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We extend the geometric cluster algorithm [J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504
(2004)], a highly efficient, rejection-free Monte Carlo scheme for fluids and colloidal suspensions,
to the case of anisotropic particles. This is made possible by adopting hyperspherical boundary
conditions. A detailed derivation of the algorithm is presented, along with extensive implementation
details as well as benchmark results. We describe how the quaternion notation is particularly suitable
for the four-dimensional geometric operations employed in the algorithm. We present results for
asymmetric Lennard-Jones dimers and for the Yukawa one-component plasma in hyperspherical
geometry. The efficiency gain that can be achieved compared to conventional, Metropolis-type
Monte Carlo simulations is investigated for rod–sphere mixtures as a function of rod aspect
ratio, rod–sphere diameter ratio, and rod concentration. The effect of curved geometry on physical
properties is addressed. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694271]

I. INTRODUCTION

An important advantage of Monte Carlo simulations over
molecular dynamics simulations is the possibility to per-
form “unphysical” moves that allow a more rapid relax-
ation of a system without altering its thermodynamic equilib-
rium properties.1 Examples include the configurational-bias
Monte Carlo method for polymeric systems2, 3 as well as the
grand-canonical4 and Gibbs ensemble5 Monte Carlo methods
that permit the simulation of two-phase coexistence without
the need for an interface. Another example is the geomet-
ric cluster algorithm (GCA),6–10 which is designed to over-
come the difficulties presented by large size asymmetry, that
is, a large ratio in size between the largest and the smallest
particles in a system. This situation frequently occurs in col-
loidal and biological systems, and leads to a dynamic slow-
down in which the motion of the larger species takes place
on very long time scales compared to the smaller species,
so that neither molecular dynamics simulations nor Monte
Carlo simulations employing local moves are able to properly
sample phase space for the larger species. An important phys-
ical phenomenon that can be probed by the GCA is the deple-
tion interaction.11 The GCA was inspired by a Monte Carlo
scheme for producing configurations of non-overlapping hard
spheres,12 but generalizes this to multicomponent systems
with arbitrary pairwise potentials, generating configurations
of particles according to the Boltzmann distribution. Thus, it
provides an alternative to the conventional Metropolis Monte
Carlo scheme13 by building clusters of particles that are sub-
sequently moved collectively in a rejection-free manner, i.e.,
every cluster that is initiated will be moved once its construc-
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tion is complete, irrespective of the nature of the interactions
between the different particles. The resulting non-local algo-
rithm greatly accelerates the numerical simulation of multi-
component systems7 and has been employed to study a variety
of phenomena, including the nanoparticle haloing mechanism
for colloidal stabilization14–17 and the effect of trace contam-
inants on the location of the coexistence curve of a Lennard-
Jones fluid.18, 19 In addition, modifications of the GCA have
been proposed for the simulation of collective motion in self-
assembly processes,20–23 the simulation of solvated systems,24

and the simulation of polymer-induced phase separation in
bacterial suspensions.25 The geometric operations involved
in the GCA have also inspired (Metropolis-type) simulation
schemes,26 and a biasing scheme has been proposed to em-
ploy the GCA to sample the radial distribution function in liq-
uid mixtures even more efficiently.27 Krauth28 pointed out that
the GCA can be interpreted as a mapping of a continuous fluid
of interacting particles onto an Ising spin glass. Lastly, we
note that for hard-sphere systems, cluster moves can also be
employed to perform event-chain Monte Carlo simulations.29

In spite of the success of the GCA, it is subject to an
important limitation. Namely, it is not ergodic when applied
to anisotropic particles—in the course of a simulation, such
objects will only explore a discrete set of orientations. Reso-
lution of this drawback is particularly pressing since various
systems that are currently at the forefront of soft condensed-
matter research employ particles with a varying degree of
anisotropy.30 Notable examples are suspensions of rods and
tetrapods,31, 32 Janus particles,33–36 and colloids with rod-like
depletants.37 We have developed an extension to the GCA that
lifts this limitation, permitting the simulation of anisotropic
particles while retaining the rejection-free nature of the orig-
inal GCA. A first account of this hyperspherical geometric
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cluster algorithm, including an application to the aggregation
of tetrapodal nanoparticles, has been published in Ref. 38.
The present paper provides a detailed description and justi-
fication of the new algorithm as well as an examination of its
efficiency under various circumstances. Since this algorithm
requires the use of hyperspherical geometry, we include sev-
eral appendices with implementation details and a discussion
of testing procedures. Lastly, we also describe an alternative
variant of the GCA, which is applicable to the simulation of
anisotropic particles under conventional periodic (rather than
hyperspherical) boundary conditions, albeit at the expense of
rejecting a subset of all proposed cluster moves.

II. GEOMETRIC ALGORITHMS FOR
ANISOTROPIC PARTICLES

A. Geometric transformations and
anisotropic particles

The GCA constructs and moves clusters of particles ac-
cording to a geometric transformation.7, 8 Generalizing the ro-
tation over π radians about a pivot point proposed for two-
dimensional (2D) hard-sphere fluids,12 most implementations
choose as this geometric transformation a point reflection
with respect to a pivot point that for each cluster move is ran-
domly chosen within the simulation cell. Alternative transfor-
mations are possible, as discussed below, but they all share the
common requirement that periodic boundary conditions must
be employed to ensure that, upon transformation, a particle is
still located within the simulation cell.

Although a point reflection with respect to an arbitrary
pivot point can translate a particle to any spatial position,
it cannot generate arbitrary orientations. Indeed, successive
point reflections merely toggle a particle’s orientation be-
tween two states. Whereas this is not a matter of concern for
spherically symmetric particles, the ergodic treatment of par-
ticles that are anisotropic (be it in their shape or in their in-
teractions with other constituents of the system) requires the
use of additional moves. The easiest and perhaps most obvi-
ous solution is to relax orientational degrees of freedom by
supplementing the cluster moves with local rotation moves.
However, an algorithm involving such moves will no longer
be rejection-free (as it incorporates a Metropolis-type accep-
tance criterion) and the simulations (e.g., of long rods in an
environment of small spherical particles) typically will suffer
from a slow relaxation of the orientation of the large particles.
Therefore, we instead consider the use of other geometric
transformations besides point reflection, which will permit the
ergodic simulation of anisotropic particles while retaining the
rejection-free nature of the algorithm. In the GCA, acceptable
transformations must satisfy the following two criteria:39–41

1. The transformation must be self-inverse, i.e., when ap-
plied twice it yields the identity operation.

2. The transformation must keep the action invariant when
applied to all particles in the system. For the geomet-
ric transformations considered here, this is equivalent to
requiring that the transformation is isometric, i.e., it pre-
serves all interparticle distances (for a pair of extended
objects, this implies preservation of the distance between

each set of points chosen on the two objects, so the rela-
tive orientation of the two objects is preserved as well).

In three dimensions, these criteria allow for two more
classes of transformation, plane reflection and line reflection
(π rotation about an axis). A single plane reflection or line
reflection is unable to transform a particle to every other ori-
entation, but combinations of plane reflections or line reflec-
tions can produce arbitrarily small rotations, thus proving that
a sequence of such transformations can yield any orienta-
tional change. In fact, two successive transformations suffice
to achieve an arbitrary change in orientation.

Whereas these transformations thus may appear to re-
solve the ergodicity problem observed for anisotropic parti-
cles, a serious problem arises when they are applied in the
presence of periodic boundary conditions (PBC). In the fol-
lowing discussion, it is important to recall (cf. Ref. 7) that the
proof of detailed balance in the GCA hinges on the fact that
the interaction energy of all particles included in the clus-
ter remains invariant under the transformation, and so does
the interaction energy of all particles that are not included
in the cluster. The only energy change occurs for pairs of par-
ticles in which one particle is a member of the cluster and
the other particle is not (we recall that the GCA is restricted
to systems with a pairwise additive potential energy). Now,
we note that, under PBC, reflections in arbitrarily oriented
planes or lines are not isometric transformations, since gen-
erally they do not belong to the symmetry group of the Bra-
vais lattice that defines the periodic replication of the primary
simulation cell. We elucidate this by considering the treat-
ment, within the GCA, of periodic images of particles that
are included in a cluster (i.e., that are subjected to a trans-
formation). The first option is to transform all periodic im-
ages of all particles that are explicitly added to the cluster.
This ensures that the distances between all particles included
in the cluster as well as all their periodic images, remain in-
variant upon transformation, so that their interaction energy is
indeed unchanged. However, all transformed particles will be
aligned with a transformed Bravais lattice, while the particles
that were not part of the cluster and thus were not transformed
will still align with the original Bravais lattice. This is illus-
trated by means of a 2D example in Fig. 1. As a consequence,
the two sets (transformed and not transformed) of particles
cannot be reconciled into a single periodic system.

To obtain a final configuration that obeys PBC, one can
opt not to transform the periodic images of a particle that is
included in the cluster, but instead (after the transformation)
reconstruct its periodic images according to the PBC of the
system. However, this changes the distances between parti-
cles in the cluster and periodic images of these particles. If
any of these distances lies within the range of interaction of
the pair potential, this will result in a change in the potential
energy of particles in the cluster. More precisely, for a pair
of particles (i, j) that are both included in the cluster, with
respective constructed images (i′, j′) (where the prime can re-
fer to any periodic copy), all separations |r′

j − ri | change for
i �= j. Moreover, the orientations of particle i and particle j′

with respect to their center-of-mass separation vector r′
j − ri

change for all pairs (i, j′), including (i, i′). The latter case is
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FIG. 1. Illustration of the conflict that arises in the geometric cluster algorithm upon application of a transformation that does not belong to the symmetry group
of the Bravais lattice defining the periodic boundary conditions. The simulation cell contains two particles (solid square and solid triangle) and is periodically
replicated (left panel). If the cluster contains the solid square as well as all its periodic images, the entire array of solid squares is reflected in the dotted line.
The lattice implied by the reflected squares (open symbols) is tilted with respect to the original lattice (central panel). The red triangles are not part of the cluster
and hence are not transformed. The resulting composite system of these triangles and the reflected squares is not periodic, as illustrated in the right panel; e.g.,
the shortest distance between a triangle and a square depends on which triangle is considered.

important for, e.g., dipolar interactions. Figure 2 provides a
2D example.

We note that some self-inverse transformations are sym-
metries of the Bravais lattice describing the PBC, so that
transformed particles will align with the original Bravais lat-
tice. For those transformations, the problem described above
does not occur, and the two approaches (transforming all im-
ages along with a particle or reconstructing all periodic im-
ages upon transformation of a particle) produce an identical
outcome. In certain cases, namely when anisotropic particles
only take a discrete number of orientations, use of this re-
stricted set of transformations is sufficient to generate an er-
godic algorithm. This is exploited in the case of dimers on a
square lattice.42, 43 For the case of anisotropic particles with
continuous orientational degrees of freedom, one could con-
sider to adopt a non-cubic periodic geometry (e.g., truncated
octahedra), which allows a larger set of such transformations.
Whereas this would make it possible for the particles to reach
more orientations (from where they could be relaxed via local
moves), the set of permitted transformations will always be
finite and hence this does not yield an ergodic, rejection-free
Monte Carlo scheme for anisotropic particles in a periodic
geometry.

