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Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in
suspensions of colloidal particles to which much smaller particles have been added in the form of
polymers or nanoparticles. Conventional schemes for simulating models of such systems are
hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we
describe how the rejection-free geometrical cluster algorithm of Liu and Luijten �J. Liu and E.
Luijten, Phys. Rev. Lett. 92, 035504 �2004�� can be embedded within a restricted Gibbs ensemble
to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical
mixtures. After providing a detailed description of the algorithm, we summarize the bespoke
analysis techniques of �Ashton et al., J. Chem. Phys. 132, 074111 �2010�� that permit accurate
estimates of coexisting densities and critical-point parameters. We apply our methods to study the
liquid-vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size
ratio. As the reservoir volume fraction of small particles is increased in the range of 0%–5%, the
critical temperature decreases by approximately 50%, while the critical density drops by some 30%.
These trends imply that in our system, adding small particles decreases the net attraction between
large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion
force occurs. © 2010 American Institute of Physics. �doi:10.1063/1.3495996�

I. INTRODUCTION AND BACKGROUND

Colloidal suspensions are a class of complex fluids that
comprises systems as diverse as protein solutions, liquid
crystals, and blood. Technologically, colloidal suspensions
feature in applications such as coatings, precursors to ad-
vanced materials, and drug carriers.1 One of the key issues in
all these systems is the phase behavior of the suspension or
more generally its stability. Attractive dispersion forces exist
between uncharged colloids that can engender phase separa-
tion or irreversible aggregation resulting in a gel—
undesirable features in many applications. Accordingly, one
seeks to control the phase behavior �as well as dynamical
properties such as the rheology2� by modifying the form of
the effective interactions between the colloidal particles.
There are several routes to achieving this, including charge
stabilization �via modification of the pH� and steric stabili-
zation �via grafting of flexible polymers onto the colloidal
surface�.2,3 Alternatively, the effective interactions, and
hence colloidal phase behavior, may be manipulated through
the addition of nanoparticles, with nanoparticle size, concen-
tration, and charge as control parameters.4–6 The simplest
and most celebrated example concerns colloids which inter-
act �to a good approximation� as hard spheres. Adding nano-
particles in the form of small nonadsorbing polymers engen-
ders an attractive “depletion” force between the colloidal
particles.7 This attraction can drive phase separation resulting
in a colloid-rich �“liquid”� phase and a colloidal-poor �“gas”�

phase8—a phenomenon akin to the fluid–fluid transitions oc-
curring in molecular liquids and their mixtures. Yet richer
behavior occurs when one transcends simple hard-sphere po-
tentials between the nanoparticles and the colloids. For ex-
ample, if the nanoparticles are weakly attracted to the col-
loids but repel one another, they can form a diffuse
�nonadsorbed� “halo” around each colloid particle.5,9–13 The
net influence on the effective colloid-colloid interaction de-
pends on the nanoparticle density in a nontrivial way.11,13,14

In view of the broad range of effects that can arise when
nanoparticles are added to a colloidal suspension, their pro-
totypical model representation, namely, a size-asymmetric
fluid mixture, has attracted considerable theoretical and com-
putational attention over the past years. Analytical ap-
proaches typically either focus on drastically simplified
models1,7 or attempt to render the size asymmetry tractable
by integrating out the degrees of freedom associated with the
small �nano�particles �see Ref. 15 for a review�. The latter
strategy yields a one-component system of colloids described
by an effective pair potential representing the net influence
of the small particles. One shortcoming of this approach is
that, for all but the simplest types of nanoparticles, the map-
ping to a one-component system is approximate because it
neglects many-body colloidal interactions that can consider-
ably alter the nanoparticle distributions and hence the inter-
actions induced by them. These effects may be significant in
the regimes of density at which phase separation occurs.16

Recent work has additionally raised concerns regarding the
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accuracy of effective potentials in this regime,17,18 and has
also emphasized the significance of corrections to the en-
tropic depletion picture in real colloids19,20 as well as the
importance of polydispersity.21,22 On the other hand, various
computational techniques, most notably Monte Carlo �MC�
methods, are capable of explicitly incorporating fluctuation
and correlation effects. Conventional MC techniques �which
attempt to displace or insert and delete particles� are re-
stricted to fluids mixtures in which the size ratio is of order
unity, rendering them unsuitable for the simulation of
colloid-nanoparticle suspensions, where typical size ratios
encountered can extend to one or two orders of magnitude.5

The computational bottleneck results from the effective
“jamming” of the large species by even low volume fractions
of the small particles. However, this problem has been re-
solved by means of the geometric cluster algorithm �GCA�
of Liu and Luijten,23,24 in which configuration space is
sampled via rejection-free collective particle updates, each of
which facilitates the large-scale movement of a substantial
subgroup of particles �a “cluster”�. Although the original al-
gorithm operates in the canonical ensemble, and hence can-
not address phase separation phenomena directly, in previous
work25 we have developed a generalization that embeds the
GCA in the restricted Gibbs ensemble �RGE�, such that clus-
ters containing both large and small particles are exchanged
between two simulation boxes of fixed equal volumes. The
resulting density fluctuations within one box can be analyzed
to determine the phase behavior.

