
THE JOURNAL OF CHEMICAL PHYSICS 140, 064903 (2014)

Efficient and accurate simulation of dynamic dielectric objects
Kipton Barros,1,2,3,a) Daniel Sinkovits,1 and Erik Luijten1,2,b)

1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
2Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston,
Illinois 60208, USA
3Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 10 December 2013; accepted 13 January 2014; published online 12 February 2014)

Electrostatic interactions between dielectric objects are complex and of a many-body nature, owing to
induced surface bound charge. We present a collection of techniques to simulate dynamical dielectric
objects. We calculate the surface bound charge from a matrix equation using the Generalized Minimal
Residue method (GMRES). Empirically, we find that GMRES converges very quickly. Indeed, our
detailed analysis suggests that the relevant matrix has a very compact spectrum for all non-degenerate
dielectric geometries. Each GMRES iteration can be evaluated using a fast Ewald solver with cost
that scales linearly or near-linearly in the number of surface charge elements. We analyze several
previously proposed methods for calculating the bound charge, and show that our approach compares
favorably. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863451]

I. INTRODUCTION

Electrostatic interactions can induce complex behavior in
biological,1–3 colloidal,4, 5 and other6, 7 soft-matter systems.
Large-scale molecular dynamics and Monte Carlo simulation
of such mesoscale systems is only practical when the solvent
is treated as an implicit medium. Moreover, the complexi-
ties associated with induced polarization of dielectric media
and the resulting effective many-body charge interactions are
frequently ignored in computational modeling. We have de-
veloped an efficient method to include complex dielectric in-
teractions in the numerical investigation of dynamical charge
and dynamical (i.e., mobile) dielectric media. In Ref. 8, we
applied this method in the first study of dynamical colloids
with dielectric many-body interactions and observed surpris-
ing self-assembly phenomena. Here, we present a detailed ac-
count of the methodology.

Complex dielectric interactions arise because the dielec-
tric medium becomes electrically polarized in the presence
of an applied electric field E. The polarization field P cor-
responds to a local dipole density that partially cancels the
applied field. The dielectric constant κ of a material controls
the linear response of polarization to the applied field (e.g., κ

≈ 2.6 for polystyrene and κ ≈ 80 for water at room tempera-
ture). Within a uniform medium, polarization simply screens
the free charge, effectively reducing the electrostatic energy
by a factor κ > 1. The situation is far more interesting in re-
gions where κ(r) varies, such as at interfaces between differ-
ent media. Here, the divergence of the polarization field gives
rise to bound charge that depends nonlocally on free charge
sources, and mediates effective interactions between charged
objects.

Analytic solution of polarization charge and dielectric
interactions is limited to the simplest geometries. Dielec-
trophoresis has long been studied,9, 10 but results are mostly
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limited to simple dielectric objects.11 An implicit series ex-
pansion is known for the system of two dielectric spheres.12

For more than two dielectric spheres, numerical treatment is
required.13, 14 Ion dynamics in the presence of simple dielec-
tric geometries (e.g., a sphere or cylinder) can be solved by
specialized simulation techniques.15, 16 Explicit simulation of
the solvent is, of course, also possible.16 Several other bulk
methods are available. Clever Monte Carlo sampling of the
full polarization field allows generalization to nonlinear di-
electric media.17, 18 Alternatively, Car–Parrinello molecular
dynamics may be used to evolve the polarization field.19, 20

In this paper, we analyze and extend an efficient method
to simulate electrostatic systems containing isotropic, linear
dielectric media. The electrostatic energy and forces follow
directly from the bound charge ρb(r), which we obtain by
solving a matrix equation involving the known free charge
ρf (r) and dielectric geometry κ(r). If the material boundaries
are sharp, ρb(r) reduces to a surface charge density σb(r),
which in turn greatly reduces the computational cost. This
general “boundary-element” approach to dielectrics has been
independently proposed several times, in multiple forms.21–26

We compare these methods, and argue that the surface bound
charge σb(r) is most efficiently calculated using the General-
ized Minimum Residual (GMRES) method.27 Each GMRES
iteration requires a single matrix–vector product, which can
be calculated efficiently28, 29 using a fast Ewald (Coulomb)
solver.30 For example, the matrix–vector product may be im-
plemented with the Fast Multipole Method (FMM)31, 32 or
Lattice Gaussian Multigrid33 at a cost that scales linearly in
the number of discrete charge elements n.

Empirically, we observe that GMRES converges rapidly
to the solution σb(r) = x(r) of the matrix equation Ax = b.
This fast convergence may be attributed to the small condi-
tion number of the linear operator A.34 We show analytically
that the eigenvalues of A are bounded by κmin ≤ λ ≤ κmax,
the extremal dielectric constants of the system. We find that
the ratio of extreme eigenvalues, λratio = λmax/λmin strongly
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controls GMRES convergence. The worst-case behavior, λratio

= κmax/κmin is realized in the dielectric slab geometry. How-
ever, for “typical” geometries with non-degenerate aspect ra-
tios, we argue that λratio is of order unity, independent of the
dielectric constants κmax and κmin, provided that we fix the
net charge on each dielectric object to its exact value (thereby
eliminating an outlying eigenvalue). By employing this and
other optimizations, we find that GMRES typically converges
to order 10−4 accuracy in only 3 or 4 iterations, each of which
scales linearly in n. This high efficiency has enabled our study
of dynamical dielectric objects8—to our knowledge, the first
of its kind.

The remainder of this paper is organized as follows. In
Sec. II, we review the formulation of linear dielectrics as a
matrix equation to be solved for the surface bound charge.
In Sec. III, we analytically bound the spectrum of the relevant
operator A, and argue that it is especially well conditioned for
typical dielectric geometries. In Sec. IV, we discuss a collec-
tion of techniques that, in combination, enable accurate and
efficient simulation of dielectric systems. Finally, in Sec. V
we analyze the convergence rates of several recently pro-
posed alternative methods, and argue that the combination of
GMRES with a fast Ewald solver is optimal.

II. REVIEW OF LINEAR DIELECTRICS

A. Electrostatic energy in a dielectric medium

In the absence of a time-varying magnetic field, the elec-
tric field satisfies35

∇ · E = ρ/ε0, (1)

∇ × E = 0, (2)

with ρ(r) the charge density field and ε0 the vacuum permit-
tivity. The Helmholtz decomposition gives the electric field as
E = −∇ψ , where the potential satisfies ∇2ψ = −ρ/ε0. It will
be convenient to denote the solution as ψ = Gρ/ε0, where

G = −∇−2 (3)

is a linear operator. Its integral representation is

(Gρ)(r) =
∫

V

G(r − r′)ρ(r′) dr′, (4)

where the Green function G(r) satisfies ∇2G(r) = −δ(r). If
the system volume V is infinite, G(r) = 1/4π |r|. Otherwise,
we apply periodic boundary conditions and Ewald summa-
tion. The eigenvectors of G are Fourier modes labeled by
frequency k. Thus, G commutes with derivatives, G∇ = ∇G.
The eigenvalues of G are |k|−2. We enforce charge neutrality
to exclude the k = 0 mode, thus making G positive definite.
Finally, we note that G (like ∇2) is symmetric, 〈v,Gw〉
= 〈Gv,w〉, under the inner product 〈v,w〉 = ∫

V
v(r)w(r) dr.

This symmetry follows from the antisymmetry of ∇, which in
turn follows from integration by parts (surface terms do not
appear, by the construction of V ).

