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The heat capacit y of the restricte d primitiv e mode l electrolyte
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The constant-volume heat capacity, CV(T,r), of the restricted primitive model ~RPM! electrolyte is
considered in the vicinity of its critical point. It is demonstrated that, despite claims, recent
simulations for finite systems do not convincingly indicate the absence of a divergence in
CV(T,r)—which would point to non-Ising-type criticality. The strong qualitative difference
between CV for the RPM and for a Lennard-Jones fluid is shown to result from the low critical
density of the former. If one considers the theoretically preferable configurational heat-capacity
density, CV /V, the finite-size results for the two systems display qualitatively similar behavior on
near-critical isotherms. © 2001 American Institute of Physics. @DOI: 10.1063/1.1359769#
The critical behavior of Coulombic systems continues to
be subject to debate. Whereas it is generally accepted that the
critical behavior of the gas–liquid transition in simple liquids
belongs to the three-dimensional ~3D! Ising universality
class, the situation in ionic solutions is considerably more
obscure. At sufficiently low temperatures, these solutions ex-
hibit separation into two phases with different density, driven
primarily by the Coulombic forces between the charged con-
stituents. Experimentally, both classical ~as one might guess
from the long-range character of the ionic forces! and Ising-
type critical behavior ~as might be explained by the effects of
Debye screening! have been reported: see, e.g., Refs. 1 and
2. Other possible scenarios entail a crossover from classical
to Ising-type behavior at considerably smaller reduced tem-
peratures than in simple fluids or even the existence of a
different type of criticality.1–3

In view of the significance of electrolytes and ionic sys-
tems in many domains, a clear understanding of their critical
behavior isof interest. It is, therefore, disconcerting that even
for the simplest model thought to capture the salient features
of such systems, namely, the restricted primitive model
~RPM!, the universality class has not yet been established
beyond reasonable doubt. The RPM consists of a mixture of
hard spheres of uniform diameter s, half of which carry a
charge 1q and half a charge 2q. Its critical behavior has
been analyzed by both analytical and numerical means. Ana-
lytically, a fairly satisfactory description of the critical region
~except for the nature of the criticality! has been obtained
from Debye–Hückel theory supplemented by Bjerrum’s con-
cept of ion pairing and allowance for the solvation of
dipolar-ion pairs in the ionic fluid.4 However, lack of a suf-
ficiently adequate formulation at the mean-field level has
hindered the development of a renormalization-group treat-
ment, see, e.g., Ref. 5. Furthermore, simulations have also
encountered serious difficulties, not only because of the
long-range nature of the interactions, but, in particular, be-
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cause of the low value of the critical temperature and the
resulting presence of many strongly bound ion pairs.6–9 The
limited statistical accuracy and range in system sizes that
have been reliably accessed have hampered detailed numeri-
cal analysis.

This note has been inspired by recent work by Valleau
and Torrie ~VT!,10 who performed numerical simulations of
the RPM using a temperature-and-density-scaling Monte
Carlo method. Other simulations6–9,11 focused mainly on the
coexistence curve below Tc . Experimentally, observations
of the coexistence curve as T→Tc2 have been revealing of
universality class ~with b Ising.0.326 and bclassical5

1
2) or of

crossover behavior. In simulations, however, finite-size ef-
fects preclude the estimation of the coexistence curve close
to Tc : Wilding and Bruce12 have devised a finite-size scaling
technique for analyzing the corresponding Monte Carlo data
which has led to fairly precise and seemingly rather reliable
estimates of the critical temperature, Tc , and to reasonable
estimates of the overall ionic critical density, rc . However,
in practice, their technique has presupposed Ising-type criti-
cality and has not, therefore, provided any effective criteria
for ruling out ~or, possibly, revealing! other types of critical-
ity.

