a decrease in the ill effects due to
the comections to scaling. One can, for instance, choose a different lattice structure. Series
expansions using the body-centred cubic lattice [8] indicate that corrections to scaling are
relatively small. However, here we prefer to introduce continuously variable parameters to
adjust the irrelevant scaling field.

1t is known [22] that the introduction of positive couplings with a range beyond the
nearest neighbours in the simple cubic Ising model leads to a decrease of the correction-to-
scaling amplitudes. We quote some preliminary results for the Hamiltonian

'ka‘BT = —Km ZS;SJ' - Ko ZS;‘S_; — K3nz.‘353j - KD ZSijSkS[ (1)

{nn} (2n) [3n] [u]

where {nn) indicates a sum over nearest-neighbour pairs, (2n) over second-neighbour pairs
{diagonals of the elementary faces), [3n] over third-neighbour pairs (body diagonals in the
elementary cubes) and [J over four-spin products in ali elementary faces of the cubic lattice.
The associated couplings are denoted Kp,, Kzn. K3 and K, respectively. The spins s; can
assume the values +1 and —1. These results were obtained by Monte Carlo simulation on
the Delft Ising System Processor [23,24]; they indicated that the introduction of positive
Koy K3y or Ko reduces the correction-to-scaling amplitude, Third-neighbour couplings
K, appear to be quite effective; for a ratio Ks, /Ky & 0.4 the corrections become small,
Much stronger second-neighbour couplings are required to obtain a simiiar effect [22).
Another approach is to introduce a third spin state s; = Q: the spin-1 Ising model. The
weight of the s; = O state can be varied by means of a term D Y, s7 in the Hamiltonian,
Preliminary calculations showed that the corrections become small for D =~ 0.7. In our
actual simulations we have used D = In2, for reasons that will be explained in section 2.
Thus, we have selected the following three Ising models: the spin—-;- Ising modei with
K3n /Ko = O (the nearest-neighbour model), with K3,/K;, = 0.4, and the spin-1 model
with D = In2 and nearest-neighbour interactions. The algorithms used to simulate these
models are described in section 2. In addition to corrections to scaling, another obstacle
to higher accuracies is the requirement of sufficiently accurate random numbers, in order
to avoid biased results. In section 3 we comment on the quality of our random-number
generators and we mention consistency checks to which the algorithms were subjected. An
analysis of the results for the dimensionless ratio @ = (m?)?/(m*) is given in section 4,
followed by an analysis of the magnetic and temperature renormalization exponents in
section 5. The results for the three models satisfy universality: they are equal within the
statistical inaccuracies. Assuming universality, @, as well as the critical points of the three
models, can be obtained with a better precision, as is demonstrated in section 6. Finally, a
discussion of these results in relation to the existing literature and to fundamental questions
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concerning universality is presented in section 7. As an appendix, we present experimental
results for critical exponents of a number of phase transitions that have been supposed to
belong to the 3D Ising universality class.

2. Models and algorithms

The present Monte Carlo analysis concerns three different Ising models. These can be
represented in terms of a spin-1 Hamiltonian on the simple cubic lattice: -

HiksT = —Ku p 55— Ksn 9_sest + DY 52 (2
iy * t

where nn and {ij) refer to nearest neighbours, and 3n and [&[] to third-nearest neighbours
(along body diagonals of the elementary cubes). The spins can assume three discrete values
5; = 0, 1. The three models are specified in table 1.

Table 1. The ratio K3,/Kny and the value for D (see equation (2)) for the three models.

Model Kag/Kmm D Deseription of model

1 o -0 Spi —_,_1 mode] with nn couplings )
2 0.4 —o¢  Spin-§ model with nn and 3n couplings
3 0 In2  Spin-1 model with an couplings
For D = ~0o0 the 5; = 0 states are excluded and thus models 1 and 2 can be simulated -

by the Swendsen-Wang (SW) [25], the largest-cluster (LC) [26] or the Wolff [27] method.
In cluster algorithms, one has to ‘activate’ a bond between two spins s; and s;, coupled
with strength K;;, with a probability p(K;;)q, where p(K;;) = [1 ~ exp(—2K;;)]. The
presence of different sorts of bonds in model 2 thus leads to different bond probabilities but
poses no further problems, If the bond is active, sites { and j belong to the same cluster.
The simplest way to simulate this is to draw 2 random number for each bond and check
whether it is smaller than p(X;)d;,s;. Following this procedure, the speed of the algorithm
decreases as the number of interacting neighbours increases. When the couplings are small,
a more efficient procedure is possible. As a first step in the SW or LC cluster formation
process one obtains, for each type of bond Kj;, a list of bonds that should be activated if
they connect equal spins. To this purpose, one introduces bond variables &; = @ or 1; the
probability that &; = 1 is equal to p(K;;). The distribution P(k) = p(l — p)}*~!, where
we write p as an abbreviation for p(K;;), expresses the probability that (£ — 1) subsequent
bond varigbles equal zero, while the kth bond variable is one. Thus one random number r
can be transformed into an integer k:

k= 1+4[In{r)/In(1 — p}] 3)

where the square brackets denote the integer part. After evaluation of k, the next (k — 1)
entries in the list of bond variables are set to zero, and the kth variable is set to one.
By repetition of these steps a complete list of bond variables (for all bonds with strength
Ki; in the lattice) is obtained. Such lists are generated for each different type of bond.
After completion of these lists, the cluster formation is trivial. This procedure was found to
improve the speed of the simulation of model 2 considerably. One may still choose between
the sW or LC method. The latter method was observed to lead to shorter relaxation times
and 1s therefore more efficient. The same principle was applied to Wolff-type simulations
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of model 2. Random numbers are, as above, transformed into integers k. During the cluster
formation, (k — 1) bonds of the pertinent type are skipped and the spin connected to the
kth bond is added to the Wolff cluster if it has the right sign. This leads to a considerably
faster Wolff algorithm, in particular because random-number generation is relatively time
consuming (see section 3).

In the spin-1 case, transitions between zero and non-zero spin values require special
attention. It is not immediately obvious how cluster algorithms could produce these
transitions, We follow two different methods for the simulation of the spin-1 model. The
first one uses a hybrid algorithm in which Metropolis sweeps alternate with cluster steps.
The cluster algorithm acts on the non-zero spins only. Since we do not come close to the
tricritical point where the ordered Ising phases meet the spin-zero phase, the regions of zero
spins remain limited in size and we do not expect serious critical slowing down due to the
equilibration between zero and non-zero spin values.