With this notation, the electric field becomes

E = −∇Gρ/ε0. (5)

In a dielectric medium, E will induce a polarization (dipole-
density) field P with associated bound charge density,

∇ · P = −ρb. (6)

Thus, the total charge has both free and bound components,

ρ(r) = ρf (r) + ρb(r). (7)

Moreover, the total (free) energy in a dielectric medium,

U = Uelec + Upol, (8)

is a sum of the bare electric field energy,

Uelec = ε0

2

∫
V

E2 dr, (9)

and the free energy Upol required to polarize the medium.36, 37

Assuming an isotropic medium, a Landau expansion in the
polarization field yields, to lowest order,

Upol = 1

2ε0

∫
V

P2

κ − 1
dr, (10)

where κ(r) ≥ 1 is the dielectric constant of the medium at po-
sition r. In equilibrium, P minimizes U. Thus, we may solve
δU [ρf , P]/δP = 0 to determine P. Beginning with Eq. (9),
we substitute Eqs. (5), (7), and (6), and then apply the sym-
metry of G to obtain

δUelec

δP
=

∫
V

E ·
(

−∇G δρ

δP

)
dr

=
∫

V

E · ∇G∇ · δP
δP

dr

= ∇G(∇ · E)

= −E. (11)

Furthermore, Eq. (10) implies

δUpol

δP
= P

ε0(κ − 1)
, (12)

so that the energy is minimized by a linear polarization field,

P = ε0(κ − 1)E. (13)

The quantity κ(r) − 1 is the electric susceptibility of the
medium at position r. Combination of Eqs. (8)–(10) yields
the total energy,

U = ε0

2

∫
V

κE2 dr. (14)

Treatment of nonlinear dielectric media is considerably
more difficult. Modifications to Eq. (10) would yield a nonlin-
ear relation E = δUpol/δP, which must be inverted to obtain
P and Upol[P]. The resulting energy will not be quadratic in E
and cannot be simply expressed as a sum of pairwise charge
interactions. A clever Monte Carlo approach to sample E and
P in nonlinear dielectric media was proposed in Ref. 17.

B. Bound charge formulation

We now proceed to construct a linear operator equation
for the bound charge, and then formulate the electrostatic en-
ergy directly as a function of free and bound charge.
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We insert Eqs. (13) into (6), and apply Eqs. (1) and (7) to
obtain

ρb = −∇ · P = −ε0∇ · κE + (ρf + ρb) (15)

and thus

ε0∇ · κE = ρf . (16)

This equation is perhaps more familiar as ∇ · D = ρf , with
D = ε0κE the displacement field. Substitution of Eq. (5) then
yields a fully explicit relationship between free and bound
charge,

A(ρf + ρb) = ρf , (17)

with

A = −∇ · κ∇G. (18)

The bound charge is the solution to the linear equation

Aρb = b, (19)

where the right-hand side is

b = (1 − A)ρf . (20)

When b, ρ f, and A are suitably discretized, one arrives at a
matrix equation equivalent to previous works.21–25

To formulate the energy as a function of charge, we sub-
stitute Eqs. (5) into (14) and integrate by parts,

U = 1

2

∫
V

(∇ · κE)G(ρf + ρb) dr. (21)

Applying Eq. (16), we obtain

U = 1

2ε0

∫
V

ρfG(ρf + ρb) dr = 1

2

∫
V

ρf ψ dr, (22)

so that the energy follows immediately after solving Eq. (17)
for ρb.

C. Charge screening

A charged object in a uniform dielectric medium experi-
ences screening due to bound charge induced in the medium.
Consider a compact domain 
 enclosing an object so that
there is uniform dielectric constant κbg on the boundary ∂
.
Applying the divergence theorem yields∫




∇ · E dr =
∫

∂


n̂ · E ds = κ−1
bg

∫
∂


n̂ · κE ds

= κ−1
bg

∫



∇ · κE dr, (23)

where, as usual, E(r) and κ(r) vary with position r.
Inserting Eqs. (1) and (16) gives the net charge in the

domain 
, ∫



(ρf + ρb) dr = κ−1
bg

∫



ρf dr. (24)

This identity states that the net charge on a dielectric object is
a function only of its free charge and the surrounding dielec-
tric constant κbg. Importantly, the dielectric constant of the
object itself does not appear.

In regions where κ(r) = κ0 is uniform, local equality
holds,

ρf (r) + ρb(r) = ρf (r)/κ0. (25)

This identity is also apparent from Eqs. (17) and (18) when
we set ∇κ = 0.

D. Energy scaling

The following scaling argument provides intuition about
when dielectric effects may be important.

A dielectric system is completely specified by the distri-
bution of free charge ρf (r) and the geometry of the dielectric
media κ(r). If we scale

ρf (r) → αρf (r), (26)

κ(r) → βκ(r), (27)

then by Eqs. (17) and (18) the net charge ρ = ρf + ρb scales
as ρ → (α/β)ρ. By Eq. (22), the energy scales as

U → (α2/β)U. (28)

Thus, the physics is invariant for any scaling that satisfies
α2 = β.

Now consider a system of objects with dielectric con-
stant κobj surrounded by a solvent with dielectric constant κbg.
Choosing α2 = β = 1/κbg, we find that the system is mathe-
matically equivalent to one in which the objects have dielec-
tric constant

κ̃ = κobj/κbg, (29)

the solvent has dielectric constant 1, and all free charges are
divided by κ

1/2
bg [but note that the bound charge transforms

in a more complicated way, ρb → (α/β)ρ − αρf = (κ1/2
bg

− κ
−1/2
bg )ρf + κ

1/2
bg ρb]. Thus, a single parameter κ̃ (the dielec-

tric contrast) controls the magnitude of dielectric effects.
Dielectric effects disappear when κ̃ = 1; it is natural to

guess that they are maximized in the limits κ̃ → {0,∞} of
conducting media (background or object, respectively). In
Appendix C, we plot the dielectric energies of a point charge
interacting with three prototypical dielectric objects, namely,
a sphere, a cylinder, and a slab. For the sphere, we find that the
scaled dielectric energy effectively saturates at κ̃ ≈ 10±1. We
speculate that such saturation is a universal feature of com-
pact objects. However, for extended geometries such as the
cylinder or the slab, the dielectric energy may grow large in
one (cylinder) or both (slab) conducting limits.

E. Reduction to surface charge

Much numerical efficiency is gained by allowing κ(r) to
vary only at sharp surface boundaries.21 We consider a point
r on a surface S that separates regions of uniform dielec-
tric constant. The surface normal n̂ is defined to point from
κ(r) = κin to κout. Volume charge densities reduce to surface
ones,

ρf (r) =
∫

S

σf (r)δ(r − s) ds, (30)
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ρb(r) =
∫

S

σb(r)δ(r − s) ds. (31)

Our goal is to derive the counterpart of Eq. (19) for the sur-
face bound charge density σ b. Naïve application of Eq. (16)
presents difficult singularities at the interface. To handle these
singularities, we begin by integrating ρ f over an infinitesi-
mal cylindrical (“pillbox”) volume 
 that encloses the surface
point r. The cross-section of 
 is a disk with area a,∫




ρf (r′) dr′ = σf (r) a. (32)

Alternatively, Gauss’s theorem applied to Eq. (16) gives∫



ρf (r′) dr′ = ε0(κoutEout − κinEin) · n̂ a, (33)

where Eout/in(r) = E(r ± εn̂) for infinitesimal ε. Thus

σf (r) = ε0(κoutEout − κinEin) · n̂. (34)

To relate Eout/in, we integrate the net charge density ρ = ρ f

+ ρb over the same pillbox volume 
. This time, we apply
Gauss’s theorem to Eq. (1), with the result

σf (r) + σb(r) = ε0(Eout − Ein) · n̂. (35)

We wish to relate σ f and σ b via the average field E(r)
= (Eout + Ein)/2, which is generated by external charges
ρ(r′) for r′ �= r. After some algebra, we obtain our desired
result,

κ̄(σf + σb) + ε0�κE · n̂ = σf , (36)

where

κ̄ = (κout + κin)/2, (37)

�κ = κout − κin. (38)

It is interesting to compare Eq. (36) with the volume-charge
equivalent,

κ(ρf + ρb) + ε0(∇κ) · E = ρf , (39)

obtained from naïve differentiation of Eq. (16) and substitu-
tion of Eq. (1). Since κ(r) is ill-defined at a sharp dielectric
boundary, reducing Eqs. (39) to (36) is nontrivial.

