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Critical polymer-polymer phase separation in ternary solutions
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We study polymer-polymer phase separation in a common good solvent by means of Monte Carlo
simulations of the bond-fluctuation model. Below a critical, chain-length-dependent concentration,
no phase separation occurs. For higher concentrations, the critical demixing temperature scales
nonlinearly with the total monomer concentration, with a power law relatively close to a
renormalization-group prediction based on “blob” scaling arguments. We point out that earlier
simulations and experiments have tested this power-law dependence at concentrations outside the
validity regime of the scaling arguments. The critical amplitudes of the order parameter and the
zero-angle scattering intensity also exhibit chain-length dependences that differ from the
conventional predictions but are in excellent agreement with the renormalization-group results. In
addition, we characterize the variation of the average coil shape upon phase separation. © 2005
American Institute of Physics. [DOI: 10.1063/1.1997154]

I. INTRODUCTION

Understanding the incompatibility of chemically differ-
ent polymer species is a topic of great practical importance
that consequently has received widespread attention over the
last decades. Although a very large number of experiments
has been performed—including determination of the coexist-
ence curve,' the Flory-Huggins interaction parameter,z_4 and
of  critical exponentsS’G—several basic  theoretical
predictionsL12 have proven difficult to verify, as they rely on
specific assumptions, such as monodisperse and symmetric
conditions, in which the solvent interacts equally with both
polymer species. While, on the other hand, these conditions
can easily be realized in computer simulations, those mostly
have focused on polymer demixing in binary blends, i.e., at
relatively high concentrations (cf. Refs. 13 and 14). Sariban
and Binder™ ™" have performed pioneering computational
work on polymer-polymer demixing under more dilute con-
ditions, using a simple cubic lattice model. The fact that little
additional computational work appears to have been done
since then has motivated us to further explore polymer de-
mixing in the presence of a solvent.

Flory-Huggins (FH) theory”® predicts that two incom-
patible polymer species in a nonselective good solvent will
phase separate at arbitrary dilution, provided the temperature
of the system is sufficiently low. Under the appropriate con-
ditions, the phase transition will be continuous and the cor-
responding critical temperature 7. is predicted to increase
linearly with the total monomer concentration ¢ over the
entire concentration range. However, this mean-field ap-
proach assumes homogeneous monomer densities for both
species and ignores the chain connectivity. Below the dilute-
semidilute threshold QS*, this connectivity causes individual
chains to be separate, swollen coils that do not interpenetrate.
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Thus, de Gennes’ has claimed that no phase separation oc-
curs for concentrations ¢<<¢ . Furthermore, in the semidi-
lute regime, ¢p> d)*, each chain can be viewed as a succes-
sion of “blobs,” where each blob contains several monomers.
In a good solvent, a blob does not contain monomers of other
chains due to the excluded-volume interactions. This reduces
the number of contacts between monomers of different spe-
cies and consequently lowers the critical temperature com-
pared to the FH prediction. Specifically, the critical tempera-
ture no longer varies linearly with concentration, but
decreases superlinearly with decreasing concentration.”'®
Employing renormalization-group (RG) techniques, Joanny
et al."’ observed that demixing under good solvent condi-
tions is driven by corrections to scaling. Schifer and
Kappeler11 calculated the corresponding spinodal by means
of a RG approach and found a nonlinear dependence of the
critical temperature on concentration that differs from the
prediction of Ref. 18. Broseta et al.”? subsequently extended
the RG treatment to predict the chain-length dependences of
critical amplitudes of the order parameter, zero-angle scatter-
ing intensity and the correlation length. These predictions
have partially been tested in Ref. 17, where the concentration
dependence of the critical temperature in the semidilute re-
gime and the chain-length dependence of the critical ampli-
tude of the order parameter have been investigated.

In this paper, we extend the work in Ref. 17 by means of
Monte Carlo simulations in which we employ the bond-
fluctuation model'** rather than a simple cubic lattice
model. This model is capable of a more realistic representa-
tion of mixtures of flexible chains, as it permits variation of
the length of chain segments and a much smoother variation
of the angle between successive segments. We investigate
phase separation as a function of total monomer concentra-
tion and test the various theoretical predictions for the criti-
cal properties, where we also address an alternative scenario
leading to a nonlinear variation of the transition temperature
with concentration. In addition, our simulations explicitly
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cover the transition from the dilute to the semidilute regime
in ternary solutions, which requires (computationally de-
manding) calculations in the grand-canonical ensemble. Fol-
lowing our earlier Work,21 we also investigate the effect of
this transition on shape properties of individual polymer
coils. The shape variation of polymers upon phase separation
is of interest because of its influence on the physical proper-
ties of ternary solutions. As was first recognized by Kuhn,*
the shape of a flexible polymer is ellipsoidal rather than
spherical. This may affect, e.g., the flow properties of poly-
meric fluids® and the polymer-induced depletion potential in
colloid-polymer mixtures.”*  Furthermore, Murat and
Kremer” proposed a coarse-grained model for the study of
phase separation of polymer blends, in which each coil is
replaced by a “soft” ellipsoidal particle. Since individual seg-
ments are no longer modeled explicitly, this may permit the
observation of the demixing process at longer time scales.
However, it also requires accurate knowledge of the actual
ellipsoidal shape of the individual chains. For polymer
chains in the dilute limit, corresponding studies have indeed
been performed. Solc and Stockmayer26 and Solc?” first in-
troduced the radius-of-gyration tensor. The three eigenvalues
of this gyration tensor are the squared principal components
of the radius of gyration. From Monte Carlo simulations of
an ideal polymer chain on a cubic lattice, they found that
these three components were very different, implying an
asymmetric polymer shape and confirming Kuhn’s original
observation. The asphericity A was introduced to character-
ize the coil shape.** It takes values between 0 (sphere) and
I (rod) and was calculated for ideal and self-avoiding
chains.””® Since this asphericity does not distinguish
prolate-ellipsoid and oblate-ellipsoid shapes, another param-
eter S was introduced” and calculated analytically for ideal
and self-avoiding chains. However, in order to simplify the
calculations for A and S (both of which are defined below),
expectation values of ratios were replaced by ratios of aver-
ages. This approximation was found to overestimate the as-
phericity of polymer chains.*"** Numerical calculations®***
have supported the analytical calculations. In recent years, it
has actually become possible to observe the shape aspheric-
ity experimentally.35’36 These experiments, as well as the vast
majority of the theoretical work, focus on the shape of a
single polymer chain in a highly dilute solution. Studies of
the influence of concentration are rare and have essentially
shown that the asphericity of athermal chains diminishes
only very gradually as a function of increasing
concentration.””*® In a poor solvent, the reverse effect oc-
curs, due to the coil-globule transition taking place in the
polymer-lean phase.39 The dependence of polymer shape on
both concentration and solvent quality has motivated our ear-
lier study of the shape change of polymers upon phase sepa-
ration in ternary solutions.”' It was found that phase separa-
tion strongly influences the shape of the minority component
in a given phase. Here, we expand this work by investigating
the temperature dependence of both the asphericity A and the
prolate-oblate parameter S at fixed total concentration.
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Il. THEORETICAL BACKGROUND

Our study consists of three main aspects: (i) The scaling
of the critical temperature 7, with total monomer concentra-
tion ¢ and degree of polymerization N; (ii) the chain-length
dependence of critical amplitudes; (iii) the shape variation of
polymers upon phase separation. In this section, we provide
the necessary theoretical background and review the corre-
sponding predictions.