The second method uses a mapping on a spin-% model. We consider a Hamiltonian
with two spins ¢; = =1 and &; = =1 on site { (for all {) of the simple cubic lattice:

Hn/keT = —M; Z(l‘i + uid(y +uj)—Mzztmum- @)
i m
Using the transformation 5, = (; + #;)/2 and v; = (1 +1;)(} — u;)}/4, the partition function
of this model is, up to a constant factor,

=[5l
Zy = Z (H exp [4M15:s;] H > exp[2Mst] ) )
) N1 " Uy =0

with §; = 0, 1. Summation over the allowed values of v, yields a factor 2 if 5, = 0.
Thus

Zy = N Z exp [4M1 ZS;SJ‘ + (2M; —In2) Z S:%::l (©)

{5 G m

where N denotes the number of spins in the system. This is, apart from the prefactor 2V,
.precisely the partition sum for equation (2) for K;p = 4M;, K3y =0and D =1n2 — 2M;,
Equation (4) may thus serve for the application of cluster algorithms to the spin-1 Ising
model. The special choice D = in2 leads to M> = 0 so that the spin-; Hamiltonian
simplifies. We have used three different methods to simulate the spin-1 model: the
Metropolis-cluster (MLC) method, the full-cluster (FC) method and the Metropolis—Wolff
(Mw) method. The MLC method aiternates one Metropolis sweep with one largest-cluster
inversion, the MW method alternates one Metropolis sweep with 5 or 10 {this choice depends
on the system size) Wolff steps. The FC method applies largest-cluster flips to the spin-é
representation of the model: no Metropolis sweeps are included here.

3. Random numbers and consistency tests

Significant systematic errors may be introduced in Monte Carlo simulations by using
inadequate random-number generators. It is well known that linear congruential methods
based on the trancation of 32-bit integers are unsuitable for long simulations. Even their
period of about 10° would be too restrictive. On the other hand, also random-number
generators based on binary feedback shift registers may introduce. serious errors (see, e.g.,
[23,28-311). In most cases, the production mle selects two bits from the register and assigns
their modulo-2 sum to the new bit. Thus the deviations from randomness are dominated
by three-bit correlations. A number of algorithms of this type, using 127-bit shift registers
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with a period in the order of 10%, have been rejected on the basis of long tests [24] using
Metropolis simulations of the critical Ising model. Recent tests by Ferrenberg et al [32]
bave shown that such deviations also occur when cluster algorithms are used together with
random generators based on a generalized feedback shift register [33].

These findings apply to the Ising model on the square lattice, and use a comparison
between simulations and exact results for finite systems. In the case of the three-dimensional
Ising model, we have the practical difficulty that no exact results are available for general
system sizes. One remaining possibility is a comparison between simulations with different
realizations of the random-number generator and/or the spin-updating algorithm. Another
possibility to check for systematic deviations is offered by numerical exact results for small
systems. However, this test is not sufficient. It has been observed [34] that, in two
dimensions, effects due to a random-number generator based on a generalized feedback
shift register depend strongly on the system size and may be unobservable in small systems.

Systematic effects in 3D Ising model simulations are apparent from a comparison
between finite-size results for the Binder cumulant [35] reported in [36) and [20], using the
5w and LC methods. The random generator used in [36] was based on a generalized feedback
shift register with length 502 [37], and that nsed in [20] combined such a generator of
Iength 9689 with a multiplicative rule, by means of bitwise modulo-2 addition. The observed
discrepancies may be attributed to the shift-register-based generator with length 502 [37],
and become even more prominent in simulations of the Wolff type [37].

It is clear that, for the long simulations implied by the present analysis of the 3D Ising
model, the random-number generators should be selected with great care. A systematic
study of biases introduced by shift registers is necessary, in particular the dependence on
the system size, shift-register length and the number of correlated bits. From simulations
in two dimensions it appeared [38] that the deviations are scalable and become small for
large system sizes and register lengths. Thus one may try to suppress systematic effects
by using very long feedback shift registers [39]. But here we have chosen for a different
method. This choice is based on the observation that the biases decrease when the number
of bits in the production rule is increased [34,38]. The bitwise modulo-2 addition of two
sequences generated by three-bit production rules usually leads to a sequence in which
the dominant correlation is one between 9 bits, Thus, we expected that, using a random
generator of this type with sufficiently long registers, the systematic effects would be well
below the statistical accuracy, in three dimensions as well as in two. The largest part of
the present simulations in three dimensions used the production rules ¢, = @;_gy)8 & a;_osss
and b; = bj_g7 @ b;_197. These were combined by r; = a; & b;, where a;, b; and r; are
32-bit integers, and @ stands for bitwise modulo-2 addition. Most of the simulations of the
nearest-neighbour model reported in [20] were performed wvsing a random generator which
combines a multiplicative sequence with @;. No systematic differences between both types
of results were observed, nor were there obvious differences between simulations of the Sw,
LC and Wolff types. Also in the case of models 2 and 3 we checked for the presence of
significant differences between the result of the different types of spin-updating algorithms
(see table 3) but none were found. This is consistent with the supposed high quality of the
sequence ;.

Therefore, we assume that the sequence r; is sufficiently uncorrelated, so that the
simulation results may serve as a standard to which data produced by means of other
random generators can be compared. Thus, deviations in Wolff simulaticns of model 1,
using 3-bit production rules, were determined and their scaling properties were analysed
[40]. The results are qualitatively the same as in two dimensions, and are completely
consistent with the picture that the deviations decrease rapidly with increasing system size



6294 H W J Blote et al

and shift-register length. No biases due to correlations of 5 or more bits were observed in
Wolff simulations of the 3D Ising model.

As a [urther test, we have camried out exact numerical calculations of the dimensionless
ratio @ (Kn,), the susceptibility x, the energy-like quantity S,, and the specific-heat-like
quantity ¢,,. For more precise definitions we refer to the next sections. These calculations
apply to small systems with periodic boundaries: model 1 with sizes 3 and 4°, and model 2
with size 3°. :

The calculations for the 3% systems involve a summation over 227 distinct states. In
view of the efficiency of the calculation, we divided these states into subsets such that the
states in each subset are related by symmetries: spin and spatial inversions, translations
and rotations. The number of subsets is 535 809, most of which contain 2592 states; this
is the number of elements of the symmetry group of the 3° Ising lattice. Once a list of
‘independent’ states, one per subset, has been made, the calculation becomes rather simple.
However, the 4° system is already too time-consuming unless treated carefully. The energy
and the specific heat follow simply from the expansion coefficients given by Pearson [41].
For the magnetic quantities ¢ and x we have used a perturbation expansion similar to that
described by Saleur and Derrida [42]. Details are given in [20]. The results are summarized
in table 2. The agreement between the Monte Carlo results and the exact numbers is quite
satisfactory and does not suggest any problems with the random-number generator or other
defects of the algorithm.

Table 2, Comparison between Monte Carlo and exact results for small system sizes. These data
were taken at couplings Kpn = 0.221 653 and Kynn = 0.128 006 for models 1 and 2 respectively.

L Model Quantity McC Exact

31 7] 0.668409 (20)  0.668427
3 01 m? 0422978 (19)  0.422992
31 San 1434382 (51) 1434418
301 € 0.785443 (53) 0.785413
4 1 o 0.659755 (24) 0.659779
4 1 m® 0.331228 (16) 0331204
4 1 San 1.293247 (40)  1.293223
4 1 Can 0.97755% (75) 0.877575
3 2 I} 0542427 (20) 0.642415
3 2 m? 0367413 (17)  0.367390
i o2 San 1.134852 (51} 1134791
3 2 Con 0287800 (19) 0.287772

4, Test of wniversality

‘We have performed extensive simulations of models 1, 2 and 3, using the cluster methods
described in section 2. The total simulation time amounts to approximately two years on
three workstations. We chose systems with size L x L x L and periodic boundaries. The
lengths of the runs for the various models and methods are given in table 3 for each system
size.