We can write a linear equation for the surface bound
charge analogous to Eq. (19),

Aσb = b. (40)

In this context, we replace Eqs. (18) and (20) with their
surface-charge equivalents,

Aσb = κσb + ε0�κEb · n̂, (41)

b = (1 − κ̄)σf − ε0�κEf · n̂. (42)

Here Eb(r) = ∫
S
σb(s)(r − s)/(4πε0|r − s|3) ds is the electric

field due to surface bound charge σ b. To allow for the pos-
sibility of non-surface free charge, we define Ef (r) = E(r)
− Eb(r) as the electric field due to all charges other than σ b.

F. Dielectric force

The definition of force is conceptually straightforward:
it is the negative gradient of energy with respect to object
position. However, evaluating this gradient for a dielectric
object is somewhat subtle: One must account for the com-
plicated variation in bound charge as the object moves.35 In
Appendix A, we provide a first-principles derivation of the
total force on a rigid dielectric object with fixed free charge,

F =
∫




f(r) dr, (43)

f(r) = κbg(ρf + ρb)E, (44)

where 
 is a volume enclosing the object and its surface
charge. Torque on the rigid object is calculated in the natu-
ral way from the force density f(r). If the object has the same
dielectric constant as the background, κ = κbg, then the net
charge is ρ f + ρb = ρ f /κbg [Eq. (25)], and F reduces to the
standard Coulomb force.

Equation (43) may be understood physically by the prin-
ciple of effective moments.11 We construct a virtual system in
which the dielectric object under consideration is replaced by
a virtual object with a dielectric constant κbg that matches the
background. The net charge density ρ = ρ f + ρb on the physi-
cal and on the virtual object is kept equal. Thus, by Eq. (5), the
electric field is also the same for the physical and the virtual
system. The principle of effective moments then states that the
force on the physical and on the virtual object is equal. In the
virtual system, κ(r) = κbg is uniform, and the usual Coulomb
force expression applies, F = ∫



ρ̃f E dr. Note that the virtual

free charge ρ̃f differs from the physical free charge ρ f. Af-
ter accounting for dielectric screening in the virtual system,
Eq. (25), we obtain ρ̃f /κbg = ρf + ρb. Combining the above
results, we reproduce Eq. (43).

G. Dielectric stress tensor

The standard formula for virial stress also applies to a
collection of dielectric objects,38

τ = − 1

|
|
∑

k

[
mkvk ⊗ vk + 1

2

∑
�

rk� ⊗ Fk�

]
, (45)

where rk� = rk − r� is the displacement vector between the
objects’ centers of mass, and Fk� is the force applied on di-
electric object k by the field E generated by object � [Eqs. (43)
and (44)]. For periodic boundary conditions, the sum over �

should be extended to include all periodic images. To address
a potential source of confusion: Although dielectric interac-
tions are many-body in nature, we are using the fact that, once
the bound charge is known, forces and energies can be ex-
pressed pairwise.38

III. PROPERTIES OF THE OPERATOR A

The efficient numerical solution of Eq. (19) depends on
the properties of operator A, Eq. (18). We demonstrate that A
is diagonalizable and that its eigenvalues are real and bounded
by the extremal dielectric constants contained in the system.
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Our results characterize the action of A for any free charge
density. In particular, they remain valid in the limiting case of
a surface charge density, in which the action of A is given by
Eq. (41).

The operator A = −∇ · κ∇G is not symmetric because
its (symmetric) factors, ∇ · κ∇ and G, do not generally com-
mute when κ(r) is spatially varying. Similarly, A is not nor-
mal (AAT �= ATA) and is not expected to have an orthogonal
eigenbasis. However, G is symmetric and positive definite so
we can diagonalize the symmetric operator,

G1/2AG−1/2 = −G1/2(∇ · κ∇)G1/2

= U�U−1, (46)

with unitary U . Thus, A can be diagonalized,

A = (G−1/2U)�(G−1/2U)−1. (47)

An arbitrary eigenvector v of A, with corresponding
eigenvalue λ, satisfies

0 = Av − λv

= (−∇ · κ∇G − λ)v

= −∇ · (κ − λ)∇Gv, (48)

where we have made use of the identity ∇2G = −1. We take
the inner product of this equation with the vector Gv and in-
tegrate by parts to get

0 =
∫

V

(κ − λ)|∇Gv|2 dr. (49)

This equation bounds the eigenvalues. If, for example, λ were
greater than κmax , the maximum value of κ(r) in the domain,
the right-hand side would assuredly be negative, violating the
equality. The conclusion is that

1 < κmin ≤ λ ≤ κmax, (50)

where the left-most bound is physical.
The condition number ‖A‖ · ‖A−1‖ of A is a good indi-

cator of the difficulty of solving the discretized matrix equa-
tion Ax = b. In particular, the condition number measures the
sensitivity of x to perturbations in b. A closely related quantity
is the ratio of extremal eigenvalues,

λratio = maxλ |λ|
minλ |λ| . (51)

Indeed, the condition number would be exactly λratio if A were
normal. In Sec. IV F, we will observe that the GMRES con-
vergence rate is strongly linked to λratio.

From Eq. (50), we see that λratio ≤ κmax/κmin. In
Appendix B, we solve the exact spectra for sphere
[Eq. (B11)], cylinder [Eq. (B22)], and slab [Eq. (B33)] ge-
ometries. After eliminating the constant eigenvector by fixing
the net object charge, Eq. (24), we find the following:

1. For the sphere, λratio ≤ 3, regardless of κout and κ in.
2. For the infinite cylinder, λratio is small, except if κ in

� κout, in which case λratio ≈ κ in/κout. However, if the
ratio of length L to radius R is not too big, then λratio

is always small. For L/R = 30, we estimate λratio ≈ 13,
even when κ in/κout → ∞.

3. The infinite slab is the worst-case geometry, and demon-
strates that the bounds of Eq. (50) are tight. However, as
in the cylindrical case, we expect better behavior when
the slab has finite extent.

These exact results suggest that for compact geometries (i.e.,
those with finite aspect ratio) the eigenvalue ratio λratio will be
order unity, independent of κmax /κmin .

In Appendix C, we plot the exact energies of the sphere,
cylinder, and slab as a function of dielectric contrast κ̃ . We
find that when λratio is small, the energies saturate quickly as
a function of dielectric contrast. Conversely, large λratio im-
plies stronger dielectric effects due to greater accumulation
of bound charge associated with long-wavelength eigenvec-
tors of A.

IV. IMPLEMENTATION DETAILS AND
CONSIDERATIONS

In a numerical study, it is convenient to calculate the en-
ergy via Eq. (22), i.e., in terms of free and bound charge. The
bound charge may be calculated by solving Eq. (19). In di-
electric geometries with sharp surface boundaries, we instead
solve Eq. (40) for the surface bound charge σ b. In this section,
we discuss how to discretize this linear equation for σ b and
solve it iteratively by the GMRES method.27 Each iteration of
GMRES requires only a single matrix–vector product, which
can be evaluated efficiently with a fast Ewald solver to solve
the vacuum electrostatic problem (several such routines are
reviewed in Ref. 30). The surface bound charge may readily
be used to calculate both energy and forces. Thus, our method
is suitable to the molecular dynamics simulation of mobile di-
electric objects. The total computational cost per time step is
then O(n) or O(n ln n), depending on the Ewald solver, where
n is the number of surface patch elements.

A. Discretization

Numerical evaluation of Eq. (40) requires discretization
of the surface into patch elements. Each surface patch i has
a position ri , a normal vector n̂i , and a surface area ai. The
matrix–vector product Aσ is discretized as

∑
j Aij σj , where

Aij = κiδij + �κin̂i · Iij aj , (52)

and Iij ajσj /ε0 is the electric field on the ith patch due to the
surface charge at the jth patch. The vector bi is similarly dis-
cretized. In an infinite system, for example, we take the inter-
action elements to be

Iij = (ri − rj )/4π |ri − rj |3. (53)

With periodic boundary conditions, Ewald summation should
be used instead.

