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Abstract. We investigate three Ising models on the simple cubic lattice by means of Monte 
Carlo methods and finite-size scaling. These models are the spin.; lsing model with nearest- 
neighbour interactions, a spin-; model with nearest-neighbour and third-neighbour interactions, 
and a spin-l model with nearest-neighbour interactions. The results are in accurate agreement 
p with the hypothesis of universality. Analysis of the finite-size scaling behaviour reveals 
corrections beyond those caused by the leading irrelevant scaling field. We find that the 
correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbour 
interactions 01 a third spin state. In a spin-1 king model, r these corrections appear to be 
very small. This is very helpful for the determination of the universal constants of the Ising 
model. The renormalization exponents of the Ising model are determined as y, = 1.587 (2). 
yh = 2.4815 (15) and = -0.82 (6). The universal ratio Q = (m2)*/(m') is equal to 0.6233 (4) 
for periodic systems with cubic symmetry The critical point of the nearest-neighbour spin-; 
model is K, = 0.2216546 (10). 

1. Introduction 

According to insights such as the universality hypothesis, the nature of a phase transition 
does not depend on the microscopic details of a system but only on global properties such as 
dimensionality and symmetry of the order parameter. Thus, it is believed that most three- 
dimensional systems with short-range interactions and a scalar order parameter (such as 
density or unidirectional magnetization) belong to the'Ising universality class. This implies 
that the critical exponents, 'as well as other universal quantities, are identical for all these 
models. This universality class comprises, in addition to anisotropic magnetic systems, also 
models for alloys, gas-liquid systems and liquid mixtures. 

In the case of two-dimensional Ising-like models, the evidence that universality holds 
is very strong. However, in three dimensions, where exact results are scarce and numerical 
techniques tend to be less accurate than in two dimensions, the situation is less satisfactory. 
Numerical uncertainties in the renormalization exponents amount to the order of several 
times lom3. For many years the most accurate results have been those obtained by E-, 

coupling-constant and series expansions [l-101, whereas recently quite accurate estimates 
have also been obtained by the coherent-anomaly method [l I]. However, new possibilities 
of investigating Ising-like models are now arising in parallel with the availability of fast 
and relatively cheap computers. While many systems in the supposed king class may be 
simulated with the help of these, spin models offer a clear advantage, at least as far as a 
study of the universal properties is concerned. This is because of the ease and efficiency 
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of the Monte Carlo method, in particular of cluster algorithms. Thus, results from Monte 
Carlo-based methods [12-21] tend to become increasingly accurate. 

However, slight differences occur between recent results for the scaling dimensions, 
One possible explanation is that universality is not satisfied. In order to solve the issue of 
whether these deviations are real, it is desirable to obtain more accurate Monte Carlo data 
for the supposed universal quantities. 

One problem that poses an obstacle to higher accuracies of these analyses is the 
presence of corrections to scaling. The dominant correction is attributed to an irrelevant 
renormalization exponent with an approximate value yj N -0.83 [SI. This means that the 
corrections decay relatively slowly and thus jeopardize the accuracy of the analysis. For 
this reason, we explore which modifications of the simple cubic king model with nearest- 
neighbour interactions can influence the amplitude of these corrections to scaling. If we can, 
in this way, suppress the irrelevant field, we may expect a decrease in the ill effects due to 
the corrections to scaling. One can, for instance, chqose a different lattice structure. Series 
expansions using the body-centred cubic lattice [81 indicate that corrections to scaling are 
relatively small. However, here we prefer to introduce continuously variable parameters to 
adjust the irrelevant scaling field. 

It is known [22] that the introduction of positive couplings with a range beyond the 
nearest neighbours in the simple cubic king model leads to a decrease of the correction-to- 
scaling amplitudes. We quote some preliminary results for the Hamiltonian 
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?l/kBT = - K . , X s i s j  - K z n Z s i s j  - K 3 " E s ; s j  - K o X s ; s j s k ~ ;  (1) 
("") (2") l3"l 0 

where (nn) indicates a sum over nearest-neighbour pairs, (2n) over second-neighbour pairs 
(diagonals of the elementary faces), [3n] over third-neighbour pairs (body diagonals in the 
elementary cubes) and 0 over four-spin products in all elementary faces of the cubic lattice. 
The associated couplings are denoted Knn, Kzn, K3. and KO, respectively. The spins si can 
assume the values +I and -1. These results were obtained by Monte Carlo simulation on 
the Delft king System Processor [23,24]; they indicated that the introduction of positive 
K2", K3" or KO reduces the correction-to-scaling amplitude. Third-neighbour couplings 
K3" appear to be quite effective; for a ratio K3,/Knn % 0.4 the corrections become small. 
Much stronger second-neighbour couplings are required to obtain a similar effect 1221. 

Another approach is to introduce a third spin state si = 0 the spin-1 king model. The 
weight of the si = 0 state can be varied by means of a term D xi s: in the Hamiltonian. 
Preliminary calculations showed that the corrections become small for D 0.7. In our 
actual simulations we have used D = In 2, for reasons that will be explained in section 2. 

Thus, we have selected the following three Ising models: the spin-f king model with 
K3,/K,, = 0 (the nearest-neighbour model), with K,,/K.. = 0.4, and the spin-1 model 
with D = ln2  and nearest-neighbour interactions. The algorithms used to simulate these 
models are described in section 2. In addition to corrections to scaling, another obstacle 
to higher accuracies is the requirement of sufficiently accurate random numbers, in order 
io avoid biased results. In section 3 we comment on the quality of our random-number 
generators and we mention consistency checks to which the algorithms were subjected. An 
analysis of the results for the dimensionless ratio Q = (m2)*/(m4) is given in section 4, 
followed by an analysis of the magnetic and temperature renormalization exponents in 
section 5. The results for the three models satisfy universality: they are equal within the 
statistical inaccuracies. Assuming universdity, a, as well as the critical points of the three 
models, can be obtained with a better precision, as is demonstrated in section 6.  Finally, a 
discussion of these results in relation to the existing literature and to fundamental questions 
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concerning universality is presented in section 7. As an appendix, we present experimental 
results for critical exponents of a number of phase transitions that have been supposed to 
belong to the 3D king universality class. 

2. Models and algorithms 

The present Monte Carlo analysis concerns three different king models. These can be 
represented in terms of a spin-1 Hamiltonian on the simple cubic lattice: ' 

where nn and (ij) refer to nearest neighbours, and 3n and [kl] to third-nearest neighbours 
(along body diagonals of the elementary cubes). The spins can assume three discrete values 
si = 0, $1. The three models are specified in table 1. 

Table 1. The ratio K3"lKnn and the value for D (see equation (2)) for the three models. 

Model KdK, , .  D Description of model 

1 0 -w Spin-f model with nn couplings 
2 0.4 -w Spin-; model with nn and 3n couplings 
3 0 In2 Spin-I model wirh nn couplings 

For D = -m the si = 0 states are excluded and thus models 1 and 2 can be simulated 
by the Swendsen-Wang (SW) 1251, the largest-cluster (Lc) [26] or the Wolff [27] method. 
In cluster algorithms, one has to 'activate' a bond between two spins si and s j ,  coupled 
with strength Kij ,  with a probability p(Kij)S,yc,7,, where p(Ki j )  [I - exp(--2Kij)l. The 
presence of different sorts of bonds in model 2 thus leads to different bond probabilities but 
poses no further problems. If the bond is active, sites i and j belong to the same cluster. 
The simplest way to simulate this is to draw a random number for each bond and check 
whether it is smaller than p(Kij)$, , .  Following this procedure, the speed of the algorithm 
decreases as the number of interacting neighbours increases. When the couplings are small, 
a more efficient procedure is possible. As a first step in the SW or LC cluster formation 
process one obtains, for each type of bond Kij, a list of bonds that should be activated if 
they connect equal spins. To this purpose, one introduces bond variables bij = 0 or 1; the 
probability that bjj = 1 is equal to p(Ki j ) .  The distribution P ( k )  p(1 - p)'-', where 
we write p as an abbreviation for p ( K i j ) ,  expresses the probability that ( k  - 1) subsequent 
bond variables equal zero, while the kth bond variable is one. Thus one random number r 
can be transformed into an integer k :  