We sampled and analysed the dimensionless ratio:

(m*)%

Km) =
QL( ) (m4}f_

S - ™
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Table 3. Length of Monte Carlp suns in millions of sampled configurations. sW stands for
Swendsen—Wang, Lc for largest cluster and w for Wolff. For sw and LC, each new configuration
correspends with one cluster decomposition of the lattice. In the Wolff case, 5 {sw) or 10 (10w)
Wolff clusters were flipped before a new configuration was used for data taking. For the spin-1
model {model 3) Lc, sw and 10w are preceded by M in order to indicate a Metropolis sweep
through the lattice. Fe indicates the full-cluster algorithm for the spin-1 model; it flips the largest
cluster of 2 spin-% version of the model.

1 B 2 3

Model

L sSW Lc  sw ww sw LC sw W FC MLC  MSW  MIOW
3 43 52 200 100 200 : 100 100 300

4 160 40 200 150 100 100 100 300

5 48 52 200 150 100 100 10¢ 400

6 48 52 200 150 100 100 10¢ 400

7 48 52 200 150 100 100 100 400

8 43 52 200 10 140 100 100 100 400

9 43 52 200 10 148 100 100 130 300

10 - 43 52 200 10 140 1090 100 100 300

11 43 52 200 150 100 100 104 300

12 28 72 200 150 140 100 100 200

13 28 72 200 100 100 250

14 28 72 200 100 160 200

15 20 30 200 50 100 200

16 20 30 150 i 30 100 200

18 12 38 150 50 30 120

20 20 10 70 50 50 . 120

22 13 12 70 20 20 120

24 3 12 80 20 80 150

28 [ 10 100 20 80 50 50
32 2 18 180 25 75 100
40 10 9P . 20 80 B 100

where L is the finite size of the model and m the magnetization density. We use the
rencrmalization language in order to derive the expected finite-size scaling behaviour of
Or. By f(z, h,u, L™") we denote the free-energy density as a function of the temperature
and magnetic scaling fields, an irrelevant field and the finite-size field [43,44]. Here, we
define the free energy as F = In Z, s0 without the normal factor —1/kgT. Its behaviour
under renormalization with a scale factor / is

O hyu, LYy = (e, P, P, 1L + g2, b) (8)

where y;, yy and y; are the pertinent renormalization exponents, d = 3 is the dimensionality
and g is the analytic part of the transformation. By differentiating & times with respect to
h, and choosing [ = L and # = 0, one obtains

FOG U, L7y = L fO L, Lw, 1) + P00 ©

where the dependence on / is no longer needed and therefore suppressed. The expectation
values of the second and fourth magnetization moments require differentiations of the free
energy with respect to the physical magnretic field H:

L PF :
(m?) = L (—) (10)
aHz H=0
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Table 4. Numerical results for the dimensionless ratio Q7 = (m®)3 /{m®), for the three Ising
models defined in section 2. These data were taken at couplings Kqn = 0.221 653, 0.128 006
and 0.393410 for modeils 1, 2 and 3, respectively.

L Model 1 Model 2 Model 3

3 0.66839(2) 0.64244(3) 061894 (2)
4 0.65976(2) 0.63164(3) 0.62134(2)
5 065373(2) 062642 (3) 0.62242(2)
6 064919(2) 0.62370(3) 0.62273(2)
7
g

064579 (3) 062217 (3) 062277 (2)

064318 (3) 062126(3) 062288 (2)
9 064107 (3) 062087 (3) 062280 (3)
10 063943 (3) 062051 (4) 062280 3)
11 063803 (3) 062045(4) 062275 (3)
12 063688(3) 062026 (4) 062272 (3)
13 063501 (4) 062030 (4) 062267 (5)
14 063514(4) 062034 (5) 062262 (5)
15 063441 (3) 062041 (4) 0.62266 (5)
16 063376 () 062050 (5) 0.62247 (5)
18 063270 (4) 0.62057 (6) 0.62248 (7)
20 063187 (6) 0.62081(6) 062230 (8)
2 063117(6) 062101 (6) 062211 (8)
24 063052(6) 0.62098(7) 0.62201 (7)
28 062958 (6) 0.62142(1) 062177 (6)
32 062879(5) 0.62174(8) 0.62129 (8)
40 062761 (8) 0.62250(9)  0.62050 (9)

and

[ O*F o { O F
4 3 2
m*) =L (a 4);; 3L (a Z)H—' an

The Tsing up—down symmetry implies that # is an odd function of H. Thus the
correspondence between the derivatives with respect to # and H is

32f o Ok

ot o (2
and

3tf @ ak @0k 3°h

am‘f + 4f 9H 9 H3 (13)

where, as before, f® stands for 8* f/94* and all derivatives with respect to H are evaluated
at H = 0. In the vicinity of the finite-size limit (¢ small and L finite), we may Taylor-
expand the right-hand side of equation (9) in ¢ and u. After the appropriate substitutions,
the finite-size expansion of @y (Kp,} follows as

Q1(Knm) = O+ ai(Kon — K)L™ + a(Kpn — Kc)szyl + a3(Km — Kc)sLSyL + -
+o1 L + bl - (14)

where the @; and b; are non-universal coefficients and y; = d — 2y,. The last term is due
to the field dependence of the analytic part g in equation (9). The nonlinear dependence of
£ on H leads to even more rapidly decaying contributions (not shown). Terms of the same
form, but with different exponents, may be due to other irrelevant fields. Because powers
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Table 5. Resuits of a data analysis of the three models, including system sizes L > 7 for
model 1 and L 2 6 for models 2 and 3. Besides the ratio @, the critical couplings K. and the
non-universal coefficients a;, as, by and bq are listed.

Model 1 Model 2 Model 3
o 0.6232 (3) 0.6229 (3) 0.6231 (2)
K. 02216542(8) 0.1280034 (4) 0.3934214 (8)
ay 0.862 (10) 1.43-(4) 0.659 (6)
ap 0.54 (6) 1.5 (@) 0.352 (15)
by 0.102 {10) —0.043 (9 0.001 (2)
by 0.11(3) 0.351 (13} —-0.018 (B

Table 6. Results of a data analysis of the three models, where all system sizes L = 5 were used
and a third correction term was included. Besides the ratio Q, the non-universal coefficients o,
as, by, by and b3 and the critical couplings K, are listed.

Model [ Model 2 Model 3
Q 0.6235 (7 0.6231 (4) 0.6235 (3)
Ko  0.2216547(8) 0.1280036 (5) 0.3934224 (10}
a;  0.862 (% 1.43 (4) 0.659 (6)
4y 0.54(6) 1.5 0.352 (15)
b 0.098 (% —~0.045 (6) —0.004 (3)
by 0.15 (4) 0.37 (2) 0.02 (2)
By —4.9(8) —1.4(3) —2.0 (7

of the geometric factor 84 /3 A cancel in the first term, @ is a universal constant (related
to the Binder cumulant [35]).