B. Geometric cluster algorithm with rejections

Before proceeding to the central objective of this paper,
namely the formulation of a rejection-free GCA that over-
comes the problems discussed in Sec. II A, we discuss a prag-
matic solution for systems composed of particles that have a
sufficiently short-ranged interaction potential. As noted, the
GCA properly accounts for the change in potential energy
between a particle that is transformed (i.e., included in the
cluster) and a particle that is not transformed (i.e., not in-
cluded in the cluster). The conflict between PBC and reflec-
tions in an arbitrarily oriented plane or line arises because a

change in interaction energy occurs for pairs of particles that
are both transformed. One might consider to account for this
additional energy change via a Metropolis-style acceptance
criterion. However, detailed balance would be very difficult
to prove for such a scheme, because the particles that consti-
tute a cluster will have different interaction strengths before
and after the transformation, causing the cluster construction
process to proceed with different probabilities in the reverse
move. On the other hand, a proper algorithm can be devised
by proceeding as discussed in conjunction with Fig. 2, i.e.,
transformation of each particle that is added to the cluster and
subsequent reconstruction of the periodic images according
to the PBC, provided that one rejects every cluster move in
which any particle in the cluster interacts with a periodic im-
age of another particle in the cluster in either the old or new
positions of either particle. This criterion allows us to formu-
late an ergodic algorithm that simulates anisotropic particles
based on the GCA, by performing cluster moves with arbi-
trary reflections and line reflections and then accepting the
move only if there is no change in the interaction energy of
all particles in the cluster (including their periodic images). If
the interaction is sufficiently short ranged, a significant frac-
tion of all proposed cluster moves will be accepted. We have
implemented and tested this GCA with rejections for a sys-
tem of Lennard-Jones dimers and confirmed that its results
agree with a local-move Metropolis Monte Carlo simulation
and with molecular dynamics simulations of the same system.
Conversely, this algorithm breaks down completely when the
interaction is not short ranged.

C. Transformations in isotropic space:
The hyperspherical geometric cluster algorithm

The discussion in Sec. II A shows that the symmetries
of the space in which a system is defined determine the
allowed transformations and therefore the set of accessible
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FIG. 2. Illustration of the conflict that arises in the geometric cluster algorithm if, upon incorporation of a particle in the cluster, its periodic images are not
subjected to the same transformation. The simulation cell (left panel) contains four parallel arrow-shaped particles (solid objects), three of which are collinear.
Some of their periodic images are shown as well (open objects). Particles 1–3 belong to the cluster, which is reflected in the dashed line. This transformation
yields particles 1′–3′ (solid objects in right panel), which are periodically replicated. As illustrated by open arrow labeled 1′ in the right panel, these periodic
images are no longer collinear with the particles that were part of the cluster, resulting in a change in interaction energy. This cannot be resolved through an
alteration of the PBC such that the periodic image of 1′ is replaced with 1* (which corresponds to the approach taken in Fig. 1), as this would violate the
periodicity of the particles that are not included in the cluster (represented by particle 4 and its images).

orientations. Thus, an ergodic algorithm for anisotropic par-
ticles requires the use of an isotropic space, which has
continuous orientational symmetry in all directions. The only
finite, isotropic three-dimensional (3D) space is the surface
of a four-dimensional (4D) hypersphere (also referred to as
a 3-sphere). Indeed, this geometry has been used before in
Monte Carlo and molecular dynamics simulations. Specifi-
cally, the 2D counterpart of this geometry (i.e., the surface
of a sphere) was first employed to avoid the use of Ewald
summation for electrostatic interactions.44 The case of gen-
eral dimensionality was discussed shortly afterward.45 Since
then, it has been used in 3D systems, e.g., to deal efficiently
with long-range electrostatic interactions46 and to suppress
finite-size effects.47 Its use has also been extended to poly-
meric particles.48 Being a three-dimensional manifold, this
space is locally analogous to a 3D Euclidean space, so we can
construct transformations analogous to every transformation
in Euclidean space. An arbitrary plane reflection is a reflec-
tion through a hyperplane that contains the origin. Arbitrary
line and point reflections can be constructed as the composi-
tion of two or three mutually orthogonal hyperplane reflec-
tions, respectively, that leave the origin fixed. In Appendix A
we provide a detailed description on the construction of trans-
formations using quaternions. Using hyperspherical geom-
etry and an expanded set of transformations that includes
analogues of arbitrary plane reflection and line reflection, we
thus construct a hyperspherical GCA (h-GCA), which allows
for the ergodic simulation of anisotropic particles and retains
the property that it is a rejection-free Monte Carlo scheme.

The h-GCA follows the same procedure as the original
GCA.7, 8 We include a step-by-step description of the cluster
construction procedure for completeness.

1. A seed particle i is chosen, which forms the first particle
in the cluster.

2. A self-inverse, isometric transformation is chosen,
which transforms this particle from its old position and
orientation i to a new position and orientation i′.

3. Each particle j that interacts with i or i′ is considered for
inclusion in the cluster. Particle j joins the cluster with
probability

P (j |i) = max[1 − exp(−β�Uij ), 0], (1)

where β = 1/(kBT), with kB Boltzmann’s constant and T
the absolute temperature. �Uij is the change in pair en-
ergy U between particles i and j resulting from the trans-
formation of particle i, i.e., �Uij = U(j, i′) − U(j, i).
In view of the superficial resemblance of Eq. (1) to
a Metropolis acceptance criterion, we emphasize that
�Uij is not the total energy change that results from the
transformation of i. If particle j joins the cluster, it is
transformed to its new position and orientation. Further-
more, it is placed on a stack and removed from consid-
eration for further transformations.

4. After all particles interacting with i or i′ have been con-
sidered, a particle is retrieved from the stack, and the
algorithm returns to step 3 with this particle as the new
particle i.

5. When the stack is exhausted, the algorithm is finished,
and all particles in the cluster will be in their new posi-
tions and orientations.

The proof of detailed balance for this algorithm is identi-
cal to the proof presented in Refs. 7 and 8.

To our knowledge, the fundamental connection between
the permissible transformations in cluster moves and the sym-
metry of the space was not pointed out earlier, and it is
not made explicit in the criteria stated in Sec. II A. In the
original description of the GCA (Refs. 7 and 8) and in its
subsequent applications,14, 16, 17, 49 the systems simulated con-
tained only isotropic particles, and only point reflections were
used for cluster moves, since these are sufficient to relax the
translational degrees of freedom. Indeed, every point reflec-
tion is a central inversion, which is a symmetry of every
Bravais lattice, illustrating why these transformations could
be used with the GCA in PBC without problems. Cluster
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algorithms have been proposed that are inspired by the GCA
and that have been used to simulate systems of anisotropic
particles in Euclidean space by employing other transforma-
tions than point reflections,24, 25 but both of these algorithms
include a Metropolis-type acceptance criterion (i.e., they are
not rejection-free) and rely on additional moves within the
same simulation to achieve ergodicity. In contrast, the h-GCA
described here is rejection-free even for anisotropic particles
and autonomously generates an ergodic sequence of configu-
rations that obey the Boltzmann distribution.

Whereas the h-GCA is of general applicability, we note
that, apart from the ability to simulate anisotropic particles,
it is subject to the same limitations as the original GCA.7

Namely, the algorithm is only ergodic as long as the clusters
do not comprise the entire system. This requirement limits
the volume fractions and coupling strengths that can be ex-
amined. The maximum values attainable will depend on com-
position and degree of anisotropy of the various species; for
spherical particles the highest volume fraction was found to
be around 0.34. In addition, we point out a subtlety in the
choice of geometric operations. For chiral particles, plane re-
flections, and point reflections are not permissible, as they
lead to a chirality reversal. However, line reflections are still
permissible and sufficient to relax the orientational degrees of
freedom of such particles.

We conclude this algorithm description by noting that it
is possible to use information about the seed particle in the
choice of transformation, since the transformation is chosen
after the seed particle has been selected. As first proposed in
Ref. 8 (and later used in, e.g., Ref. 50), this can be exploited
to control the average cluster size by constructing a geometric
transformation that limits the maximum displacement of the
seed particle. This is of particular importance for anisotropic
particles, since it permits generation of transformations that
limit the maximum change in orientation and thus offers con-
trol over the cluster size. We refer to such cluster moves which
base their transformation on the position and orientation of
the seed particle as biased cluster moves. A subtlety regarding
the use of such moves for anisotropic particles is that a self-
inverse transformation necessarily inverts one or more spatial
dimensions, producing a discontinuous change in the orien-
tation of the seed particle. However, transformations which
invert dimensions that coincide with reflection symmetries of
the seed particle are effectively identity operations on its ori-
entation, from which one can construct transformations that
effect arbitrarily small orientational changes. Evidently, par-
ticles that possess fewer or no reflection symmetries benefit
less from biased cluster moves. The construction of the trans-
formations for biased moves using quaternions is described in
Appendix A 4.

III. DEMONSTRATION OF APPLICABILITY

A. Comparison with Metropolis Monte Carlo

We have implemented the algorithm described in
Sec. II C. The coordinates and orientation of each particle
are represented by a pair of quaternions, both of which are
transformed when a particle is added to a cluster, as described

in Appendix A. To efficiently deal with pair interactions, we
employ the cell index method described in Appendix B 1. For
compound particles (“molecules”) we apply the mapping de-
scribed in Appendix B 2.

As a first demonstration, we examine a system of 500
asymmetric dimers, each of which is composed of two spher-
ical monomers labeled A and B, respectively, separated by a
(geodesic) center-to-center distance σ . We place the dimers
on the 3D surface of a hypersphere of radius R, which creates
a space with volume

� = 2π2R3. (2)

Setting R = 8.0932σ , we have � ≈ 10464σ 3 and a number
density of ρ = 4.7784 × 10−2 dimers/σ 3. All monomers in-
teract via a Lennard-Jones (LJ) potential,

U (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

+ εc. (3)

The potential is truncated at the cutoff rc = 2.5σ and the shift
εc is chosen such that U(rc) = 0. The distance r is the arc
length distance along a geodesic on the hypersphere,

r = R arccos(r̂1 · r̂2), (4)

where r̂1 and r̂2 are unit vectors denoting the position of the
two interacting particles on the surface of the hypersphere.
The dimers are asymmetric in the coupling strength between
A and B monomers, with εAA = 0.625kBT, εBB = εAA/2
= 0.3125kBT, and εAB = √

εAAεBB ≈ 0.44194kBT . The cou-
pling strength and concentration are deliberately chosen to
produce a system with moderately strong interactions, so that
the average cluster size is a significant fraction of the total
number of dimers.