By contrast, VT10 focused on the heat capacity at con-
stant volume, CV(T,r), in the one-phase region both as a
function of density, r, near Tc , and on approach to criticality
from above. In aclassical, or van der Waals-type system CV

remains finite as T→Tc1 on the critical isochore, r5rc ,
whereas in an Ising-type system, CV(T,rc) diverges to infin-
ity, albeit weakly with an exponent a.0.109. As one passes
through Tc from above in a classical system, CV(T,rc) un-
dergoes a positive jump discontinuity and decreases
smoothly thereafter: see Fig. 1; an Ising-type fluid exhibits a
uT2Tcu2a singularity falling rapidly from infinity as T de-
creases. Accordingly, VT argued that an examination of
CV(T,r) for the RPM for T*Tc and, in particular, compari-
son with simulations of a Lennard-Jones ~LJ! model fluid
~for which Ising-type or close-to-Ising-type behavior may be
8 © 2001 American Institute of Physics
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accepted! should provide an effective diagnostic of critical
behavior. On the basis of the simulations they undertook and
presented, VT concluded that littl e if any evidence of a rise
in specific heat was present in the RPM. This suggested that
criticality in the RPM might be classical in nature or, at least,
characterized by crossover rather close to Tc .2

While we acknowledge the potential value of the VT
approach, we find, as wil l be explained, that we cannot ac-
cept the validity of their analyses or of the conclusions they
draw. Indeed, although Ising and classical behavior are es-
sentially different in the thermodynamic limit , they are far
more difficult to distinguish in the small systems that are
accessible to numerical simulations. Specifically, VT studied
the heat capacity ~i! along the estimated critical isochore ~for
T.Tc) and ~ii ! along the anticipated critical isotherm, for a
wide range of densities. In the first case, as mentioned, they
found no signs of a divergence in CV(T,rc). In the second
case, no ~finite-size rounded! peak was seen near the critical
density. It is this latter observation that VT advance as strong
evidence against Ising-type critical behavior in the restricted
primitive model, since, as they illustrated, CV(Tc ,r) in a
Lennard-Jones fluid exhibits a clear, system-size-dependen
peak in the vicinity of r5rc . Here, we reconsider this evi-
dence, which stands unchallenged to date, either through
new simulations or via areanalysis of the VT data.

Consider, first, the heat capacity along the critical isoch-
ore. VT observe that CV(T,rc) increases almost linearly
upon approach to Tc from above, with no evidence of a
divergence. They do, however, remark that this might be due
to the fact that all their observed temperatures lay within the
regime of finite-size rounding, where the correlation length is
restricted by the system size. We feel, rather, that it is the
constraint t[(T2Tc)/Tc.0 that might lead to premature
conclusions. In Fig. 1 we show the specific heat at constant

FIG. 1. The specific heat, CV /NLkB , for a grand-canonical lattice gas with
identical interactions between all particle pairs, near the mean-field critical
temperature Tc

MF . The solid curves derive ~in order of increasing peak
height! from finite systems of NL510, 20, 40, 100, 200, 400, 1000 lattice

sites, for a mean particle density r5rc5
1
2rmax . The corresponding dashed

curves pertain to densities r5
3
4rc and r5

5
4rc . The bold dotted curve rep-

resents the thermodynamic limit , NL→`, for r5rc . The maxima of the
finite-size curves saturate at approximately 1.657, rather than at the thermo-

dynamic maximum
3
2 ~Ref. 14!.
volume for an infinite-range, van der Waals or mean-field
lattice gas ~in which all particles interact equally! for a num-
ber of system sizes.13,14 The plots for density r5rc[

1
2rmax

represent the behavior along the critical isochore, whereas
the curves for r5 3

4rc and r5 5
4rc ~the system being symmet-

ric around rc) illustrate the behavior along anoncritical iso-
chore. As expected, the peak heights are lower if rÞrc ; but
the qualitative behavior of the specific heat evidently persists
even for relatively large deviations from the critical isochore.
~Thus, even moderately large errors in the estimate of rc for
the RPM should not affect qualitative conclusions.!

The crucial point, however, is that @despite the absence
of a divergence of CV(T,rc) in the thermodynamic limit # the
mean-field plots display pronounced size-dependent maxima
for T,Tc . Indeed, even though these peak heights must
saturate,14 whereas they diverge for an Ising-type system
with short-range interactions, the behavior of small systems
is qualitatively very similar in both cases. In particular, the
specific heats of finite 3D Ising models and hard-core square-
well fluids display maxima below Tc .15 Thus, it may be dif-
ficult to distinguish the two types of behavior unless one has
a sufficiently large range of system sizes to allow extrapola-
tion of the peak height and position. Certainly, the linear
increase of CV(T,r) for T→Tc1 for a given system size, as
VT observed for the RPM with r.rc , would seem to con-
vey littl e information regarding the nature of the critical be-
havior. This is basically a consequence of the fact that for
finite 3D systems the specific-heat maxima seem invariably
to occur below the true, limiting critical temperature.