The bulk of the numerical data were taken at couplings Ky, = 0.221 653, 0.128 006 and
0.393 410 for models 1, 2 and 3 respectively, close to the critical points. The results in terms
of @, are shown in table 4. A few points at somewhat different couplings were included
in order to estimate the coefficients a; in equation (14). The procedure of the analysis is
as follows. We computed Q,(Ku) for several values of L, Ky (near the critical points
K;) for the three models and fitted equation (14) to the data. The following paramsters
were used as input: v, = 1.584 (4) (from e-expansion [6]; because the data were taken at
couplings so close to the critical points, the results of the fits are practically independent
of the precise value): 3; = —0.83 (5} (from series expansions [8]; the fit is rather sensitive
to the precise value) and y» = —1.963 (3) (from renormalization arguments given above
and the g-expansion result [6] for the magnetic exponent; the fit is insensitive to the precise
value}. The results are summarized in table 5. It is stressed that the error margins quoted
here include the uncertainty due to the possible variations in y;, ¥ and y» (y). The fits
for model 1 indicated that system sizes L < 7 should be discarded; they reveal finite-size
effects not included in equation (14), exceeding the statistical error margins. The fits for
models 2 and 3, which exhibit much smaller finite-size effects, include system sizes L 2 6.
The fit for model 2 clearly reveals a correction with exponent y» &~ —1,96. In fact, the large
residuals in the absence of such a correction demonstrated its presence. As indicated above,
this correction may arise from the analytic part of the transformation, although we cannot
exclude contributions due to a second irrelevant exponent. Since there is no obvious reason
why this term should be absent in general, we have included it in the fitting procedures
for models 1 and 3 as well. Furthermore, we observe that the amplitude &, of the leading
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correction to scaling can be suppressed. This amplitude has become quite small in the spin-1
model (model 3) and has even changed sign in model 2. In model 1, the amplitude by is
relatively large and we have attempted to determine the irrelevant exponent by including
it as a parameter in the fit. However, for an acceptable fit it was necessary to include the
correction term b L2, Unfortunately, this frustrated the determination of y; for model 1: if
we fixed y» = —1.963 the exponent y; shifted towards y; and if we included both y; and
¥y as frec parameters, they approached the same value.

In order to take into account the finite-size effects revealed by the system sizes omitted
in the previous fits, we have repeated our data analysis with an additional correction to
scaling b3 L¥ in equation (14), where y3 = —2y,. This term, which is due to the nonlinear
dependence of the magnetic scaling field on the physical magnetic field, enabled us to
include all system sizes L > 5 for models 1, 2 and 3 in the analysis. The results, which
are presented in table 6, are consistent with those obtained previously. Again, the error
margins guoted include the uncertainty due to the errors in y;, y; and 3. These data satisfy
universality within a margin of less than 10~2. To our knowledge, this is the most precise
verification so far for 3D Ising-like models.

5. Determination of the critical dimensions

This section presents finite-size analyses of the energy, specific heat, spin-spin correlations
over half the system size, susceptibility, the temperature derivative of the susceptibility and
the temperature derivative of the ratio Q. Taking # = 0 and { = L in equation (8} leads
1o

FGou, L7 = L™ (L%, L%, 1) + g(2). (15)
Expansion in ¢t and 1 yields

fit,u, L_l) = L—d(f(O.OJ + f(lﬂo)LJ"L?_F %f(Z-UJLzy:IZ +...
+fODEN, 4 pAD Iy 4y g g gDy -lig(z)tz SN (16)

where f%D stands for 3%+ f/3%:8'u. The finite-size scaling behaviour of the energy and
that of the specific heat follow by differentiation. ’

5.1. The energy

During the simulations, the nearest-neighbour sum Sp, = 3, 557 was sampled. For
model 1, this sum is proportional to the energy; for models 2 and 3 its scaling behaviour is
similar. Its expectation value is equal to
Sy ==L 2y L2
m t 3Ky  Oum 3Ky,
The finite-size scaling behaviour of this quantity thus follows by differentiating equation (16)
and substitution in equation (17):

(S} = o+ 1K — Koy + -+ + L"ﬁ—d[ao + a1 (Ko — c)Lyl 4 ay(Kon — c)szyl
b L b Bl R ] (18)

where the q;, b; and ¢; are unknown coefficients. Analysis of the numerical results for
{Sns) enables a determination of these coefficients and of y,. The dominant singular term in
equation {18} is the one with amplitude ay. The (Kqn — Kc)-dependent term with amplitude
¢; is dominated by the term with coefficient a; and has therefore been omitted from the
scaling formula. Since the bulk of the data were taken very close to the critical points, only

(17
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linear and quadratic terms in (K, — K) were included. Without the correction term with
coefficient &, we had to exclude system sizes £, < 8 in the analysis of model 1, in order to
obtain an acceptable residual. The resulting estimate for y, is: 1.586 (6). Inclusion of the
second irrelevant term enabled us to include ali system sizes L 2 5. For consistency, we
have included this term in the data analyses for models 2 and 3 as well. Table 7 summarizes
the results obtained from fits according to equation (18), at the critical points listed in table 6,
for system sizes L 2= 5. Since the singular behaviour of (Sy,} 18 rather weak, the results
» & 1.59 for each of the three models are relatively inaccurate but consistent with the
existing literature. The uncertainty due to the errors in & and y; has been included in the
€ITOr margins.

Table 7. Results of a data analysis of the nearest-neighbour sum (S,,) for the three modsls.

Model 1 Model 2 Model 3

v 1.599 (8) 1.589 (9) 1.591 (1)
co 099051 (8) 0.66298(9) 0.59451 (6)

a 214 (6) 220 (D 1.73 (4)
By 0.14 (15 0.16 (17) .04 (12)
By ~2.0 (4 —05 (4) —0.9(3)

5.2. The specific heat

The fluctnations in Sy, are related to the specific-heat-like gquantity
2 92
ne 3 K,%n
We consider f as a function of the scaling fields ¢ and u:

g2 | 8% LY 0% 0% (Bt Y
™| ar 3Kz, ' 8udK2, ' 812 \ 9Km

2 2 2
z""f—az—a“ﬁf(-a”)]. @)

= KZ[(52) = (San}’1. (19)

em =K o

3tdu 8K, 0K = duZ \ 9K

Taking the appropriate derivatives in equation (16) and collecting the leading analytic and
singular terms leads to

Cmn = po + P (Knn - Kc) + o+ Lzyl_quo 4 (Knn - t:)Lyi + QZ(Knn - c)szy‘
e b L e ] D0 + sy (Ko — Ke)L -], Q1)

The numerical results for ¢,; of models 1-3 were subjected to a fit of this form with
¥ = —0.83 and the K, values in table 6 as input parameters. The terms with amplitudes
21 and s; are dominated by that with amplitude g, and were omitted from the fit formula,
as well as quadratic terms in (K, — K;). System sizes L < 6 display finite-size corrections
not included in equation (21) and were discarded. The main results of these fits are shown
in table 8, where the error margins include the uncertainties in K, and y;. Also in the
present case we find consistent, but inaccurate values of y,. This may be related to the fact
that the leading power of L in equation (21) is close to zero, so that this term, which has
the coefficient gq, interferes with the term with coefficient py.
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Table 8. Results of a data analysis of the specific-heat-like quantity cp, obtained from the
fluctuations of the nearest-neighbour sum S, for each of the three models.