To demonstrate the correctness of the h-GCA algorithm
described in Sec. II C and of our implementation, we simu-
late this system both by means of the conventional Metropo-
lis Monte Carlo algorithm and via the h-GCA. In the former
method, a move consists of a combined rotation and transla-
tion, in which dimers are translated on the surface of the hy-
persphere over a maximum distance of 6σ and freely rotated
to a new, uniformly chosen orientation. Defining a set of 1000
such moves as one sweep, we equilibrate the system for 103

sweeps and then perform 107 production sweeps, resulting in
an average acceptance ratio of 0.356. The potential energy
is sampled after every sweep. In the simulations employing
the h-GCA, we pursue four different variants, each using a
different type of transformation to perform the cluster moves:
plane reflections, line reflections, biased plane reflections, and
biased line reflections. The average cluster size depends on
the transformation used. For each run, the system is equili-
brated for 104 cluster moves, followed by 108 cluster moves
during which the potential energy is sampled after every 10
moves. Table I lists the average potential energy for the sim-
ulation using conventional Monte Carlo moves as well as for
those using different types of cluster moves. All results have
a high precision (relative error O(10−5)) and agree within the
statistical uncertainty. The table also lists the relative clus-
ter size. The distribution of both size and structure of the
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TABLE I. Comparison of the average potential energy obtained in differ-
ent simulations of the same system of asymmetric Lennard-Jones dimers in
a hyperspherical geometry. The different simulation types listed refer to a
conventional Metropolis-type (“local-move”) simulation and to the hyper-
spherical geometric cluster algorithm with various choices for the geometric
transformation used to construct the clusters. All runs agree within statistical
uncertainty.

Simulation Average Average Relative
type potential energy cluster size cluster size

Local move −246.1945 ± 0.0043 n/a n/a
Plane reflection −246.2042 ± 0.0035 141.37 28%
Line reflection −246.2003 ± 0.0033 182.60 36%
Biased plane reflection −246.2049 ± 0.0035 129.15 26%
Biased line reflection −246.2025 ± 0.0033 182.68 37%

clusters may affect the rate of decorrelation, and hence sta-
tistical quality, of thermodynamic averages. However, de-
spite the dependence of average cluster size on the choice
of transformation, all h-GCA runs yield the same statistical
accuracy.

B. Comparison with molecular dynamics simulations

It is desirable to compare our implementation of the h-
GCA algorithm against a completely independent simulation
code. Since, to the best of our knowledge, no Monte Carlo
or molecular dynamics simulation packages are available that
employ hyperspherical boundary conditions, we resort to a
special case, namely the application of the h-GCA to a 2D
system defined on the surface of a 3D sphere.38 It is then pos-
sible to make a direct comparison to results obtained from a
molecular dynamics package designed for 3D simulations, as
described below.

As in the 3D case of Sec. III A, we define a system
of 500 asymmetric dimers, composed of two monomers (la-
beled A and B) that have a (geodesic) center-to-center dis-
tance σ . Since the curved space is now two-dimensional, the
monomers are spherical caps (sometimes referred to as spher-
ical calottes). They interact again via a LJ potential, with
asymmetric coupling parameters εAA = 1.0kBT, εBB = εAA/2
= 0.5kBT, and εAB = √

εAAεBB ≈ 0.7071kBT . To obtain dif-
ferent concentrations (four different values ranging from
0.05 dimers/σ 2 to 0.20 dimers/σ 2) we vary the sphere ra-
dius R. For each concentration, we perform two different
types Monte Carlo simulations using the h-GCA algorithm,
employing either plane reflections or line reflections (both
transformations are used in unbiased form). With increasing
concentration, samples are taken every 250, 80, 20, or 10 clus-
ter moves, respectively. After equilibration for 1000 samples,
(1.4–7.0) × 106 samples are obtained. In a third series of sim-
ulations, we use the h-GCA code but actually perform conven-
tional single-particle moves consisting of a translation and a
rotation (cf. Sec. III A). The maximum displacement is σ and
the maximum rotation of the rod director is 30◦. Samples are
taken every 30 000 steps. The systems are again equilibrated
for 1000 samples, followed by 0.36–0.98 × 106 samples.

FIG. 3. Schematic of the method used to perform simulations on a spherical
surface by means of a conventional molecular dynamics package. A dimer
(comprised of a red and a green monomer, near the top of the image) on
the surface of a sphere is rigidly bonded with dummy particles (dark spheres
near the bottom of the image) at points antipodal to the monomers. As a
result the center of mass of this “molecule” coincides with the center of the
sphere. Since the dummy particles do not interact with any other particles,
they do not interfere with the motion of the dimers on the spherical surface.
Note that in the actual model definition (see main text) the 2D monomers
are represented merely by the intersection of the monomers shown in this
figure and the spherical surface; however, this is immaterial for the actual
simulations.

An identical system can be defined in the LAMMPS
molecular dynamics package51 via a trick. Namely, we con-
strain the dimers to the surface of a sphere of radius R by
rigidly bonding each monomer to a “dummy” particle of the
same mass at the antipodal point, as illustrated in Fig. 3.
The dummy particles do not interact with any particle, but
they ensure that the center of mass of each molecule, com-
posed of a dimer and two dummy particles making up the
dummy dimer, lies at the center of the sphere. We restrict the
motion of the molecules to rotations only, thus constraining
the dimers to move on the surface of the sphere, but other-
wise allowing their unrestricted translation and rotation on
this surface. Furthermore, we modify the pairwise interactions
between monomers such that the distance between particles
is measured as the arc length and that the resulting forces
act tangential to the sphere. We perform simulations with a
time step of 0.001τ , where τ is the reduced time unit. Af-
ter equilibration for 107 steps, the systems are simulated for
(2.2–10)× 108 time steps and samples are taken every 1000
steps.

In all simulations, we sample the potential energy, as
summarized in Table II. For each dimer concentration, the re-
sults of the various Monte Carlo simulations and the molecu-
lar dynamics simulations have an uncertainty of O(10−4) and
agree within statistical error.
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TABLE II. Comparison of the average potential energy obtained in different simulations of the same system of 2D asymmetric Lennard-Jones dimers confined
to a spherical surface. The simulation methods include conventional local-move Monte Carlo, the hyperspherical geometric cluster algorithm with two different
geometric transformations, and molecular dynamics simulations. For each dimer concentration, all four methods agree within statistical uncertainty.

Concentration (dimers/σ 2) 0.05 0.10 0.15 0.20
Sphere radius R 28.2094792 19.947114 16.2867504 14.1047396

Molecular dynamics −137.527 ± 0.020 −262.781 ± 0.022 −383.376 ± 0.023 −505.702 ± 0.023
Local move −137.518 ± 0.012 −262.797 ± 0.026 −383.404 ± 0.024 −505.758 ± 0.029
Plane reflection −137.501 ± 0.008 −262.789 ± 0.016 −383.413 ± 0.027 −505.724 ± 0.037
Line reflection −137.486 ± 0.009 −262.802 ± 0.016 −383.411 ± 0.021 −505.815 ± 0.032

C. Comparison with known results for the
Lennard-Jones fluid on a hypersphere

Since the implementation of a hyperspherical algo-
rithm can be relatively involved, especially when use is
made of quaternions (Appendix A) and a cell index method
(Appendix B 1), it is advantageous to test the code by com-
parison to accurate tabulated data for a well-defined model.
Comparison to data for the same model, e.g., a Lennard-Jones
fluid, in Euclidean geometry is insufficient, as the intrinsic
curvature of the hyperspherical space will lead to system-
atic differences in thermodynamic properties. Likewise, re-
sults that rely on extrapolation (e.g., finite-size scaling near a
critical point) are less desirable as well, as the extrapolation
techniques used may obfuscate numerical errors in the data.
Relatively few suitable results are available in the literature.
Schreiner and Kratky52 have presented numerical results for
the Lennard-Jones fluid on a hypersphere, which we will com-
pare to here. Since these results are relatively old and hence of
moderate numerical accuracy, we also compare to more recent
results for the Yukawa one-component plasma in Sec. III D.

The results of Ref. 52 pertain to a system of N particles
on a hypersphere, interacting through a Lennard-Jones poten-
tial along their short geodesic separation (this is equivalent
to imposing a cutoff equal to half the circumference of the
hypersphere). Two different combinations of number density
and coupling strength are considered, namely ρ = 0.8016σ−3

with coupling ε/kBT = 1/0.8347 ≈ 1.1980 (results in
Table III) and ρ = 0.7757σ−3 with coupling ε/kBT = 1/1.1686

TABLE III. Comparison of the reduced internal energy per particle, −U*
= −U/(Nε), for different types of simulations of a Lennard-Jones fluid on
a hypersphere, with number density ρ = 0.8016σ−3 and coupling strength
ε/kBT = 1/0.8347 ≈ 1.1980.

Cluster Cluster line Local
N reflection reflection moves Ref. 52

54 4.036 ± 0.002 4.034 ± 0.005 4.0343 ± 0.0006 4.008 ± 0.012
81 4.346 ± 0.001 4.338 ± 0.004 4.3450 ± 0.0007 4.349 ± 0.008
108 4.539 ± 0.002 4.541 ± 0.007 4.5348 ± 0.0009 4.541 ± 0.008
162 4.767 ± 0.002 4.766 ± 0.004 4.7657 ± 0.0008 4.776 ± 0.004
216 4.905 ± 0.002 4.900 ± 0.007 4.9055 ± 0.0009 4.901 ± 0.003
326 5.071 ± 0.001 5.067 ± 0.004 5.0701 ± 0.0009 5.072 ± 0.005
432 5.165 ± 0.001 5.158 ± 0.004 5.1668 ± 0.0010 5.160 ± 0.003
648 5.279 ± 0.001 5.279 ± 0.004 5.2775 ± 0.0010 5.287 ± 0.003
864 5.344 ± 0.001 5.342 ± 0.003 5.3459 ± 0.0009 5.344 ± 0.004

≈ 0.8557 (results in Table IV). We simulate this system for the
same parameter combinations, using three different methods:
single-particle displacements randomly and uniformly chosen
within a sphere of radius 6σ around the current particle posi-
tion, cluster moves with unbiased plane reflections, and clus-
ter moves with unbiased line reflections. The runs employing
local moves consist of an equilibration period of 1.5 × 107

single-particle steps and a production period of 3 × 109 steps,
with samples taken every 3000 steps. The runs with cluster
moves are equilibrated for 5 × 105 clusters and run for 2 × 106

cluster moves, with a sampling interval of 100 moves.
Tables III and IV show the reduced average internal
energy per particle, U* = U/(Nε), for 9 different system sizes
for these three different algorithms, along with the data of
Ref. 52. All results agree within the statistical uncertainty.

D. Comparison with known results for the Yukawa
one-component plasma

Caillol and Gilles have carried out a highly detailed
study of the Yukawa one-component plasma53 and performed
extensive numerical simulations54 for this model in a hyper-
spherical geometry. The system consists of N identical point
particles in a volume � that each carry a charge q and interact
(in a Euclidean geometry) via a Yukawa potential vα(r)
= exp (−αr)/r. This model can be shown to depend on only
two reduced parameters, namely the coupling parameter
� = βq2/aion and the reduced screening parameter

TABLE IV. Comparison of the reduced internal energy per particle, −U*
= −U/(Nε), for different types of simulations of a Lennard-Jones fluid on
a hypersphere, with number density ρ = 0.7757σ−3 and coupling strength
ε/kBT = 1/1.1686 ≈ 0.8557.