A. Scaling of the critical demixing temperature
with concentration and degree of polymerization

We consider a monodisperse solution containing poly-
mers of two different species, denoted A and B, with degree
of polymerization Ny=Ng=N. In addition, the solvent is of
the same quality for both species, and their chemical poten-
tials are equal. Thus, a so-called symmetric ternary system is
realized, in which both species behave identically. The only
distinction between the monomers of type A and monomers
of type B is their mutual repulsion of strength ,5>0. Iden-
tical monomers experience an attraction g4,=e5<0. Ac-
cordingly, phase separation occurs at sufficiently low tem-
peratures. Owing to the symmetric properties of both
species, this transition is continuous if the chemical-potential
difference vanishes. The FH theory, assuming complete
screening of the excluded-volume interactions, predicts a lin-
ear relation between the corresponding critical temperature
T, and the monomer concentration ¢ (cf. Ref. 8),

— ¢, (1)

where Ae=(2e,5—&44—€pp)/2. Equation (1) implies that
polymer-polymer (PP) phase separation occurs for arbitrarily
low ¢, provided that the temperature is sufficiently low.
However, in the dilute regime (< ¢"), the excluded-volume
interaction is not screened at all and polymer coils essentially
do not interact. Accordingly, de Gennes™'® argued that no PP
phase separation can occur for concentrations below ¢". At
the overlap threshold ¢" phase separation can be induced,
provided that the segregation factor is sufficiently strong (or
the temperature sufficiently low). In the semidilute regime
(¢>¢"), the tendency to phase separate is suppressed as
well, and demixing will take place at a lower temperature
than predicted by FH theory, due to the partial screening of
the excluded-volume interaction. According to blob-scaling
arguments,9 in this regime each chain can be viewed as a
succession of blobs. Each blob only contains monomers of a
single species, so that the number of A-B contacts is reduced
and phase separation is correspondingly suppressed. Indeed,
de Gennes has predicted the critical temperature to scale

9,18
as

& o l¢—l/(3v—1) ~ ]%]¢—1.3] (¢> ¢>k) (2)

kgT. N
Alternatively, phase separation can be induced by varying
the concentration at a fixed temperature 7. At low tempera-
tures, it follows from the previous argument that the total
monomer concentration must be increased to qﬁ*. However, if
the segregation factor is weak (i.e., at high temperatures), the



074907-3 Critical polymer-polymer phase separation

homogeneous phase persists into the semidilute regime and
separation only occurs at a critical concentration

b, (TINY"' = (TIN)*™* (> &), (3)
where v=0.588 is the scaling exponent for the end-to-end
distance R (or the radius of gyration R,) as a function of N in
dilute solution. We observe that ¢, exhibits the same chain-
length dependence as the overlap threshold ¢". By contrast, a
RG approach10 indicated that for the fixed point correspond-
ing to phase separation under good solvent conditions, the
chemical mismatch between A and B is an irrelevant param-
eter. Indeed, phase separation is predicted to be driven by the
corrections to scaling. Consequently, the scaling predictions,
Egs. (2) and (3), are modified, as shown by a RG calculation
of the spinodal.11 Specifically, it was found that for demixing
in the semidilute regime, at a temperature 7, the critical con-
centration scales as

b, (T/N)(3V—l)/(l+x) =~ (T/N)0.624_ )

From the analogy between a polymer solution and the
n-vector model in the limit n—0, the exponent x can be
related to the negative of the crossover exponent of the iso-
tropic fixed point of the n-vector model with cubic
anisotropy.lo’12 This crossover exponent has been calculated
in a third-order & expansion,40 and from a Padé-Borel resum-
mation the value x=0.225 (5) was obtained.'> The most no-
table difference between Egs. (3) and (4) is that in the RG
result the critical concentration (at fixed temperature) de-
creases with chain length at a slower rate than the overlap
threshold d)* ~1/N31 e, for sufficiently long chains (and
weak segregation factor) phase separation sets in at higher
concentrations than predicted by Eq. (3). For experiments at
fixed concentration [cf. Egs. (1) and (2)], the critical tem-
perature is now given by

As

k - N¢—(l+x)/(3v—l) ~ _¢-1 .60 (¢p> ¢ (5
B

Interestingly, de la Cruz*! generalized the work in Ref.
12 to microphase separation in diblock copolymer solutions
and predicted that the order-disorder transition temperature
Topr exhibits the same concentration dependence as de-
scribed in Eq. (5). Lodge et al.** found very good agreement
with this prediction for solutions of poly(styrene-b-isoprene)
(PS-PI) diblock copolymers, whereas the transition tempera-
tures for poly(ethylenepropylene-b-ethylethylene) solutions
followed a different power law. While the results for PS-PI
solutions can be viewed as a confirmation of the RG sce-
nario, the agreement between theory and experiment may
well be fortuitous, as most data were taken in the concen-
trated regime where the blob-scaling approach is invalid.
Guenza and Schweizer® subsequently studied the order-
disorder transition by means of polymer reference interaction
site model (PRISM) theory and observed that local concen-
tration fluctuation effects also imply a nonlinear variation of
Topr, resulting from a concentration-dependent local corre-
lation hole affecting the y parameter,
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1 1 1
o _¢—(4V—l)/(3v—l) _ _¢—]477. (6)

Topr N

Thus, while the integral equation theory cannot quantita-
tively capture the critical fluctuations that lead to the RG
result, it predicts a numerically similar power law that results
from a very different mechanism. Unlike the blob-scaling
arguments, this mechanism explicitly applies to the concen-
trated solution regime.

B. Scaling of critical amplitudes with degree
of polymerization

Critical properties only exhibit nonclassical scaling be-
havior within a certain region around the critical point, de-
termined by the Ginzburg criterion. * For larger deviations
from T,, i.e., when |¢f|> G, where ¢ is defined as (T-T,)/T,
and G denotes the Ginzburg number, classical or mean-field-
like critical exponents are observed (cf. Refs. 45 and 46). For
polymer mixtures, the Ginzburg number decreases as 1/N,
so that Ising-type critical exponents are only observed in a
very narrow temperature region around the critical point.47
According to Broseta et al.,12 the modified chain-length de-
pendence of the critical temperature and critical concentra-
tion described in Sec. I A also affects the Ginzburg crite-

rion, so that the number of blobs per chain N
% (o) ") VC=D ~ N1+ replaces N. Thus, nonclassical be-
havior is observed within the considerably larger region
|f)N¥/(1+¥) < 1. In addition, the chain-length dependence of all
critical amplitudes is modified. In this work, we test these
predictions for the order parameter as well as for the zero-
angle scattering intensity, for which—to our knowledge—it
has not been verified before. In our (semi-)grand-canonical
simulations (see Sec. IIT), the order parameter m is defined as

ny—n
m=——=F (7)
ny+npg

where n,, np are the numbers of A and B polymers, respec-
tively. This corresponds to the concentration difference (for
either species A or species B) between the A-rich and the
B-rich phases. In simulations of finite systems, the ensemble
average (m) vanishes,”® which is resolved by employing the

consistency, we thus phrase the following theoretical expres-
sions in terms of (|m|). Composition fluctuations are probed
via the zero angle scattering intensity  (osmotic
compressibility)*’