(3) k = 1 + [ln(r)/In(l - p ) ]  

where the square brackets denote the integer part. After evaluation of k, the next (k  - 1) 
entries in the list of bond variables are set to zero, and the kth variable is set to one. 
By repetition of these steps a complete list of bond variables (for all bonds with strength 
Kij in the lattice) is obtained. Such lists are generated for each different type of bond. 
After completion of these lists, the cluster formation is bivial. This procedure was found to 
improve the speed of the simulation of model 2 considerably. One may still choose between 
the sw or LC method. The latter method was observed to lead to shorter relaxation times 
and is therefore more efficient. The same principle was applied to Wolff-type simulations 
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of model 2. Random numbers are, as above, transformed into integers k. During the cluster 
formation, (k - 1) bonds of the pertinent type are skipped and the spin connected to the 
kth bond is added to the Wolff cluster if it has the right sign. This leads to a considerably 
faster Wolff algorithm, in particular because random-number generation is relatively time 
consuming (see section 3). 

In the spin-1 case, transitions between zero and non-zero spin values require special 
attention. It is not immediately obvious how cluster algorithms could produce these 
transitions. We follow two different methods for the simulation of the spin-1 model. The 
first one uses a hybrid algorithm in which Metropolis sweeps alternate with cluster steps. 
The cluster algorithm acts on the non-zero spins only. Since we do not come close to the 
tricritical point where the ordered king phases meet the spin-zero phase, the regions of zero 
spins remain limited in size and we do not expect serious critical slowing down due to the 
equilibration between zero and non-zero spin values. 

The second method uses a mapping on a spin-; model. We consider a Hamiltonian 
with two spins ti = rtl and U; = & I  on site i (for all i) of the simple cubic lattice: 
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Using the transformation s, = (ti + ui)/Z and uj .= (1 + ti)(l- u;)/4, the partition function 
of this model is, up to a constant factor, 

with si = 0. il. Summation over the allowed values of U, yields a factor 2 if sm = 0. 
Thus 

where N denotes the number of spins in the system. This is, apart from the prefactor 2 N ,  
.precisely the partition sum for equation (2) for K.. = 4M1, Kjn = 0 and D = In2 - 2M2. 
Equation (4) may thus serve for the application of cluster algorithms to the spin-1 king 
model. The special choice D = In2 leads to MZ = 0 so that the spin-; Hamiltonian 
simplifies. We have used three different methods to simulate the spin-I model: the 
Metropolis-cluster ( m c )  method, the full-cluster (FC) method and the Metropolis-Wolff 
(MW) method. The MLC method alternates one Metropolis sweep with one largest-cluster 
inversion, the Mw method alternates one Metropolis sweep with 5 or 10 (this choice depends 
on the system size) Wolff steps. The FC method applies largest-cluster flips to the spin-; 
representation of the model: no Metropolis sweeps are included here. 

3. Random numbers and consistency’tests 

Significant systematic errors may be introduced in Monte Carlo simulations by using 
inadequate random-number generators. It is well known that linear congruential methods 
based on the truncation of 32-bit integers are unsuitable for long simulations. Even their 
period of about lo9 would be too restrictive. On the other hand, also random-number 
generators based on binary feedback shift registers may introduce. serious errors (see, e.g., 
[23,28-311). In most eases, the production rule selects two bits from the register and assigns 
their modulo-2 sum to the new bit. Thus the deviations from randomness are dominated 
by three-bit correlations. A number of algorithms of this type, using 127-bit shift registers 
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with a period in the order of lo3*, have been rejected on the basis of long tests [XI using 
Metropolis simulations of the critical king model. Recent tests by Ferrenberg et al [321 
have shown that such deviations also occur when cluster algorithms are used together with 
random generators based on a generalized feedback shift register [33]. 

These findings apply to the Ising model on the square lattice, and use a comparison 
between simulations and exact results for finite systems. In the case of the three-dimensional 
Ising model, we have the practical difficulty that no exact results are available for general 
system sizes. One remaining possibility is a comparison between simulations with different 
realizations of the random-number generator and/or the spin-updating algorithm. Another 
possibility to check for systematic deviations is offered by numerical exact results for small 
systems. However, this test is not sufficient. It has been observed [34] that, in two 
dimensions, effects due to a random-number generator based on a generalized feedback 
shift register depend strongly on the system size and may be unobservable in small systems. 

Systematic effects in 3D king model simulations are apparent from a comparison 
between finite-size results for the Binder cumulant [35] reported in [36] and 1201, using the 
sw and L c  methods. The random generator used in [36] was based on a generalized feedback 
shift register with length 502 [37], and that used in [20] combined such a generator of 
length 9689 with a multiplicative rule, by means of bitwise modulo-2 addition. The observed 
discrepancies may be attributed to the shift-register-based generator with length 502 [37], 
and become even more prominent in simulations of the Wolff type [37]. 

It is clear that, for the long simulations implied by the present analysis of the 3D Ising 
model, the random-number generators should be selected with great care. A systematic 
study of biases introduced by shift registers is necessary, in particular the dependence on 
the system size, shift-register length and the number of correlated bits. From simulations 
in two dimensions it appeared [38] that the deviations are scalable and become small for 
large system sizes and register lengths. Thus one may try to suppress systematic effects 
by using very long feedback shift registers [39].~ But here we have chosen for a different 
method. This choice is based on the observation that the biases decrease when the number 
of bits in the production rule is increased [34,38]. The bitwise modulo-2 addition of two 
sequences generated by three-bit production rules usually leads to a sequence in which 
the dominant correlation is one ,between 9 bits. Thus, we expected that, using a random 
generator of this type with sufficiently long registers, the systematic effects would be well 
below the statistical accuracy, in three dimensions as well as in two. The largest part of 
the present simulations in three dimensions used the production rules a, = aj-9zls 8 ~ ~ - 9 6 8 9  
and bi = bi-97 @ bj-127. These were combined by rj = ai @ bi, where ai, bi and ri are 
32-bit integers, and 8 stands for bitwise modulo-2 addition. Most of the simulations of the 
nearest-neighbour model reported in [20] were performed using a randarngenerator which 
combines a multiplicative sequence with ai. No systematic differences between both types 
of results were observed, nor were there obvious differences between simulations of the sw, 
L c  and Wolff types. Also in the case of models 2 and 3 we checked for the presence of 
significant differences between the result of the different types of spin-updating algorithms 
(see table 3) but none were found. This is consistent with the supposed high quality of the 
sequence ri. 

Therefore, we assume that the sequence ri is sufficiently uncorrelated, so that the 
simulation results may serve as a standard to which data produced by means of other 
random generators can be compared. Thus, deviations in Wolff simulations of model 1, 
using 3-bit production rules, were determined and their scaling properties were analysed 
[40]. The results are qualitatively the same as in two dimensions, and are comp!etely 
consistent with the picture that the deviations decrease rapidly with increasing system size 
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and shift-register 1en-d. No biases due to correlations of 5 or more bits were observed in 
Wolff simulations of the 3D king model. 

As a further test, we have carried out exact numerical calculations of the dimensionless 
ratio QL(K,) ,  the susceptibility x. the energy-like quantity S,, and the specific-heat-like 
quantity con. For more precise definitions we refer to the next sections. These calculations 
apply to small systems with periodic boundaries: model 1 with sizes 33 and 43, and model 2 
with size 33. 