Cluster Cluster line Local
N reflection reflection moves Ref. 52

54 3.705 ± 0.001 3.707 ± 0.003 3.7023 ± 0.0005 3.694 ± 0.009
81 3.993 ± 0.001 4.001 ± 0.005 3.9917 ± 0.0006 3.986 ± 0.009
108 4.167 ± 0.001 4.162 ± 0.004 4.1684 ± 0.0006 4.171 ± 0.009
162 4.383 ± 0.001 4.378 ± 0.005 4.3839 ± 0.0007 4.369 ± 0.006
216 4.512 ± 0.001 4.517 ± 0.004 4.5119 ± 0.0007 4.509 ± 0.004
326 4.666 ± 0.001 4.667 ± 0.005 4.6659 ± 0.0008 4.665 ± 0.004
432 4.755 ± 0.001 4.754 ± 0.003 4.7547 ± 0.0007 4.755 ± 0.003
648 4.859 ± 0.001 4.862 ± 0.003 4.8603 ± 0.0008 4.863 ± 0.003
864 4.922 ± 0.001 4.925 ± 0.003 4.9221 ± 0.0007 4.917 ± 0.005
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α∗ = αaion. Here aion is the “ionic radius,” to be de-
fined below. A precise definition of the model employed,
along with accurate numerical data for different derivatives of
the free energy as a function of � and α*, is provided in Ref.
54, making this an ideal starting point for testing purposes.
Moreover, the tabulated data refer to a finite number of
particles, N = 600, simulated in the canonical ensemble, so
any numerical comparison does not involve extrapolations to
the thermodynamic limit.

Unfortunately, we found that the numerical data pre-
sented in Ref. 54 contain systematic deviations, for all prop-
erties listed and all parameter values. To remedy this situa-
tion, and to provide a data set that can serve as a reference for
future simulations in hyperspherical geometry, we have im-
plemented an independent Metropolis-type Monte Carlo sim-
ulation of this model and used it to perform accurate simula-
tions for a representative subset of the data listed in Ref. 54.
In addition, we have confirmed that our implementation of the
hyperspherical GCA yields results that are in accurate agree-
ment with our results obtained from the conventional Monte
Carlo simulations.

For completeness, we start with a precise definition of
the Yukawa one-component plasma on a hypersphere S3. For
a system with radius R, volume � given by Eq. (2), and num-
ber density ρ = N/�, the ionic radius aS3

ion ≡ ψ0R is obtained
from the space-filling condition NvS3 = �, where vS3

is the
single-particle volume in S3,

vS3 = 2πR3d(ψ0), (5)

with

d(ψ0) = ψ0 − sin(ψ0) cos(ψ0). (6)

Thus, in terms of the number density ρ = N/�, ψ0 is found
from

2πρR3d(ψ0) = 1. (7)

The separation between a pair of particles located at ri

= (xi, yi, zi, ti) and rj = (xj , yj , zj , tj ), respectively, is their
geodesic distance Rψ ≡ R arccos((ri · rj )/R2) (cf. Eq. (4))
and the exponentially decaying potential vα in Euclidean
space is replaced by the pair potential vS3

α ,

vS3

α (ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

R

sinh(ω(π − ψ))

sin(ψ) sinh(ωπ )
− 4π

α2�
for αR ≥ 1,

1

R

sin(ω(π − ψ))

sin(ψ) sin(ωπ )
− 4π

α2�
for αR < 1,

(8)

with ω =
√

|α2R2 − 1|. Note that the argument ωπ in the de-
nominator is misprinted as ωψ for both cases in Ref. 54 (but
stated correctly when originally derived as Eqs. (4.8) and (4.9)
in Ref. 53). The potential energy then follows from a pairwise
sum,

βV S3 = βq2

2

N∑
i=1

∑
j �=i

vS3

α (ψij ) + NβA. (9)

The additive constant comprises two contributions,

βA = βAOCP + βδA, (10)

where AOCP is the one-component plasma (or α = 0) contri-
bution (first derived as Eq. (4.38) in Ref. 53),

βAOCP = − 9

10
� − 3�

4πR∗ + �

2R∗d(ψ0)

×
[

3

2
+ sin2(ψ0) − ψ0 sin2(ψ0)

d(ψ0)

]
. (11)

Here R∗ = R/aS3

ion = 1/ψ0 is the reduced radius and the cou-
pling constant is now defined in terms of the hyperspheri-
cal ionic radius, � = βq2/aS3

ion. The second contribution in
Eq. (10) depends on the reduced screening parameter α∗

= αaS3

ion,

βδA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

2

(
3

2πR∗ −ω coth(ωπ)

R∗ − 4π

α∗2�∗

)
for αR ≥ 1,

�

2

(
3

2πR∗ −ω cot(ωπ )

R∗ − 4π

α∗2�∗

)
for αR < 1,

(12)

where �∗ = �/(aS3

ion)3 is the reduced volume. This is Eq. (3.6)
in Ref. 54, but note that the αR < 1 term contains a misprint
(the correct form appears as Eq. (4.42) in Ref. 53).

In the simulations, we focus on derivatives of the excess
free energy per particle f with respect to � and α*, respec-
tively, which are given by

�
∂f

∂�
= 1

N

〈
βV S3 〉

, (13)

∂f

∂α∗ = 1

N

〈
βWS3 〉

, (14)

where the angular brackets indicate thermodynamic averages.
The functional WS3

is given by

βWS3 = N (∂βA/∂α∗) − �

2

N∑
i=1

∑
j �=i

wS3

α (ψij ). (15)

Since the first term in Eq. (10) is independent of α, the deriva-
tive of βA follows from Eq. (12),

∂βA
∂α∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

2

[
4

πα3R3
+ αR

ω

(
ωπ

sinh2(ωπ )
− coth(ωπ)

)]
for αR ≥ 1.

�

2

[
4

πα3R3
− αR

ω

(
ωπ

sin2(ωπ )
− cot(ωπ )

)]
for αR < 1.

(16)
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This is Eq. (3.10) in Ref. 54, but note that there is a sign error in the expression for αR < 1. Lastly, the pair function wS3

α (ψij )
appearing in Eq. (15) is given by

wS3

α (ψij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

παR

ω

cosh(ωπ) sinh(ω(π − ψ))

sin(ψ) sinh2(ωπ )
− αR

ω

(π − ψ) cosh(ω(π − ψ))

sin(ψ) sinh(ωπ )
− 4

πα3R3
for αR ≥ 1,

− παR

ω

cos(ωπ ) sin(ω(π − ψ))

sin(ψ) sin2(ωπ )
+ αR

ω

(π − ψ) cos(ω(π − ψ))

sin(ψ) sin(ωπ )
− 4

πα3R3
for αR < 1.

(17)

This is Eq. (3.9) in Ref. 54, but note that the sign is reversed
for the first two terms in the expression for αR < 1 and that
the argument ωπ is misprinted as ωψ in the denominator of
the second term in both cases.

Caillol and Gilles54 have systematically studied this
model for a large range of the coupling parameter 0.10
≤ � ≤ 100 and for a reduced screening parameter 0.10 ≤ α*
≤ 6.0. Here, we employ the same range for α* and concen-
trate on � = 0.10 and � = 10. Following Ref. 54, our system
contains N = 600 particles in all simulations. For each combi-
nation of � and α*, we equilibrate the system for 104 sweeps,
followed by 106 production sweeps. A sweep consists of N
Monte Carlo steps and in each step a displacement attempt
is made for one randomly selected particle. Thus, each pro-
duction run corresponds to 6 × 108 Monte Carlo steps. For
� = 0.10 the acceptance rate depends only very weakly on
the maximum displacement and was always larger than 90%
in our simulations. For � = 10, the maximum displacement
was adjusted to yield acceptance rates ∼30% for the smallest
values of the screening parameter and ∼80% for the largest
values of α*. In each simulation, we sample the free-energy
derivatives Eqs. (13) and (14). To provide an impression of the
functional dependence of these derivatives on the screening
parameter and to make a comparison to the results of Ref. 54,
we plot ∂f/∂α* for � = 0.10 in Fig. 4. As shown, there is a
systematic difference between the results of Ref. 54 and our
data. We emphasize that results obtained by means of the h-
GCA agree within statistical error with our data obtained via
Metropolis-type simulations for all α*. Moreover, the discrep-
ancy cannot be attributed to the misprints identified in some
of the equations in Ref. 54 for αR = α*R* < 1, since R*
= 1/ψ0 ≈ 1/0.1993028778, so all data points except α*
= 0.10 and α* = 0.15 pertain to αR ≥ 1.

To extend this comparison to a significantly stronger
coupling and to other thermodynamic properties, we display
�(∂f/∂�) as a function of α* for � = 10 in Fig. 5. As shown,
the relative discrepancy between the results of Ref. 54 and
those of our Metropolis-type simulations is far smaller than
for ∂f/∂α*. However, in absolute magnitude the discrepancy is
similar. The maximal difference between both data sets shifts
to higher values of α* than in Fig. 4. This is due to the in-
crease in �, not to the difference in physical property; indeed,
the maximum discrepancy in ∂f/∂α* (not shown) exhibits a
similar shift to higher values of α* when � is increased. The
results obtained by means of simulations employing the h-
GCA agree again with those from our Metropolis-type simu-

lations within statistical uncertainty. For comparison purposes
we provide the numerical data for both free-energy derivatives
in tabulated form in Appendix C.

IV. EFFICIENCY OF THE h-GCA

A. Rod–sphere mixtures

The GCA defined for periodic systems in Euclidean ge-
ometry stands out because of its ability to accelerate simula-
tions of size-asymmetric mixtures compared to conventional
Monte Carlo simulations.7 In this section, we demonstrate
that the h-GCA is capable of similar efficiency gains. The
standard test case for the standard GCA is a binary mixture
of interacting spherical particles, with the two components
denoted as “large” and “small.” A large particle typically
finds itself surrounded by many small particles, hindering
its diffusion. Rapid positional decorrelation can be achieved
in a Monte Carlo simulation through non-local moves, pro-
vided that these do not have a vanishingly small acceptance
rate—precisely what the GCA guarantees. For the h-GCA, we
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FIG. 4. Derivative of the free energy per particle with respect to the reduced
screening parameter α* for the Yukawa one-component plasma at coupling
constant � = 0.10, as a function of α*. The open circles are results obtained
in this work via a Metropolis-type simulation for N = 600 particles. The open
squares are data published in Ref. 54 for the identical system. Although the
data agree for the unscreened case (α* → 0) and for the strongly screened
Yukawa one-component plasma, there is a systematic deviation at intermedi-
ate values of α*, as highlighted in the inset (which displays ∂f/∂α∗ [Ref. 54]
−∂f/∂α∗[this work]). Independent simulations employing the hyperspheri-
cal geometric cluster algorithm agree with the Metropolis-type simulations
of this paper (open circles) within statistical error. All error bars are signifi-
cantly smaller than the symbol size.
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FIG. 5. Derivative of the free energy per particle with respect to the coupling
constant � for the Yukawa one-component plasma at � = 10, as a function
of the reduced screening parameter α*. As in Fig. 4, the open circles are
results obtained in this work via a Metropolis-type simulation for N = 600
particles and the open squares are data published in Ref. 54 for the identical
system. Whereas the two data sets seemingly are in better agreement than
for ∂f/∂α* at � = 0.10 (Fig. 4), the inset (displaying �(∂f/∂�) [Ref. 54]
−�(∂f/∂�)[this work]) shows that the discrepancy is of similar magnitude
and is largest for intermediate values of α*, although the position of the max-
imum discrepancy has shifted to a larger α* with increasing �. Like for �

= 0.10, independent simulations employing the hyperspherical geometric
cluster algorithm agree with the Metropolis-type simulations of this paper
within statistical error. All error bars in the main figure are significantly
smaller than the symbol size. The error bars in the inset reflect the combined
statistical uncertainty.

must demonstrate that rapid orientational decorrelation can be
achieved as well. Therefore, we consider a mixture of small
spherical particles and large rod-like particles. The rigid rods
are composed of l spherical monomers of diameter σ stacked
linearly with a center-to-center spacing σ between neighbor-
ing monomers (Fig. 6). The small spheres have diameter σ ′.
The small spheres and the monomers forming the rods all
have hard-sphere interactions. Both the aspect ratio l of the
rod and the diameter ratio α ≡ σ /σ ′ of the monomers and the
small spheres affect the decorrelation time, so we will study
the role of both parameters in our comparison of h-GCA and
Metropolis-type simulations.