Mode] 1 Model 2 Model 3

y  L60(2) [.579(15) 1.59(2)
po —08(N 063 =3(2)
g0 15(5) 0.8(3) 3.5 (14}
41 22() 1.39 (12) 374
r =04 0.11 (14) 0.0
s —04(3) —=024(13) —-1.0(D

5.3. The spin—spin correlation function

In our simulations, we have sampled the spin-spin correlation function g{r),

g(r) = (s(0)s(r)} (22)

over half the system size (r = L/2), for even system sizes. This quantity can be derived
from the free energy F by differentiating with respect to two physical magnetic fields Hy
and H,, which couple to the spins at positions O and », respectively. We consider the two
fields as independent and find

82F 42F  Bhy 8k
gr) = ( ) = ( —"—’) (23)
OHWH, [y g \Ohodh, 8Hy 3H, Jy_p o

where £ denotes the leading magnetic scaling field and the derivatives with respect to this
field are evaluated at hy = h, = 0. Using equation (9) one obtains upon expansion in ¢ and
u the scaling behaviour of the correlation function,

g = L™ *[ag + a1 (Km — KoJL* + aa(Kmn = K’ L™ + -+ by LY 4] (24)

where the coefficients a; and &; are different from those in equation (18).

We have fitted the terms shown in (24) to our data. The large residuals for all three
models strongly suggested the presence of an additional correction to scaling boLY. A
problem for the determination of y' is the presence of the leading correction term by L%,
Ounly in the spin-1 model (model 3), where the amplitude &) is small and the term thus may
be omitted, was a reasonable determination possible, yielding y' = ~2.1 (1). This couid
be a second temperature-like irrelevant exponent, although we have not observed it in the
analysis of the ratio @ or the energy-like quantity Sy, In O, it may have been masked by
the term ba L™, but this is less likely for Sy, where the exponent of the second correction
term is approximately equal to —2.4. On the other hand, the contribution #,LY could,
in principle, be due 10 a second relevant magnetic exponent ¥,. Taking into account the
dependence of F on an additional magnetic scaling field & yields

2 2 2 2 A 2 A2
g°F ah o°F 9°F ah 3h a°F ah
gry=—r—7-+—— ) + — + — —_——t | ) (25)
dhodh, \3H dhodh,  Bhodh,) OH 3R  3hydh, \H
This results in extra terms proportional to L+~ and L%~ in the scaling formula for
g, corresponding to correction terms L~ and L2 jn equation (24). Remarkably,
the second magnetic expenent ¥, = 0.42 [15, 19] has just the right value. However, its
identification in terms of a redundant operator [15,19] would exclude its contribution to

thermodynamic guantities. Table 9 shows the main results of an analysis for system sizes
L > 8, where we have included three correction terms, b L%, b,LY and b3 L%, with the
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exponents y; and y' fixed at —0.83 and —2.1, respectively. We have pot included the term
proportional to L because b; is already quite small. The errors quoted in the table include
the uncertainties in K, %, ¥ and y'. The estimates of y, for each of the three models are
consistent and in agreement with the existing literature.

Table 9. Results of a data analysis of the spin—spin correlation function g for the three models.

Model 1 Model 2 Model 3

yuo 2480(2) 2482(3)  2.482(3)
a  077(2)  0.547(13) 04353 (14
a  245(4)  3.07(6) 1.18 (2)
@ 344(18) T2(3® 13003
by —022(10) 0.08(3) 0.01 (D

Table 10. Results of a data analysis of the susceptibility x for the three models.

Model 1 Model 2 Model 3
v 24812 (11) 24817 (10)  2.4826 (9)
¢g —=0.6(2) -020(7) —0.50 (&)
ap  1.559 (16) 1.126 () 0.926 (T)
a1 4.88 (6} 6.16 (8) 236 (3)
as 69 (4) 144 (7) 262 (N
b =037 (5) 0.14 (3) —0.05 (2)

5.4. The magnetic susceptibility

The magnetic susceptibility ¥ can be calculated from the average square magnetization,
which is sampled in the Monte Carlo simulations,

x = LY (m?). : : (26)
Using equations (9, (10) and (12), we find for the finite-size scaling behaviour:

x =g @) + Ll FALR, Ly, 1) (27)
which yields, upon expansion in ¢ and u,

x =co+c1(Kp— K} + -
+L2 gy + 4y (Ko = KL + ap(Kon = KL + B L% -] (28)

where the a;. b; and ¢, are non-universal coefficients. In table 10, we present the results
of fits of the susceptibility for the models 1-3 at the critical points listed in table 6. For
model 1, system sizes L > 8 were included in the analysis and for models 2 and 3, which
exhibit smaller corrections to scaling, all system sizes L > 6 were used. The coefficient
¢y in equation (28) was set to zero in all analyses, because the term containing it is much
smaller than the (K., — K.)-dependent term with amplitude @;. The errors include the
margins due to the uncertainties in K., y; and y. The ratio between the coefficients ap
for the three models is in excellent agreement with the ratio between the coefficients ag in
table 9. The same holds for the coefficients a;, ay and &,.
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On the other hand, one might derive the scaling formula for x from that of the spin-spin
correlation function g, because x is equal to the spatial integral of g,

X = f g(ryrt'dr. (29)

Since the integral in equation (29) preserves the form of the corrections to sealing in g, we
expect the same type of corrections in the cormelation function and the susceptibility, Only
the terms proportional to o, ¢y, ... in (28), which arise from the analytical part of the free
energy, are absent in equation (24). These contributions come from the small-r cutoff in
equation (29). Thus, we have included in the scaling formula the additional corrections that
we observed in the analysis of the correlation function. As the term proportional to LY
interferes with the constant contribution ¢, we have only included the correction 5,12 .
This aliowed us to include system sizes L = 5 for all three models. The results, which
are presented in table 11, are consistent with those obtained in the previous analysis. Now,
the errors also include the margins due to the uncertainty in ¥'. Just as in the analysis
of the correlation function, we find consistent results for y,, which are in agreement with
the literature. However, the values for y, are more accurate than those obtained in the
previous subsection and our resulting estimate for the magnetic renormalization exponent
is ¥n = 2,4815 (15). The error margin amounts to two standard deviations, in order to take
into account any arbitrariness in the fit formula.

Table 11. Results of 2 data analysis of the susceptibility x for the three models, where all
system sizes L > 5 were employed and an additional correction to scaling was included in the
scaling formula.