The purpose of the present paper is first to provide a
more detailed description of the basic GCA-RGE algorithm
that was introduced in Ref. 25, and to integrate recent ad-
vances that we have made in data analysis methods for de-
termining coexistence and critical-point properties within the
RGE.26 We then apply the improved methodology to study
the liquid-vapor coexistence properties of a mixture of
Lennard-Jones �LJ� particles having a size ratio q=0.1. In so
doing we adopt one aspect of effective fluid approaches,
namely, we focus on the liquid-gas phase coexistence prop-
erties of the large species �colloids� which are assumed to be
immersed in a supercritical fluid of small particles of quasi-
homogeneous density. This choice of perspective mirrors the
experimental reality, namely, that often only the colloidal
particles can be individually imaged. Accordingly, the phase
diagrams that we present are single-component projections
�i.e., referring to the large species� of the full phase diagram,
obtained at a prescribed reservoir volume fraction of the
small species, which we vary in the range of 0%–5%. Note,
however, that the small particles are treated explicitly and
exactly in our simulations, making this method superior to
effective-potential approaches which integrate out the de-
grees of freedom associated with the small particles.

This paper is arranged as follows. Section II introduces
our model system, a binary LJ fluid. The GCA-RGE MC
algorithm capable of simulating this system in the highly
size-asymmetrical limit is described in Sec. III together with
an outline of techniques for determining phase coexistence
properties and critical-point parameters within the RGE.
Moving on to our results, Sec. IV presents measurements of
the large-particle coexistence densities as a function of the

reservoir volume fraction of small particles. We also discuss
the underlying reasons for the observed trends in the coex-
istence properties in terms of measurements of the fluid
structure. Finally, Sec. V considers the implications of our
findings, the efficiency of our simulation approach compared
to more traditional schemes, and an outlook for further work.

II. MODEL SYSTEM

The model with which we shall be concerned is a binary
mixture of spherical particles, whose two species are denoted
l �large� and s �small�. Pairs of particles labeled i and j �hav-
ing respective species labels �i and � j� interact via a LJ
potential

�ij�r� = 4��i�j
����i�j

r
�12

− ���i�j

r
�6	 , �1�

where ��i�j
is the well depth of the interaction and ��i�j

sets
its range based on the additive mixing rule ��i�j

= ���i
+��j

� /2. ��i
and ��j

represent the particle diameters. Inter-
actions are truncated at rc=2.5��i�j

and we take �l as our
unit length scale.

In Sec. IV we study the case q
�ss /�ll=0.1, i.e., a 10:1
size ratio. We shall determine the phase coexistence proper-
ties of the large particles as a function of temperature for a
prescribed reservoir volume fraction �s

r of small particles, as
controlled by the imposed chemical potential of small par-
ticles �s. It should be noted, however, that since the small
particles are not infinitely repulsive, their volume fraction is
notional in the sense that we use the value of �s as if it were

a hard-core radius, i.e., we take �s
r=�N̄s�s

3 / �6V� where N̄s is
the average of the fluctuating number of small particles con-
tained within the system volume V.

Since we adopt the viewpoint that the small particles act
as a background to the large ones, we set �ss=�ls=�ll /10,
which ensures that the small-particle reservoir fluid is super-
critical in the temperature range of interest here, namely,
down to well below the critical point of the large particles. It
is therefore natural to define the dimensionless temperature T
in terms of the well depth of the interaction between the

large particles, i.e., T=kBT̃ /�ll, where kB is Boltzmann’s con-

stant and T̃ the absolute temperature.

III. METHODOLOGY

A. The GCA-RGE algorithm

In the original GCA,23 a fixed number of particles is
located in a single, periodically replicated simulation box of
volume V. These particles are then moved around via cluster
moves, in which a subset of the particles �identified by
means of a probabilistic criterion� is displaced via a geomet-
ric symmetry operation. To realize density fluctuations, we
employ two simulation boxes and exchange particles be-
tween both boxes, as in the Gibbs ensemble.27 However,
rather than exchanging individual particles, we use the GCA
to exchange entire clusters of particles, so that we retain the
primary advantage of the GCA, namely, the rapid decorrela-
tion of size-asymmetric mixtures. As in the original GCA, a
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variety of symmetry operations is possible; to connect to the
original description,23 we phrase the algorithm here in terms
of point reflections with respect to a pivot. Since a point
reflection will generally displace some particles outside of
the original simulation cell, we need to adopt periodic
boundary conditions for both simulation cells. Moreover, as
will transpire below, all particles that belong to a cluster and
that are part of the same simulation cell will retain their
relative positions during the cluster move. Thus, the two
simulation cells must have the same dimensions. This sym-
metric choice, in which both cells have an identical, constant
volume V, is referred to as the RGE.