B. Patch corrections

As written in Eq. (53), Iii exhibits an unphysical diver-
gence. To lowest order, one may assume the self-interactions
to be zero, Iii = 0. We obtain a better approximation to the
self-field by averaging contributions over the entire patch
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surface Si with area ai and center point ri ,

Iii = 1

ai

∫
Si

ri − s
4π |ri − s|3 ds. (54)

If we assume that Si is disk shaped with area ai and mean cur-
vature κi � a

−1/2
i then, after a lengthy calculation, we obtain

Iii = κi n̂i

4
√

πai

. (55)

In practice, this approximation works reasonably well for
arbitrary patch geometry and generalizes previous results
for cylinder and sphere patches.24, 39 The self-interaction in
Eq. (55) contributes to A at order Iiiai ∼ √

ai . Since this
correction is only approximate, we expect errors at the same
order.

This type of correction may be generalized to interactions
between distinct patches. For example, Eq. (53) may be re-
placed with an integral,

Iij = 1

aj

∫
Sj

ri − s
4π |ri − s|3 ds. (56)

Such treatment is primarily useful for nearby patches. When
similar surface integrals are also applied to the energy calcu-
lation, the scheme is called SC/SC in Ref. 40. Higher order
corrections are also possible. A natural next step is to replace
Eq. (56) with a double integral over both surface patches.41, 42

Full numerical evaluation of these integrals is most practical
for static dielectric geometries, or within a rigid dielectric ob-
ject, where the matrix elements Aij are fixed.

In dynamic geometries, large discretization errors may
occur in regions where a point charge approaches a dielec-
tric surface, or where two dielectric surfaces approach each
other. To improve accuracy in such cases, a natural strategy
is adaptive mesh refinement, in which patches are recursively
subdivided until some threshold is met. For example, one may
require that the distance between neighboring patches should
be some factor less than the distance between the surface and
the external charge.

C. GMRES

The GMRES method solves Ax = b, yielding σ b = x
by Eq. (40), without explicitly constructing A−1. At the mth
iteration, GMRES builds the Krylov space,

K (m) = span{b,Ab, . . . ,Am−1b}. (57)

From within this space, GMRES selects the optimal approx-
imation x(m) ∈ K(m) to x, in the sense that x(m) minimizes the
norm ‖r (m)‖ =

√
〈r (m), r (m)〉 of the residual

r (m) = b − Ax(m). (58)

Here, the natural inner product is the discretized surface inte-
gral, 〈x, y〉 = ∑

ixiyiai, where ai is the area of the ith patch.
At the mth GMRES iteration, the m-dimensional vec-

tor space K(m) must be orthogonalized, at a cost that scales
as O(mn), because each vector contains n surface patches.
In practice, GMRES converges in so few iterations (cf.

Sec. IV F) that the cost of orthogonalization is negligible com-
pared to the cost of building K(m). In particular, “restarting”
GMRES is unnecessary.

D. Fast matrix–vector product

The dominant cost of GMRES is evaluating the matrix–
vector products needed to build the Krylov space. Referring
to Eqs. (41) and (52), we find that the key task is to cal-
culate the electric field Eb generated by x(m) (the mth iter-
ative approximation to σ b) and evaluated at every surface
patch. A naïve implementation requires summing over all
O(n2) pairs of patches. A fast Ewald solver such as particle–
particle particle–mesh (PPPM),43, 44 smooth particle–mesh
Ewald (PME),45 or lattice gaussian multigrid (LGM)33 re-
duces the cost to O(n ln n) (for PPPM and PME) or O(n) (for
LGM), provided that the charges are distributed uniformly in
the system volume. The fast multipole method (FMM), which
costs O(n),31, 32 may be better suited to the non-uniform distri-
butions typical of surface patches. These and other fast Ewald
solvers are reviewed in Ref. 30. In our implementation, we
employed the PPPM routine provided by LAMMPS.46

E. Convergence criterion

At every iteration, GMRES constructs the vector x(m) in
the Krylov space that minimizes the norm of the residual
||r(m)||. Although it is not guaranteed, empirically we find that
the relative errors in the bound charge, ||x − x(m)||/||x||, and
in the energy, |U(x) − U(x(m))|/|U(x)|, both have approximate
magnitude ||r(m)||/||b||. With the condition

‖r (m)‖ < 10−4‖b‖ (59)

we observe that the relative error in the energy is ≈10−4.

F. Convergence rate

In practice, we observe that GMRES finds the bound
charge in very few iterations. This observation is supported
by mathematical properties of the GMRES algorithm.27 Be-
cause A is positive definite [cf. Eq. (50)], the residual er-
ror decreases exponentially with the number of iterations.
If A were also symmetric, then its condition number could
be used to bound the rate of GMRES convergence. For our
non-symmetric operator, less is known analytically. Here, we
demonstrate empirically that the convergence rate is linked to
the ratio of extremal values, λratio = λmax/λmin [Eq. (51)]. In
Sec. III, we bounded λratio ≤ κmax/κmin, and estimated λratio

for sphere, cylinder, and slab geometries.
Figure 1 demonstrates the link between fast GMRES con-

vergence and the smallness of λratio. For a single sphere λratio

≤ 3, and GMRES converges within a handful of iterations
regardless of the dielectric contrast κ̃ = κobj/κbg. In molecu-
lar dynamics simulations of many spheres in various config-
urations, we observed GMRES convergence almost identical
to that of the single-sphere system.8 The worst-case conver-
gence rates occur in geometries with extreme aspect ratios.
For a cylinder, we predict λratio ≈ κmax/κmin only when κ̃ � 1
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FIG. 1. Number of GMRES iterations required to calculate the polariza-
tion charge σ b on a dielectric cylinder or sphere as a function of the di-
electric contrast κ̃ . We use cylinders with unit radius and different lengths
L. Convergence is generally reached very quickly, except in geometries with
extreme aspect ratios and extreme κ̃ . The convergence threshold is ||r(m)||
< 10−4||b|| [Eq. (59)], where r (m) = b − Ax(m) is the residual of the mth
iterative approximation x(m) to the bound charge σ b. We observe empirically
that our convergence threshold corresponds to a relative error in the electro-
static energy of approximately 10−4.

and the cylinder length L is much larger than its radius. In-
deed, this is precisely the regime where Fig. 1 shows slowed
GMRES convergence. We observe that, at fixed accuracy, the
number of GMRES iterations scales like ln λratio.

G. Treatment of isolated point charges

We allow systems to contain isolated point charges in
addition to dielectric objects, a situation that typically oc-
curs in simulations involving ionic solutions. In the bulk of
a medium, where the dielectric constant κ(r) = κ0 is uniform,
Eq. (25) states that free charges are screened by the factor
κ−1

0 . In numerics we typically deal with isolated free charges
qf, to which we must associate a net (free and bound) charge
qf /κ0.

Thus, only the surface bound charge σ b on the dielec-
tric objects remains to be calculated. To do so, we solve
Eq. (41) with b in Eq. (42) defined via the electric field Ef

generated by both free surface charge σ f and screened point
charges qf /κ0.

H. Fixing net charge on objects

By Eq. (24), we may also fix the net integrated charge on
dielectric objects. In particular, if the object is surrounded by
a medium with uniform dielectric constant κbg and carries to-
tal free charge q (counting both internal and surface charges),
then the total free and bound charge on the object is q/κbg.
In the numerical solution of Eq. (40) we should constrain the
total charge of each object to its exact value at every GMRES
iteration. The first reason for this is accuracy: errors in the
net charge (monopole term) can overwhelm relatively subtle
dielectric effects. The second reason is convergence rate: as
demonstrated in Appendix B, the net charge on an object may
correspond to an outlying eigenvalue of the operator A; elim-
inating the corresponding eigenvector component may signif-

icantly improve A’s condition number. The third reason is
consistency: if a finite system is not kept charge neutral, the
operators G and A become ill-defined.