Model 1 Model 2 Maodel 3
yno 24813(11) 24810 (14) 24817 (I13)
o —05(2) 0.0 () —0.33 (13)
ap  1.558 (15) 1134 (13} 0.934 (10)
a1 4.87 (6) 6.18 (8) 237 (3)
a 6303 145 (T 264 (7)
& =037 (5) 0.10 (6) 0.01 (13)
b =52 —29(16)  —2.6(13)

5.5. The temperature derivative of X

In the simulations, we have also sampled the correlation between m> and Sp,. This allows
us to caleulate the temperature derivative of the susceptibility,

ax
8 Kn
The scaling behaviour of this quantity can be derived directly from that of the susceptibility,
equation (28),
ax
Kan

= LE({m2Snn) — (M) {Sun))- ’ (30)

= ¢4+ LW gy 4 205 (Kon — KoL + 3a3(Kon — Ko)2LP -

b LY 4. @3

The term with amplitude 5, comes from a term proportional to (Kp, — Ko)L#*¥, included in
the ellipsis in equation (28). Just as in the analysis of the spin-spin correlation function, the
residuals for all three models indicated the presence of an additional correction to scaling
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ByLY', which indeed follows from the discussion in the previous subsection. Table 12
shows the results of an analysis at the critical points listed in table 6, where this additional
correction was included. All system sizes L 2 6 were used. The exponents y; and y° were
kept fixed at —0.83 and —2.1, respectively. The error margins include the uncertainties in
K., i and ¥'. The fit yields values for (2y, + y) and the results for y, have been obtained
by fixing y at the best estimate from the previous subsection. This implies an additional
error margin of 0.003 for y.. For models 1 and 3, there is a reasonable agreement between
the amplitudes @; and a; as shown in table 11 and those in table 12. The differences are
explained from the approximations in the scaling formulae. For model 2, no agreement is
expected, because an additional term arises in the temperature derivative of the susceptibility
due to the temperature dependence of K3, (the ratio between K, and K, is fixed).

Table 12. Results of a data analysis of the temperature derivative of the susceptibility 8y /8 Knn
for the three models, where all system sizes L 2 6 were employed and an additional correction
to scaling was included in the scaling formula.

Model 1 Model 2 Model 3

e 1.585¢3) 1584 () 1.587(4)
a 31(1D 1(9) 12(D

ar 5113 37306} 2.39(5)
e 6.46(10) 804(9 253 (3)
@ =240 —44(5) =053
b =263 013 —-01@
b —-133) —6@ =556

5.6. The temperature derivative of Q

Another quantity of interest correlates the magnetization distribution with the nearest-
neighbour sum §;y,:

a0 =0 2<m25nn) - (mz)(snn) _ {m‘tsnn} - (m4}(Snn)
OKpp {(m?} {m4) ‘ )
The determination of m and S,, during the simulations enables the sampling of this quantity
with very little additional effort. Returning to equation (14) and noting that the ellipses
include terms proportional to (Kqy — Ke}L* ™ and to (K, — K) LY, we obtain the finite-

size scaling behaviour

g
3K

(32)

= L¥[ug + 11 (K ~ KL + ug (Koo — KL 4. :
Fold Fwh? 4 (33)

The numerical data for the three models were subjected to a fit on the basis of
equation (33), where we have included system sizes L > 7 for model 1 and L 2 5
for models 2 and 3. In this case the leading power of L stands well apart from the less
singular terms and the results for y; (table 13; uncertainties in K, y; and w are included in
all error margins) appear to be more accurate than those in the preceding subsections. The
results suggest that the correction due to the leading irrelevant field is very small. Therefore
we have repeated our analysis with v fixed to zero. We expect this to work especially well
for models 2 and 3, where the irrelevant field is notably smaller than that in the first model.
Indeed, we have obtained accurate and consistent results for the models 2 and 3, as shown
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in table 14. These results, together with those presented in table 13, lead us to our final
result, y, = 1.587 (2). Just as in the final result for y, in section 5.4, we quote here an error
margin of two standard deviations.

Table 13. Results of a data analysis of the derfvative of the quantity { with respect to the
nearest-neighbour coupling Ky

Model 1 Model 2 Model 3

2 1.589 (2) 1.587 {2) 1.5878 (14)
ug 1,341 (14) 1.351 (9 1057 (6)
uy —0.21(3) .00 (5) —0.012(9)

r —107(6)  —283(11) —4.80(12)
v —0.01(6) 0.00(3)  0.02(2
w =052 046 (8) —0.13(5)

Table 14. Results of a data analysis of the derivative of the quantity @ with respect to the
nearest-neighbour coupling K, for models 2 and 3, where the leading correction to scaling has
been omitted.

Model 2 Model 3

v 15868 (3)  1.5867 @)
ug  13512(11) 10623 (7)
w;  000(5)  —0013 (%)
up —283(11)  —4.81(12)
w0457 (15) ~0.091 (9)

Table 15. Results of a data aalysis assuming universality of @z = {(m®%/(m*), for the
three investigated Ising models. System sizes L 2 8 were included in the fit. The table lists
non-universal parameters: the critical points and the amplitudes of the mve correction terms.
Furthermore, this analysis yicided the universal parameters @ = 0.6232 (2) and y; = —0.78 (3).

Model 1 Model 2 Model 3
K. 02216550 6) 0.1280037 (4 0.3934217 (8)
B (.086 (8) —0.040 (3) ~0.001 (2)
by QIR(D 0.34 (2) 4000 (14)

6. Simultaneous fits for the three models

Considering the results in the preceding sections, it is reasonable to assume now that
universality is exactly satisfied for the three models under investigation. Thus we made
a fit of the combined data for the ratio Q, allowing only single values of @ and y; for
the three models. The other parameters ay, @z, K¢, & and by (see equation (14)) are non-
universal and occur in triplicate. Now, system sizes L < 8 had to be discarded, except
when an additional comection to scaling proportional to L™ wasg added to the scaling
formula. In the latter case, all system sizes L 2 5 could be included. Some of the results
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Table 16. Results of a data analysis assuming universality of Q. = {mz)%/ (m*); for the
three investigated Ising modcls, System sizes L > 5 were included in the fit. The table lists
non-universal parameters: the critical points and the amplitudes of the #hree correction terms.
Furthermore, this analysis vielded the universal pamameters @ = 0.6233 (2yand y; = —0.82 (3).

Madel 1 Model 2 Madel 3
K. 0.2216546(5) 0.128003% (4} 03934220 ()
by 0.096 (1) =0.046 (5) . —=0.002 (2)
B 0I5(3) 0.38 (2) 0.007 (12)
by —4.9 (3 —1.7(7} —-1.7(5)

are suommarized in tables 15 and 16, respectively, where the error margins include the
uncertainty introduced by the error in y; and yy.

Let us now compare the resulis of the various fits. In the first place, we see that the
results in tables 15 and 16 are consistent, just as was the case for tables 5 and 6 in section 4.
Also the values for the universal quantity @, 0.6232 (2) and 0.6233 (2), respectively, agree.
Secondly, the simultaneous fit with only the first two corrections to scaling (table 15) yields
results that are consistent with those presented in table 5. Only the amplitude b2 and the
critical coupling K. for model 1 appear to be somewhat too low in table 5, as we already
had seen from the second fit in section 4. Finally, when we compare the results in tables 6
and 16, i.e. including a third correction to scaling, as well as the corresponding Q values, we
see a very good agreement. These comparisons, in addition to the fact that the term bsL»*
allowed us to include all system sizes L > 5, lead us to the conclusion that the fits presented
in table 16 can be considered as the most accurate results. In addifion to the non-universal
constants given in the table and the universal amplitude ratio O, this analysis yielded the
{universal) irrelevant exponent y; = —0.82 (3). This value is in very good agreement with
that obtained by Nickel and Rehr [8]. Although there is one more unknown (y;), the results
for @ and K, obtained in this section are more accurate than those of the three separate
fits. One of the reasons is that the fit for model 3 is insensitive to the value of y;, so that,
e.g., O is determined accurately,

Table 17. Some recent results for the renormalization exponents. The estimate for y; from [3]
has been calculated from the value for 8 = —y;/y; presented in this reference and the value for
¥ as caleulated in the present work.