In the cluster algorithm, we employ reflections in ran-
domly oriented planes. Each cluster move starts with a rod—
this is possible without loss of ergodicity since the small
spheres will relax due to overlaps with rods. In the local-move
algorithm (conventional Monte Carlo), either a rod or a small
sphere is selected for a trial move with 50% probability. With
increasing density the maximum translations and rod rotations
are tuned such that the order-parameter autocorrelation time
(defined below) is minimized.

FIG. 6. Schematic illustration of the arrangement of spherical monomers
into a rigid rod, as employed in the efficiency tests of the hyperspherical
geometric cluster algorithm.

To quantify the computational effort required to simu-
late each system, we characterize the arrangement of the rods
through an order parameter based on the second Legendre
polynomial,

1

N (N − 1)

∑
i

∑
j �=i

(
3

2

[
si · sj − (si · rj )(sj · ri)

1 + ri · rj

]2

− 1

2

)
,

(18)
where ri is the four-dimensional unit vector on the surface
of the hypersphere denoting the position of particle i and si

is the four-dimensional vector tangential to the surface of the
hypersphere serving as the director of rod i; the sums run over
all rods. This is very similar to the nematic order parameter,55

except that the relative orientations of the rods are evaluated
pairwise, rather than being compared to a global director. Fur-
thermore, the second term within the square brackets is a ge-
ometric correction that accounts for the fact that the direc-
tors si and sj belong to different tangent spaces for ri �= rj ,
due to the curvature of the hyperspherical surface. Inclusion
of this term, which is derived in Appendix A 5, is equiva-
lent to evaluating the dot product of the two directors after
they are brought together without rotation along their com-
mon geodesic. The autocorrelation time of this parameter, ex-
pressed in CPU time, is a measure for the effort required to
generate independent configurations.

First, we vary the diameter ratio α by systematically re-
ducing the size of the small spheres while keeping their vol-
ume fraction constant. The system contains 100 rods, each 10
monomers long, at a volume fraction of 5%. Computing the
volume of a monomer via Eqs. (5) and (6) with ψ0 = σ /(2R)
and the volume of the hypersphere surface via Eq. (2), we fix
the radius of the hypersphere at 8.0932σ . In successive sim-
ulations, the small-sphere diameter σ ′ is decreased such that
the diameter ratio α varies from 1 to 9. At the same time,
the number of small spheres is increased as α3 from 1000 to
729 000 to maintain their volume fraction at 5% as well.

Figure 7 displays the autocorrelation time8, 56 of the order
parameter Eq. (18) as a function of α. Clearly, the CPU time
per sample increases with α owing to the increasing num-
ber of particles. However, for simulations that employ the
Metropolis Monte Carlo algorithm the autocorrelation time
increases even faster, as it becomes more difficult to move
the rods embedded in a finely dispersed environment of small
particles. Indeed, the simulations become prohibitively slow
even for moderate α. This contrasts starkly with the efficiency
of the h-GCA, for which the order-parameter autocorrelation
time increases only slowly with α. As for the GCA,7 this ef-
ficiency difference results from the ability of the algorithm to
realize non-local displacements without rejection, along with
the preferential updating of those small particles that influ-
ence the large species. As shown in Fig. 7, at α = 1, the h-
GCA is O(100) faster than the conventional simulations; for
α = 2 this speed-up has already increased to nearly a factor
O(104).

Next, we examine the effect of rod aspect ratio on the
efficiency of both conventional Monte Carlo and h-GCA sim-
ulations. In these tests, we vary the rod length from two to ten
monomers while keeping the size of the monomers and the
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FIG. 7. Efficiency comparison between conventional Metropolis Monte
Carlo simulations and the hyperspherical GCA, for a mixture of rods and
spherical particles, as a function of rod–sphere size asymmetry. The rods have
length 10σ and diameter σ . The spherical particles have diameter σ /α. Both
species are present at a volume fraction of 5%. The figure displays the auto-
correlation time of the order parameter Eq. (18), describing the arrangement
of the rods, as a function of the diameter ratio α. As the small particles are
decreased in size (i.e., α is increased), their number is increased to keep their
volume fraction constant. For conventional simulations, the autocorrelation
time increases more rapidly than the number of particles in the system as the
rods become trapped in an environment of finely dispersed small spheres. The
h-GCA does not suffer from this slowdown and is capable of decorrelating
systems with diameter ratios as large as α = 9, i.e., with small-sphere diam-
eter 90 times smaller than the length of the rods. Even at a modest diameter
ratio of α = 2 the h-GCA produces decorrelated samples nearly 8000 times
more efficiently than conventional Monte Carlo simulations.

spherical particles constant. To maintain a constant rod vol-
ume faction, their number is adjusted such that all systems
contain a total of 960 rod monomers. The hypersphere radius
is set to 7.9838σ to achieve a volume fraction of 5%. The
small spheres have a diameter equal to that of the monomers,
σ ′ = σ , and we consider two different small-sphere volume
fractions φs = 0.05 and 0.15, corresponding to systems with
960 and 2880 spherical particles, respectively. In the conven-
tional simulations we choose the maximum translation and ro-
tation to minimize the autocorrelation time; this ranges from
a maximum translation of σ and a uniformly chosen random
orientation for the shortest rods at the lower volume fraction
to a maximum translation of 0.2σ and a maximum rotation of
2◦ for the longest rods at the higher volume fraction.

We find that the h-GCA performs more efficiently than
conventional Monte Carlo for both volume fractions and for
all rod lengths within the range considered. At the lower vol-
ume fraction of small spheres, φs = 0.05, the autocorrelation
time of the order parameter increases approximately expo-
nentially with rod length for conventional Monte Carlo sim-
ulations (Fig. 8). This mirrors the corresponding decrease in
the observed acceptance rate. On the other hand, the h-GCA
simulations exhibit almost no decrease in efficiency with in-
creasing rod aspect ratio. The autocorrelation time even de-
creases as the length of the rods is increased from 2σ to 6σ ;
this results from variation in average cluster composition. At
the higher sphere volume fraction, φs = 0.15, the simulation
time per sample is longer for both algorithms due in part to
the larger number of small particles affected by each rod dis-
placement. To deemphasize this effect, Fig. 8 displays the au-
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FIG. 8. Efficiency comparison between conventional Metropolis Monte
Carlo simulations and the hyperspherical GCA, for a mixture of rods and
spherical particles, as a function of rod aspect ratio. The spherical parti-
cles as well as the rods have diameter σ . Both species are present at a con-
stant volume fraction of 5%. The autocorrelation time of the order parameter
Eq. (18) is displayed as a function of rod length, for two different volume
fractions φs of spherical particles. To facilitate comparison (at fixed rod
length, and for a given algorithm) of the two volume fractions, the auto-
correlation time is normalized by the number of spherical particles (960 at
φs = 0.05 and 2 880 at φs = 0.15). At all rod lengths and for both volume
fractions the h-GCA outperforms conventional Monte Carlo simulations by
up to two orders of magnitude. For additional discussion see the text.

tocorrelation time normalized by the number of small spheres.
Thus, for each rod length the difference between the results
for φs = 0.05 and φs = 0.15 (comparing results obtained
with the same algorithm) is due to the increased obstruction
of rods as they find themselves in an environment containing
more spheres. Although the h-GCA simulations remain con-
siderably more efficient than Metropolis Monte Carlo even
for the higher small-sphere volume fraction, they do exhibit
an exponential increase of the autocorrelation time with in-
creasing rod length. This results from the fact that this system
approaches the percolation threshold, where most clusters
contain nearly all the rods in the system; for rod length 10σ

and φs = 0.15, on average 97% of the rods (and 56% of the
small spheres) belong to the cluster.

B. One-component systems

Besides size-asymmetric mixtures, the h-GCA also can
be more efficient for certain one-component systems. To il-
lustrate this, we simulate monodisperse hard rods on a spher-
ical surface using the 2D h-GCA with unbiased reflections in
lines passing through the center of the sphere (which are suf-
ficient to relax the orientational degrees of freedom, owing
to the Gaussian curvature of the surface). Each rod is com-
posed of circular monomers, assembled as in Fig. 6. Their
total area fraction is varied from 0.05 to 0.30 and we consider
rod lengths ranging from 2σ to 21σ . The number of rods is
varied to keep the total number of monomers 2520. To mon-
itor the simulation efficiency, we measure the autocorrelation
time of the nematic order parameter Eq. (18). For comparison
purposes, we simulate the same systems using local moves,
employing 13 different combinations of maximum displace-
ment and maximum rotation. For each rod length and volume
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fraction, we choose the shortest autocorrelation time of the
13 runs.

In the simulations with local moves, the autocorrelation
time increases monotonically and near-exponentially with
both rod length and area fraction (leveling off for systems with
both long rods and high area fraction). When cluster moves
are used, the autocorrelation time is approximately constant
as a function of concentration for systems of short rods and
as a function of rod length for low concentrations. However,
when a certain threshold area fraction is reached (near 0.30 for
rod length 4σ , decreasing to area fraction 0.10 for rod length
21σ ) the autocorrelation time starts to increase steeply. This
threshold correlates with an average cluster size of ∼10% of
all rods. Since the cluster size distribution is bimodal, the
threshold likely signals the appearance of very large clusters
that contain almost all rods. Comparison of local moves and
cluster moves shows that their efficiency is comparable be-
low this threshold, as the typical cluster size is small. How-
ever, near the threshold, where clusters take an intermediate
size, the h-GCA is considerably more efficient, with autocor-
relation times that are at least 20 times shorter than in the
conventional Monte Carlo algorithm. At higher area fractions
and rod lengths, this advantage disappears until local moves
have a twice shorter autocorrelation time for rods ≥10σ at
area fraction 0.30.

Similarly, the h-GCA can also increase the efficiency of
simulations of aggregating particles. Whereas conventional
Monte Carlo algorithms move one particle at a time, the h-
GCA proposes non-local moves that enable large-scale re-
structuring of aggregates.57 For completeness, we note that
since the introduction of the GCA,7 related algorithms have
been proposed for systems of attractive particles undergoing
self-assembly. In these, the notion of constructing correlated
collective moves put forward in the GCA is combined with a
Metropolis-style acceptance criterion.20–23 Specifically, clus-
ters of particles are built according to a weaker interaction
than the real interaction between the particles. The proposed
cluster move is then subject to an acceptance criterion to ac-
count for the energy change that is ignored during the cluster
construction. This approach accelerates the rearrangement of
aggregates of strongly interacting particles, despite the inclu-
sion of rejection. Furthermore, once the rejection-free notion
is dismissed, it is no longer necessary to employ transforma-
tions that are self-inverse. This has the advantage that internal
degrees of freedom of an aggregate can be relaxed by, e.g.,
shifting a subset of the aggregate over a small distance.