Seon(0) = nN@(|m[?) = {|ml)?) o« F2V({|m|*) = (|m])?),
(8)
where n=ny,+ngp is the total number of polymers. Near criti-

cality, both (|m|) and S,.;;(0) exhibit a power-law dependence
on the reduced temperature ¢,

)
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Seon(0) = T(N)|e7, (10)

where B and 7y denote critical exponents and é(N) and f‘(N)
are N-dependent amplitudes. Within the asymptotic scaling
region, 8 and y assume their Ising values, S=0.327 and vy
~1.237."° The chain-length dependence of the amplitudes
follows directly from the observation that +/G=tN consti-
tutes the proper scaling variable and that B and T’ must be
independent of N in the mean-field limit. Thus,

é(N) ocNﬁ—l/Z ~ N—0.173, (11)

[(N) < N- N'=7 = NO763, (12)

where f‘(N) involves an additional factor N because of the
prefactor in Eq. (8). The revised scaling of E(N) and f‘(N)

with N yields'>"
B(N) o< NB-12 = N¥(B-1/2)/(1+x) — N-0.0318 (13)
F(N) o N - N'=7 = N9/ — p0956, (14)

Equation (13) was verified in Ref. 17. It is one of the goals of
the present work to test the prediction, Eq. (14), for the com-
pressibility and to reproduce the scaling for the order param-
eter in the context of the bond-fluctuation model. A final
noteworthy point concerns the so-called Fisher renormaliza-
tion of critical exponents,51 which is expected to occur for
experiments and simulations at fixed concentration. It has
been predicted12 that for polymer demixing this renormaliza-
tion occurs within an exceedingly narrow range around the
critical temperature, whereas regular Ising-type exponents
are predicted to occur outside this range (but within the non-
classical regime predicted by the Ginzburg criterion).

C. Shape variation of polymer coils
upon phase separation

The ellipsoidal shape of a polymer coil is characterized
by the eigenvalues | <\, < \; of the radius-of-gyration ten-
sor Q, which is defined as>"0

N
1
Qaﬁzz_]\ﬂz [ri,a_rj,a][ri,ﬁ_rj,ﬁ]’ (15)

ij=1

where r; represents the position of the ith monomer along the
chain and «, B=1,2,3 denote cartesian components. An im-

. 429313252
portant measure is the asphericity A~ ,

Ae T/ = M)+ 0 =N + (5 -\
) (\f+ N+ 03)° ’

(16)

which takes values between O (sphere) and 1 (rod). In dilute
solution it approaches a universal value as N— o, estimated
as 0.415 from first-order & expansions and as 0.431 from
simulations.****** In the melt limit, where the chains behave
ideally, this value is anticipated to decrease to the (exactly
known) random-walk value of 0.394 27...2" Another mea-
sure of the polymer shape is S
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AN =N =N -N)

S , (17)
where \ is the average value of \;, \,, and \;. S distin-
guishes oblate-shaped polymers (—i<S <0) from prolate-
shaped chains (0<<S<2). In the dilute limit it approaches a
universal value of 0.541, as estimated from simulations.*>>*
Upon approach of the melt limit it decreases to a value that is
estimated as 0.475 from numerical integration32 and 0.478
from simulations.*

lll. SIMULATION MODEL AND DETAILS

The bond-fluctuation model (BFM) has been introduced
for the Monte Carlo simulation of polymer systems in Refs.
19 and 20. In this lattice model, a chain consists of connected
units, each of which occupies a cubic lattice cell. Every unit
represents a Kuhn segment corresponding to three to five real
monomers.”* The units cannot overlap and are_connected by
bond vectors with lengths between 2 and V10 lattice con-
stants; restricting the vectors to this set prevents the crossing
of bonds. Important differences between the BFM and a self-
avoiding random-walk (Verdier-StockmayerSS) model are the
flexibility of the segment length (the distance between two
connected units) and the resulting increase in the number of
possible bond angles (i.e., the angle between two adjacent
segments). Monomer interactions are implemented by means
of a square-well potential with a range of \r’g lattice con-
stants, which covers 54 out of the 108 possible positions for
neighboring segments. The attractive coupling strength be-
tween segments of the same species is set to g44=¢€pp
=—1/kgT. Unlike species repel each other with a strength
gap=0/kgT, where 6> 0 is a variable parameter. Throughout
this paper, units are chosen such that kz=1 and temperatures
correspond to the inverse coupling constant 6/ e, p=—1/€4,.
The solvent is represented by empty lattice sites, and the
polymer-solvent interaction &,¢ and the solvent-solvent inter-
action ggg both vanish.

The ternary system described here can undergo both
polymer-polymer (PP) and polymer-solvent (PS) demixing.
Although the former typically occurs at a higher temperature
than the latter, it follows from the predictions of Sec. II that
the PP demixing temperature decreases with decreasing con-
centration. Indeed, we found that for simulations using the
above-mentioned interaction parameters PP demixing is pre-
empted by PS separation near the dilute-semidilute threshold
¢". In order to be able to determine the concentration depen-
dence of the PP demixing temperature, we therefore explic-
itly suppress the PS phase separation in a subset of our cal-
culations. The data presented in Secs. IV B and IV D (with
the exception of Fig.14) pertain to e4,=£55=0. This elimi-
nates all attractive interactions and, apart from the excluded-
volume interactions, only leaves the A-B repulsion nonzero.

All simulations are performed for symmetric, monodis-
perse systems (N4=Ng=N) on simple cubic lattices with lin-
ear dimension L and periodic boundary conditions. In order
to permit a finite-size scaling analysis for the determination
of critical properties, four different values for L are studied.
Most simulations are performed in the semi-grand-canonical
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TABLE I. Summary of linear system sizes L studied for different chain lengths N and concentrations ¢. Each system contains n=¢L*/(8N) chains.

$=0.12 $=0.16 $=0.0 $=0.24 $=0.8 $=0.32 $=0.40
N=10 20, 40, 60, 80 30, 40, 50, 60 20, 40, 60, 80 30, 40, 50, 60 20, 30, 40, 50
N=20 40, 60, 80, 100 40, 60, 80, 100 40, 60, 80, 100 40, 60, 80, 100 40, 60, 80, 100 40, 60, 80, 100
N=40 60, 80, 100, 120 60, 80, 100, 120 40, 60, 80, 100 40, 60, 80, 100
15 . . . 2 2 )
ensemble, ~ in which the fotal monomer concentration ¢ C(L) = (E*) = {EY)/kgT". (19)

=¢,+ ¢p is kept constant and only the identity of chains is
changed, governed by their interactions in a given configu-
ration as well as their chemical-potential difference. The
symmetry of the system makes such Monte Carlo moves
possible and also guarantees that the critical point will occur
for identical chemical potentials. The A-B changes are
supplemented by local (translational) segment moves and
reptationlike moves. For strong repulsions, polymer demix-
ing occurs upon variation of concentration rather than tem-
perature (this is the predicted demixing near ¢=¢", see Sec.
II A). Therefore, these simulations are carried out in the full
grand-canonical ensemble, in which the tofal monomer con-
centration fluctuates as well. These calculations, which are
particularly computationally intensive, are performed using a
variant of the recoil-growth scheme.”®” The chemical poten-
tial of both species is varied, but the chemical-potential dif-
ference is fixed at zero in order to maintain critical demixing.