We first describe the GCA-RGE for the case of a single
species of particles that interact through an isotropic pair
potential V�r�. N0=N1+N2 particles are distributed over the
two simulation cells, with N1 particles in simulation cell 1
and N2 particles in simulation cell 2. N0 is chosen to match a
desired average density 	0=N0 / �2V�. A cluster move within
the GCA-RGE proceeds as follows. A pivot is chosen at a
random position within simulation cell 1 and a second pivot
is placed at the corresponding position within simulation cell
2. One of the N0 particles is chosen as the seed particle of the
cluster. This particle i, which thus can be located in either
simulation cell, is point-reflected with respect to the pivot �in
its own simulation cell� from its original position ri to the
new position ri�. However, rather than placing the particle at
the new position �modulo the periodic boundary conditions�
in its original box, we place it at the corresponding position
r̄i� in the other box. Subsequently, in keeping with the meth-
odology of the GCA, all particles in the first box that interact
with particle i in its original position �the “departure site”� ri

as well as all particles in the second box that interact with
particle i in its new position �the “destination site”� r̄i� are
considered for point reflection with respect to the pivot point
in their respective box and subsequent transfer to the oppo-
site box. These particles, which we refer to with the index j,
are point-reflected and transferred with probability

pij = max�1 − exp�− 
�ij�,0� , �2�

where 
=1 / �kBT� and �ij =−V��ri−r j�� if i and j reside
�prior to the transfer of particle i� in the same cell. If i and j
initially reside in different cells �and hence do not interact
prior to the transfer of particle i�, �ij =V��r̄i�−r j��. This pro-
cess is repeated iteratively, i.e., for each particle j that is
transferred to the opposite box, all neighbors that interact
with j either near its departure site or near its destination site,
and that have not yet been transferred in the present cluster
step, are considered for point reflection and transfer as well.
This process proceeds until there are no more particles to be
considered; all particles that are indeed point-reflected and
transferred are collectively referred to as the cluster. Observe
that the pair energy of all particles that are part of the cluster
remains unchanged: If two particles reside in the same simu-
lation cell prior to the cluster construction and both become
part of the cluster, their separation remains constant. Like-
wise, if two particles reside in different cells prior to the
cluster construction and both are transferred, then their inter-
action energy is zero before and after the cluster move. The
same holds true for the pair interactions between all particles

that are not part of the cluster. Thus, the total energy change
induced by the cluster move originates from the change in
pairwise interactions between members of the cluster and
particles that are not part of the cluster. In the terminology of
Ref. 23 such “bonds” are either broken if a particle is in-
cluded in the cluster whereas a neighbor near its departure
site is not, or formed if a particle interacts with a neighbor
near its destination site, and this neighbor does not become
part of the cluster.

Although the cluster formation process is probabilistic,
we note that pij only depends on the pair potential between
particles i and j, rather than on the total energy change re-
sulting from the displacement and transfer of particle j. As a
result, the cluster algorithm is self-tuning: Overlaps of repul-
sive particles will be avoided and strongly bound particles
tend to stay together. Indeed, owing to the choice of the bond
probability pij, Eq. �2�, no further acceptance criterion needs
to be applied upon completion of the cluster, leading to a
rejection-free algorithm in which large numbers of particles
are moved nonlocally. The proof of detailed balance is iden-
tical to that provided in Ref. 24 for the original GCA, where
it was demonstrated that the ratio of the probability of con-
structing a cluster in a given configuration X leading to a
configuration Y �the transition probability T�X→Y�� and the
reverse transition probability T�Y →X� is the inverse of the
ratio of Boltzmann factors of the respective configurations.
The presence of two simulation cells simplifies rather than
complicates the proof, just like �ij in Eq. �2� is a special case
of the original expression,23 owing to the fact that two par-
ticles do not interact if they reside in opposing boxes.

The generalization to multiple species is straightforward
and does not lead to any conceptual changes in the algo-
rithm. Indeed, the GCA shows its primary advantages in the
simulation of size-asymmetric mixtures, as it realizes nonlo-
cal moves without the usual decrease in acceptance ratio.23

However, whereas there is no limitation on the number of
species, the overall volume fraction must be kept below a
threshold value. Above this threshold, which is related to the
percolation threshold and depends on system composition
and interaction strengths between the particles,24 the cluster
frequently contains the majority of all particles. This is det-
rimental to the performance of the algorithm, as it is compu-
tationally expensive to construct such clusters, whereas the
configurational change in the system is very small. The ex-
istence of this threshold also necessitates the use of an im-
plicit solvent, as is common in the simulation of colloidal
suspensions. Moreover, for reasons explained in detail in
Sec. III C, in our simulations of binary mixtures we combine
the geometric cluster moves with grand-canonical moves for
the small species. It is important to emphasize that the dif-
ferent types of MC moves are independent. Thus, the small
species fully participate in the cluster construction process
and the advantage of nonlocal rejection-free moves is re-
tained, yet the density of small particles in both simulation
cells is controlled by a chemical potential �s.