The calculations for the 33 systems involve a summation over ZZ7 distinct states. In 
view of the efficiency of the calculation, we divided these states into subsets such that the 
states in each subset are related by symmetries: spin and spatial inversions, translations 
and rotations. The number of subsets is 55 809, most of which contain 2592 states; this 
is the number of elements of the symmetry group of the 33 king lattice. Once a list of 
'independent' states, one per subset, has been made, the calculation becomes rather simple. 
However, the 43 system is already too time-consuming unless treated carefully. The energy 
and the specific heat follow simply from the expansion coefficients given by Pearson [41]. 
For the magnetic quantities Q and x we have used a perturbation expansion similar to that 
described by Saleur and Derrida [42]. Details are given in [ZO]. The results are summarized 
in table 2. The agreement between the Monte Carlo results and the exact numbers is quite 
satisfactoly and does not suggest any problems with the random-number generator or other 
defects of the algorithm. 

H W J BlBte et a1 

Table 2. Comparison between Monte Carlo and exact results for small system sizes. These d m  
were wken at couplings K.. = 0.221 653 and K,. = 0.128 006 for models 1 and 2 respectively. 

L Model Quantity MC Exact 
3 1  Q 0.668409 (20) 0.668427 
3 1  m2 0.422978 (19) 0.422992 
3 1  S". 
3 1  C"" 

4 1  Q 
4 1  mz 
4 1  SO, 
4 1  C"" 

3 2  Q 
3 2  m2 
3 2  S.. 
3 2  C"" 

1.434382 (sij 1.434418 
0.785443 (53) 0.785413 
0,659755 ('24) 0.659779 
0.331228 (16) 0.331204 
1.293247 (40) 1.293223 
0.977559 (75) 0.977575 
0.642427 (20) 0.642415 
0.367413 (17) 0.367390 
1.134852 (51) 1.134791 
0.287800 (19) 0.287772 

4. Test of universality 

We have performed extensive simulations of models 1, 2 and 3, using the cluster methods 
described in section 2. The total simulation time amounts to approximately two years on 
three workstations. We chose systems with size L x L x L and periodic boundaries. The 
lengths of the runs for the various models and methods are given in table 3 for each system 
size. 

We sampled and analysed the dimensionless ratio: 
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Table 3. h g t h  of Monte Carlo runs in millions of sampled configurations. sw stands for 
Swendsen-Wang. U3 for largest cluster and w for Wolff. For sw and LC. each new configuration 
corresponds with one cluster decomposition of the lanice. In the Wolff case, 5 (5w) or 10 (law) 
Wolff clusters were flipped before a new configuration was used for data taking. For the spin-1 
model (model 3) LC, sw and Inw are prrceded by M in order to indicate a Mempolis sweep 
through the lattice FC indicates the full-cluster algorithm for the spin-1 model; it flips the largest 
cluster of a spin-; version of the model. 

1 2 3 
Model 
L SW LC 5W lllW SW LC 3W IOW FC MLC MSW MlOW 

3 48 
4 160 
5 48 
6 48 
7 48 
8 48 
9 48 
IO 48 
11 48 
12 28 
13 28 
14 28 

52 200 
40 200 
52 200 
52 200 
52 200 
52 200 
52 200 
52 200 
52 200 
72 200 
72 200 
72 200 

15 20 30 
16 20 30 
18 12 38 
20 20 10 
U 18 12 
24 8 12 
28 IO IO 
32 2 18 
40 10 

100 
150 
150 
150 
150 

IO 140 
10 140 
10 140 

150 
150 
100 
100 

200 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

200 50 100 
150 50 IO0 
I 50 50 50 
70 50 50 
70 20 80 
80 20 80 

100 20 80 
180 25 75 
90 20 80 

100 I00 300 
100 100 300 
100 100 400 

100 100 400 
100 100 400 
100 100 300 
100 100 3w 
100 100 3M) 
100 100 200 

100 loo 400 

250 
200 
200 
200 
I 20 
120 
I 20 
150 
50 50 

100 
100 

where L is the finite size of the model and m the magnetization density. We use the 
renormalization language in order to derive the expected finite-size scaling behaviour of 
QL. By f ( t ,  h ,  U, L- ' )  we denote the free-energy density as a function of the temperature 
and magnetic scaling fields, an irrelevant field and the finite-size field [43,44]. Here, we 
define the free energy as F = InZ, so without the normal factor - l / kBT .  Its behaviour 
under renormalization with a scale factor I is 

where yt, yh and yi are the pertinent renormalization exponents, d = 3 is the dimensionality 
and g is the analytic part of the transformation. By differentiating k times with respect to 
h, and choosing 1 = L and h = 0, one obtains 

(9) 

where the dependence on h is no longer needed and therefore suppressed. The expectation 
values of the second and fourth magnetization moments require differentiatipns of the free 
energy with respect to the physical magnetic field H :  

f'K'(t, U, L-1) = LK"-df'"(i"t, L"u, 1) + g'K'(1) 
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Table 4. Numerical results for the dimensionless ratio Q L  = ( m 2 ) i / ( m 4 ) ~  for the three king 
models defined in section 2. These data were t&en at couplings K.. = 0.221653, 0.128006 
and 0.393410 for models 1. 2 and 3, respectively. 

L Model 1 Model 2 Model 3 

3 0.66839 (2) 
4 0.65976 (2) 
5 0.65373 (2) 
6 0.649 19 (2) 
7 0.64579 (3) 
8 0.643 18 (3) 
9 0.641 07 (3) 

10 0.63943 (3) 
11 0.638 03 (3) 
12 0.636 88 (3) 
13 0,63591 (4) 
14 0.635 14 (4) 
15 0.63441 (3) 
16 0.63376 (4) 
18 0.63270 (4) 
20 0.631 87 (6) 
22 0.631 17 (6) 
7.4 0.63052 (6) 
28 0.629 58 (6) 
32 0.62879 (5) 
40 0.627 61 (8) 

0.64244 (3) 
0.631 64 (3) 
0.62642 (3) 
0.623 70 (3) 
0.622 17 (3) 
0.62126 (3) 
0.62087 (3) 
0.62051 (4) 
0.62045 (4) 
0.62026 (4) 
0.62030 (4) 
0.62034 (5)  
0.62041 (4) 
0.620 SO (5)  
0.62057 (6) 
0.62081 (6) 
0.621 01 (6) 
0.620 98 (7) 
0.62142 (7) 
0.621 74 (8) 
0.62250 (9) 

0.61894 (2) 
0.621 34 (2) 
0.62242 (2) 
0.622 73 (2) 
0.62277 (2) 
0.62288 (2) 
0.622 80 (3) 
0.622 80 (3) 
0.62275 (3) 
0.62272 (3) 
0.62267 (3 
0.62262 (5) 
0627.66 (5)  
0.62247 (5) 
0.62248 (7) 
0.62230 (8) 
0.622 11 (8) 
0.62201 (7) 
0.621 77 (9) 
0.621 29 (8) 
0.62050 (9) 

and 

The king up-down symmetry implies that h is an odd function of H. 
correspondence between the derivatives with respect to h and H is 

Thus the 

and 

where, as before, f *) stands for ay f/ahk and all derivatives with respect to H are evaluated 
at H = 0. In the vicinity of the finite-size limit ( t  small and L finite), we may Taylor- 
expand the right-hand side of equation (9) in t and U .  After the appropriate substitutions, 
the finite-size expansion of &(Knn) follows as 

&(Knn) = Q + a1(Knn - Kc)LY' + az(Km - KJ2L2" + a3(Knn - K,J3L3fi +.. . 
+bi L" + b2Ln + ... (14) 

where the a; &d bi are non-universal coefficients and yz = d - 2yh. The last term is due 
to the field dependence of the analytic part g in equation (9). The nonlinear dependence of 
h on H leads to even more rapidly decaying contributions (not shown). Terms of the same 
form, but with different exponents, may be due to other irrelevant fields. Because powers 
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Table 5. Results of a data analysis of the three models, including system sizes L > 7 for 
model 1 and L 2 6 for models 2 and 3. Besides the ratio Q, the critical couplings K,  and the 
non-universal coefficients 0 1 ,  az, bl and b, are listed. 