In the semi-grand-canonical simulations, all properties
are sampled every 50 or 200 sweeps (depending on ¢ and 7),
where a sweep corresponds to a sequence of, on average,
three reptation moves per chain, one local move per mono-
mer and a semi-grand-canonical move for one quarter of all
chains. After equilibration, which comprises 4000 samples,
100 000 samples are obtained for each state point. For the
grand-canonical simulations, properties are sampled every
sweep, which corresponds to 200 attempts to insert or delete
a polymer chain followed by a semi-grand-canonical move
for half of all the chains. In this case, equilibration corre-
sponds to 500 sweeps and each production run to 20 000 to
60 000 sweeps. The data are analyzed by means of multiple-
histogram reweighting.58 For the semi-grand-canonical data
only temperature reweighting is performed, whereas the
grand-canonical data also permit reweighting with respect to
the total monomer concentration [cf. Figs. 3(a) and 4].

IV. SIMULATION RESULTS

A. Scaling of the critical demixing temperature
in semidilute solutions

In order to determine the critical properties, we first lo-
cate the critical temperature 7, for the polymer-polymer
phase separation, as a function of concentration ¢ and chain
length N. For N=10, 20, and 40 we have simulated cubic
cells containing up to 1792, 2000, and 750 chains, respec-
tively. Table I lists the system sizes and concentrations em-
ployed. We locate 7. by means of the finite-size scaling prop-
erties of the fourth-order amplitude ratio QL,59

Q= (m**Km®),
and the specific heat Cy(L),

(18)

For each pair of system sizes L; and L,, the curves for Q; as
a function of temperature exhibit a crossing point that defines
a characteristic temperature TQ(L), where we choose L
=(L,;+L,)/2. Likewise, C\(L) exhibits a maximum at a tem-
perature T(L). Both characteristic temperatures approach
the critical temperature in the thermodynamic limit. Figure 1
illustrates this for a typical system with N=20, ¢=0.32, and
o0=1. In this figure, we also exploit the theoretically pre-
dicted leading finite-size scaling behavior of the characteris-
tic temperatures,

1 1 D

=— 4+ —,
(L) 71, L'

L—

; (20)

where the coefficient D is nonuniversal and also depends on
the thermodynamic property for which T(L) is determined.
v; denotes the critical exponent for the correlation length and
takes the Ising value of 0.630.%° Extrapolation of T()(L) and
To(L) using Eq. (20) yields virtually identical estimates
for T,.

Having obtained the critical temperatures for the 15
cases listed in Table I, we investigate their scaling with chain
length and concentration. As shown in Fig. 2, for fixed chain
length and monomer repulsion &, the inverse critical tem-
peratures exhibit a power-law dependence on ¢,

0.060 T . . . T

Crossing of O
Maximum of C (L] = 1

0.058

0.056

T

3
\
5
)
I

0.054

0052 | - 1

0.050 r 1

1T(L)

T
L

0.048

0.046 : : : : :
0 00005 00010 00015 00020 0.0025 0.0030

Lfl/v1

FIG. 1. Finite-size scaling behavior of the characteristic temperatures 7(L)
determined from crossing points of the fourth-order amplitude ratio Q; and
from maxima of the specific heat Cy. Data apply to a ternary polymer
solution with chain length N=20, total monomer concentration ¢=0.32, and
repulsion parameter 6=1. Both cases extrapolate to virtually identical esti-
mates for the critical demixing temperature 7.
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T N=105=1 =
N=208=1 ®
8 N=405=1 e
PN N=206=2 »
4
N *\a‘
2 a \‘i\
% 10 ¢ A 1
A ‘\.\‘
o
0‘1 1 1 1 1 1 1 1 1
0.1 0.2 Od)3 0.5 0.7 1.0

FIG. 2. Scaling of the inverse critical demixing temperature N/T, with
concentration ¢, plotted on a double-logarithmic scale. The line, which rep-
resents a fit to the data for N=10, describes a power-law dependence 7.
o 71898 The open triangles refer to data for a stronger repulsion & between
unlike monomers and hence lie at systematically higher temperatures.

N o« Lk (21)

T. ¢
The results for N=10 can be described by an exponent k
=1.808 (5), whereas least-square fits for N=20 and N=40
lead to k=1.870 (3) and k=1.880 (4), respectively. This
clearly refutes the mean-field result, Eq. (1), according to
which T, increases linearly with concentration (k=1). On the
other hand, we note that our result also shows a stronger
variation with ¢ than the nonlinear relation Eq. (5). The
blob-scaling arguments underlying the theoretical prediction
rely on the assumption that the radius of each blob scales as
Ny Where npop is the number of monomers in a single
blob. It would have been surprising if this scaling behavior
would be obeyed for the rather short chain lengths employed
here, which necessarily contain only few, relatively small
blobs. In particular, for small blobs the excluded-volume in-
teractions are partially screened, reducing the magnitude of
the effective exponent v.y. Indeed, the observed values for
k=1.80—1.88 would correspond to an effective blob-scaling
exponent v.;=0.55-0.56, i.e., only a rather small deviation
from v=0.588. However, we note that our findings are also
compatible with the alternative expression, Eq. (6), for an
effective scaling exponent v;=0.54-0.57.

Interestingly, Sariban et al., ! employing short chains
and a simple cubic lattice model, appear to have found ex-
cellent agreement with a power law k=1.60, precisely
matching the blob-scaling result, Eq. (5). Careful examina-
tion of Fig. 9 in Ref. 17, however, shows that all data that
support this scaling result were obtained for high monomer
concentrations, ¢=0.40, 0.60, 0.80, and chain lengths N
=< 32. For such concentrated solutions, the blob-scaling argu-
ments certainly do not apply, casting a doubt on the origin of
the observed power-law behavior. Inclusion of the data for
$=0.20 leads to exponents that are significantly larger in
magnitude. We note that even for the same value of the scal-
ing variable employed in Ref. 17 [N¢!/®*~D]; the data for the
longest chains (N=64) lead to a power law that differs ap-
preciably from k=1.60. This brings the observations in Ref.
17 considerably closer to our data for the bond-fluctuation
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model. All data certainly appear consistent with a slow ap-
proach of the predicted limiting behavior, Eq. (5), but it also
cannot be excluded that simultaneously an alternative
mechanism™® applies that leads to a rather comparable
power-law behavior in the concentrated solution regime.

Another aspect in Fig. 2 is the dependence of the critical
demixing temperature on the chain length. Although the plot-
ted data for 6=1, in which 7, is scaled by N, do not exactly
coincide, the remaining chain-length dependence is weak
and suggestive of an additive small-N correction that van-
ishes in the limit N— . In order to show the effect of the
A-B repulsion on T,, we also include data for 6=2 for N
=20. These results exhibit the same power-law dependence
on concentration, but phase separation occurs at systemati-
cally higher temperatures than for 6=1, as expected from the
stronger A-B repulsion.