In Ref. 24, a number of technical improvements to the
GCA are described. These can all be applied to the GCA-
RGE algorithm. Most notably, it is possible to decrease the
average cluster size, and hence increase the packing fractions
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that can be simulated efficiently, through biased placement of
the pivot. Furthermore, for mixtures of particles with large
size disparities, the cluster construction process can be facili-
tated by employing multiple subcell structures and corre-
sponding neighbor lists.24,28

Lastly, we note that, during the preparation of our origi-
nal work,25 Buhot29 proposed an approach that has signifi-
cant similarities to the GCA-RGE method. His method also
employs two boxes of identical size and exchanges clusters
of particles. However, rather than the GCA �Ref. 23� he uses
the original geometric algorithm of Dress and Krauth,30

which is only applicable to hard spheres. Moreover, for each
point reflection it is decided at random whether a particle is
transferred to the opposing box or not. If this decision were
made only once per cluster �i.e., upon selecting the seed
particle of the cluster�, this would amount to an alternation of
the GCA-RGE with regular GCA moves. On the other hand,
if it is decided independently for each particle that is added
to the cluster, the average cluster size will be larger than in
the GCA-RGE, generally an undesirable situation. The most
important difference, however, between, our approach and
Ref. 29 is that the latter can only be used for the idealized
case of symmetric binary mixtures, where the critical com-
position is known a priori. By contrast, in our method we
employ the relationship between the RGE and the grand-
canonical ensemble to derive a prescription for locating the
critical point and coexistence curve for general binary mix-
tures.

B. Locating phase coexistence and criticality in the
RGE

The absence of volume exchanges between both simula-
tion boxes in the symmetrical restricted Gibbs ensemble im-
plies that, unlike for the full Gibbs ensemble,27 there is no
automatic pressure equality and hence no guarantee that the
measured particles densities are representative of coexist-
ence. In this section we outline how one can nevertheless
extract coexistence properties from RGE simulations without
resorting to direct measurements of pressure. A fuller ac-
count of the theoretical basis of the methods we describe can
be found in Ref. 26.

Within the RGE framework for our mixture, the total
density 	0 of large particles across the two boxes is fixed.
However, the one-box density of large particles, 	
N1 /V,
fluctuates. For any given choice of 	0, the form of the prob-

ability distribution of 	, P̂L�	�, depends both on the tempera-
ture T and on the choice of the chemical potential �s of the
small particles. As shown in Ref. 26, measurement of the

form of P̂L�	� for a range of values of 	0 provides a route to
the coexistence and critical-point parameters. The basic strat-
egy is as follows. Within the RGE, one explores the coexist-
ence region by varying 	0 at fixed T and �s. For 	0 suffi-
ciently far inside the coexistence region, the distribution

P̂L�	� exhibits a double-peaked form, with peaks located at
densities 	− and 	+. In general, however, these peak densities
do not coincide with the gas and liquid coexistence densities
	gas and 	liq—a situation which contrasts with the full Gibbs
ensemble. An important exception is when 	0 equals the co-

existence diameter density 	d
�	gas+	liq� /2, for which one
finds26

�	− = 	gas

	+ = 	liq
 when 	0 = 	d. �3�

Another important case is when 	0= �	gas+	d� /2 for which
one finds

�	− = 	gas

	+ = 	d
 when 	0 = �	gas + 	d�/2. �4�

Enforcing consistency between Eqs. �3� and �4� suffices to
permit determination of 	d and hence �via Eq. �3�� the coex-
istence densities. It is convenient to achieve this graphically
�see Fig. 1� by plotting the low density peak 	− both against
	0 and against 2	0−	−: The value of 	0 at which the two
curves intersect provides an estimate for the coexistence di-
ameter 	d and one can simply read off the coexistence den-
sities from the corresponding values of 	− and 	+. In Ref. 26
this “intersection method” was shown to be very accurate for
determining coexistence properties and to exhibit finite-size
effects comparable to those found in grand-canonical simu-
lations. Indeed it turns out to be much more accurate than the
technique we proposed previously for determining the coex-
istence diameter in the RGE,25 wherein one determines 	d as

the value of 	0 at which the variance of P̂L�	� is maximized.
We have found this latter procedure to be considerably more
sensitive to finite-size effects than the intersection method,
and it was therefore not used here.