V. EFFECTS OF HYPERSPHERICAL GEOMETRY

Having established in Sec. IV that the h-GCA is more ef-
ficient than conventional methods for a variety of systems, we
address its requirement that the simulations be conducted in
hyperspherical geometry. The intrinsic curvature of this ge-
ometry introduces finite-size effects that must be compared
to those encountered in simulations carried out in Euclidean
geometry.

Simulations performed using either periodic boundary
conditions or hyperspherical boundary conditions (HBC) dis-
play ensemble-dependent finite-size effects. In addition, the

use of PBC leads to finite-size effects arising from the
anisotropy introduced by the periodic lattice of cells, whereas
the use of HBC leads to finite-size effects owing to the in-
trinsic curvature of the space. To illustrate the latter, we con-
sider the second virial coefficient. Calculation of this coeffi-
cient involves a volume integration. The difference between
Euclidean geometry and hyperspherical geometry for this in-
tegration is borne out by the difference in the surface area of a
spherical shell of radius r. On a hypersphere of radius R, this
shell has a surface area

4πR2 sin2(r/R) ≈ 4πr2

(
1 − r2

3R2

)
. (19)

Thus, the first-order correction to Euclidean geometry scales
as O(R−2). This causes the second virial coefficient to ex-
hibit a corresponding system-size dependent deviation from
its value in Euclidean geometry. Indeed, it was derived for a
Lennard-Jones fluid of N particles that, at constant density,
this correction scales with system size as R−2 ∝ N−2/3, with
similar corrections for other thermodynamic properties, in-
cluding the internal energy per particle, the pressure, and the
constant-volume heat capacity.52

To illustrate these finite-size effects, we simulate a
Lennard-Jones fluid (particle diameter σ ) with a potential cut-
off at 2.5σ , at a coupling strength ε = (2/3)kBT and a number
density ρ = 0.2σ−3. We vary the number of particles from
N = 50 to N = 102 400 and perform the simulations under
PBC as well as under HBC. For PBC, the average internal en-
ergy per particle U(N) for N > 100 is well described by U(N)
= U0 + aNx with scaling exponent x = −1.002 ± 0.006 and
U0 = −0.79849 (1). On the other hand, for HBC we find U0

= −0.79847 (2) and x = −0.686 ± 0.001. While observing
the agreement in the thermodynamic limit for both geome-
tries, we also note that the scaling exponent for HBC is likely
an effective exponent caused by the relatively close vicinity
of several finite-size corrections. Indeed, it is expected that52

U (N ) = U0 + U1N
x + U2N

−1 + U3N
2x + · · · , (20)

with x = −2/3. In a nonlinear least-squares fit of all HBC data
in which the exponent of the regular scaling correction is kept
fixed at −1 (to avoid interference with the other corrections)
we find U0 = −0.79846 (2), consistent with the fits above
containing only a single correction term, and x = −0.676
± 0.006, within two standard deviations of the predicted
power-law. The approach to the thermodynamic limit, for
both PBC and HBC, is illustrated in Fig. 9. Whereas the inter-
nal energy approaches the thermodynamic limit more slowly
for HBC than for PBC, the differences are small for structural
properties such as the radial distribution function, even for the
smallest system, see Fig. 10. This makes simulations employ-
ing HBC equivalent to those employing PBC when the local
structure of a fluid state must be determined.38

Finite-size effects in hyperspherical geometry have also
been reported for other systems. In Ref. 58, the internal en-
ergy of the Yukawa one-component plasma of Sec. III D was
found to exhibit corrections proportional to N−2/3 for coupling
strengths � ≤ 3, whereas for stronger couplings the leading
correction was found to scale as N−1. On the other hand, for
the restricted primitive model in hyperspherical geometry the
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FIG. 9. Finite-size behavior of the internal energy per particle for a Lennard-
Jones fluid in Euclidean geometry with periodic boundary conditions and
in hyperspherical geometry. Both curves approach the same thermodynamic
limit U0, with power-law finite-size corrections (cf. inset) that agree with
theoretical predictions (see text for further discussion).

internal energy per particle was reported to exhibit no signifi-
cant finite-size effects, even for moderate system sizes.47, 59

One concern that arises in the use of hyperspherical ge-
ometry is the formation of defects. Indeed, for spherical par-
ticles with a soft, purely repulsive potential, a comparison of
PBC and HBC confirmed that HBC artificially inhibit crystal-
lization, whereas PBC artificially promote crystallization due
to the periodicity of the space.60 Likewise, spherical bound-
ary conditions can affect liquid-crystalline order by induc-
ing topological defects, as was observed for 2D simulations
on a sphere.61 However, whereas such defects are guaran-
teed to exist in S2 by the Poincaré–Hopf theorem, the hy-
persphere surface S3 is parallelizable,62 which implies that
global defect-free nematic order can be achieved. Neverthe-
less, it remains an open question whether the strain generated
by the intrinsic curvature of this geometry affects the forma-
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FIG. 10. Comparison of the radial distribution function for a Lennard-Jones
fluid in periodic Euclidean geometry (PBC) and in hyperspherical geometry
(HBC). Even for the smallest system size (N = 50), the structural differ-
ences are very small, demonstrating that the local structure is not strongly
affected by curvature effects. For the larger system (N = 12 800) the dif-
ferences are undetectable. Interestingly, at larger separations the system in
Euclidean space exhibits stronger finite-size deviations (see inset), which we
ascribe to the anisotropic nature of the boundary conditions.

tion of nematic order and to what extent this is influenced by
the choice of projection, as discussed in Appendix B 2.

VI. CONCLUSIONS

In summary, we have presented an extension of the geo-
metric cluster algorithm7 to hyperspherical geometry. In con-
trast with simulations performed under periodic boundary
conditions, this isotropic space permits the use of geometric
transformations in the cluster construction process that relax
all degrees of freedom of anisotropic particles. Thus, an er-
godic, rejection-free Monte Carlo scheme of general applica-
bility is obtained. As first illustrated for tetrapodal particles,38

this hyperspherical geometric cluster algorithm accelerates
the simulation of size-asymmetric mixtures of anisotropic
particles by several orders of magnitude compared to conven-
tional Metropolis Monte Carlo or molecular dynamics sim-
ulations. We have demonstrated the validity of this scheme
for a broad range of models, including dimers in two- and
three-dimensional space, the Lennard-Jones fluid, and the
one-component Yukawa plasma. For the latter two systems,
we have provided benchmark results against which future im-
plementations can be compared. Furthermore, we have dis-
cussed a variety of implementation details, ranging from the
use of the cell index method in hyperspherical geometry to the
use of the quaternion notation to realize geometric transfor-
mations. The efficiency of this algorithm has been examined
for rod–sphere mixtures, both as a function of rod aspect ratio
and as a function of rod–sphere diameter ratio. In addition, we
have demonstrated that even for one-component systems, the
new algorithm can yield significant efficiency improvements.
Lastly, for those situations where use of periodic boundary
conditions in Euclidean geometry is preferred, we have de-
rived a variant of the original geometric cluster algorithm that
is no longer rejection-free but is capable of relaxing orienta-
tional degrees of freedom.
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APPENDIX A: TRANSFORMATIONS
USING QUATERNIONS

1. Coordinate representation

A complete specification of the position and orientation
of a particle on a hypersphere requires six degrees of free-
dom. These can be represented using six Euler angles, three
for position and three for orientation. However, the need to
perform transformations in the GCA makes the use of Euler
angles cumbersome, since arbitrary rotations are complex to
compute in this representation. As an alternative, one can em-
ploy a four-dimensional Cartesian coordinate system to rep-
resent each position on the hypersphere by a unit four-vector.
The orientation of a particle is represented by a set of three
mutually orthogonal unit four-vectors, each tangent to the
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hypersphere (and thus orthogonal to the position vector). This
set of four mutually orthogonal vectors, taken as a set of col-
umn vectors, becomes a 4 × 4 orthogonal matrix, which is the
rotation matrix to transform the particle from a standard po-
sition and orientation, described by the identity matrix, to the
current position and orientation. Thus, the position and orien-
tation of a particle are represented by a rotation matrix and
transformation of a particle is accomplished simply through
matrix multiplication.

However, it is even more advantageous to represent trans-
formations using quaternions.63–65 First, rounding errors in
the simulations cause the rotation matrices to lose their or-
thogonality, which introduces dilation and shear into the
transformation, whereas quaternion transformations can only
produce dilation, and cannot produce shear. Thus, while ro-
tation matrices must be orthonormalized to prevent distortion
due to numerical drift, quaternions need only to be normal-
ized, which is simpler and computationally less costly. Sec-
ondly, it is easier to construct arbitrary transformations in
the quaternion representation. In Secs. A 3 and A 4 of this
Appendix we describe the construction of several important
classes of transformations. In our implementation of the h-
GCA, we use transformations in the quaternion representation
to describe the position and orientation of each particle. When
the position vector or any directors are needed during the sim-
ulation, they are computed from the quaternions. We empha-
size that the use of quaternions in this work is different from
the conventional use of quaternions in molecular dynamics
simulation,66–68 where each particle is paired with a quater-
nion of unit length to represent its orientation. We associate
two unit quaternions with each particle to represent the six de-
grees of freedom of position and orientation. A pair of quater-
nions provides a natural representation of a four-dimensional
transformation that defines the position and orientation of a
particle relative to a standard position and orientation. In this
appendix, we explain the construction and use of quaternion
transformations in the h-GCA.

2. Quaternion properties

To describe geometric transformations using quaternions
in a hyperspherical geometry, we first recall some general
properties of quaternions. Quaternions are four-component
vectors composed of a scalar part and a three-component vec-
tor part,65, 69–71

q ≡ [q0, q], (A1)

with the following properties:
Addition,

p + q ≡ [p0 + q0, p + q]; (A2)

multiplication,

pq ≡ [p0q0 − p · q, p0q + q0p + p × q]; (A3)

scalar multiplication,

sq ≡ [sq0, sq]; (A4)

conjugation,

q∗ ≡ [q0,−q]; (A5)

dot product,

p · q = p0q0 + p · q; (A6)

and norm,

|q| = √
q · q. (A7)

Multiplication is non-commutative due to the cross product
in Eq. (A3). Consequently, conjugation distributes over mul-
tiplication while reversing the order,

(pq)∗ = q∗p∗. (A8)

In this work, all quaternions will be unit quaternions, so that
quaternion conjugation is equivalent to quaternion inversion,
q∗ = q−1, where the latter form is our preferred notation.

3. Quaternion transformations in 3D

First we review transformations on a 2-sphere, which are
equivalent to rotations and reflections of a three-dimensional
object. Thus, a single quaternion is used to describe the po-
sition and orientation of a particle on a sphere or, equiva-
lently, to describe the three orientational degrees of freedom
of a 3D object. In this section, we adopt the latter perspective.
The well-known quaternion formula for a rotation of a three-
dimensional vector v by φ radians about an axis â is65, 69–71

Rotq (v) = q [0, v] q−1, for q =
[

cos

(
φ

2

)
, sin

(
φ

2

)
â
]
.