B. Polymer-polymer phase separation
and the role of the dilute-semidilute threshold

According to the FH theory,7’8 PP phase separation oc-
curs at arbitrarily low concentration. On the other hand, de
Gennes”'® has predicted that dilute solutions (¢<¢") ex-
hibit no phase separation, whereas a critical demixing tran-
sition takes place for symmetric systems if the A-B repulsion
is strong enough (or temperature sufficiently low).

In order to test this scenario, we consider a ternary so-
lution with N,=Nz=N=20 at very low, fixed temperature
T=0.05 (strong repulsion regime). We perform simulations
in the grand-canonical ensemble at several chemical poten-
tials that correspond to a range in monomer concentration
and we specifically monitor the zero-angle scattering inten-
sity S;on(0), Eq. (8), and the fourth-order amplitude ratio Q;,
Eq. (18). Since the simulations are carried out for four dif-
ferent system sizes, L=40,50,60,70, a critical transition will
manifest itself via finite-size effects. The compressibility will
exhibit a maximum that increases with system size according
to a well-defined power law and the amplitude ratio will
exhibit a universal crossing point. The compressibility data
shown in Fig. 3(a), which were obtained by means of histo-
gram reweighting, exhibit precisely this behavior. For each
system size, S.q;(0) displays a maximum Si(0) as a func-
tion of monomer concentration. This maximum scales with L
as LY"1=[L19® [Fig. 3(b)]. The power law is characteristic for
the compressibility at a critical phase transition with a one-
component order parameter. We note that these simulations
are performed at very low temperatures. Nevertheless, phase
separation only occurs when a certain critical concentration
has been reached. The fourth-order amplitude ratio of mo-
ments of the order-parameter distribution confirms these ob-
servations. As shown in Fig. 4, the curves for Q; for different
system sizes exhibit a crossing point at a concentration that
is close to the concentration of maximum compressibility
[Fig. 3(a)]. The crossing curves are very similar to those
commonly employed to determine critical temperatures; the
curves for successive system sizes do not all cross at a single
concentration owing to finite-size corrections. However, it is
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FIG. 3. (a) Zero-angle scattering intensity S..;(0) (scaled by the chain
length N) as a function of monomer concentration ¢ for a ternary solution
containing two polymer species with degree of polymerization N=20. The
data are obtained from grand-canonical simulations at fixed (reduced) tem-
perature 7=0.05. Away from the maximum the data for different linear
system sizes L converge rapidly, whereas the maximum itself exhibits strong
finite-size effects. (b) The height of the maximum increases with system size
as LY =[19 where y and v, are critical exponents belonging to the Ising
universality class (Ref. 50). This confirms the occurrence of a critical phase
transition as a function of ¢. As discussed in the text, polymer-solvent
separation is suppressed by eliminating attractive interactions between
monomers of the same species, €44 =€5z=0.

noteworthy that the value of Q; at the crossing point ap-
proaches the universal Ising value Q; =0.6233 (cf. Ref. 50)
with increasing L.

Table II lists the critical concentration ¢, determined
from both the compressibility and the fourth-order amplitude

TABLE II. Critical concentration for phase separation at low temperatures
(strong segregation factor). ¢, is determined from extrapolation of the
maxima of the compressibility and of the crossing points of the fourth-order
amplitude ratio Q; (cf. Figs. 3 and 4). ¢ is determined by detecting whether,
at fixed concentration, two curves for Q; exhibit a crossing point at some
temperature.

N be ¢

10 0.131+0.005 0.13375+0.001 25
20 0.101+0.005 0.10375+0.001 25
40 0.077+0.003 0.076 25+0.001 25
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FIG. 4. Fourth-order amplitude ratio Q; as a function of monomer concen-
tration for different system sizes L. The data pertain to the system described
in the caption of Fig. 3. The crossing points, which occur near the location
of the compressibility maxima in Fig. 3(a), approach the concentration at
which critical polymer-polymer demixing takes place.

ratio for chain lengths 10, 20, and 40. As an alternative ap-
proach, we exploit the notion that, at fixed concentration ¢,
the curves for Q;(T) for two different system sizes L must
exhibit a crossing point, if the system undergoes phase sepa-
ration. Thus, if such a crossing point is observed, ¢= ¢. and
if no crossing point can be detected, ¢<<¢,. The resulting
estimates (¢ in Table II) indeed agree reasonably well with
those for ¢,. Since the second method is computationally
more efficient, we have used it to estimate the critical con-
centration for chain lengths as large as N=320 (see Fig. 5).

According to de Gennes,” in a good solvent the overlap
threshold scales as

¢* o N/R; o N1—3V:N—04764’ (22)
and for the low-temperature regime ¢, is predicted to follow

the same scaling behavior. Our findings for ¢, (Fig. 5) ex-
hibit a slowly varying, effective power-law behavior, which

0.20 — .

Simulation e~

0.10

0.05
(pc I

0.02

0.01 :
10 100 1000
N

FIG. 5. Scaling of the critical concentration ¢, with N on a log-log scale.
All results pertain to a system with g,,=g5,=0 in the strong segregation
regime (1/7=20). The estimates for N>40 were obtained from the detec-
tion of crossing curves for Q;(T), as explained in the text (cf. ¢ in Table II).
The dashed line represents the theoretical prediction that the critical concen-
tration in the strong segregation regime is proportional to the overlap thresh-
old. The solid line represents the effective power-law behavior observed for
the longest chains investigated in this work (120<N=<2320).
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FIG. 6. Phase diagram for polymer-polymer separation as a function of total
monomer concentration and temperature, for different N. All data pertain to
systems without monomer attractions, &4, =g€p3=0, and hence differ from
those presented in Fig. 2. The curves (which are drawn as guides to the eye)
separate the mixing region (left-hand side) from the demixing region (right-
hand side). The curve b indicates the weak segregation regime, in which
phase separation occurs at high concentrations, whereas the dotted line a
reflects the strong segregation regime where phase separation takes place for
concentrations above the overlap threshold. (For clarity, only the curves for
N=40 are labeled.)

for the longest chains approaches ¢, N, It is well pos-
sible that the trend in the effective exponent continues and
reaches the behavior predicted in Eq. (22). We note that the
analysis of Broseta et al.,"* which modifies the scaling of ¢,
from Eq. (3) to Eq. (4), only appears to apply to the semidi-
lute regime. This would imply different scaling behavior for
the weak and the strong segregation regimes, and it is there-
fore not entirely clear whether de Gennes’ original prediction
for the low-temperature regime (.= ¢") indeed remains un-
altered.

Finally, the critical concentrations for the low-
temperature regime can be combined with the results for the
systems listed in Table I to assemble a phase diagram show-
ing the critical lines for three different chain lengths in the
concentration-temperature plane (see Fig. 6). The critical
lines in the semidilute regime are terminated by the lines
labeled ¢". These cutoff lines are drawn vertically to reflect
the observation that in this model ¢ is insensitive to tem-
perature variation.