Year g »h b
Present work [995  1.587 (2) 24815(15) —0.82(&
Kolesik and Sezuki [11] 1993 1586 (4) 2482 (4
Guttman and Enting [10] 1994 1,580 (3)
Landau [21] 1994 1.590(2) 2482(7)
Baillie er i [19] 1992 1.602 (5) 2.4870(15) —0.8t0 —0.85
Nickel [9] 1991 1587 24823 —0.84
Nickel and Rehr [§] 1990 1587 (4} 24821 (4) —0.83 (5)

Le Guillon and Zinn-Justin [2] 1980  1.587 (4} 2.485(2) -0.79 (3)
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7. Discussion and conclusion

Let wus summarize our final results for the renormalization exponents: » = 1.587 (2),
Yo = 2.4815 (15), y; = —0.82 (6). To allow for any residual dependences on the choice
of the fitting formulae, we list error marging of two standard deviations. In table 17 we
compare our results with some recent estimates obtained by various methods. Our result for
the temperature exponent is lower than that of Baillie et af [19], obtained by the Monte Carlo
renormalization method. This could be explained by a viclation of hyperscaling. However,
the accurate agreement between our result and that of coupling-constant expansion [2], &-
expansion [6], series expansions [8,9] and the coherent-anomaly method [11] makes this
explanation less likely. We notice that our result for y; is markedly higher than the recent
series-expansion result of Guttrman and Enting [10]. The result for the magnetic exponent
is also in good agreement with most other estimates, although the result of Baillie et gl
lies significantly higher than the majority of the resulis. Also the result of Le Guillon and
Zinn-Justin obtained by coupling-constant expansion [2] seems somewhat too high. The
results for the [eading irrelevant exponent are not very accurate, but consistent. We notice
that the fractions %% and % are good approximations for y, and yy, respectively. For easy
reference, table 18 summarizes the exponents &, B, ¥, 8, n, v and 8 as calculated from our
results for y, yy and y;, on the assumption that the hypotheses of scaling and hyperscaling
are valid,

Table 18. The standard critical exponents as weil as Wegner’s carrection-to-scaling exponent @
as calculated from our best estimates for y,, ¥, and y.

Exponent  Expressed in RG exp.  Valve

o 2—d/n 0.110 (2)
B d—m¥n 0.3267 (10}
4 2y ~d)/n 1.237 (%)

8 Ynfld = yn) 4.786 (14)
7 2-2m+d 0.037 (3)

v 1/n 0.6301 (8)
& =¥/ % 0.52 (4)

Furthermore, we can calculate the Binder cumulant & from our estimate for Q, using
the relation U = 3 — 1/0, which yields U = 1.3956 (10). Only a few accurate results
are available for this guantity (see, e.g., [45] for a review) and one of the most accurate
estimates up till now is U = 1.403 (7} [46]. Our result is in agreement with this and
other estimates, but its accuracy is markedly higher. We have not sampled the characteristic
length &£ defined by Baker and Kawashima [47] in our simulations. Thus, we have no
result for the renormalized coupling constant g*, which differs from the Binder cumulant
by a factor (L/E.)¢ [47).

Table 19 presents a comparison of recent results for K of the spin—% nearest-neighbour
Ising model. Again, it should be noted that the error margin of the result obtained in the
present work amounts to two standard deviations. It can be seen that the amplitude ratio
@, which is used in this work, provides a good means of obtaining an accurate estimate for
the critical coupling. We conclude that the conjecture of Rosengren (48] is not correct. The
result of Ferrenberg and Landau deviates by 1.8 combined standard errors, but the newest
estimate of Landau differs by only 1.2 standard deviations from the result presented here.
The difference with [20] is 1.6 standard errors and is partly due to statistical errors (the data
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Table 19. Summary of recent results for the critical point of the spin—% Ising model with
" nearest-neighbout couplings.

Reference Year  Value

Present work 1995 0.2216546 (10)
Landan [21] 1994  0.2216576 (22)
Blte and Kamieniarz [20] 1993 0221648 (4)
Baillie er af [19] . 1992 0221652 (3)
Livet [36] . 1991 0.2216544 (10)
Ferrenbere and Landau (18] 1991 (.221 6595(26)
Ito and Suzuki [17] 1991  0.221657 (3)
Blite et af [14] 1989 (1221652 (5)

Rosengren {conjecture) [48] 1986  0.221 6586(0)

used in this work include those of [20] but are much more accurate and include L = 40
data), and partly because a term with exponent y, was not included in the scaling formula
for the ratic Q. Finally, we want to stress the importance of the spin-1 model. Since the
corrections to scaling are small in this model, it is very suitable for the determination of
universal quantities.
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Appendix. Experimental results

In this appendix, we have collected a number of experimental results for the various critical
exponents of phase transitions which have been compared to results for the 3D Ising
universality class. Only results published after 1980 are included. For binary mixtures,
older results can be found in, e.g., [49]. The substances are grouped into four different
subsets: unary systems, mixiures, magnetic systems and micellar systems (microemulsions).
In general, the results agree very well with the theoretical values, but there are several
remarkable discrepancies. Here, we only mention those measurements that differ by more
than two standard deviations from our results. Results without error estimates are not taken
into account.

The value for y found in [70] lies much below the theoretical estimate. In [115] the
results for both y and v do not appear to be Ising-like, as the authors have already noticed.
The results for SFy presenfed in [63] are included, because the authors find mean-field
values for the critical exponents, whereas the other results for the same substance appear to
fall in the Ising universality class. For o, a range of values is found in [74], the lower end
of which coincides with the theoretical value. In [105], two values of ¢ are presented for
MnF;, 2.4 above and 3.50 below the theoretical value, respectively. Several very accurate
results for the critical exponent 8 are presented in [57, 58, 66], which all lie much above the
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Table Al. The various substances are grouped as follows: ‘0’ stands for unary systems,
‘mx* for mixtures, ‘mg’ for magnetic systems and ‘mi’ for micellar systems (micreemulsions).
« B, ¥, & and v denote the standard critical exponents; @ is Wegner's comectign-to-
scaling exponent; the critical exponents which carry a tilde refer to Fisher’s ‘renormalized’
critical expooents [S0]. Abbreviations used; AOT = di-2-ethylbexylsulfosuccinate; BHDC
= benzyldimethyl-n-hexadecylammeniuvmchloride; GE; = CH3-(CHz);—1-(Q-CHz-CHy);-OH;
HFC-32 = difluoromethane; HFC-125 = pemtaflucroethene; R114 = CCIF:-CCIF;; RI3BI =
CBrFs; R12 = CClyFs; R22 = CHCIF;.

Substance Type Exponent Value Ref.