In order to illustrate this point more concretely, we have
carried out high-resolution Monte Carlo simulations of a dis-
cretized version of the RPM.16 This model differs from the
continuum RPM only in that the positions of the ions are
restricted to lattice sites: the degree of discretization is deter-
mined by the ratio, z, of the ion diameter s to the lattice
spacing a. The continuum limi t is recovered by taking z
→`. It has been shown16 that already for the small discreti-
zation parameters z53, 4, and 5, this model exhibits a
liquid–vapor transition like the continuum RPM, with a co-
existence curve that approaches that of the continuum model
very closely. We have focused on z55, and carried out
histogram-reweighted grand-canonical simulations for
simple cubic lattices of sizes up to L510s, which corre-
sponds to (zL/s)35125 000 possible ion positions. Periodic
boundary conditions were employed.

The strong ion pairing at low temperatures makes grand-
canonical simulations especially time consuming. However,
we view canonical simulations as inherently dangerous ow-
ing to the important role of density fluctuations in the vicin-
ity of the critical point. ~See also further comments in the
following!. A detailed study of these and related data is in
progress,17 but preliminary examination suggests a reduced
critical temperature Tc* .0.051 and a critical density rc*
.0.068. See Note added in proof. ~See, e.g., Refs. 1, 2, and
4–7 for the standard definitions of reduced units for the
RPM!. Our estimates agree with the suggestion of Ref. 16
that the RPM with z55 has a Tc* slightly higher than that of
the continuum RPM (Tc* .0.0497,9,11. Figure 2 shows the
specific heat of this model for r.rc over a relatively wide
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temperature range around Tc . As in Fig. 1, system-size de-
pendent maxima are indeed observed at temperatures that
clearly approach Tc from below. Their variation with L sug-
gests quite strongly that Ising-type behavior cannot be ruled
out.

On the other hand, VT’ s results for the density depen-
dence of CV at T5Tc present, at first sight, a more challeng-
ing puzzle. Indeed, their data appeared to reveal a remark-
able difference between the RPM and aLennard-Jones fluid.
For the former, CV /NkB decreased monotonically with in-
creasing density, without any evident marked dependence on
system size. The corresponding curves VT present for a
Lennard-Jones fluid, on the contrary, exhibit a pronounced
peak in the vicinity of the critical density rc that, further-
more, increases with system size.

Why is a peak for the RPM apparently absent? Without
doubt, any maximum or divergence related to criticality in
the RPM wil l be rounded and shifted in finite systems, irre-
spective of the actual universality class. Furthermore, one
must be prepared for strong finite-size effects that are likely
to be distorted relative to LJ-type model fluids in light of the
shape of the RPM coexistence curve, which is highly
asymmetric.1,2,4 This expectation is indeed confirmed by Fig.
3, where the continuous plots show our simulation data for
the specific heat of the discretized RPM for six different
system sizes at T* 50.051.Tc* . For each system size there
is a clear maximum, at a density that appears to approach the
critical density from below. Unfortunately, however, the data
of VT ~shown for their system size N5192) did not extend
to sufficiently low densities to cover these peaks. Also note-
worthy is that their data actually are quite near ours for the
discretized RPM, at a system size between L55s and L
56s, even though this is considerably smaller than the di-
mension L̃N[(N/r)1/3.13s suggested by the particle num-
ber N5192. This difference might be due to the z55 dis-
cretization; but if Tc really is lower for the RPM,16 VT’ s data
pertain to an isotherm somewhat above Tc . It should also be
noted, however, that VT chose to take their data at an appar-

FIG. 2. The ionic specific heat, CV /NkB , of the RPM with discretization
parameter z55, along r*50.068, close to the estimated critical isochore.
Clear peaks rounded by finite size are evident below the estimated critical
temperature ~vertical dashed line!, although the behavior above Tc conveys
significantly less information.
ent finite-size critical temperature. On the other hand, one
cannot exclude the possibility that the difference reflects a
relative limitation of the canonical simulations performed by
VT. The fixed particle number may, in effect, suppress the
characteristic density fluctuations, with a consequential rela-
tive suppression and enhanced rounding of various maxima
in finite systems. This might also explain why VT observe
negligible changes in CV /N when increasing the number of
ions by 50% from 128 to 192. However, the precise nature of
the finite-size effects themselves is currently unclear in the
framework of the canonical Monte Carlo used by VT.