C. Critical amplitudes in ternary solutions

Near a critical point, the finite-size scaling theory im-
plies

(Im|yLF™ = f(eL'™) (23)
and
Seon(0) L1 g% = S(eLV™), (24)

where f and S are universal scaling functions.®’ In the finite-
size scaling limit, rL'"1 <1, these equations yield the finite-
size scaling behavior at the critical point, commonly em-
ployed for the numerical determination of critical
exponents.so Outside the finite-size scaling regime, tL'"1
> 1, but still sufficiently close to the critical temperature to
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FIG. 7. Finite-size scaling of the demixing order parameter (|m|) for a
solution with ¢=0.24 and N=40, near its critical temperature 7,=22.0 (1).
The two data sets pertain to temperatures 7=18.182 and 7=20.000, respec-
tively. For each temperature, the data points correspond to system sizes L
=40, 60, 80, and 100. All points are described by a single power law
(Jf|lLM1)B, with 8=0.327.

be within the scaling regime #<<1, the scaling functions re-
produce the critical behavior in the thermodynamic limit,

ie., f(x) ~x# and S(x)~x~7. Here, we focus on this second
regime. Assuming the Ising values for the exponents, we plot
(Jm|)LP™™" in Fig. 7 as a function of [¢|L""1 for a solution with
N=40 and total concentration ¢=0.24. For this system,
which has a critical temperature 7,.=22.0 (1), two sets of data
are plotted, obtained at 7=18.182 and 7=20.000, respec-
tively. Each set contains four different system sizes L, and all
data turn out to collapse on a single line which, on this
double-logarithmic scale, has a slope of 0.327, the critical
exponent 3 in the Ising universality class. This confirms Eq.
(23) and our assumption of Ising exponents. Likewise, the
data for the zero-angle scattering intensity S,/ ¢> are plot-
ted in Fig. 8(a). The data do not fall onto a single curve as
well as the data for the order parameter do, which can pos-
sibly be ascribed to the fact that the reduced temperature for
our data is relatively large and hence corrections to scaling
start to become important. Therefore, we replot the same
data in Fig. 8(b) as a function of an alternative temperature
variable [exp(N/T)-exp(N/T,)], proposed in Ref. 15. To
leading order, this variable equals —[(N/T.)exp(N/T,)]t.
Note that, as implied by Eq. (21), the prefactor is indepen-
dent of N. This variable indeed improves the scaling behav-
ior and the data in Fig. 8(b) are well described by a power
law (tLY"1)~7, with y=1.237. Similar scaling analyses have
been carried for our results for N=10 and N=20 (not shown).

By combining the data for different chain lengths, we

can test the modified scaling of B(N) and T'(N) with N as
proposed by Broseta ef al., i.e., Eqs. (13) and (14). Figure 9
constitutes the counterpart of Fig. 7, displaying the scaling of
the order parameter (|m|) outside the finite-size scaling re-
gime (but within the critical region). In Fig. 9(a), the con-
ventional scaling with N is adopted, in which the reduced
temperature ¢ is replaced by tNot/G and (|m|) is multiplied
by N'72, following Eq. (11). Evidently, this does not properly
describe the scaling of the critical amplitude with the degree
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FIG. 8. Finite-size scaling behavior of the zero-angle scattering intensity
S.on(0)/ ¢? for the system described in the caption of Fig. 7. Panel (a) em-
ploys the regular reduced temperature |(T-7,)/T,|, which does not permit a
description of all data by a single power law, presumably because of cor-
rections to scaling. In panel (b), the alternative temperature variable
[exp(N/T)—exp(N/T,)] is used, which indeed greatly improves the data
collapse and permits the description of all data by a single power law
(|eL"*1)~7, with y=1.237. The left-most data point in panel (b) deviates
because of finite-size corrections.

of polymerization. However, replacing N by NY(+9 e
plotting (|m|)NU+ILAY a5 a function of |fN¥/(+ILV™
[Fig. 9(b)] leads to an excellent collapse of all data points
onto a single line that describes a power law with exponent
B=0.327. Thus, the order parameter scales as

<|m|>Nx/[2(1+x)]Lﬁ/v1 o [|t|Nx/(l+x)Ll/V1]ﬁ, (25)
which can be simplified to
<|m‘> o Nx(B—O.S)/(Hx)t,B, (26)

in agreement with Eq. (13).

In a similar fashion we test Eq. (14). Based upon Fig. 8
we use the modified reduced temperature [exp(N/T)
—exp(N/T.,)] instead of —¢, which does not affect the scaling
with N. Since all data points apply to the same concentration,
we investigate the scaling of S,.;(0)/(¢N). Figure 10 dem-
onstrates that all data points except for those with the small-
est values of |¢f|LY"1 (which cross over to a horizontal line
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FIG. 9. Scaling of the near-critical order parameter {|m|) with system size L
and degree of polymerization N. Panel (a) demonstrates that the conven-
tional scaling [Eq. (11)] is not applicable in the semidilute regime. In panel
(b), a modified scaling of the critical amplitude is adopted [Eq. (13)], which
leads to an excellent collapse of all data points onto a single power law with
Ising exponent 8=0.327. Data points pertain to the following systems (all at
concentration ¢=0.24): (i) N=10 (T7,=6.309): T=5.952 and T=5.650. For
each temperature, system sizes L=30, 40, 50, and 60 are employed. (i) N
=20 (7,=11.547): T=10.417 and T=9.434. For each temperature, system
sizes L=40, 60, 80, and 100 are employed. (iii)) N=40 (7,=22.0): T
=20.000 and 7=18.182. For each temperature, system sizes L=40, 60, 80,
and 100 are employed.

representing the critical finite-size amplitude) are described
by a power law with exponent —y=—-1.237. Thus, the follow-
ing scaling behavior is recovered;

SCOH(O)L—V/VIN_X/(HX) o [|t|L1/V|N’c/(l+x)]—V (27)
dN
which can be simplified to
Scoll(o) och(l—y)/(l-*-x)t—)’ (28)
SN ’

consistent with Eq. (14).

Thus, we conclude that the chain-length dependence of
the critical amplitudes in the semidilute regime cannot be
described by the conventional scaling laws, but that the
modified scaling behavior proposed by Broseta et al.? pro-
vides an excellent description already for relatively short
chains.
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FIG. 10. Scaling of the zero-angle scattering intensity near criticality. Data
are assembled for all systems listed in the caption of Fig. 9. Except for some
data points that cross over into the finite-size scaling regime (left-hand side
of the plot), all data are described by a single power law with exponent
—1.237. This confirms the modified scaling with degree of polymerization
[see Eq. (14)].

D. Shape variation of polymers
upon polymer-polymer phase separation

In our earlier communication,21 we studied the shape
change of polymers upon phase separation in terms of the
asphericity A [see Eq. (16)]. We confined ourselves to iso-
thermal variation of the concentration in the strong segrega-
tion regime, i.e., phase separation near ¢=¢". This corre-
sponds to an isotherm that intersects the line a in Fig. 6.
Along such an isotherm, the asphericity of the majority com-
ponent in a given phase decreases merely slightly at suffi-
ciently high concentration due to the screening of the
excluded-volume interactions (thus, the shape of a coil be-
comes slightly more spherical upon increase of the concen-
tration). By contrast, the minority component in each phase
exhibits a strong variation of the asphericity. Since a typical
coil belonging to the minority species is surrounded by poly-
mers of the majority species, the strong repulsion “squeezes”
the minority coil to a much more spherical shape, as con-
firmed by a rapid drop in A for the minority polymers. Here,
we extend this work by studying other regions of the phase
diagram, namely, (i) variation of the total monomer concen-
tration at higher temperatures (such that phase separation
takes place in the semidilute regime) and (ii) temperature
variation at fixed concentration (for ¢> ¢"), where we can
also verify any influence of attractions between monomers of
the same species (in Ref. 21, such interactions were explic-
itly ruled out, in order to prevent polymer-solvent phase
separation near the overlap concentration). In addition, we
extend our analysis of coil shapes by means of the parameter
S [Eq. (17)], which distinguishes between prolate-ellipsoidal
and oblate-ellipsoidal shapes.