I. Surface representation of free charge

In addition to fixing the net charge of each object to its
exact value during the GMRES iterations, there is another
technique to improve accuracy. Typically, the dielectric ob-
ject and its free charge distribution are rigid. In this case, we
care only about the electric field that the free charge produces
externally. Thus, we may replace any distribution of internal
free charge with an equivalent free charge distribution at the
object surface.47 If, instead, internal free charge were present,
there would be expected (partial) cancellations between the
internal charge and the bound surface charge. Small inaccu-
racies in the Ewald solver would lead to inexact cancellation,
a spurious monopole moment, and potentially large numer-
ical error. We avoid such cancellation errors via the surface
representation of free charge.

For each charged object, we may calculate the equivalent
free surface charge as follows. Consider a virtual system con-
taining the internal free charge, the object medium replaced
by vacuum (κobj = 1), and the background medium replaced
by a conductor (κbg → ∞), in which the “virtual” electric
field is zero. We use our dielectric method to calculate the
bound surface charge for this virtual system [with net charge
fixed to zero by Eq. (24)]. By the principle of superposition,
the desired free surface charge distribution is then the negative
of the calculated virtual bound charge.

J. Bound charge initialization

In a molecular dynamics simulation, dielectric objects
move only a small amount during each time step. The bound
charge σ b(t − �t) that was calculated at the previous time
step may be used as the initial guess for σ b(t) at the current
time step. In our study of interacting dielectric spheres8 we
observed that this optimization reduced the required GMRES
iterations per time step from about 4 to 3 when the accuracy
target was 10−4.

K. Direct residual

We save a call to the Ewald solver by avoiding the explicit
calculation of b. Instead, we compute the residual as

r (m) = b − Ax(m)

= σf − κ̄(σf + x(m)) − ε0�κE(m) · n̂. (60)

Here we reuse E(m) (the electric field due to both free charge
σ f and estimated bound charge x(m)), which GMRES already
calculated to construct the Krylov space. We also replace
Eq. (59) with a convergence criterion that is independent of b,
||r(m)|| < 10−4|x(m)|c. We select c to be a “typical” dielectric
constant. In a system containing only two types of dielectric
media, we choose c = κ̄ , the mean dielectric constant.
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L. Energy calculation

Equation (22) suggests calculating the energy in two
steps: (1) generate the potential ψ = G(ρf + ρb)/ε0 due to
free and bound charge, and (2) sum the energy contributions
at the locations of free charge, U = (1/2)

∫
ρf ψ dr. The sur-

face patch corrections described in Sec. IV B naturally extend
to the calculation of the potential ψ ij generated by surface
patch j and evaluated at surface patch i.

Most electrostatics software packages do not provide a
procedure to calculate ψ . However, these packages can still
be used to calculate the dielectric energy efficiently. Our trick
is to express the energy as

U = 1

2
(Ũelec[ρf ] − Ũelec[ρb] + Ũelec[ρf + ρb]), (61)

where Ũelec[ρ̃] represents the energy of the electric field gen-
erated by the charge density ρ̃(r) alone,

Ũelec[ρ̃] = 1

2ε0

∫
V

ρ̃Gρ̃ dr. (62)

In particular, by Eqs. (3), (5), and (9),

Uelec = Ũelec[ρf + ρb] (63)

is the bare electric field energy for the physical system.
Equation (61) states that we can calculate the full dielec-

tric energy using three separate calls to an Ewald solver. In
typical molecular dynamics applications, the energy is sam-
pled at only a small fraction of the time steps, and the cost of
the two extra Ewald evaluations is negligible.

V. COMPARISON WITH PREVIOUS
NUMERICAL METHODS

A. Richardson iteration

Many existing simulation methods effectively calculate
the bound charge by Richardson iteration,48 motivating us to
consider this case in detail.

The method proposed in Ref. 21 is perhaps the earliest,
and it iteratively calculates the surface bound charge σ b = x
via

x(m+1) = −ε0
�κ

κ
E(m) · n̂, (64)

where E(m) is the electric field generated by both non-surface
charges and the surface bound charge x(m) from the previ-
ous iteration. Zero free surface charge, σ f = 0, is assumed.
In the operator notation of Eqs. (41) and (42), the recurrence
becomes

x(m+1) = x(m) + γ (b − Ax(m)), (65)

where γ −1 = κ̄ is the mean dielectric constant at the surface.
This numerical scheme, Richardson iteration, is readily ana-
lyzed for arbitrary γ .49 After some algebra, we express the
residual r (m) = b − Ax(m) as a linear recurrence,

r (m+1) = (1 − γA)r (m). (66)

To solve this recurrence, we work in the basis of eigenvec-
tors {vλ} of the operator A. The residual vectors become

r (m) = ∑
λ r

(m)
λ vλ and we obtain the solution

r
(m+1)
λ = (1 − γ λ)r (m)

λ = (1 − γ λ)m+1r
(0)
λ . (67)

The consequence is that r(m) converges to zero if |1 − γ λ| < 1
is satisfied for each eigenvalue λ. Clearly γ should be selected
according to the spectrum of A.

Somewhat remarkably, the implicit choice of Ref. 21, γ

= 2/(κmin + κmax), leads to a convergent scheme. The eigen-
value bounds 1 ≤ κmin ≤ λ ≤ κmax of Eq. (50) imply

|1 − γ λ| ≤ κmax − κmin

κmax + κmin
< 1. (68)

Although this scheme is consistent, other iterative solution
methods, such as GMRES and BiCGSTAB, are preferable for
their much faster convergence.50

In the method of Ref. 29, Eq. (64) is generalized to

x(m+1) = −ωε0
�κ

κ
E(m) · n̂ + (1 − ω)x(m), (69)

for tunable ω. This scheme again corresponds to Richardson
iteration, Eq. (65), now with step size γ = ω/κ̄ .

In a naïve implementation, each Richardson iteration re-
quires O(n2) operations to determine the electric field E(m) at
all n surface patches. As discussed in Sec. IV D, this cost can
be reduced to O(n ln n) or O(n) with a fast Ewald solver.

B. Variational approaches

In our review of linear dielectrics, Sec. II, we introduced
the equilibrium polarization field as the one minimizing the
(free) energy functional U = Uelec + Upol. This variational
formulation of dielectrics can be used as the basis of numer-
ical methods,17–20 at the cost of working with the bulk polar-
ization (rather than just the surface bound charge). As we have
seen, numerical efficiency is much improved by posing the di-
electric problem in terms of bound charge restricted to the di-
electric interfaces. Using an alternate variational formulation
of the dielectric problem,47 the authors of Ref. 24 determine
the bound charge as the distribution that minimizes a given
functional. Subsequently, a similar functional was found that,
when minimized, corresponds to the energy.26 This latter ap-
proach enables Car–Parrinello type molecular dynamics sim-
ulation. Here, we analyze the computational efficiency of nu-
merical methods to calculate the bound charge based upon
these variational formulations.

The electrostatic energy may be expressed as the ex-
tremum of the functional26

U[P, ρb, ψ] = U −
∫

V

ψ(r)[ρb(r) + ∇ · P(r)] dr. (70)

The Lagrange multiplier ψ(r) in Eq. (70) enforces the phys-
ical constraint ∇ · P = −ρb. By Eqs. (8), (63), and (10) the
electrostatic energy U = Uelec + Upol has the functional form

U = 1

2ε0

∫
V

[
(ρf + ρb)G(ρf + ρb) + P2

κ − 1

]
dr. (71)

From U , we wish to construct new functionals that are inde-
pendent of P and ψ , and that are still extremized by the phys-
ical bound charge ρb. We extremize U with respect to ρb and
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P, and obtain

ψ = G(ρf + ρb)/ε0, (72)

P = −(κ − 1)∇G(ρf + ρb). (73)

In Ref. 26, substitution of Eqs. (72) and (73) into U yielded
the negative of the functional considered in Ref. 24,

I[ρb] = 1

2

∫
V

[ρfG(ρf + Rb[ρb]) − ρbG(ρb − Rb[ρb])] dr,

(74)
where

Rb = ∇ · (κ − 1)∇G(ρf + ρb) = (1 − A)(ρf + ρb). (75)

One may also extremize U with respect to ψ , in which case
ρb = Rb[ρb]. Partial substitution then yielded the alternate
functional introduced in Ref. 26,

J [ρb]= 1

2

∫
V

[ρfG(ρf +Rb[ρb])−Rb[ρb]G(ρb−Rb[ρb])] dr.