(A9)

This equation is the general form for proper rotations, which
can be extended to improper rotations by including a minus
sign.70 A special case of improper rotations is a pure reflec-
tion. Reflection in a plane containing the origin and with nor-
mal n̂ is expressed via

Refq (v) = −q [0, v] q−1, for q = [0, n̂]. (A10)

Thus, we can represent a general transformation in three di-
mensions as

Transq (v) = q̂ q [0, v] q−1, (A11)

where q̂ is a unit scalar that is +1 for a proper rotation and
−1 for an improper rotation (including reflections). Any pos-
sible value for the quaternion q, provided |q| = 1, represents
a valid transformation. When transformations are composed,
the quaternions of the transformations multiply and the unit
scalars multiply as well,

Transg = Transp
(
Transq (v)

) = p̂q̂ pq [0, v] q−1p−1

=⇒ ĝ = p̂q̂, g = pq. (A12)

To illustrate this formula, we consider two reflections in
planes with normals n̂1 and n̂2, respectively. According to
Eq. (A12) the composite transformation,

Transg (v) = Refp=[0,n̂2](Refq=[0,n̂1] (v)), (A13)
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yields

ĝ = p̂q̂ = (−1)(−1) = +1, (A14)

g = pq = [0, n̂2] [0, n̂1]

= [−n̂2 · n̂1, n̂2 × n̂1] = [− cos θ,−(n̂1 × n̂2) sin θ] ,

(A15)

where θ is the angle between the two normals. Since quater-
nion transformation is invariant under the change g �→ −g,
comparison of Eq. (A15) to Eq. (A9) shows that the compos-
ite operation is indeed a rotation about the line of intersection
of the two reflection planes by an angle twice the angle be-
tween the planes.

In simulations, the quaternion q and the unit scalar q̂

together encode the orientation of a 3D object relative to a
standard orientation,72 arbitrarily defined. The current value
of any vector attribute of an object, such as the position of
each component part relative to the center of mass, is com-
puted using Eq. (A11) to transform the vector from its value
in standard orientation to the current orientation.

4. Quaternion transformations in 4D

Transformations on a 4D hypersphere are equivalent to
rotations and reflections of an object in four dimensions.
There are six degrees of freedom, analogous to the three
translational and three rotational degrees of freedom in three-
dimensional Euclidean space. Each transformation requires
two quaternions, qL and qR. These are used in a 4D rotation
formula similar to Eq. (A9),

Rotq (v) = qLvqR, (A16)

with the difference that the quaternions multiplying on the left
and right are independent. The quaternion v to be transformed
is identified with a Euclidean unit four-vector v̂ of the same
components, which can represent either the 4D spatial posi-
tion normalized by the radius of the hypersphere, r/R, or one
of the directors of the particle. To extend Eq. (A16) to include
improper rotations, an operation must be performed that in-
verts an odd number of the spatial degrees of freedom. This
is accomplished using the conjugation operation on v, which
for notational clarity we denote as inversion, since the two
are equivalent for the unit quaternions considered here. The
general formula for quaternion transformations including all
rotations and reflections is70

Transq (v) = qLvq̂qR, (A17)

where we use a unit scalar q̂ = ±1 to indicate the absence or
presence of quaternion conjugation.

To represent the position and orientation of a particle in
the simulation, each particle is associated with a quaternion
transformation, which encodes the current position (and ori-
entation) of the particle relative to a standard position (and
orientation), analogous to the treatment of particle orienta-
tion in 3D. Any four-dimensional vector attribute of a par-
ticle, such as the position vector or a director, has a specified
value in standard position. To calculate one of these vectors

in the current position, we apply the transformation associ-
ated with the particle using Eq. (A17), where the vector to be
transformed is identified with the quaternion v of the same
components. The definition of the standard position is arbi-
trary, but it is most convenient to assign a reference point near
the center of the particle with a position vector identified with
the scalar quaternion 1, because it is easy to construct specific
transformations around this point.

A second application of transformations is the construc-
tion of cluster moves. When a transformation Transp (quater-
nions pL and pR) associated with a cluster move is applied
to a particle whose position and orientation are defined by
the transformation Transq, the new, composed transformation
Transq′ (quaternions q′

L and q′
R) associated with the particle is

Transq′ (v) = Transp(Transq(v)) = pL(qLvq̂qR)p̂pR. (A18)

Depending on the sign of p̂, there are two different forms for
Transq′ ,

q′
L = pLqL, q′

R = qRpR, q̂ ′ = q̂, for p̂ = +1,

(A19)

q′
L = pLq−1

R , q′
R = q−1

L pR, q̂ ′ = −q̂, for p̂ = −1.

(A20)

Table V lists the constraints needed to construct the self-
inverse transformations on a hypersphere that are the ana-
logues of the three classes of transformations in 3D Euclidean
space.

Specific transformations are constructed according to this
table as follows. For a plane reflection, the quaternion p is the
normal of the hyperplane in 4D space. For a line reflection,
the constraint derives from a more general formula, where the
quaternions pL and pR are constructed as

pL = ba−1, pR = a−1b. (A21)

Here a and b span a 2D vector space that rotates while the
components orthogonal to it remain invariant. This formula
derives from two successive plane reflections, using quater-
nions a and b, respectively. The rotation takes place in the
direction from a to b over twice the angle between these two
quaternions. The analogue of a line reflection in 3D is gen-
erated by a rotation angle π , which requires a · b = 0, con-
straining pL and pR in Table V to have zero scalar part. For a
point reflection in a pivot p on the hypersphere, a reflection
is performed in the line that passes through the center of the
hypersphere and through p.

If the quaternions are chosen uniformly within the
constraints, the resulting transformation will be uniformly

TABLE V. Construction of hyperspherical analogues of the 3D Euclidean
self-inverse transformations employed in the GCA.

Degrees of
3D transformation Constraints freedom

Plane reflection p̂ = −1 pL = p pR = −p 3
Line reflection p̂ = +1 pL = [

0, p̂L

]
pR = [

0, p̂R

]
4

Point reflection p̂ = −1 pL = p pR = p 3
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random, generating an unbiased cluster move. To perform
a biased cluster move, which aids in controlling cluster
size,8 a transformation is constructed that leads to a small
displacement of the particle that acts as the cluster seed. For
this, it is convenient to construct the biased transformation
with reference to a particle in standard position, since simple
formulas exist for pure rotation and pure translation of a par-
ticle from this position. A rotation of a particle in the standard
position over φ radians about the axis â is constructed via

p̂ = +1, pL = p, pR = p−1,

for p = [
cos

(
φ

2

)
, sin

(
φ

2

)
â
]
,

(A22)

identical to the formula for the rotation of a three-dimensional
object, Eq. (A9). A pure translation from the standard po-
sition over θ radians in the direction of b̂ without rotation
(parallel transport along a geodesic) is constructed via

p̂ = +1, pL = p, pR = p,

for p =
[
cos

(
θ
2

)
, sin

(
θ
2

)
b̂
]
,

(A23)

Employing these expressions along with those of Table V, we
construct a self-inverse transformation Transp that displaces
a particle from the standard position by a controlled amount.
This transformation must be centered around the actual
position of the chosen particle. The resulting transformation
Transp′ is obtained by first transforming the particle back
to standard position using Trans−1

q , followed by the cluster
transformation Transp, and subsequent reversal of the first
transformation via Transq,

Transp′ (v) = Transq
[
Transp

(
Trans−1

q (v)
) ]

= qL

[
pL

(
q−1

L vq̂q−1
R

)p̂
pR

]q̂
qR. (A24)

As this composite transformation will be applied to all
particles in the cluster, it is computationally more efficient to
precompute the associated unit scalar p̂′ and the quaternions
p′

L and p′
R. Whereas the scalar remains unaltered, p̂′ = p̂,

there are four separate cases for the quaternions,

p′
L = qLpLq−1

L , p′
R = q−1

R pRqR, for p̂ = +1, q̂ = +1,

(A25)

p′
L = qLp−1

R q−1
L , p′

R = q−1
R p−1

L qR, for p̂ = −1, q̂ = +1,

(A26)

p′
L = qLpLqR, p′

R = qLpRqR, for p̂ = +1, q̂ = −1,

(A27)

p′
L = qLp−1

R qR, p′
R = qLp−1

L qR, for p̂ = −1, q̂ = −1.

(A28)

5. Derivation of the order parameter curvature
correction

The order parameter in Eq. (18) is similar to the nematic
order parameter. The two differences are that the orientation

of the director is evaluated pairwise, rather than compared
with the global average director, and that the dot product of
the directors is corrected by a term which takes into account
the curvature of the hyperspherical space. Here, we derive this
correction term.

For two particles i and j at positions ri and rj (ri �= rj ), it
is generally incorrect to take the dot product of the directors si

and sj as a measure of their alignment, as these directors lie
in different tangent spaces. This can easily be seen as follows.
Note that each director si must be orthogonal to the position
ri . If si has a component in the direction of rj , i.e., si · rj �= 0,
then si · sj will always be less than one, irrespective of the
orientation of particle j, because sj cannot have a component
in the direction of rj . Thus, the dot product si · sj will tend to
underestimate their degree of alignment.

To recover the familiar behavior of the dot product in Eu-
clidean space, we bring the two particles to the same location
without rotation prior to taking the dot product. To do so, we
construct a transformation that brings particle i to the loca-
tion of particle j along their common geodesic by performing
two plane reflections. This rotates (cf. Eq. (A21)) the position
of the particle over twice the angle between the normals of
the reflection planes without changing its orientation, i.e., so-
called parallel transport. We first reflect through the normal ri
and then through the normal rm ≡ (rj + ri)/|rj + ri |, which is
the midpoint on the hypersphere between the two particles, so
that ri will be rotated to rj . The transformation of the director
si of particle i has the following form:

s′
i = rm

(
ris−1

i ri
)−1

rm = rmr−1
i sir−1

i rm. (A29)

To simplify this, we use an alternative form of the dot product,

2(a · b) = ab−1 + ba−1, (A30)

which can be rearranged as

ab−1 = −ba−1 + 2(a · b). (A31)

Applying Eq. (A31) twice and using the fact that the director
of a particle is orthogonal to the position vector, ri · si = 0,
we find

s′
i = si − 2(si · rm)rm. (A32)

Thus, the dot product of s′
i and sj becomes

s′
i · sj = si · sj − 2(si · rm)(sj · rm). (A33)

Substitution of rm = (ri + rj )/
√

2(1 + ri · rj ) yields

s′
i · sj = si · sj − [si · (ri + rj )][sj · (ri + rj )]

1 + ri · rj

= si · sj − (si · rj )(sj · ri)
1 + ri · rj

. (A34)

When the quaternions are identified with four-dimensional
vectors this results in the term within square brackets in
Eq. (18).
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APPENDIX B: IMPLEMENTATION DETAILS

1. Cell index method

For each particle that is added to a cluster, a pairwise
potential requires O(N ) operations in a simple implementa-
tion that considers the interaction between this particle and
all other particles in the system. For a finite-range potential,
this can be improved to O(1) operations if one only consid-
ers the interactions with neighboring particles that lie within
the cutoff of the pair interaction. A common method to ac-
complish this is the cell index method.68, 73 In this method,
the simulation cell is divided into subcells with a side length
larger than the cutoff radius, so that all particles that interact
with a given particle will be found located in the subcell con-
taining this particle or in the subcells immediately bordering
this subcell. To efficiently scan over the particles that are lo-
cated in these subcells, all particles in the system are indexed
in memory according to the cell to which they belong.