Figure 11(a) shows the variation of A for a symmetric
mixture with N=20 along the 7=2.14 isotherm, which
crosses the critical line in the semidilute regime (cf. Fig. 6).
Just as observed for the strong segregation regime,” the as-
phericity for the majority component decreases slowly while
for the minority component it drops rapidly. The location of
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FIG. 11. Characterization of the coil shape in a ternary solution, as a func-
tion of monomer concentration ¢. The temperature is fixed at 7=2.14 and
the results pertain to a symmetric mixture with chain length N=20. Phase
separation occurs near ¢=0.16 and is driven purely by repulsions between
unlike monomers (g44=e55=0). (a) The asphericity A [Eq. (16)] decreases
with increasing concentration, in particular for the minority component, in-
dicating that the coils take an increasingly spherical shape. (b) The oblate-
prolate parameter S [Eq. (17)] demonstrates that the coils have a prolate
shape over the entire concentration range. The “elongated” shape is most
pronounced in the dilute regime.

the bifurcation in A is in good agreement with the corre-
sponding critical concentration ¢, in Fig. 6. The nature of the
aspherical shape is characterized further by the variation of
the oblate-prolate parameter S over this concentration range
[Fig. 11(b)]. As the concentration increases in the dilute re-
gime, the coil shape becomes less prolate, until the concen-
tration has reached its critical value and phase separation
occurs. Beyond ¢,, the minority component (e.g., a chain of
type B in the A-rich phase) then becomes less prolate at an
even higher rate. On the other hand, the majority component
becomes less spherical and more prolate immediately after
phase separation. As explained in Ref. 21, we ascribe this to
the diminished repulsion that a typical majority chain expe-
riences in a homogeneous (unmixed) phase. Although the
concentration dependence of A and § is very similar, there
are significant differences in the probability distributions for
these quantities. While the distributions for A are relatively
broad,”! the distributions for S, both for the majority compo-
nent [Fig. 12(a)] and for the minority component [Fig. 12(b)]
exhibit a sharp peak at zero (spherical shape). For the major-
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FIG. 12. Probability distribution of the oblate—prolate parameter S of (a) the
majority component and (b) the minority component for different concen-
trations ¢, at T=2.14 for N=20. All data pertain to &4,=¢e5=0. While the
majority component exhibits a virtually invariant distribution for concentra-
tions in the demixed regime ¢=0.16, the minority component shows a
significant sharpening of the peak at S=0, which corresponds to a spherical
coil shape.

ity component the distribution, including the peak, exhibits
only minor variation with concentration in the dilute regime
and remains virtually unchanged for ¢ > ¢.. However, for
the minority component the most significant changes in the
distribution, including a significant sharpening of the peak,
occur for concentrations in the unmixed regime ¢=0.16. For
both components, the distributions provide insight into the
relative occurrence of various coil shapes, which can also be
oblate-ellipsoidal (S<0).

As evident from the phase diagram (Fig. 6), phase sepa-
ration can also be induced by lowering the temperature at
fixed concentration. The resulting variation in coil shape is
illustrated in Fig. 13 for a system with N=20 and ¢=0.16. A
bifurcation similar to Fig. 11(a) is observed, at a temperature
that agrees with the critical temperature along the corre-
sponding isochore in Fig. 6. Unlike the behavior upon varia-
tion of the concentration, the asphericity of the majority
component now remains constant in the unmixed phase.
Since the concentration is constant, the screening of the
excluded-volume interactions remains unchanged, and the
chains only become somewhat more aspherical as phase
separation continues, owing to the diminishing repulsion
from the minority component. Since all attractions between
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FIG. 13. Variation of the asphericity as a function of inverse temperature for
fixed concentration ¢=0.16. The results pertain to a system with N=20 and
eqa=€pp=0. Once phase separation is complete (i.e., at low temperature) the
majority component is essentially in an athermal one-component solution.

monomers of the same species have been set to zero, the
majority component finds itself, once phase separation is
complete, essentially in an athermal one-component solution.

The effect of attractions between monomers of the same
species is addressed in Fig. 14, for a system with g4,=¢pp
=—1/T. The overall behavior of the asphericity is very simi-
lar to that displayed in Fig. 11(a), with a small, systematic
lowering of the asphericity in the dilute regime, induced by
the mutual attractions. Thus, the results presented above
(Figs. 11 and 12) and in Ref. 21 are not qualitatively affected
by the absence of monomer-monomer attractions.

V. CONCLUSIONS

We have studied polymer-polymer phase separation in a
common (nonselective) good solvent by means of Monte
Carlo simulations of the bond-fluctuation model. Our calcu-
lations cover both dilute and semidilute solutions, making it
possible to distinguish critical demixing in the weak and
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FIG. 14. Asphericity A as a function of concentration for systems with an
explicit, temperature-dependent attraction between monomers of the same
species, g 4=€pp=—1/T. Chain length is set to N=20 and temperature to
T=5.39. This confirms that the absence of A-A and B-B attractions does not
qualitatively affect the results presented in Figs. 11 and 12.
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strong segregation regimes. In the weak segregation regime
we have determined the nonlinear concentration dependence
of the critical temperature by means of semi-grand-canonical
simulations and in the strong segregation regime, where
phase separation occurs upon variation of total monomer
concentration rather than temperature, by means of grand-
canonical simulations. We observed a sudden drop in critical
temperature near the overlap threshold, as first predicted by
de Gennes,'® although the chain-length dependence of the
corresponding critical concentration differed rather strongly
from that expected for the overlap concentration. Also the
nonlinear relation between critical temperature and critical
concentration in the semidilute regime exhibited a power law
that differs from the theoretical prediction,“"2 which we as-
cribe to finite chain-length effects. However, it is also pos-
sible that, for more concentrated solutions, similar nonlinear
behavior results from a concentration dependence of the lo-
cal correlation hole.*® This may aid in explaining earlier nu-
merical results'’ and experiments on diblock copolymer
solutions,* although there are also quantitative differences
between those results and the prediction of Ref. 43. The
modified chain-length dependence of all critical amplitudes,
first predicted by Broseta et al.”? using a renormalization-
group approach, has been verified explicitly for the demixing
order parameter and, for the first time, for the zero-angle
scattering intensity (osmotic compressibility), whereas a sce-
nario in which the critical amplitudes retain their unmodified
chain-length dependence can be convincingly ruled out. The
observation of unrenormalized critical exponents is consis-
tent within the prediction that Fisher renormalization of
those exponents only takes place with a very narrow tem-
perature range around the critical temperature. Conversely,
the observation of nonclassical critical exponents within a
rather large temperature range is consistent with a modified
Ginzburg criterion,'? which implies a slow crossover to clas-
sical critical exponents.