(76)
The variation of I[ρb] and J [ρb] is readily calculated using
the identities ∫

V

fG δρb

δρb

dr = Gf, (77)

∫
V

fG δRb

δρb

dr = G(1 − A)f, (78)

valid for any test function f (r). Extremization then yields

δI
δρb

= G(b − Aρb) = 0, (79)

δJ
δρb

= G(1 − A)(b − Aρb) = 0, (80)

which are uniquely satisfied when Aρb = b [Eq. (19)], thus
giving the correct bound charge.

Reference 24 calculates x = ρb by a steepest-ascent
procedure,

x(m+1) = x(m) + γ
δI

δx(m)
= x(m) + γG(b − Ax(m)), (81)

where γ is a step size parameter. We recognize this vari-
ational scheme as Richardson iteration, Eq. (65), precondi-
tioned by the positive definite operator G. By Eq. (67), the
convergence rate of Richardson iteration is controlled by the
ratio of extremal eigenvalues, λratio = |λmax /λmin |, of the rel-
evant operator—in this case GA.

We demonstrated in Sec. III that A is well conditioned. In
contrast, the eigenvalues of GA are unbounded in the contin-
uum limit of small patches—the operator has infinite condi-
tion number. We use simple scaling to compare the spectra of
A and GA. The operator A is dimensionless and its eigenval-
ues are independent of length scale. Since G is inverse to ∇2,
it has dimensions of length squared. The operator GA inher-
its these dimensions. Thus, eigenvectors of GA with charac-
teristic frequency k have eigenvalues that scale as k−2. In the
continuum limit, arbitrarily small eigenvalues are possible. As
a concrete example, consider the uniform dielectric system
κ(r) = κbg where A = κbg. The eigenvectors of GA = κbgG

are the Fourier modes exp(ik · r) with eigenvalues κbg|k|−2

ranging from 0 to ∞.
In practice, the largest k-vector is cut off by the inter-

patch distance length scale. Similarly, the smallest k-vector
is set by the scale of the largest dielectric objects. Nonethe-
less, GA is unnecessarily ill-conditioned. Thus the scheme
of Eq. (81) requires many iterations for the bound charge to
converge.

These scaling considerations also apply to variational
methods based on J [ρb]. Unlike I[ρb], the functional J [ρb]
may be interpreted as an effective energy functional in the
sense that

min
ρb

J [ρb] = U, (82)

where U is the usual dielectric energy. Reference 26 applied
Car–Parrinello molecular dynamics to evolve ρb along with
ion positions according to the Hamiltonian J .51 An artifi-
cially low temperature was separately applied to the ρb de-
grees of freedom. Thus, ρb was effectively solved by the over-
damped dynamics,

∂ρb(r)

∂t
= −γ

δJ
δρb(r)

, (83)

for which we recover Eq. (81) but now with G(1 − A)A as
the relevant operator. As before, dimensional analysis tells
us that G(1 − A)A is ill-conditioned, and that ρb will con-
verge slowly. In practice, this means that a very small Car–
Parrinello molecular dynamics time step must be employed.

C. Induced charge computation (ICC) method

The ICC method25 proposed to solve Eq. (40) by explicit
construction of the matrix inverse A−1. Direct matrix inver-
sion costs O(n3) for n surface patch elements. Subsequently,
the bound charge x = σ b may be found by dense matrix–
vector multiplication, x = A−1b, where b is a function of the
evolving free charge. For static dielectric geometries, each
evaluation of x then costs O(n2), which is much worse than
O(n) methods based upon fast Ewald solvers. If the dielectric
geometry dynamically evolves, then repeated matrix inver-
sion is required, for which the authors of Ref. 25 suggested
GMRES as an alternative.

D. GMRES with fast matrix–vector product

In light of the drawbacks of previously proposed meth-
ods, namely, the use of inefficient iterative methods employ-
ing Richardson iteration (Sec. V A), an ill-conditioned oper-
ator and hence poor convergence rates of variational meth-
ods (Sec. V B), and inefficient matrix–vector multiplica-
tion (and moreover matrix inversion) for the ICC method
(Sec. V C), we advocate calculation of the bound charge by
solving Eq. (40) via GMRES and a fast Ewald solver. With
this approach, the surface bound charge converges to high ac-
curacy in only a handful of GMRES iterations, each requiring
O(n) or O(n ln n) operations, depending on the Ewald solver
used.
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During the preparation of this publication, it came to
our attention that our strategy was proposed already in
Ref. 28, which has been overlooked and underappreciated, as
evidenced by the wide array of subsequent methods propos-
als. We note, however, that due to the large number of patches
typically introduced for each dielectric object, the accelera-
tion techniques introduced in Secs. IV H–IV K are still in-
strumental in realizing dynamic simulations such as those of
Ref. 8.

VI. SUMMARY

In this paper, we have demonstrated a collection of tech-
niques by which dynamic dielectric systems can be simu-
lated efficiently. In geometries with sharp dielectric bound-
aries, one solves a matrix equation to obtain the surface bound
charge, from which energy and forces follow directly. Empir-
ically, we find that the bound charge converges to high accu-
racy after a handful of GMRES iterations. We attribute this
fast convergence to the compact spectrum of the relevant op-
erator A, whose properties we have analyzed in detail. Each
iteration of GMRES requires only a single calculation of the
electric field in vacuum, which can be performed with an
Ewald solver at a cost that scales nearly linearly in the number
of surface patch elements n.

Compared to several previous methods, our approach
(i) converges quickly, by using GMRES rather than Richard-
son iteration,21, 29, 39 (ii) avoids the ill-conditioned matrix
equations of variational approaches,24, 26 (iii) does not require
explicit construction of the matrix inverse,25 and (iv) evalu-
ates matrix–vector products very efficiently with a fast Ewald
solver. A side benefit of (iv) is that we properly treat periodic
geometries common in computational studies. To illustrate the
capabilities of our method, we have performed the first large-
scale simulation of dynamical dielectric objects in Ref. 8.
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APPENDIX A: DIELECTRIC FORCES

We derive forces in dielectric systems as a sum of
pairwise Coulomb-like interactions between free and bound
charges. We follow the approach advocated in Ref. 35 and
carried out in Refs. 52 and 53. That is, we derive the force
on a dielectric object as the energy derivative with respect to
object motion.

Our first task is to express the electric field and energy as
a function of ρf (r) and κ(r) alone. Combining Eqs. (17) and
(18) we obtain

ε0ψ = G(ρf + ρb) = (−∇ · κ∇)−1ρf . (A1)

The existence of the symmetric operator (∇ · κ∇)−1 fol-
lows from the existence of the potential ψ . The electric field
E = −∇ψ immediately follows:

E = 1

ε0
∇(∇ · κ∇)−1ρf . (A2)

The energy in Eq. (22) becomes a nonlocal, κ(r)-dependent
sum of free charge pairs,

U = − 1

2ε0

∫
ρf (∇ · κ∇)−1ρf dr. (A3)

1. Force on free charge

The force density f associated with displacement of the
free charge ρ f at position r in any direction n̂ is given by

n̂ · f = − lim
ε→0

U [ρf + ερd ] − U [ρf ]

ε
, (A4)

where the displacement distribution is

ρd (r′) = ρf (r)
δ(r + εn̂ − r′) − δ(r − r′)

ε
. (A5)

We expand in powers of ε, dropping O(ε) terms,

U [ρf + ερd ] − U [ρf ]

ε
≈

∫
δU

δρf (r′)
ρd (r′) dr′

≈ ρf n̂ · ∇ δU

δρf

. (A6)

The equality becomes exact in the limit ε → 0,

f = −ρf ∇ δU

δρf

. (A7)

Using both Eqs. (A2) and (A3), we evaluate

f = ρf

ε0
∇(∇ · κ∇)−1ρf = ρf E. (A8)

The net force to move the charge ρf (r) in a region 
 is

Fcharge =
∫




ρf E dr. (A9)

In particular, the force on a point charge ρf (r) = qδ(r − ri)
is simply qE.