Now consider the qualitative differences observed by
VT between the specific heats of the RPM and the LJ fluid.
These differences also prove to be aconsequence of the low
critical density of the RPM, compared to rc for simple fluids;
they do not reflect any significant possible difference in the
nature of the critical behavior of the two systems. To see
this, recall that in comparing the configurational heat capac-
ity at constant volume for different fluids, or for a fluid and a
lattice model, the more basic quantity for criticality and
phase separation is the heat capacity per unit volume ~or CV

FIG. 4. As in Fig. 3, but now the heat-capacity density is plotted and a linear
‘‘background term’’ CV

0/V* kB53.5r* has been subtracted ~while V*
5V/s3). See the text.

FIG. 3. The constant-volume specific heat on the estimated critical isotherm
of the discretized RPM ~for z55!, compared with the corresponding VT
data ~Ref. 10!.
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density! rather than the specific heat ~or heat capacity per
particle!.18 In addition to the arguments presented in Ref. 18,
namely the greater naturalness of the grand-canonical en-
semble and the expectation that spatial fluctuations most di-
rectly characterize critical divergences, note that the field-
theoretical viewpoint of critical phenomena and the
renormalization-group approach19 bear out the conclusion
that the number of degrees of freedom per unit volume plays
the most fundamental role.

Thus, in Fig. 4 we have plotted the heat-capacity density,
CV /VkB , for the RPM as a function of r for T* 50.051; in
addition, knowing in very general terms that the universal
aspects of the critical behavior of real and model systems
invariably involve a smooth, nonuniversal ‘‘background’’
~which may well be negative! we have subtracted a term
proportional to r with an amplitude chosen judiciously to
generate adisplay such as might be expected in a truly sym-
metric, e.g., lattice-gas system. Instead of a monotonically
decreasing function, we now obtain a net ‘‘energy fluctua-
tion’’ that displays a clear maximum as afunction of r, of a
height that increases systematically with size. If we replot
VT’ s data for the Lennard-Jones fluid in the analogous way,
as in Fig. 5, we find similar behavior: Indeed, the subtracted
heat-capacity density of the LJ fluid on the critical isotherm
exhibits clear finite-size maxima as afunction of the density,
with asystematic size dependence that, as for the RPM, sug-
gests a monotonic increase ~as L or N→`) peaking in the
vicinity of the critical density.

In summary, the constant-volume heat capacity is a use-
ful quantity in the study of the critical behavior of the re-
stricted primitive model for ionic fluids. However, as we

FIG. 5. The heat-capacity density for a Lennard-Jones fluid, as derived from
the data of Valleau and Torrie ~Ref. 10!. As in Fig. 4, a ‘‘background’’
CV

0/V* kB51.6r* has been subtracted from CV /V* kB . See the text.
havedemonstrated, caremust beexercised beforeconcluding
that a maximum or a critical divergence is absent. Along
both the critical isochore and the critical isotherm, numerical
results for finite systems exhibit clear maxima, contrary to
the suggestions of Ref. 10. Furthermore, inasfar as one ob-
serves an overall qualitative difference between the specific
heat for the RPM and a fluid with Lennard-Jones interac-
tions, the effect is primarily due to the large difference in
critical densities. It has no relevance to possible differences
in critical behavior—for which our current data allow few
definitive statements. Conversely, if one considers the heat-
capacity density, the two systems exhibit qualitatively rather
similar behavior. Whether, ultimately, that reflects the same
or distinct critical universality classes remains to be deter-
mined on the basis of fluctuations not only of the energy, as
observed in the specific heat, but also of fluctuations in
density.15,17

Note added in proof. Our refined critical point estimates
are Tc* .0.0517 and rc* .0.072.
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