FIG. 1. �a� Illustration of the operation of the intersection method described
in the text for the determination of the coexistence diameter density. Data
are shown for the state point �s

r=0.01, T=0.8�=0.764Tc�. Plotted are mea-

sured estimates of the average value 	− of the low-density peak of P̂L�	 �	0�,
for a series of values of 	0. The same data are also shown plotted against
2	0−	−. The value of 	0 at which the two data sets intersect �	0

=0.351�3�� serves as an estimate of the coexistence diameter density 	d. �b�
and �c� The measured peaks of P̂L�	� for 	0=	d, whose individual integrated
averages yield estimates of the coexistence densities.
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Turning now to the matter of estimating critical param-
eters within the RGE, an accurate technique for achieving
this has been described in detail in Ref. 26. The basic idea is
to measure the “iso-Q� curve” introduced in Ref. 25, which
is simply the locus of points in 	0−T space for which the

fourth-order cumulant ratio of P̂L�	�

Q 

��	 − 	0�2�2

��	 − 	0�4�
, �5�

matches the independently known25 fixed-point value Q�

=0.711 901 appropriate to the Ising universality class and the
RGE ensemble.31

Now, it transpires25,26 that the iso-Q� curve is essentially
a parabola in 	0−T space, the position of whose maximum
represents a finite-size estimator of the critical-point density
	c and temperature Tc. This maximum can be accurately lo-
cated via a simple quadratic fit to measured points on the
iso-Q� curve. In practice we determine this curve as follows.
A simulation is performed at some 	0 and T to determine

P̂�	�. This distribution is then extrapolated in temperature
via histogram reweighting32 to determine that temperature
for which Q=Q�. The procedure is then repeated for a range
of values of 	0 allowing us to trace out the whole iso-Q�

curve. An example of the resulting form of this curve is
shown in Fig. 2. Note that, in general, for reasons of com-
putational economy, the majority of the points that we deter-
mine on an iso-Q� curve are for densities lower than the
critical density, since the efficiency of the cluster algorithm is
greater at lower overall volume fractions of particles.

Estimates of the critical parameters obtained from the
iso-Q� maxima for a range of system sizes can, in principle,
be extrapolated to the thermodynamic limit using finite-size
scaling relations derived in Ref. 26, which fully account for
both field-mixing effects and corrections to scaling. Unfortu-
nately, in the present work, the computational cost of simu-
lating more than one system size was found to be prohibitive.
However, the variations that we find in critical-point param-
eters as a function of �s

r dwarf those that one might expect on
the basis of finite-size effects alone. Thus we are neverthe-
less able to report reliable trends from our measurements.

C. Treatment of the small particles

As was argued in Sec. I, it is the relaxation of the large
particles that constitutes the sampling bottleneck for highly
size-asymmetrical mixtures. Local MC updates of small par-
ticles are computationally relatively unproblematic, irrespec-
tive of whether one performs particle displacements or inser-
tions and deletions. Consequently, one has the choice of
treating the small particles canonically so that their density is
globally conserved, or grand canonically, in which case the
density fluctuates under the control of a prescribed chemical
potential. The choice one makes in this regard greatly affects
the manner in which the bulk phase behavior is probed.
Moreover it transpires that only the grand-canonical treat-
ment of the small particles is compatible with our intersec-
tion method �Sec. III B� for determining coexistence param-
eters.

To clarify these points, we show in Fig. 3 sketches of the
isothermal bulk phase diagram of an exemplary size-
asymmetrical binary mixture with large-particle density 	l,
small-particle density 	s, and conjugate chemical potentials
�l and �s, respectively. Figure 3 ��ai�� shows the phase be-
havior in the 	l−	s plane, while the corresponding phase
diagram in the �l−�s plane is shown in Fig. 3 ��aii��. In
constructing these sketches we have anticipated the behavior
of the model of Sec. II, namely, that the larger species has
stronger attractive interactions and thus phase separates on
its own �vertical axis of Fig. 3 �ai�� at the chosen tempera-
ture, while the small-particle fluid �horizontal axis� does not.
With interaction strengths chosen in this way, the larger par-
ticles will typically accumulate in the liquid phase, with its
shorter interparticle distances, as shown by the representative
tie lines in the density representation.33 Note that in
chemical-potential space, coexistence occurs on a line of
points, as shown in Fig. 3 ��aii��.

FIG. 2. Estimates of points on the iso-Q� curve for �s
r=0.01, obtained for a

system of size L=10, as described in the text. A parabolic fit to the data
�solid line� identifies the coordinates of the maximum of the curve which
serves as a finite-size estimate of the critical-point parameters.