2. Force on dielectric object

Dielectric object motion affects the energy through
changes in κ(r). If the background has fixed κbg, then dielec-
tric object motion corresponds to a displacement of κ(r) − κbg

at each r. Analogous to Eq. (A7), the force density for this
displacement is

f = −(κ − κbg)∇ δU

δκ
. (A10)

We will use the identity

δ

δκ
B−1 = −B−1 δB

δκ
B−1, (A11)

which is a consequence of the product rule,

0 = δ

δκ
(BB−1) = δB

δκ
B−1 + B δB−1

δκ
. (A12)
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Note that the operators B−1 and δB/δκ do not generally
commute.

Taking B = ∇ · κ∇, the functional derivative of the en-
ergy, Eq. (A3), evaluates to

δU

δκ
= + 1

2ε0

∫



ρfB−1 δB
δκ

B−1ρf dr

= −ε0

2

∫



E · δκ

δκ
E dr

= −ε0

2
E2. (A13)

The minus sign appears after integrating by parts.
In index notation, where repeated indices denote summa-

tion, the αth component of the force per volume is

fα = ε0

2
(κ − κbg)∂αEβEβ

= ε0(κ − κbg)Eβ∂αEβ . (A14)

The electric field is a gradient, Eβ = −∂βψ , so it follows that
∂αEβ = ∂βEα and

fα = ε0(κ − κbg)Eβ∂βEα

= ε0∂β[(κ − κbg)EβEα] − ε0[∂β(κ − κbg)Eβ]Eα. (A15)

Equivalently,

f = ε0∇ · [(κ − κbg)E ⊗ E] − ε0[∇ · (κ − κbg)E]E. (A16)

From Eqs. (1) and (16) we have

∇ · (κ − κbg)E = ∇ · κE − κbg∇ · E

= 1

ε0
[ρf − κbg(ρf + ρb)], (A17)

yielding

f = ε0∇ · [(κ − κbg)E ⊗ E] + [κbg(ρf + ρb) − ρf ]E.

(A18)
The net dielectric force, Fdiel = ∫



f dr, is an inte-

gral over a region 
 enclosing the object and its surface.
After applying Gauss’s theorem, the total force separates
into a boundary term ε0

∫
∂


(κ − κbg)(n̂ · E)E ds and a bulk
term

∫



[κbg(ρf + ρb) − ρf ]E dr. The boundary term is zero
because, by construction, the integral is evaluated where
κ(r) = κbg. The net dielectric force on the object becomes

Fdiel =
∫




[κbg(ρf + ρb) − ρf ]E dr, (A19)

where ρ f has been treated as fixed.
Typically, free charge moves rigidly with the object, so

we should also include its force, Eq. (A9). The total force on
the dielectric object is then

F = Fcharge + Fdiel = κbg

∫



(ρf + ρb)E dr. (A20)

As a consistency check, note that in the special case where
κ(r) = κbg is constant, we have (ρ f + ρb) = ρ f /κbg and the
dielectric force is zero, Fdiel = 0.

APPENDIX B: EXACT SPECTRA FOR SIMPLE
GEOMETRIES

For certain dielectric geometries the entire spectrum of A
can be determined. The key observation is that the eigenvec-
tors of A coincide with the solutions of the Laplace equation
∇2ψ = 0 in non-Cartesian coordinates, when those solutions
are separable in the normal component. This solution tech-
nique applies to the dielectric sphere, cylinder, and slab. In
these geometries, A becomes a symmetric operator.

We seek eigenvectors ρ and eigenvalues λ that satisfy
Aρ = λρ. We work with surface charge density σ , for which
Eq. (41) states

Aσ = κ̄σ + �κE · n̂ = λσ, (B1)

with E = (Eout + Ein)/2 the electric field at the surface. We
also have �κ = κout − κ in, and κ̄ = (κout + κin)/2. In this
section, we use dimensionless units where ε0 = 1.

1. Sphere

Consider a single spherical object of radius R. We work
in spherical coordinates (r, θ , φ). The operator A is fixed upon
the specification

κ(r) =
{

κin if r < R

κout if r > R
. (B2)

The spherical harmonics Ylm(θ , φ) form an orthogonal basis
for the surface of the sphere. We will demonstrate that the
spherical harmonics are in fact the eigenvectors of A. In antic-
ipation of this result, consider the surface charge distribution,

σ (θ, φ) = Ylm(θ, φ). (B3)

The electrostatic potential due to σ is

ψ(r, θ, φ) =
{

ψ1 = arlYlm if r < R

ψ2 = br−l−1Ylm if r > R
, (B4)

where

a = σ0

2l + 1
R−l+1, (B5)

b = σ0

2l + 1
Rl+2. (B6)

As required, ψ satisfies the Laplace equation ∇2ψ = 0 for
r �= R, and obeys appropriate boundary conditions at r = R,

ψ2 − ψ1|r=R = 0, (B7)

∂rψ2 − ∂rψ1|r=R = −σ. (B8)

The electric field projected onto the surface normal is

r̂ · E = − (∂rψ1 + ∂rψ2)

2
= − σ

2(2l + 1)
[−(l + 1) + l].

(B9)
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Comparison with Eq. (B1) confirms that σ is indeed an
eigenvector,

Aσ = λσ = κ̄σ + �κE · r̂

=
(

κ̄ + �κ

2(2l + 1)

)
σ. (B10)

Expanding κ̄ = (κout + κin)/2 and �κ = κout − κ in we get

λ =
{
κout,

(
2

3
κout + 1

6
κin

)
, . . . ,

(
1

2
κout + 1

2
κin

)}
. (B11)

The eigenvalue λ = κout corresponds to the eigenvector of uni-
form surface charge, Yl = 0, m = 0. In a numerical implementa-
tion, we constrain the net surface charge to its exact value as
described in Sec. IV H, effectively eliminating this eigenvec-
tor from the space. The eigenvalue λ = κout should therefore
be ignored.

The ratio λratio = λmax /λmin is greatest when κout � κ in

or κ in � κout, where λratio ≈ 4/3 or 3, respectively.

2. Cylinder

We now adopt cylindrical coordinates (ρ, θ , z) and con-
sider a dielectric cylinder,

κ(ρ) =
{

κin if ρ < R

κout if ρ > R
. (B12)

We will show that the eigenvectors of A take the form

σ = eikz+iνθ (B13)

for real wave number k and integer wave number ν. The func-
tions σ (z, θ ) are the Fourier modes of the cylinder surface and
form a complete basis.