CQOy ¢ o 0.111 (1) 51}
B 0.324 (2)

Cs u @ 0.13 (3) (52]
B 0.355 (10)

Ethane u B 0.327 (2) [53]
g 0.46 {4)

Fluoroform u B 0.329 (1) [54]

GeH;y B 0.333 (8) {551

Hz u B 0.326 (3) [56]
¥ 119 (5}
@ 0,46 (2)

HD u ¥ 0352 (1) {571

HFC-32 u’ T B 0.345 (1) [58] ~

HFC-125 ' 2 0341 (2) [58]

Ne u B 0.3575 (10) [571

Ne, N2 u B 0.327 (2) [59]
8 0.51(3)
¢ 0.49 (5)

R1l4 u Ii) 0312 . [60]

R13B1 u g 0.340 : [61]

RI2 u B 0.337 162}

R22 u B 0.348 f62]

Rb u o 0.14 (3) [52]
B 0.36 (1} '

5Fg u B 048 (3) . [83]
B 0.325 (5) 64]
B 0.338 [65)
I:) 0.350 (4) f66]
B 0.355 : ©7
¥ 0.98 (5) [63]
4 1.24 (2) [66]
§ .02 [63]

1,1,1,2-tetraflucroethane u B 0.340 (1) {68]

Xe u ¥ 1.246 (10) (89

Methanol + hexane mx y 1.08 (3) [70]
y—-a 1.04(3)

Methanol + cyclohexane mx B 033 (2) 7
¥ + 1,26 (5) [72]
v 0.64 (2

Methanol + n-heptane mx B 0.3337 (5) [731
o 0.11-0.35 [74]

Methanol + iscoctane mx B 0.323 (9) 175}

n-hexane + n-tetradecafluorohexane mx i} 0.35 (1) [76]

Acetonitrile + cyclohexane X B 0.322 (4) {77

Butylcellosclve + HaO mx o 0.077 (41) 78]
B 0.319 (14)
¥ 1.24 (1)
v 0.606 (18)
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Table Al. (Continued)

Substance Type * Exponent Value Ref.
Iso-butoxyethano! + H2Q mx « 0.105 (8) [79]
Ischutyric acid + HzO mx B 0.326 (3) [80]
¥ 1.19 (21) {811
v 0.654 (9)
Deuterated cyclohexane + cyclohexane + H2O mx, B 0323 () 182]
B 0.326 (2)
8 0.322 (2)
n,n-dimethylacetamide + octane : mx B 0.324 (5) [83]
B 0.329 (2)
n,n-dimethylacetamnide + decane | mx B 0329 (4) [84]
: 0.333 (2)
Ethylammoniumnitrate + n-octanof mx v 0.610 (6) (85]
Ethyleneglycolmonoisobutylether + HaO 11> B 0.332 (2) [86]
2,6-lutidine + H2O mx B (.336 (30) 87
Nitroethane + cyclohexane, benzonitrile + isooctane mx £ 0.325 (5) [88]
Nitrobenzene + isooctane mx o 0.145 (35) [89]
Nitrobenzene + decane + benzene mx g 0.376 (8) [20]
Perfluorcheptane + CCly mx J: 0.324 (5) f91]
Triethylarine + H2O mx g 0.52(3) [92]
Triethylamine + HaO + DO mx o 0.110 (4) [93]
Trimethylethylammonjumbromide + chloroform mx v 0.621 (3) [94]
Tetrachloromethane + tetradecaflioromethylcyclohexane mx B 0.289 (6) 93]
Tetra-n-pentylammonivmbromide + HaQ mx g 0.3370 <22} 561
B 0.3190 (11)
B 0.3187 (16)
C0Oy + n-butane mx B 0.359 971
. : v 0.66
CQO; + n-decane mx B 0.368 98]
v 0.646
Na + NH; mx A .34 (1) [99]
8 0.46 (3)
Na + ND; mx ¥ 1.228 (39) (1001
y 1.2400 (157)
¥ 1,223 (19)
7 0.0300 (15
1 0.0317 (13) [101]
] - 0.0302 (15) 4
" 0.6279 (80) [160]
CoF mg e 0.109 (6) [razg
DyAlG ) ' mg B 0.33 (1) [103]
FeCla N mg o 0.15(H) [104]
FeFz . . . mg o QI (T [105]
@ 0.115 (4)
. o 0.11 (3) 1106]
B 0.325 (2) [107]
. b 125 (1} [108]
MnBry mg o 0.118 () [109]
MnCl,; mg B 0297 (3) - [110]
MuF; mg py 0.123 (5) [105]
o 0.091 ¢5)
NdRuSia ) mg @ 0.11 (3 [3L11]
UsPy mg - 0315 (15) [11z]
i1 0313 (15)
¥ 1.25 (2)
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Table Al. (Continued)

Substance Type Exponent Value Ref.

AOT + n-decane + HyO mi ¥ 1.26 (10) f113}
y 1.22 (5) f114)
¥ 161 (9) [115}
v 0.61 (6) [113]
v 0.75 (5) [114]
v 0.68 (8)
v 0.72 () [115)

Benzene + BHDC + H,0 mi B 0.34 (8) {116)
y 118 (3) [117]
v 0.60 (2) [117

2-butoxyethanol + D,O mi ¥ 1.216 (13) [118]
7 0.03% (4)
v 0.623 (13)

CsEs + H:O . mi o 0.11 (4) [i19]
B 0.327 {4)
¥ 1.24 (1)
¥ 1.241 (16) [120]
n 0.016 (5) [119]
v 0,627 (6)
v 0.632 (11) [120]

CgE4 + H20 mi ¥ 1.237 (T [120]
¥ 1243 (1)
v 0.630 (12)
v 0.630 (18)

CigEa + HaQ mi y 1.25 (2) [121]
" 0.63 (1)

Ci2Bs + H20 mi y L17{1D) [122]
v 0.65 (4)

CrzEs + D20 mi ¥ 1.2 (1) [123]
v 0.60 (5)

CizEs + H20 omi ¥ 1.2 (1) [124]
v 0.60 (3)

Ci2Bs + D20 mi ¥ 1.21 (@) [125]
v 0.62 ()

C12Es + Ho0 mi ¥ 1.20 (4) [125]
v 0.63 ()

Sodiumdodecylsulphate + butano] + NaCl mi v 0.62 (3) [126]
v 0.64 (4)

o v 0.63 (5)

Cationie surfactant in aqueous salt solution mi g 0.375 (10) [127]
7 139 (4)
v 0.70 (3)

result in table 18. On the other hand, the accurate results in {95, 110] lie much lower than
the theoretical prediction. The differences in [32, 84, 86] are Iess severe, but all results in
these references lie between 2 and 3 combined standard errors above the theoretical value.
Also the results for 2 presented in [96] deviate by many standard errors from the theoretical
value, although the authors of this reference state that they consider the differences as not
significant. The authors of [73] found a good fit of their data to a value of § = 0.3337 (5),
but conclude that this value is probably too high.

For v, very low values have been found in [B5, 94], whereas the value in [81] lies 2.6
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standard errors above our result. In {119], the result = 0.016 (5) is given, which deviates
by about four combined standard deviations from the best theoretical values. Nevertheless,
the authors of [119] consider it to be in good agreement. '

In general, it is difficult to assess the source of the discrepancies noticed here, although
there certainly are cases where crossover phenomena and corrections o scaling were not
taken into account in the data analysis.
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