FIG. 3. Isothermal cuts through the exemplary phase diagram of a binary
fluid mixture described in the text. Liquid-vapor coexistence is represented
in terms of �i� densities �	l−	s� and �ii� chemical potentials ��l−�s�. In �a�
the coexistence region is crossed along a path of constant 	s, whereas in �b�
it is crossed along a path of constant �s.
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Let us consider first the canonical scenario in which one
traverses the coexistence region at constant bulk density of
small particles, as expressed by the dashed trajectory in-
cluded in Fig. 3 ��ai� and �aii��. Clearly the tie lines in Fig. 3
��ai�� cross any line of constant 	s moving from smaller val-
ues of 	l /	s at the gas end to larger ones for the coexisting
liquid. Hence this path generates a sequence of pairs of co-
existence states, one for each tie line crossed. The same tra-
jectory in terms of the chemical potentials �l−�s is shown in
Fig. 3 ��aii��. Here the path followed first meets the coexist-
ence line, tracks along it for some distance and then sepa-
rates from it.

The alternative �grand-canonical� scenario, in which the
small-particle density is permitted to fluctuate at constant
chemical potential �s, is illustrated in Fig. 3 ��bi� and �bii��.
Here, as �l is varied at constant �s, the system crosses the
coexistence line at a single point. In density space the corre-
sponding trajectory thus follows a particular tie line though
the coexistence region, as shown in Fig. 3 ��bi��.

In seeking to apply the RGE ensemble to study a binary
mixture, it is therefore imperative that one adopts a grand-
canonical treatment of the small particles. Doing so ensures
that only a single pair of coexistence states is encountered
inside the bulk coexistence region, i.e., that one tracks a tie
line of the bulk phase diagram. This is a prerequisite for the
correct operation of our intersection method, which is de-
signed to determine first the diameter density for a single
pair of coexistence states as a prelude to determining the
coexistence densities of the large particles themselves. We
further note that a grand-canonical treatment of the small
particles corresponds more closely to common experimental
arrangements where one typically measures properties of the
mixture with respect to variations of a reservoir volume frac-
tion of small particles.

IV. RESULTS

Equipped with the methods described above, we can set
about the task of determining the coexistence properties of
the large particles in the presence of a sea of small ones. To
this end we apply the GCA-RGE method to study liquid-
vapor phase coexistence in a q=0.1 LJ mixture �see Sec. II�.
In addition to the cluster updates which swap whole groups
of particles �including both large and small species� between
boxes, small particles are sampled across both boxes using a
standard local grand-canonical algorithm at constant chemi-
cal potential �see Sec. III C�. As discussed above, we choose
�s to yield �for each temperature of interest� a prescribed
volume fraction �s

r of small particles in the reservoir. This
requires prior knowledge of the reservoir equation of state
�s

r��s ,T�, which we obtained via explicit simulation of the
pure fluid of small particles. Note that the computational cost
of obtaining �s

r��s ,T� is low, particularly if one employs
histogram extrapolation32 to scan a region of � and T sur-
rounding each simulation state point.

The GCA-RGE simulations are performed using two cu-
bic periodic simulation boxes of linear size L=10. We con-
sider seven values of the reservoir volume fraction of the
small particles, �s

r=0.005, 0.01, 0.015, 0.02, 0.03, 0.04, and

0.05. In the limit of low densities of large particles, these
values of �s

r correspond to average numbers of small par-
ticles in the range of 104–105. The computational expendi-
ture incurred in simulating such great numbers of small par-
ticles places an upper bound on the value of �s

r for which it
is feasible to perform a full determination of the coexistence
binodal. Further difficulties arise from the fact that the typi-
cal cluster size at coexistence was found to grow steadily as
we increased �s

r. This is demonstrated in Fig. 4 which plots
the distribution of the fraction of large particles in the cluster
for �s

r=0.01, 0.03, and 0.05 measured at the respective criti-
cal point parameters. These distributions are bimodal, with
some fairly small clusters comprising just a few particles,
and many clusters that comprise the vast proportion of large
particles. Updating such clusters results in only relatively
minor alterations to a configuration and consequently, we are
able to determine the coexistence binodal only for �s

r�3%,
whereas for �s

r=0.04 and 0.05 we restrict ourselves to deter-
mining critical-point parameters. It should be stressed how-
ever, that the cluster sizes observed in the present study may
not provide a general guide to the maximum �s

r at which the
GCA-RGE scheme will operate. This is because, as we shall
show, our choice of interspecies interactions engenders a
large depression in Tc with increasing �s

r which in turn pro-
motes the formation of large clusters due to the temperature
dependence of the GCA bond-formation probability Eq. �2�.
However, other choices of interactions can be expected to
lead to a different temperature dependence of the critical
point parameters, hence allowing larger values of �s

r to be
attained.