The electrostatic potential for σ is

ψ(ρ, θ, z) =
{

ψ1 if ρ < R

ψ2 if ρ > R
, (B14)

where

ψ1 = [aKν(kR)]Iν(kρ)eikz+iνθ , (B15)

ψ2 = [aIν(kR)]Kν(kρ)eikz+iνθ , (B16)

a = −1

k

[
Iν(kR)K ′

ν(kR) − I ′
ν(kR)Kν(kR)

]−1
. (B17)

Here Iν and Kν are the modified Bessel functions of the
first and second kind, and primes denote derivatives: I ′

ν(x)
= dI (x)/ dx and K ′

ν(x) = dK(x)/ dx. As required, ψ satis-
fies the Laplace equation ∇2ψ = 0 for ρ �= R and obeys ap-
propriate boundary conditions at ρ = R,

ψ2 − ψ1|ρ=R = 0, (B18)

∂ρψ2 − ∂ρψ1|ρ=R = −σ. (B19)

The induced electric field projected onto the surface normal is

E · ρ̂ = − (∂ρψ1 + ∂ρψ2)|ρ=R

2

= 1

2

(
1 + C

1 − C

)
σ, (B20)

where

C(ν, kR) = I ′
ν(kR)Kν(kR)

Iν(kR)K ′
ν(kR)

. (B21)

Comparison with Eq. (B1) confirms that σ is indeed an eigen-
vector, with eigenvalue

λ = κ̄ + �κ

2

1 + C

1 − C
. (B22)

The eigenvalues λ are determined by the function C(ν, kR),
which satisfies −1 ≤ C ≤ 0. The maximum of C occurs at
low-frequency modes: C → 0 when ν = 0 and kR → 0. Con-
versely, C → −1 for high frequencies kR → ∞. The extreme
eigenvalues follow immediately,

λ →
{

κ̄ + 1
2�κ = κout if (ν = 0, kR → 0)

κ̄ = 1
2 (κout + κin) if kR → ∞

. (B23)

The ratio λratio = λmax /λmin is greatest when κ in � κout, where
λratio ≈ κ in/(2κout). When κout � κ in we find λratio ≈ 2.

If the length of the cylinder L is not too much greater than
the radius R, then λratio can be reasonable even in the limit
κ in � κout. For finite L, we ignore fringe effects and assume
that the above analysis is approximately correct with axial
wave numbers taking discrete values k = 2π

L
{0, 1, . . .}. As

in the spherical case, the zeroth mode represents a uniform
charge distribution, and can be manually removed from the
vector space. If L/R is not too large, then C(ν = 0, kR � 1)
deviates significantly from 0, increasing the associated eigen-
value. For example, if we choose L/R = 30 and k = 2π /L,
then C(0, kR) ≈ −0.039. Assuming κ in � κout, the smallest
eigenvalue is approximately 0.038κ in, yielding λratio ≈ 13.3
(independent of the ratio κ in/κout).

3. Slab

The final case to be considered is the slab, where we
adopt cartesian coordinates (x, y, z) and choose

κ(ρ) =
{

κin if |z| < R

κout if |z| > R
. (B24)

The eigenvectors of A will be defined by their surface den-
sities on the two planes z = ±R. There are two classes of
eigenvectors, symmetric and antisymmetric, represented as

σ (x, y, R) = ±σ (x, y,−R) = eikxx+ikyy . (B25)

The eigenvectors are complete: an arbitrary distribution of
charge on both planes can be represented in the basis of
symmetric and antisymmetric eigenvectors. The electrostatic
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potential in the symmetric case is

ψs(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

bsσeγ z if z < −R

aσ cosh(γ z) if |z| < R

bsσe−γ z if z > +R

, (B26)

and for the antisymmetric case,

ψa(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

−baσeγ z if z < −R

aσ sinh(γ z) if |z| < R

baσe−γ z if z > +R

, (B27)

where

a = e−γR

γ
, (B28)

bs = cosh(γR)

γ
, (B29)

ba = sinh(γR)

γ
, (B30)

γ =
√

k2
x + k2

y. (B31)

As required, ψ s and ψa satisfy the Laplace equation in the
bulk, and the usual boundary conditions at z = ±R. The in-
duced electric fields at z = R, projected onto ẑ, are

ẑ · E = ±1

2
exp(−2γR)σ, (B32)

where ± refers to symmetric and antisymmetric eigenvectors,
respectively. Comparison with Eq. (B1) confirms that the σ

(symmetric and antisymmetric) are indeed eigenvectors with
eigenvalues,

λ = κ̄ ± �κ

2
exp(−2γR). (B33)

In the high-frequency limit (k2
x + k2

y → ∞) the constant γ di-
verges and the eigenvalues tend to λ → κ̄ = (κout + κ in)/2. In
the opposite limit, where the two planes each have nearly uni-
form charge, the eigenvalues tend to λ → κout and κ in for sym-
metric and antisymmetric cases, respectively. In these limits,
λratio = κmax /κmin , realizing the worst-case behavior allowed
by the bounds of Eq. (50)!

APPENDIX C: DIELECTRIC ENERGIES
FOR SIMPLE GEOMETRIES

In Appendix B, we studied the exact spectra of a dielec-
tric sphere, cylinder, and slab, and found that A is gener-
ally well-conditioned, except for extreme dielectric contrasts
(κ in � κout or κout � κout) in the extended cylinder or slab
geometries. Here we demonstrate that, in geometries where
A remains well-conditioned, the energetics saturates quickly
as a function of the dielectric contrast.

The scaled energies of a point charge q interacting with
dielectric sphere, cylinder, and slab objects are54, 55

Usphere

u0
= 2

d

r0

∞∑
n=0

(1 − κ̃)n(1 + d/r0)−2(n+1)

(1 + κ̃)n + 1
, (C1)
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FIG. 2. Scaled energies for a point charge at distance d from the surface
of a (a) dielectric sphere, (b) cylinder, and (c) slab. The dielectric contrast
κ̃ = κobj/κbg controls the magnitude of dielectric effects. There are three
different limiting behaviors when d → ∞: (a) Usphere/u0 goes to zero,
(b) Ucylinder/u0 goes to zero except when ln κ̃ → +∞, where it goes to −1,
(c) Uslab/u0 goes to ∓1 when ln κ̃ → ±∞.

Ucylinder

u0
= − 8

π

d

r0

∫ ∞

0

(
1

2
a0(u) +

∞∑
n=1

an(u)

)
du;

(C2)

an(u) = (1 − κ̃)K2
n((1 + d/r0)u)

κ̃ Kn(u)
In(u) − ∂uKn(u)

∂uIn(u)

,

Uslab

u0
= 1 − κ̃

1 + κ̃
− 4κ̃

(1 + κ̃)2

∞∑
n=1

(
1 − κ̃

1 + κ̃

)2n−1 (
1 + 2n

d/r0

)−1

,

(C3)

where r0 is the radius of the dielectric object (for the slab,
r0 is half the thickness), d is the distance between the point
charge and object surface, and In and Kn are again the modi-
fied Bessel functions. The dielectric constants control the con-
trast κ̃ = κobj/κbg, Eq. (29), and the reference energy scale,

u0 = q2

16πε0κbgd
. (C4)

In the limit that the point charge approaches the object
surface, all three geometries are effectively equivalent to a
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simple flat plane, and the three energies converge to

Uplane

u0
= 1 − κ̃

1 + κ̃
= − tanh

(
ln κ̃

2

)
; d � r0. (C5)

Saturation occurs quickly in the conducting limits where
ln κ̃ → ±∞. At κ̃ = 10±1 the energy Uplane is within 20%
of its limiting values.

In Fig. 2, the scaled energies are plotted as functions
of log10 κ̃ . When d � r0, we recover the asymptotic behav-
ior in Eq. (C5). However, when d � r0, the sphere, cylin-
der, and slab geometries differ markedly. The sphere en-
ergy decays like d−4 when d � r0, and Usphere/u0 goes to 0
even when ln κ̃ → ±∞. The cylinder energy exhibits a pro-
nounced asymmetry: Ucylinder/u0 goes to 0 when d � r0, ex-
cept when ln κ̃ → +∞, where Ucylinder/u0 goes to −1. The
slab energy is antisymmetric in dielectric contrast, Uslab(κ̃)
= −Uslab(1/κ̃). It also responds most strongly, with a scaled
energy Uslab/u0 that goes to ∓1 in both conducting limits
ln κ̃ → ±∞, independent of d.

The above energy scaling has an interesting connection
to the spectrum of A. In Appendix B, we solved the ex-
act spectrum of A for sphere, cylinder, and slab geome-
tries, and found that the ratio of extremal eigenvalues λratio is
large precisely when the dielectric interaction U/u0 is abnor-
mally large: the cylinder when ln κ̃ → ∞ and the slab when
ln κ̃ → ±∞.
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