In a preliminary report,21 we observed that phase sepa-
ration causes polymer coils belonging to the minority com-
ponent to become more spherical, due to repulsion from the
surrounding polymers of the opposite species. Here, we have
recovered this behavior for more general monomer-monomer
interactions and for simulations in which phase separation
occurs in the weak segregation regime, as well as for the
situation in which phase separation is induced by means of
temperature variation rather than variation of the total mono-
mer concentration. In addition, we have characterized the
shape variation more precisely by means of the distribution
of the prolate-oblate parameter.

ACKNOWLEDGMENTS

This work is supported by the American Chemical Soci-
ety Petroleum Research Fund under Grant No. 38543-G7 and
by the National Science Foundation through an ITR grant
(DMR-03-25939) via the Materials Computation Center at
the University of Illinois at Urbana-Champaign. One of the
authors (E.L.) thanks Kurt Binder for drawing his attention
to polymer-polymer separation in ternary solutions and Ken
Schweizer for pointing out the connection with diblock co-

J. Chem. Phys. 123, 074907 (2005)

polymer solutions. The authors thank Intel for a generous
equipment donation and M. Miiller for providing parts of the
simulation code. The recoil-growth code was originally de-
veloped with support of a postdoctoral Fellowship from the
Max Planck Institute for Polymer Research and with support
of the European Commission through TMR Grant No. ERB
FMGE CT950051 for a TRACS visit to the Edinburgh Par-
allel Computing Centre.

'M. W. J. van den Esker and A. Vrij, J. Polym. Sci., Polym. Phys. Ed. 14,
1943 (1976).

2T, Fukuda, M. Nagata, and H. Inagaki, Macromolecules 17, 548 (1984).

3T, Fukuda, M. Nagata, and H. Inagaki, Macromolecules 19, 1411 (1986).

‘M. S. Kent, M. Tirrell, and T. P. Lodge, Macromolecules 25, 5383
(1992).

’N. Miyashita and T. Nose, Macromolecules 28, 4433 (1995).

°D. Schwahn, H. Frielinghaus, and L. Willner, J. Chem. Phys. 116, 2229
(2002).

"R. L. Scott, J. Chem. Phys. 17, 279 (1949).

8p 1. Flory, Principles of Polymer Chemistry (Cornell U.P., Ithaca, NY,
1953).

°P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell U.P.,
Ithaca, NY, 1979).

05 R Joanny, L. Leibler, and R. Ball, J. Chem. Phys. 81, 4640 (1984).

L. Schifer and C. Kappeler, J. Phys. (France) 46, 1853 (1985).

2p. Broseta, L. Leibler, and J.-F. Joanny, Macromolecules 20, 1935
(1987).

BH.-P. Deutsch and K. Binder, Macromolecules 25, 6214 (1992).

"H.-P. Deutsch and K. Binder, J. Phys. II 3, 1049 (1993).

'3 A. Sariban and K. Binder, J. Chem. Phys. 86, 5859 (1987).

16 A. Sariban and K. Binder, Macromolecules 21, 711 (1988).

'7A. Sariban and K. Binder, Colloid Polym. Sci. 272, 1474 (1994).

8P G. de Gennes, J. Polym. Sci., Polym. Phys. Ed. 16, 1883 (1978).

191, Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).

2"H.-P. Deutsch and K. Binder, J. Chem. Phys. 94, 2294 (1991).

?'L. Guo and E. Luijten, Macromolecules 36, 8201 (2003).

22W. Kuhn, Kolloid-Z. 68, 2 (1934).

BEH. Abernathy, J. R. Bertschy, R. W. Chin, and D. E. Keyes, J. Rheol.
24, 647 (1980).

%M. Triantafillou and R. D. Kamien, Phys. Rev. E 59, 5621 (1999).

M. Murat and K. Kremer, J. Chem. Phys. 108, 4340 (1998).

%K. Solc and W. H. Stockmayer, J. Chem. Phys. 54, 2756 (1971).

#"K. Solec, J. Chem. Phys. 55, 335 (1971).

%D, N. Theodorou and U. W. Suter, Macromolecules 18, 1206 (1985).

2J. A. Aronovitz and D. R. Nelson, J. Phys. (France) 47, 1445 (1986).

30, Rudnick and G. Gaspari, J. Phys. A 19, L191 (1986).

3'H. W. Diehl and E. Eisenriegler, J. Phys. A 22, L87 (1989).

20. Jagodzinski, E. Eisenriegler, and K. Kremer, J. Phys. I 2, 2243
(1992).

M. Bishop and C. J. Saltiel, J. Chem. Phys. 85, 6728 (1986).

3], W. Cannon, J. A. Aronovitz, and P. Goldbart, J. Phys. I 1, 629 (1991).

3C. Haber, S. A. Ruiz, and D. Wirtz, Proc. Natl. Acad. Sci. US.A. 97,
10792 (2000).

3B. Maier and J. O. Ridler, Macromolecules 34, 5723 (2001).

ML Bishop, D. Ceperley, H. L. Frisch, and M. H. Kalos, J. Chem. Phys.
72, 3228 (1980).

0. F. Olaj, T. Petrik, and G. Zifferer, Macromol. Theory Simul. 6, 1277
(1997).

1. Szleifer, J. Chem. Phys. 92, 6940 (1990).

“O1. J. Ketley and D. J. Wallace, J. Phys. A 6, 1667 (1973).

“'M. Olvera de la Cruz, J. Chem. Phys. 90, 1995 (1989).

2T P Lodge, C. Pan, X. Jin, Z. Liu, J. Zhao, W. W. Maurer, and F. S.
Bates, J. Polym. Sci., Polym. Phys. Ed. 33, 2289 (1995).

M. Guenza and K. S. Schweizer, Macromolecules 30, 4205 (1997).

*V. L. Ginzburg, Sov. Phys. Solid State 2, 1824 (1960).

“SE. Luijten and K. Binder, Phys. Rev. E 58, R4060 (1998); 59, 7254(E)
(1999).

“°F. Luijten, Phys. Rev. E 59, 4997 (1999).

*TP. G. de Gennes, J. Phys. (Paris), Lett. 38, L441 (1977).

“8K. Binder and E. Luijten, Phys. Rep. 344, 179 (2001).

T, L. Hill, Statistical Mechanics: Principles and Selected Applications
(McGraw-Hill, New York, 1956).



074907-13  Critical polymer-polymer phase separation

SOH. W. Blote, E. Luijten, and J. R. Heringa, J. Phys. A 28, 6289 (1995).

SIM. E. Fisher, Phys. Rev. 176, 257 (1968).

2G. Gaspari, J. Rudnick, and A. Beldjenna, J. Phys. A 20, 3393
(1987).

BM. Bishop and C. J. Saltiel, J. Chem. Phys. 88, 6594 (1988).

My, Tries, W. Paul, J. Baschnagel, and K. Binder, J. Chem. Phys. 106, 738
(1997).

3P, H. Verdier and W. H. Stockmayer, J. Chem. Phys. 36, 227 (1962).

J. Chem. Phys. 123, 074907 (2005)

%S, Consta, N. B. Wilding, D. Frenkel, and Z. Alexandrowicz, J. Chem.
Phys. 110, 3220 (1999).

*TE. Luijten, N. B. Wilding, and L. Guo (unpublished).

BA M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

%K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981).

OThe factor ¢? was divided out on the basis of Eq. (8). Since we test the
finite-size scaling behavior, Eq. (24), for data at fixed concentration, this
factor is immaterial in the present context.