The critical-point parameters are determined, for each �s
r

studied, from measurements of the iso-Q� curve. For �s
r

�3%, the intersection method described in Sec. III B is de-
ployed to determine the large-particle coexistence densities
in the subcritical regime. Figure 5 presents our results for the
	−T binodal. The principal feature is, as previously men-
tioned, a strong depression of the binodal to lower tempera-
tures and lower densities as �s

r is increased. The scale of the
associated shifts in the critical parameters is made apparent
in Fig. 6, which plots our estimates of the critical tempera-
ture and density as a function of �s

r. One sees that as the

FIG. 4. Distribution of the fraction of large particles in the cluster, fc, at
criticality for the values of �s

r shown in the legend.
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reservoir volume fraction of small particles is increased in
the range of 0–0.05, the critical temperature decreases by
approximately 50%, while the critical density drops by some
30%. The error bars shown on the estimates of the critical
parameters derive from a bootstrap analysis of the various
quadratic fits that are consistent with the uncertainties in the
locus of each iso-Q� curve �Fig. 7�.

To demonstrate the correctness of our method, we com-
pare the binodal for �s

r=0.01 with that obtained using a quite

different approach, recently proposed by two of us.34 This is
a fully grand-canonical MC scheme in which large particles
are gradually transferred to and from the system by means of
staged insertions and deletions. To negate ensemble differ-
ences that occur when comparing results in finite-size sys-
tems, we transform the grand-canonical distribution of the
large-particle density, P�	�, to the RGE using the exact trans-

formation P̂�	�= P�	�P�2	0−	�.25,26 We then proceed to lo-
cate coexistence as if the data had been generated in the RGE
by treating 	0 as a parameter of the transformation. The re-
sulting coexistence densities are compared with those ob-
tained via the GCA-RGE simulations in Fig. 8. The agree-
ment is good, particularly at low temperature. The deviations
near criticality arise from the difference in the system size
used in each case �L=7.5�ll for the grand-canonical system
and L=10�ll for the RGE system�, and thus reflect that the
correlation length exceeds the system size in the grand-
canonical simulation.

It is instructive to attempt to relate the shift in the bin-
odal occurring with increasing small-particle density to alter-
ations in the underlying local fluid structure. An indication as
to the factors at work here follows from a study of the effect
of small particles on the effective potential between a pair of
large particles

FIG. 5. Phase diagrams showing the liquid �diamonds� and gas �squares�
coexistence densities of large particles for q=0.1. Data are shown for reser-
voir volume fractions �top to bottom� �s

r=0, 0.005, 0.01, 0.02, and 0.03.
Also shown in each case are the coexistence diameter �circles� and critical
point �asterisks�.

FIG. 6. �a� Critical temperature and �b� critical density vs �s
r as determined

from the iso-Q� curves. Error bars derive from a bootstrap analysis with 100
resamples.

FIG. 7. The measured iso-Q� curves for �top to bottom� �s
r=0, 0.005, 0.01,

0.015, 0.02, 0.03, 0.04, and 0.05. Also shown are the estimated error bars
from which we calculated the overall uncertainty in critical parameters via a
bootstrap analysis.

FIG. 8. Comparison for �r
s=0.01 of the binodal obtained using the GCA-

RGE technique �crosses� and the grand-canonical approach �circles� de-
scribed in Ref. 34. Statistical uncertainties are comparable to the symbol
sizes. Differences in the results near criticality arise from the different sys-
tem sizes used in the two cases.
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W�r� 
 lim
	→0

− ln�gll�r�� . �6�

An example is shown in Fig. 9�a� which compares 
W�r� for
the cases �s

r=0 �which simply corresponds to the bare LJ
potential� with that for �s

r=0.05, at T=1.3. One sees that for
typical separations of large particles, the effective potential is
less attractive than the bare interaction. Thus the net effect of
the small particles is repulsive as shown by the difference
plot in Fig. 9�a�, a feature that accords with the reduction in
the critical temperature. A likely reason for this is to be
found in the associated form of gls�r� describing the correla-
tions between a large particle and a small particle, as shown
in Fig. 9�b� at �s

r=0.05. This shows that small particles form
a diffuse, nonabsorbing cloud around each large particle be-
cause of their weak mutual attraction. Presumably, however,
the free-energy cost arising when the clouds associated with
two or more large particles overlap acts to reduce the intrin-
sic attractions between large particles. Interestingly, the dif-
ference plot of Fig. 9�a� shows that at very small separations
of large particles �corresponding to high overlap energy� the
effect of the small particles changes from being repulsive to
being attractive.

Finally, we show in Fig. 10 a configurational snapshot of
our simulation boxes at coexistence �i.e., 	0=	d� for the case
�s

r=3%, T=0.88Tc. This provides a visual impression of the
character of the coexisting phases and the extent to which the
large particles are severely “jammed” by the small ones.

V. DISCUSSION AND CONCLUSIONS

In summary, we have described a variant of the GCA
�Ref. 23� for the accurate determination of phase behavior in
highly size-asymmetrical fluid mixtures. The method �an
early version of which was previously described in Ref. 25�
operates by swapping clusters containing large and small
particles between two boxes of equal volume, the global den-
sity of large particles being fixed. The resulting spectrum of
single-box fluctuations of the large particles can be analyzed
with respect to changes in their global density using the in-
tersection method of Ashton et al.26 to yield accurate esti-
mates of coexistence densities. Critical points can similarly
be located to high precision by using an appropriate finite-
size estimator for criticality, namely, the maximum of the
iso-Q� curve.