Implementation of this method in hyperspherical space
presents some challenges, since the intrinsic curvature permits
no convenient tiling of space into cells. Indeed, any tiling of
the hypersphere surface would be so complicated as to require
significant computation to determine which cell a particle be-
longs to. On the other hand, this mapping is trivial for simula-
tions taking place in 3D Euclidean space. If a cubic simulation
cell of dimensions L × L × L is divided into M3 cubic subcells
of linear size � = L/M, then the cell indices of a particles with
coordinates (x, y, z) are (nx, ny, nz) = (�x/��, �y/��, �z/��),
where each index is an integer 0 ≤ ni < M. Therefore, we opt
to define a system of hypercubical subcells by tiling the 4D
Euclidean space containing the hyperspherical system. The
subcell indices (nx, ny, nz, nt) for each particle are then found
analogously from its 4D position vector. In terms of memory
requirements, this approach becomes progressively less effi-
cient at larger system sizes because only O(R3) of all O(R4)
subcells will intersect with the surface of a hypersphere of ra-
dius R, whereas all other subcells will never contain any parti-
cles (cf. Fig. 11). To address this, we only store those subcells
that intersect with the hypersphere surface, i.e., we use a lin-
ear array containing only the shaded cells in Fig. 11. This, in
turn, requires a mapping of the cell indices onto the linear ar-
ray of non-consecutive subcells. We devise this mapping by
noting that each row of subcells only contains up to two con-
tiguous blocks that intersect with the hypersphere surface, so
that the elimination of non-intersecting cells amounts to the
reduction of each row to these contiguous blocks. We pre-
compute a look-up table containing the indices of the first and
last subcells of these blocks, for all O(R3) rows. During the

FIG. 11. Lower-dimensional representation of the intersection of the hyper-
sphere surface (represented by arc) and the subcells defined in Euclidean
space. The subcells that intersect the hypersphere are shaded.

simulation, this look-up table then directly permits determin-
ing the memory address of a given cell subcell. This approach
is nearly as fast as a direct look-up employing a 4D array
of subcells, but with a memory requirement that scales only
as O(R3).

2. Molecules

Rather than having explicitly anisotropic interactions
or shape, anisotropic particles can be composed of rigidly
bonded, isotropic monomers. Here, we discuss two topics
arising in the implementation of such molecular particles,
namely their construction in hyperspherical geometry and
their treatment in the cluster construction process.

If a molecule conceived in Euclidean space is projected
onto hyperspherical space, the intrinsic curvature of the latter
leads to a distortion of the molecular shape. The degree of dis-
tortion is inversely related to the system size, which makes the
shape of the molecule system-size-dependent. Various projec-
tion schemes exist, each of which preserve some molecular
properties while abandoning others. This is analogous to the
choices encountered in the creation of geographic maps.

As a default scheme, we implement a projection that pre-
serves the distance and direction of each monomer from a ref-
erence point (e.g., its center of mass) on the molecule. To con-
struct a molecule in hyperspherical space, each monomer is
positioned using a pure translation from this reference point,
cf. Eq. (A23). If we consider a molecule in 3D Euclidean
space with its reference point at the origin and place the ref-
erence point at (0, 0, 0, R) on a hypersphere of radius R, the
position (x′, y′, z′, t′) of a monomer is obtained from its posi-
tion (x, y, z) in 3D Euclidean space as

x ′ = R
x

r
sin

( r

R

)
, (B1)

y ′ = R
y

r
sin

( r

R

)
, (B2)

z′ = R
z

r
sin

( r

R

)
, (B3)

t ′ = R cos
( r

R

)
, (B4)

where r =
√

x2 + y2 + z2. This projection keeps radial ar-
rangements of monomers straight. However, straight lines not
passing through the reference point will experience a concave
outward distortion. This will affect, for example, the sides of
a cylindrical particle. If the center of such a particle is chosen
as the reference point, the concave distortion will prevent two
parallel cylinders from meeting flush. This will affect their
interaction, e.g., in the case of a depletion attraction induced
by small depletants. It is possible to resolve this problem by
adopting a projection that makes the sides of the cylinder
geodesic, but this would result in a nonuniform cylinder diam-
eter. In most cases, the level of distortion is small enough to
render differences between projections negligible already for
moderately large systems, but it may be important in systems
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that are particularly sensitive to particle alignment or when
high accuracy is desired.

Another issue is how to handle molecules in cluster
moves. One option is to consider each monomer separately.
When a given monomer joins the cluster, all other monomers
belonging to the same molecule immediately join the clus-
ter as well. This approach is easy to implement, since each
monomer is treated as an individual particle bonded infinitely
strongly to the other monomers in the molecule, and it reduces
the number of pair interactions that need to be considered.
However, an alternative is to consider the change in molecu-
lar pairwise energy when deciding whether a molecule should
join the cluster. This has the advantage that the energy change
between one pair of monomers residing on molecules i and
j, respectively, may be offset by the energy change between
another pair of monomers residing on the same molecules.
Thus, the total energy change in Eq. (1) is decreased and the
probability that the second molecule is added to the cluster is
decreased. This is often a desirable situation, as it lowers the
average cluster size. The situation is illustrated in Fig. 12.

(a)

(b)

(c)

Bʹ 

Cʹ Aʹ 

B 

C A 

Bʹ 

Cʹ Aʹ 

B 

C A 

Bʹ 

Cʹ Aʹ 

B 

C A 

FIG. 12. Illustration of how, for compound particles, the use of molecular
pairwise interactions in Eq. (1) can lead to a lower cluster addition probabil-
ity than if each pair of interacting monomers is treated individually. Panel (a)
shows two y-shaped molecules with a short-range attraction between the or-
ange monomers. The cluster is initiated with the molecule on the left-hand
side, which is reflected in the horizontal dashed line to produce the configu-
ration in panel (b). Since the total interaction energy in panels (a) and (b) is
identical, there would be no energy change if the molecule on the right-hand
side were reflected as well. Thus, panel (b) represents the final situation, pro-
vided that the total molecular pair interaction is considered. However, the sit-
uation is different in a simpler implementation that considers each monomer
separately. In that case, the monomer pair BB′ is broken when going from
(a) to (b) and this would lead to a finite probability that the particle on the
right would be reflected as well, cf. panel (c). Both simulation schemes will
produce configurations that follow the Boltzmann distribution, but the first
scheme will lead to more rapid decorrelation.

TABLE VI. Numerical results for the free-energy derivatives �(∂f/∂�) and
∂f/∂α* (Eqs. (13) and (14)) as a function of the screening parameter α*, for
coupling constant � = 0.10. The system size is N = 600.

α* �(∂f/∂�) (∂f/∂α*)

0.10 −0.0254561 ± 0.0000050 −0.0138426 ± 0.0000033
0.15 −0.0260191 ± 0.0000049 −0.0198040 ± 0.0000044
0.20 −0.0268027 ± 0.0000049 −0.0248773 ± 0.0000052
0.25 −0.0277778 ± 0.0000048 −0.0290937 ± 0.0000057
0.30 −0.0289369 ± 0.0000047 −0.0325264 ± 0.0000059
0.35 −0.0302379 ± 0.0000046 −0.0353325 ± 0.0000059
0.40 −0.0316915 ± 0.0000045 −0.0376018 ± 0.0000057
0.50 −0.0349404 ± 0.0000043 −0.0409557 ± 0.0000052
0.60 −0.0385668 ± 0.0000040 −0.0432181 ± 0.0000046
0.80 −0.0466020 ± 0.0000036 −0.0458943 ± 0.0000035
1.00 −0.0553006 ± 0.0000032 −0.0473101 ± 0.0000026
1.40 −0.0737204 ± 0.0000027 −0.0486326 ± 0.0000017
2.00 −0.1025218 ± 0.0000021 −0.0493536 ± 0.0000010
2.50 −0.1269711 ± 0.0000018 −0.0495999 ± 0.0000007
3.00 −0.1516159 ± 0.0000016 −0.0497312 ± 0.0000005
3.50 −0.1763698 ± 0.0000015 −0.0498078 ± 0.0000004
4.00 −0.2011879 ± 0.0000013 −0.0498573 ± 0.0000003
5.00 −0.2509443 ± 0.0000011 −0.0499135 ± 0.0000002
6.00 −0.3007904 ± 0.0000010 −0.0499427 ± 0.0000002

APPENDIX C: TABULATED DATA FOR THE YUKAWA
ONE-COMPONENT PLASMA

To provide a benchmark for future implementations of
particle-based simulations employing hyperspherical bound-
ary conditions, we provide here accurate results for the
Yukawa one-component plasma described in Sec. III D. All
data pertain to a system of N = 600 particles. The system
is characterized by merely two independent parameters,53, 54

namely the coupling constant � and the reduced screening
parameter α*. Specifically, temperature and number density

TABLE VII. Numerical results for the free-energy derivatives �(∂f/∂�) and
∂f/∂α* (Eqs. (13) and (14)) as a function of the screening parameter α*, for
coupling constant � = 10. The system size is N = 600.

α* �(∂f/∂�) (∂f/∂α*)

0.10 −8.010389 ± 0.000087 −0.287230 ± 0.000010
0.15 −8.024719 ± 0.000086 −0.429104 ± 0.000015
0.20 −8.044996 ± 0.000085 −0.569195 ± 0.000019
0.30 −8.102299 ± 0.000085 −0.843174 ± 0.000026
0.35 −8.139407 ± 0.000084 −0.976795 ± 0.000029
0.40 −8.182353 ± 0.000082 −1.108102 ± 0.000032
0.50 −8.284705 ± 0.000081 −1.363449 ± 0.000037
0.60 −8.408731 ± 0.000079 −1.608943 ± 0.000041
0.80 −8.721279 ± 0.000073 −2.068120 ± 0.000045
1.00 −9.115195 ± 0.000068 −2.483051 ± 0.000048
1.40 −10.124408 ± 0.000057 −3.176550 ± 0.000046
2.00 −12.093377 ± 0.000044 −3.899275 ± 0.000038
2.50 −14.036783 ± 0.000030 −4.272682 ± 0.000024
3.00 −16.160547 ± 0.000022 −4.508193 ± 0.000017
3.50 −18.401794 ± 0.000018 −4.657289 ± 0.000013
4.00 −20.719180 ± 0.000016 −4.753759 ± 0.000010
5.00 −25.488143 ± 0.000012 −4.862051 ± 0.000007
6.00 −30.354569 ± 0.000009 −4.915599 ± 0.000005
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are not additional control variables, but enter through � and
α*. The numerical data pertain to derivatives of the excess
free energy per particle, Eqs. (13) and (14). The quantities are
listed as a function of α* for � = 0.10 (Table VI) and for �

= 10 (Table VII).
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