Model 1 Model 2 Model 3 
Q 0.6232 (8) 0.6229 (3) 0.6231 (2) 
K,  0.2216542 (8) 0.1280034 (4) 0.3934214 (8) 
a1 0.862(10) 1.43 (4) 0.659 (6) 
a2 0.54 (6) 1.5 (2) 0.352 (15) 

bz 0.11 (3) 0.351 (13) -0.018 (9) 
bi 0.102 (IO) -0.043 (4) 0.001 (2) 

Table 6. Results of B dam analysis of the three models, where all system sires L > 5 were used 
and a third correction term was included. Besides the ratio Q, the non-univenal coefficients al. 
ai, bl, bz and b, and the critical couplings K,  are listed. 

Model 1 Model 2 Model 3 

Q 0.6235 (7) 0.6231 (4) 0.6235 (3) 
K, 0,2216547 (8) 0.1280036 (5) 0.3934224 (IO) 
a1 0.862 (9) 1.43 (4) 0.659 (6) 
02 0.54 (6) 1.5 (2) 0.352 (15) 
bl 0.098 (9) -0.045 (6) -0.004 (3) 
bz 0.15 (4) 0.37 (2) 0.02 (2) 
b) -4.9 (8) -1.4 (8) -2.0 (7) 

of the geometric factor ah fax cancel in the first term, Q is a universal constant (related 
to the Binder cumulant [35]). 

The bulk of the numerical data were taken at couplings K,, = 0.221 653,0.128 006 arid 
0.393 410 for models 1, 2 and 3 respectively, close to the critical points. The results in terms 
of Q L  are shown in table 4. A few points at somewhat different couplings were included 
in order to estimate the coefficients ai in equation (14). The procedure of the analysis is 
as follows. We computed QL(Kn.) for several values of L,  K,. (near the critical points 
K,) for the three models and fitted equation (14) to'the data. The following parameters 
were used as input: yt = 1.584 (4) (from &-expansion [6]; because the data were taken at 
couplin$s so close to the critical points, the results of the fits are practically independent 
of the precise value): yi = -0.83 (5) (from series expansions [SI; the fit is rather sensitive 
to the precise value) and y2 = -1.963 (3) (from renormalization arguments given above 
and the &-expansion result [6] for the magnetic exponent; the fit is insensitive to the precise 
value). The results are summarized in table 5. It is stressed that the error margins quoted 
here include the uncertainly due to the possible variations in 3, yt and y2 (yh) .  The fits 
for model 1 indicated that system sizes L < 7 should be discarded; they reveal finite-size 
effects not included in equation (14), exceeding the statistical error margins. The fits for 
models 2 and 3, which exhibit much smaller finite-size effects, include system sizes L 2 6. 
The fit for model 2 clearly reveals a correction with exponent yz -1.96. In fact, the large 
residuals in the absence of such a correction demonstrated its presence. As indicated above. 
this correction may arise from the analytic part of the transformation, although we cannot 
exclude contributions due to a second irrelevant exponent. Since there is no obvious reason 
why this term should be absent in general, we have included it in the fitting procedures 
for models 1 and 3 as well. Furthermore, we observe that the amplitude bl of the leading 
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correction to scaling can be suppressed. This amplitude has become quite small in the spin-1 
model (model 3) and has even changed sign in model 2. In model 1, the amplitude bl is 
relatively large and we have attempted to determine the irrelevant exponent by including 
it as a parameter in the fit. However, for an acceptable fit it was necessary to include the 
correction term bzLfi. Unfortunately, this frustrated the determination of yj for model 1: if 
we fixed y2 = - 1.963 the exponent yi shifted towards yz and if we included both yj and 
yz as free parameters, they approached the same value. 

In order to take into account the finite-size effects revealed by the system sizes omitted 
in the previous fits, we have repeated our data analysis with an additional correction to 
scaling b3Ln in equation (14), where y, = - 2 ~ .  This term, which is due to the nonlinear 
dependence of the magnetic scaling field on the physical magnetic field, enabled us to 
include all system sizes L 2 5 for models 1, 2 and 3 in the analysis. The results, which 
are presented in table 6, are consistent with those obtained previously. Again, the error 
margins quoted include the uncertainty due to the errors in yi, yt and yh. These data satisfy 
universality within a margin of less than To our knowledge, this is the most precise 
verification so far for 3D Ising-like models. 

H W J Biofe et ai 

5. Determination of the critical dimensions 

This section presents finite-size analyses of the energy, specific heat, spin-spin correlations 
over half the system size, susceptibility, the temperature derivative of the susceptibility and 
the temperature derivative of the ratio QL. Taking h = 0 and I = L in equation ( 8 )  leads 
to 

f ( f ,  U, L-1) = L-d f (L" f ,  L"u, 1) + g ( t ) .  (15) 
Expansion in t and U yields 

-d (0.0) + f(l.O'LYLf + l f ( z . o ) p Y t t 2  + . . , 
f ( t ,  U, L-I) = L (f 2 

+ f co.')L"u + f(l.l)L"+Y,fu + . , .) + g(o) + pt + ;g(2)t2 + , . . (16) 
where f ( k* ' )  stands for ak+' f/a'ra'u. The finite-size scaling behaviour of the energy and 
that of the specific heat follow by differentiation. 

5.1. The energy 

During the simulations, the nearest-neighbour sum S,, = sisj was sampled. For 
model 1, this sum is proportional to the energy; for models 2 and 3 its scaling behaviour is 
similar. Its expectation value is equal to 

The finite-size scaling behaviour of this quantity thus follows by differentiating equation (16) 
and substitution in equation (17): 

(S"") =co+cl(K",-  K,)+"'+L"-~[[ao+nl(K""- Kc)LY'+nz(K..-K,)ZLZn + ' .  . + bl L" + bzLX-3 +. . .] (18) 
where the ai, bi and ci are unknown coefficients. Analysis of the numerical results for 
(Snn) enables a determination of these, coefficients and of yr. The dominant singular term in 
equation (18) is the one with amplitude ao. The (Knn - KJ-dependent term with amplitude 
CI is dominated by the term with coefficient at and has therefore been omitted from the 
scaling formula. Since the bulk of the data were taken very close to the critical points, only 



Ising universality in three dimensions: a Monte Carlo study 6299 

linear and quadratic terms in (Knn - K,) were included. Without the correction term with 
coefficient bz, we had to exclude system sizes L < 8 in the analysis of model 1, in order to 
obtain an acceptable residual. The resulting estimate for yr is: 1.586 (6). Inclusion of the 
second irrelevant term enabled us to include all system sizes L > 5. For consistency, we 
have included this term in the data analyses for models 2 and 3 as well. Table 7 summarizes 
the results obtained from fits according to equation (18), at the critical points listed in table 6, 
for system sizes L > 5. Since the singular behaviour of (Snn) is rather weak, the results 
yt % 1.59 for each of the three models are relatively inaccurate but consistent with the 
existing literature. The uncertainty due to !he errors in K, and y; has been included in the 
error margins. 

Table 7. Results of a data analysis of the nearest-neighbour sum (Snn) for the three models. 

Model 1 Model 2 Model 3 

yt 1.599 (8) 1.589 (9) 1.591 (7) 
cg 0.99051 (8) 0.66298 (9) 0.59451 (6) 
no 2.14 (6) 2.20 (7) 1.73 (4) 
bi 0.14 (15) 0.16 (17) 0.04 (12) 
6 -2.0 (4) -0.6 (4) -0.9 (3) 

5.2. The specific heat 

The fluctuations in S,, are related to the specific-heat-like quantity 

We consider f as a function of the scaling fields t and U :  

 taking^ the appropriate derivatives in equation (16) and collecting the leading analytic and 
singular te rm leads to 

C., = PO + pi ( K m  - Kc)  + . . + L2y'-dIqo +qi(K.. - KdL" + qz(K, ,  - Kd2LZy' + . . . + rl L" + . . .] + LY'-'[so + SI (KO" - Kc)Ly' + . . .]. (21) 

The numerical results for c,, of models 1-3 were subjected to a fit of this form with 
yi = -0.83 and the K,  values in table 6 as input parameters. The terms with amplitudes 
p i  and si are dominated by that with amplitude qi and were omitted from the fit formula, 
as well as quadratic terms in (Knn - K c ) .  System sizes L i 6 display finite-size corrections 
not included in equation (21) and were discarded. The main results of these fits are shown 
in table 8, where the error margins include the uncertainties in K, and yi. Also in the 
present case we find consistent, but inaccurate values of yr. This may be related to the fact 
that the leading power of L in equation (21) is close to zero, so that this term, which has 
the coefficient 90, interferes with the term with coefficient PO. 
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Table 8. Results of a data analysis of the specific-heat-like qumtily cnn obtained from the 
fluctuations of the nearest-neighbour sum S, for each of the three models. 