We have applied the method to a LJ mixture with size
ratio 10:1 to determine the coexistence properties of large
particles for small-particle reservoir volume fractions in the
range 0��s

r�3%. Additionally, critical-point parameters
were determined for �s

r=0.04 and 0.05. Our results show that
when the small particles are weakly attracted to the large
ones, their net effect is to lower the degree of attraction
between large particles. As a consequence, the coexistence
binodal shifts to lower temperatures, confirming the prelimi-
nary findings of Ref. 25. Such a situation contrasts markedly
with the depletion effect applicable to small particles that
interact with the large ones such as hard spheres,7 for which
there is a net increase in the degree of attraction between
large particles. Our measurements of local structure suggest
that in the case we have considered, the small particles form
a diffuse �nonadsorbing� cloud surrounding each large par-
ticle. The overlap of clouds necessary for two large particles

FIG. 9. �a� The measured form of the effective potential 
W�r� defined in
the text, at temperature T=1.3. Data are shown for the bare LJ potential
��s

r=0, dashed line� and �s
r=0.05 �solid line� and their difference �dashed-

dotted line�. �b� Form of gls�r� for 	ll→0 at �s
r=0.05, T=1.3.

FIG. 10. Configurational snapshot of the two boxes in the restricted Gibbs
ensemble at coexistence for �s

r=3% and T=0.88Tc.
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to approach one another appears unfavorable in free-energy
terms, leading to a net decrease in the degree of attraction
between large particles. This is reminiscent of the “nanopar-
ticle haloing” effect.5,9

It is gratifying to note that the GCA-RGE method per-
mits the study of phase behavior in regimes that are inacces-
sible to traditional simulation approaches. Specifically, the
phase diagrams we have presented could not have been ob-
tained using even the most efficient traditional approach to
fluid phase equilibria, namely, standard grand-canonical
simulation.35 For instance, for �s

r0.005 our tests show that
the grand-canonical relaxation time is too large to be reliably
estimated. Nevertheless, a lower bound on the grand-
canonical relaxation time, relative to that of the pure LJ fluid,
can be estimated via a comparison of the large-particle trans-
fer �insertion/deletion� acceptance probability pacc. For liq-
uidlike densities of the large particles �	�0.6�, pacc is of the
order of 10−4 at �s

r=0.005.25 Upon increasing �s
r to a volume

fraction of merely 1%, this probability falls to pacc�10−6.
These values are to be compared with pacc�10−1 for the pure
LJ fluid. One can therefore expect the grand-canonical relax-
ation time of the mixtures studied here to be several orders of
magnitude greater than for the pure LJ fluid.

Notwithstanding the efficiency gains provided by the
GCA-RGE approach, it should be stressed that the results we
have reported nevertheless entailed a significant computa-
tional outlay. Specifically, runs to determine each coexist-
ence point typically varied in length between 100 and 3000 h
of central processing unit time on a 3 GHz processor. The
upper value in this range was that required at the highest
volume fraction of small particles studied �for which there
are very many small particles� and the lowest temperature
�where most of the large particles are involved in each clus-
ter update�. Thus while studies of phase behavior in highly
asymmetrical mixtures cannot yet be regarded as routine,
they are now at least feasible.

With regard to future studies of highly asymmetrical
mixtures, one barrier to attaining higher values of �s

r and
smaller values of q is simply the computational overhead
associated with large numbers of small particles, although
we note that the GCA has been successfully applied to sys-
tems with millions of nanoparticles.9 Additionally, in the
present model, the suppression of the critical temperature
with increasing �s

r leads to a rapid growth in the cluster size
which renders the GCA-RGE approach increasingly less ef-
ficient. More generally, however, in situations where the
small particles induce an effective �depletion� attraction be-
tween the large ones, we expect that the cluster size will
remain manageable to rather larger �s

r than studied here.
Finally, we mention an alternative approach, proposed

by two of us, for determining coexistence properties in
highly size-asymmetrical mixtures.34 This method utilizes an
expanded grand-canonical ensemble in which the insertion
and deletion of large particles is accomplished gradually by
traversing a series of states in which a large particle interacts
only partially with the environment of small particles. Imple-
menting this approach requires prior determination of a mul-
ticanonical weight function to bias insertions of the particles,

and thus renders it less straightforward to use than the GCA-
RGE. However, being fully grand canonical does have the
advantage of providing information on the chemical poten-
tials of large particles, thereby permitting histogram reweigh-
ing in terms of density as well as temperature. In future work
we hope to provide a systematic comparison of the relative
computational cost of both approaches in various parameter
regimes.
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