Model 1 Model 2 Model 3 

yL 1.60 (2) 1.579 (15) 1.59 (2) 
pu -0.8 (7) -0.6 (3) -3 (2) 
yo 1.5 (5) 0.8 (3) 3.5 (14) 
yi 2.2 (2) 1.39 (12) 3.7 (4) 
rl -0.4 (4) 0.11 (14) 0.0 (9) 
so -0.4 (3) -0.24 (13) -1.0 (7) 

5.3. The spin-spin correlation function 

In our simulations, we have sampled the spin-spin correlation function g ( r ) ,  

g ( T )  ( S ( o ) S ( r ) )  (22) 
over half the system size (r  = L/2) ,  for even system sizes. This quantity can be derived 
from the free energy F by differentiating with respect to two physical magnetic fields Ho 
and H,, which couple to the spins at positions 0 and T ,  respectively. We consider the two 
fields as independent and find 

where h denotes the leading magnetic scaling field and the derivatives with respect to this 
field are evaluated at ho = h, = 0. Using equation (9) one obtains upon expansion in t and 
U the scaling behaviour of the correlation function, 

g = L  2sh-W[q+al(Kn,  - K , ) L ” + U ~ ( K , . - K , ) ~ L ~ ~ ’  +., .+blL” +. . . I  (24) 
where the coefficients ai and bi are different from those in equation (18). 

We have fitted the terms shown in (24) to our data. The large residuals for all three 
models strongly suggested the presence of an additional correction to scaling b2LY’. A 
problem for the determination of y‘ is the presence of the leading correction term blLY1. 
Only in the spin-1 model (model 3). where the amplitude b, is small and the term thus may 
be omitted, was a reasonable determination possible, yielding y’ = -2.1 (1). This could 
be a second temperature-like irrelevant exponent, although we have not observed it in the 
analysis of the ratio Q or the energy-like quantity Snn. In Q, it may have been masked by 
the term b2Ly1, but this is less likely for S,,, where the exponent of the second correction 
term is approximately equal to -2.4. On the other hand, the contribution b2LY’ could, 
in principle, be due to a second relevant magnetic exponent y h .  Taking into account the 
dependence of F on an additional magnetic scaling field 5 yields 

(25) 

This results in extra terms proportional to Lh+jb-w and L2s-w in the scaling formula for 
g, corresponding to correction terms Lw-Jh and L2$-’- in equation (24). Remarkably, 
the second magnetic exponent = 0.42 115,191 has just the right value. However, its 
identification in terms of a redundant operator [15,19] would exclude its contribution to 
thermodynamic quantities. Table 9 shows the main results of an analysis for system sizes 
L > 8, where we have included three correction terms, bl LYi. b2LY’ and b3L2f. with the 



[sing universalitj in three dimemioris: a Monte Carlo study 6301 

exponents yj and y‘ fixed at -0.83 and -2.1, respectively. We have not included the term 
proportional to L2Y- because 61 is already quite small. The errors quoted in the table include 
the uncertainties in K,, yt, yi and y r .  The estimates of yh for each of the three models are 
consistent and in agreement with the existing literature. 

Tahle 9. Results of a daw. andysis of the spin-spin correlation function g for the three models. 

Model I Model 2 Model 3 

j h  2.480 (2) 2.482 (3) 2.182 (3) 
a11 0.77 (2) 0,547 (15) 0.453 (14) 
ai 2.45 (4) 3.07 (6) 1.18 (2) 
a2 3.44 (14) 7.2 (3) 1.30 (3) 
bi -0.22 (IO) 0.08 (8) 0.01 (7) 

Tahle 10. Results of a data analysis of the susceptibility K for the three models. 

Model I Model 2 Model 3 

yh 2.4812 (11) 2.4817 (IO) 2.4826 (9) 
CO -0.6 (2) -0.20 (7) -0.50 (6) 
00 1.559 (16) 1.126 (9) 0.926 (7) 
(11 4.88 (6) 6.16 (8) 2.36 (3) 
n~ 6.9 (4) 14.4 (7) 2.62 (7) 
bt -0.37 ( 5 )  0.14 (3) -0.05 (2) 

5.4. The magnetic susceptibility 

The magnetic susceptibility x can be calculated from the average square magnetization, 
which is sampled in the Monte Carlo simulations, 

x = L d ( m 2 ) .  (26) 

Using equations (9), (IO) and (12), we find for the finite-size scaling behaviour: 

x = p ( t )  + L 2 l h - d f ( Z ) ( L % ,  L”u, 1) (27) 

which yields, upon expansion in f and U, 

x =CO +C,(K”” - K,) + ... 
+ L 2 ’ h - d [ ~ o + ~ ~ ( K n ~  - Kc)Ly’+a2(Knn - K,)L2yl+biLh +... ] (28) 

 where^ the ai. bi and cz are non-universal coefficients. In table IO, we present the results 
of fits of the susceptibility for the models 1-3 at the critical points listed in table 6. For 
model 1, system sizes L > 8 were included in the analysis and for models 2 and 3, which 
exhibit smaller corrections to scaling, all system sizes L 2~ 6 were used. The coefficient 
cI in equation (28) was set to zero in all analyses, because the term containing it is much 
smaller than the (Knn - &)-dependent term with amplitude al. The errors include the 
margins due to the uncertainties in K,, yj and yt. The ratio between the coefficients a. 
for the three models is in excellent agreement with the ratio between the coefficients &.in 
table 9. The same holds for the coefficients a l ,  a2 and bl .  
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On the other hand, one might derive the scaling formula for x from that of the spin-spin 
Correlation function g, because x is equal to the spatial integal of g, 

Since the integral in equation (29) preserves the form of the corrections to scaling in g, we 
expect the same type of corrections in the correlation function and the susceptibility. Only 
the terms proportional to CO. CI,  . . . in (28), which arise from the analytical part of the free 
energy, are absent in equation (24). These contributions come from the small-r cutoff in 
equation (29). Thus, we have included in the scaling formula the additional corrections that 
we observed in the analysis of the correlation function. As the term proportional to LY' 
interferes with the constant conaibution CO, we have only included the correction b2L2f .  
This allowed us to include system sizes L 5 for all three models. The results, which 
are presented in table 11, are consistent with those obtained in the previous analysis. Now, 
the errors also include the margins due to the uncertainty in y'. Just as in the analysis 
of the correlation function, we find consistent results for yb, which are in agreement with 
the literature. However, the values for yh are more accurate than those obtained in the 
previous subsection and our resulting estimate for the magnetic renormalization exponent 
is yh = 2.4815 (15). The error margin amounts to two standard deviations, in order to take 
into account any arbitrariness in the fit formula. 

Table 11. Results of a data analysis of lhe susceptibility K for the three models, where all 
system sizes L > 5 were employed and an additional correction to scaling was included in the 
scaling formula. 

Model I Model2 Model 3 

yh 2.4813 (11) 2.4810 (14) 2.4817 (13) 
ai -0.5 (2) 0.0 (2) -0.33 (13) 
(io 1.558 (15) 1.134 (13) 0.934 (IO) 
01 4.87 (6) 6.18 (8) 2.37 (3) 
02 6.9 (3) 14.5 (7) 2.64 (7) 
bi -0.37 (5) 0.10 (6) 0.01 (13) 
b2 -5 (2) -2.9 (16) -2.6 (13) 

5.5. The temperature derivative of x 
In the simulations, we have also sampled the correlation between m2 and SDn. This allows 
us to calculate the temperature derivative of the susceptibility, 

The scaling behaviour of this quantity can be derived directly from that of the susceptibility, 
equation (28). 

a K"" 
(31) 

The term with amplitude 61 comes from a term proportional to (KO"- K,)LYl+X, included in 
the ellipsis in equation (28). Just as in'the analysis of the spin-spin correlation function, the 
residuals for all three models indicated the presence of an additional correction to scaling 

_-  ax - Cl +. " + L*yb+y+al + 2a2(Kn, - K&" + 3a3(K,. - KC)2L2Y' + '. . 
+i;lL" + . . .]. 
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~zLY', which indeed follows from the discussion in the previous subsection. Table 12 
shows the results of an analysis at the critical points listed in table 6, where this additional 
correction was included. All system sizes L 3 6 were used. The exponents yi and y' were 
kept fixed at -0.83 and -2.1, respectively. The error margins include the uncertainties in 
K,, yi and y'. The fit yields values for (2yh + y t )  and the results for yt have been obtained 
by fixing j h  at the best estimate from the previous subsection. This implies an additional 
error margin of 0.003 for yt. For models 1 and 3, there is a reasonable agreement between 
the amplitudes a, and a2 as shown in table 11 and those in table 12. The differences are 
explained from the approximations in the scaling formulae. For model 2, no agreement is 
expected, because an additional term arises in the temperature derivative of the susceptibility 
due to the temperature dependence of Ka. (the ratio between K,, and K3, is fixed). 

Table 12. Results of a data analysis of the temperature derivative of the susceptibility a x / a K n .  
for the three models, where all system sizes L > 6 were employed and an additional correction 
to scaling was included in the scaling formula. 

Model 1 Model 2 Model 3 

yr 1.585 (3) 1.584 (4) 1.587 (4) 

at 5.11 (9) 3.73 (6) 2.39 (5) 
n2 6.46 ( I O )  8.04 (9) 2.53 (3) 
f 3  -2.4 (4) ~-4 .4  (5) -0.53 (5)  
bi -2.6 (3) 0.1 (3) -0.1 (2) 
& -13 (3) -6 (2) -5.5 (16) 

CI 31(11) l ( 9 )  12 (7) 

5.6. The temperature derivative of Q 

Another quantity of interest correlates the magnetization distribution with the nearest- 
neighbour sum &": 

The determination of m and S,, during the simulations enables the sampIing of this quantity 
with very little additional effort. Returning to equation (14) and noting that the ellipses 
include terms proportional to (KO" - K,)LY1+Y3 and to ( K n n  - K&h, we obtain the finite- 
size scaling behaviour 

_-  a Q  - Ln[,o + ui ( K m  - KJL' + u2(Knn - kc)zLzyL +. . . 
a K,, 

+"L" + wLn-" + . . .]. (33) 
The numerical data for the three models were subjected to a fit on the basis of 

equation (33), where we have included system sizes L > 7 for model 1 and L > 5 
for models 2 and 3. In this case the leading power of L stands well apart from the less 
singular terms and the results for yt (table 13; uncertainties in Kc,  yi and yi, are included in 
all error margins) appear to be more accurate than those in the preceding subsections. The 
results suggest that the correction due to the leading irrelevant field is very small. Therefore 
we have repeated our analysis with U fixed to zero. We expect this to work especially well 
for models 2 and 3, where the irrelevant field is notably smaller than that in the first model. 
Indeed, we have obtained accurate and consistent results for the models 2 and 3, as shown 
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in table 14. These results, together with those presented in table 13, lead us to our final 
result, yI = 1.587 (2). Just as in the final result for yh in section 5.4, we quote here an error 
margin of two standard deviations. 

H W J Blote et QI 

Tdble 13. Results of a d m  analysis of the derivative of the quantity Q with respect to the 
nwest-neighbour coupling Km. 

Model I Model 2 Model 3 

yt 1.589 (2) 1.587 (2) 1.5878 (14) 
uo 1.341 (14) 1.351 (9) 1.057 (6) 
U1 -0.21 (3) 0.00 (5 )  -0,012 (9) 
uz -10.7 (6) -28.3 (11) -4.80 (12) 
U -0.01 (6) 0.00 (3) 0.02 (2) 
ut -0.5 (2) 0.46 (8) -0.13 (5) 

Table 14. Results of a data analysis of the derivative of the quantity Q with respect to the 
nearest-neighbour coupling K, for models 2 and 3, where the leading correction to scaling has 
been omitted. 

Model 2 Model 3 

yt 1.5868 (3) 1.5867 (2) 
ae 1.3512(11) 1.0623 (7) 
U I  0.00 ( 5 )  -0.013 (9) 
uz -28.3 (11) -4.81 (12) 
w 0.457 (15) -0.091 (9) 

Table 15. Results of B data analysis assuming universality of QL = (m2)2,/(m4)r for the 
three investigated Ising models,. System sizes L 4 8 were included in the fit. The table lists 
non-universal pmmeters: the critical points and the amplitudes of the Iwo correction terms. 
Furthermore, this analysis yielded the universal parameters Q = 0.6232 (2) and yi = -0.78 (3). 

Model I Model 2 Model 3 

K, 0.221 6550 (6) 0.1280037 (4) 0.3934217 (8) 
bi 0.086 (8) -0.040 (5) -0.001 (2) 
bz 0.18 (3) 0.34 (2) 0.000 (14) 

6. Simultaneous fits for the three models 

Considering the results in the preceding sections, it is reason, to assume now iat 
universality is UQCZ~Y satisfied for the three models under investigation. Thus we made 
a fit of  the combined data for the ratio Q, allowing only single values of Q and yi for 
the three models. The other parameters U , ,  9, K,, bl and bz (see equation (14)) are non- 
universal and occur in triplicate. Now, system sizes L c 8 had to be discarded, except 
when an additional correction to scaling proportional to L-*>h was added to the scaling 
formula. In the latter case, all system sizes L 2 5 could be included. Some of the results 
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Table 16. Results of a data analysis assuming universality of QL = ( m z ) i / ( m 4 ) ~  for the 
tluee investigated Ising modcls. System sizes L > 5 were included in the fit. The '+le lists 
non-universal panmeters: the critical points and the amplitudes of the three correction terms. 
Furthermore, this analysis yielded the universal parameters Q = 0.6233 (2)and yi = -0.82 (3). 

Model I Model 2 Model 3 

K, 0.221 6546 (5) 0.1280039 (4) 0.3934220 (7) 
bi 0.096 (7) -0.046 (5) , -0.002 (2) 
b2 0.15 (3) 0.38 (2) 0.007 (12) 
bg -4.9 (8) -1.7 (7) -1.7 (5) 

are summarized in tables 15 and 16, respectively, ~ where the error margins include the 
uncertainty introduced by the error in y t  and yh. 

Let us now compare the results of the,various fits. In the first place, we see that the 
results in tables 15 and 16 are consistent, just as was the case for tables 5 and 6 in section 4. 
Also the values for the universal quantity Q, 0.6232 (2) and 0.6233 (2). respectively, agree. 
Secondly, the simultaneous fit with only the first two corrections to scaling (table 15) yields 
results that are consistent with those presented in table 5. Only the amplitude bi and the 
critical coupling Kc for model 1 appear to be somewhat too low in table 5, as we already 
had seen from the second fit in section 4. Finally, when we compare the results in tables 6 
and 16, i.e. including a third correction to scaling, as well as the corresponding Q values, we 
see a very good agreement. These comparisons, in addition to the fact tha! the term b3LB 
allowed us to include all system sizes L 5 ,  lead us to the conclusion that the fits presented 
in table 16 can be considered as the most accurate results. In addition to the non-universal 
constants given in the table and the universal amplitude ratio Q. this analysis yielded the 
(universal) irrelevant exponent yi = -0.82 (3). This value is in very good agreement with 
that obtained by Nickel and Rehr [SI. Although there is one more unknown (yi), the results 
for Q and Kc obtained in this section are more accurate than those of the three separate 
fits. One of the reasons is that the fit for model 3 is insensitive to the value of yi, so that, 
e.g., Q is determined accurately, 

Table 17. Some recent results for the renormalization exponents. The estimate for yi from [3] 
has been calculated from the value for 8 = -yi/yt presented in this reference and the value for 
yt as calculated in the present work. 

Yew Y, Yh YI 

Present work 1995 1.587 (2) 2.4815 (15) -0.82 (6) 
Kolesik and Suzuki I I I] 1995 1.586 (4) 2.482 (4) 
Gunman and Enting [IO] 1994 1.580 (3) 
Landau [21] 1994 1.590 (2) 2.482 (7) 
Baillie er nl [I91 1992 1.602 (5) 2.4870 (IS) -0.8 to -0.85 
Nickel (91 1991 1.587 2.4823 -0.84 
Nickel and Rehr I81 1990 1.587 (4) 2.4821 (4) -0.83 (5) 
Le Cuillou and Zinn-Justin [2] 1980 1.587,(4) 2.485 (2) -0.79 (3) 
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7. Discussion and conclusion 

Let us summarize our final results for the renormalization exponents: yr = 1.587 (2). 
yh = 2.4815 (15), yj = -0.82 (6). To allow for any residual dependences on the choice 
of the fitting formulae, we list error margins of two standard deviations. In table 17 we 
compare our results with some recent estimates obtained by various methods. Our result for 
the temperature exponent is lower than that of Baillie eta1 [19], obtained by the Monte Carlo 
renormalization method. This could be explained by a violation of hyperscaling. However, 
the accurate agreement between our result and that of coupling-constant expansion [2] ,  E- 

expansion [6], series expansions [8,9] and the coherent-anomaly method [l l] makes this 
explanation less likely. We notice that our result for y ,  is markedly higher than the recent 
series-expansion result of Guttman and Enting [lo]. The result for the magnetic exponent 
is also in good agreement with most other estimates, although the result of Baillie et al 
lies significantly higher than the majority of the results. Also the result of Le Guillou and 
Zinn-Justin obtained by coupling-constant expansion 121 seems somewhat too high. The 
results for the leading imelevant exponent are not very accurate, but consistent. We notice 
that the fractions and 67 are good approximations for y ,  and y h ,  respectively. For easy 
reference, table 18 summarizes the exponents a,  p, y ,  6 ,  q ,  v and 0 as calculated from our 
results for y , ,  yh and yi, on the assumption that the hypotheses of scaling and hyperscaling 
are valid. 

H W J Blore et a1 

U 

Table 18. The standard critical exponents as well as Wegner’s correction-to-scaling exponent B 
as calculated from our best estimates for y,, Yh and x. 

Exponent Expressed in RG exp. Valve 

cf 2 - dlyt 0.110 (2) 

Y (2fi - d)/Yr 1.237 (2) 

” i /Yt  0.6301 (8) 
e -YilYt 0.52 (4) 

B (d - YhfiYt 0.3267 (IO) 

6 Yhl(d  - Yh) 4.786 (14) 
‘I 2 - 2 ~ + d  0.037 (3) 

Furthermore, we can calculate the Binder cumulant U from our estimate for Q, using 
the relation U = 3 - l /Q, which yields U = 1.3956 (10). Only a few accurate results 
are available for this quantity (see, e.g., [45] for a review) and one of the most accurate 
estimates up till now is U = 1.403 (7) [46]. Our result is in agreement with this and 
other estimates, but its accuracy is markedly higher. We have not sampled the characteristic 
length CL defined by Baker and Kawashima [47] in our simulations. Thus, we have no 
result for the renormalized coupling constant g‘, which differs from the Binder cumulant 
by a factor (L / f#  [47]. 

Table 19 presents a comparison of recent results for K, of the spin-f nearest-neighbour 
king model. Again, it should be noted~that the error margin of the result obtained in the 
present work amounts to two standard deviations. It can be seen that the amplitude ratio 
Q, which is used in this work, provides a good means of obtaining an accurate estimate for 
the critical coupling. We conclude that the conjecture of Rosengren [48] is not correct. The 
result of Ferrenberg and Landau deviates by 1.8 combined standard errors, but the newest 
estimate of Landau differs by only 1.2 standard deviations from the result presented here. 
The difference with [20] is 1.6 standarderrors and is partly due to statistical errors (the data 
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Table 19. Summiuy of recent results for the critical point of the spin-f Ising model with 
nearest-neiszhbour cowlings. 

~~ ~ 

Reference Year Value 

Present work 
Landau 1211 
Blote and Kamieniarz [201 
Balllie et 01 [I91 
Livet [361 
Ferrenberg and Landau [I81 
It0 and Suzuki I171 
Blote etal [I41 
Rosengren (conjecture) 1481 

1995 
1994 
1993 
1992 
1991 
1991 
1991 
1989 
1986 - 

0.2216546 (IO) 
0.221 6576 (22) 
0.221 648 (4) 
0.221 652 (3) 
0.2216544 (10) 
0.221 6595(26) 
0.221 657 (3) 
0.221 652 (5) 
0.221 6586(0) 

used in this work include those of [ZO] but are much more accurate and include L = 40 
data), and partly because a term with exponent y2 was not included in the scaling formula 
for the ratio &. Finally, we want to stress the importance of the spin-1 model. Since the 
corrections to scaling are small in this model, it is very suitable for the determination of 
universal quantities. 

Acknowledgments 

We thank A Compagner for contributing his knowledge of shift-register-based random- 
number generators. We are much indebted to M E Fisher, M P Nightingale, L N Shchur 
and A L Talapov for valuable discussions, and to F Livet for supplying the details of the 
random-number generator used in [36]. This work is part of the research programme of the 
‘Stichting voor Fundamenteel onderzoek der Materie (FOM)’ which is financially supported 
by the ‘Nederlandse Organisatie voor Wetenschappelijk Ouderzoek (NWO)’. 

Appendix. Experimental results 

In this appendix, we have collected a number of experimental results for the various critical 
exponents of phase transitions which have been compared to results for the 3D king 
universality class. Only results published after 1980 are included. For binary mixtures, 
older results can be found in, e.g., 1491. The substances are grouped into four different 
subsets: unary systems, mixtures, magnetic systems and micellar systems (microemulsions). 
In general, the results agree very well with the theoretical values, but there are several 
remarkable discrepancies. Here, we only mention those measurements that differ by more 
than two standard deviations from our results. Results without error estimates are not taken 
into account. 

The value for y found in [70] lies much below the theoretical estimate. In [I151 the 
results for both y and U do not appear to be Ising-like, as the authors have already noticed. 
The results for SF6 presented in [63] are included, because the authors find mean-field 
values for the critical exponents, whereas the other results for the same substance appear to 
fall in the Ising universality class. For CY, a range of values is found in [74], the lower end 
of which coincides with the theoretical value. In [105], two values of CY are presented for 
MnF2, 2.40 above and 3.50- below the theoretical value, respectively. Several very accurate 
results for the critical exponent (3 are presented in [57,58,66], which all lie much above the 
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Table Al.  The wious substances are grouped 3s follows: (U' stands for unary systems, 
h x '  for mixtures, 'mg' for magnetic systems and 'mi' for micellar systems (microemulsions). 
a, p, y .  8 and Y denote the standard critical exponents; 0 is Wegner's correction-to- 
scaling exponent: the critical exponenls which carry B tilde refer to Fisher's 'renormalized' 
critical exponents [SO]. Abbreviations used AOT = di-2-ethylhexylsulfosuccinate; BHDC 
= benzrldimethyl-n-hexadecylammoniumchloride; CiEi = CHI.(CH~)~-I.(O.CH~,CH~)~.OH 
HFC-32 = difluoromethane; ~HFC-IZS = pentafluoroethene; RI14 = CCiF2.CClF2; R j j B l  = 
CBrF,; RI2 = CChF?; R22 = CHClF2. 

Exponent Value Ref. 
.. .... .. .,. ..... , , ., , . , ,, , ,... , , ,. ,, , , ,, , , ,, , , . , Type 

~~ 

Substance 

CO2 

cs 

Ethane 

Fluoroform 
GeHd 
HZ 

HD 
HFC-32 
HFC-125 
Ne 
Ne, N2 

R114 
R13B1 
R I 2  
R22 
Rb 

SF6 

U 0. 0.111 (I)  1511 
B 0.324 (2) 

U 
U~ 
U 

U 
U 

a 
B 
B 
8 
B 
B 
B 
Y 
8 
B 
B 
B 
B 
B 
e 
e 
B 
B 
B 
B 

B 
B 

0. 

a 
B 

0.13 (3) 
0.355 (10) 
0.327 (2) 
0.46 (4) 
0.329 (1) 
0.333 (8) 
0.326 (3) 
1.19 (5) 
0.46 (2) 
0.352 (1) 
0.345 (1) 
0.341 (2) 
0.3575 (IO) 
0.327 (2) 
0.51 (3) 
0.49 (5) 
0.312 
0.340 
0.337 
0.348 
0.14 (3) 
0.36 (1) 
0.48 (3) 
0.325 (5) 
0.338 

1521 

E31 

1541 
1551 

1571 
1581 
WI 
1571 
1591 

. .  
1641 
1651 

0.350 (4) [66] 
0.355 [671 

0.340.U) 
1.246 (IO) 1691 

l,l.l,%telrafluorcethane U B 
Xe U Y 

Methanol t hexane 

Methanol t cyclohexane 

mx Y 1.09 (3) 1701 
1.04(3) 
0.33 (2) 1711 

' 1.26(5) 1721 
mx ;-= 

Y 
Y 0.64 (2) 

Methanol t n-heptane mx B 0.3337-(5) 1731 
U 0.114.35 1741 

Methanol + iswctane mx B 0.323 (9) 1751 
"-hexane + n-tetradecaRuomhexane mx B 0.35 (1) [761 
Acetonitrile t cyclohexane mx B 0.322 (4) 1771 
Butylcellosolve + H20 mx CI 0.077 (41) [781 

0.319 (14) 
1.24 (1) 

B 
Y " 0.606 I181 
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Table A l .  (Continued) 
~. . 

Substance Type ’ Exponent Value R e t  

Iso-butoxyethanol t H20 
Isobutyric acid t HzO 

mx 
mx 

Deuterated cyclohexane + cyclohexane t HzO mx 

n.n-dimethylacetamide + octane mx 

npdimethylacetamide + decane mx 

Ethylammoniumnitrate + n-octanol 
Ethyleneglycolmonoisobutylether + HzO 
2,6-lutidine t H z 0  
Nitroethane + cyclohexane, benzonitrile + isooctane 
Nitrobenzene t isooctane 
Nitrobenzene + decane t benzene 
Perfluoroheptane t CC4 
Triethylamine + HzO 
Triethylamine + HzO + Dz0 
Trimethylethylammoniumbromide + chloroform 
Tetrachloromethane + tetradecaRuoromethylcyclohexane 
Terra-n-penrylammoniumbmmide t HzO 

CO2 + &butane 

CO1 t n-decane 

Na t NH3 

Na + NDI 

mx 
mx 
mx 
mx 
mx 
mx 
mx 
mx 
mx 
mx 
mx 
ma 

mx 

my 

mx 

mx 

a 0.10s (8) 
B 0.326 (3) 
Y 1.19 (21) ” 0.654 (9) 
B 0.323 (3) 
B 0.326 (2) 
P 0.322 (2) 
B 0.324 (5)  
B 0.329 (2) 
P 0.329 (4) 
B 0.333 (2) 
v 0.610 (6) 
B 0.332 (2) 
B 0.336 (30) 
6 0.325 (5)  
a 0.145 (35) 
6 0.376 (8) 
B 0.324 (5) 
e 0.52 0) 
01 0.1 10 (4) ” 0.621 (3) 
B 0.289 (6) 
P 0.3370 (22) 
B 0.3190 (11) 
B 0.3167 (16) 
B 0.359 
Y 0.66 
B 0.368 ” 0.616 
B 0.34 (1) 
e 0.46 (3) 
Y 1.228 (39) 
Y 1.2400 (157) 
Y 1.223 (IS) 
‘I 0.0300 (15) 
9 0.0317 (13) 
9 0.0302 (15) ” 0.6279 (80) 

~ ~. ~ ~~ 

mg - a  , 0.109 (6) rro21 
mg B 0.33 ( I )  [IO31 

COFZ 
DyAlG 

FeFz ~ . . .  . mg a 0.111 (7) [lo51 
a 0.1 15 (4) 
a 0.11 (3) [I061 
P 0.325 (2) [ IO7 
Y 1.25 (1) [IO81 

MnBq m s  a 0.118 (7) 11091 
MnClz mg P 0.297 (3) ~ [I101 

FeClz mg 0 0.15(4) [io41 

MnFz mg a 0.123 (5) [io51 
a 0.091 (5) 

NdRuzSiz mg a 0.11 (3) Dl11 
UJP4 mg B 0.315(15) [I121 

B 0.313 (15) 
Y 1.25 (2) 
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Table Al. (Continued) 

Substance Type Exponcnt VdUC Ref. 

Y 1.26 (10) 11131 AOT t n-decane + H 2 0  

Benzene t BHDC + H20 

2-butoxyethanol t D20 

C6Ej t HzO 

CsE4 t HzO 

CioEa + HzO 

CnEs t Hz0 

CUES t DzO 

C t z b  + HzO 

CtzE8 t DzO 

CnEs + HzO 

Sodiumdodecylsulphate + butanol t NaCl 

Cationic surfactant in aqueous salt soluiion 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

mi 

. .  
Y 1.22 ( 5 )  
Y 1.61 (9) ” 0.61 (6) ” 0.75 (5) ” 0.68 (8) ” 0.72 (4) 

Y 1.18 (3) ” 0.60 (2) 
Y 1,216 (13) 
v 0.039 (4) 
v 0.623 (13) 
c 0.11 (4) 
B 0.327 (4) 
Y 1.24 ( I )  
Y 1.241 (16) 

B 0.34 (8) 

‘I 0.016 ( 5 ) .  ” 0.627 (6) ” 0.632 (11) 
Y 1.237 (7) 
Y 1.243 (7) ” 0.630 (12) ” 0.630 (18) 
Y 1.25 (2) ” 0.63 (1) 
Y 1.17 (11) ” 0.65 (4) 
Y 1.2 (1) ” 0.60 (5) 
Y 1.2 ( I )  ” 0.60 (3) 
Y 1.21 (2) ” 0.62 (2) 
Y 1.20 (4) ” 0.63 ( I )  ” 0.62 (3) ” 0.64 (4) 
U 0.63 ( 5 )  
B 0.375 (10) 
Y 1.39 (4) ” 0.70 (3) 

result in table 18. On the other hand, the accurate results in [95,110] lie much lower than 
the theoretical prediction. The differences in [52,84,86] are less severe, but all results in 
these references lie between 2 and 3 combined standard errors above the theoretical value. 
Also the results for ,3 presented in [96j deviate by many standard errors from the theoretical 
value, although the authors of this reference state that they consider the differences as not 
significant. The authors of [73] found a good fit of their data to a value of p = 0.3337 (3, 
but conclude that this value is probably too high. 

For U, very low values have been found in [85,94], whereas the value in [81] lies 2.6 
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standard errors above our result. In [1191, the result 17 = 0.016 (5) is given, which deviates 
by about four combined standard deviations from the best theoretical values. Nevertheless, 
the authors of 11191 consider it to be in good agreement. 

In general, it is difficult to assess the source of the discrepancies noticed here, although 
there certainly are cases where crossover phenomena and corrections to scaling were not 
taken into account in the data analysis. 
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