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Abstract. – We solve the long-standing discrepancy between Monte Carlo results and the
renormalization prediction for the Binder cumulant of the five-dimensional Ising model. Our
conclusions are based on accurate Monte Carlo data for systems with linear sizes up to L = 22.
A detailed analysis of the corrections to scaling allows the extrapolation of these results to
L = ∞. Our determination of the critical point, Kc = 0.1139150 (4), is more than an order of
magnitude more accurate than previous estimates.

Introduction. – A much-debated issue in recent years is the question of universality of the
five-dimensional Ising model [1]-[8]. This question focuses on the value of the renormalized
coupling constant g at criticality, which is related to the Binder cumulant B [9]. For d-
dimensional systems with periodic boundary conditions, hypercubic geometry and d ≥ du,
where du denotes the upper critical dimension, renormalization theory [10] predicts that this
cumulant has a universal value. However, although du = 4 for Ising models with short-range
couplings, Monte Carlo simulations [1], [2] for five-dimensional Ising systems with linear sizes
3 ≤ L ≤ 7 suggested a different value for B. Large-scale simulations for 5 ≤ L ≤ 17 [3]
corroborated the earlier Monte Carlo result. As this controversy might indicate a problem
with the renormalization analysis, various efforts were undertaken to gain additional insight
in the nature of the discrepancy. First, simulations were carried out for a closely related
class of systems, namely low-dimensional systems with algebraically decaying interactions [4].
Provided that these long-range interactions decay sufficiently slowly, they induce classical
critical behaviour even in one-dimensional systems. Thus they effectively lower the upper
critical dimension. As these systems are described by the same renormalization equations as
high-dimensional short-range models, the same discrepancy in the Binder cumulant could be
observable. The advantage of examining these long-range systems is their lower dimensionality,
which makes it possible to simulate a much larger range of system sizes. It might seem that this
advantage is undone by the increase of simulation time due to the larger number of interacting
neighbours, which constitutes the very reason for the mean-field–like behaviour. However, this
latter problem was avoided by a cluster algorithm for long-range interactions in which the
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simulation time is independent of the number of interacting spins [11]. The Binder cumulant
was shown to agree accurately with the theoretical prediction for all examined systems with
d > du (for d = 1, 2, 3). Nevertheless, this did not completely resolve the existing discrepancy,
as the relation between models with long-range interactions and high-dimensional short-range
Ising models is non-exact. Two subsequent studies actually were concerned with the five-
dimensional model itself. Mon [5] studied the finite-size behaviour of the first and third absolute
magnetization moments (normalized by the second moment to render them dimensionless),
〈|m|〉/〈m2〉1/2 and 〈|m3|〉/〈m2〉3/2, and found that the Monte Carlo results for these quantities
agreed well with the theoretically expected values. Furthermore, he showed that the finite-size
corrections for the fourth moment —which is directly related to the Binder cumulant— are much
larger than for the first and third one, which might explain the previously found disagreement.
The only point of discussion concerning this study was the nature of the dominant finite-size
correction, see refs. [7], [8]. Next, Parisi and Ruiz-Lorenzo [6] carried out Monte Carlo
simulations for the five-dimensional Ising model using the Wolff cluster algorithm, which
implied a considerable improvement compared to previous studies. They also introduced a new
quantity, namely the Binder cumulant evaluated at the “apparent critical temperature”, defined
as the (size-dependent) temperature where the connected susceptibility takes its maximum.
They showed their Monte Carlo results for this quantity, taken at 4 ≤ L ≤ 16, to agree well
with the mean-field value. Unfortunately, the statistical accuracy of the numerical results for
the Binder cumulant at the critical temperature was not sufficient to allow an extrapolation to
the L→∞ limit, so that the original controversy could not be settled yet.

Simulations. – In this paper we present new Monte Carlo results for the five-dimensional
Ising model. We have carried out simulations for hypercubic systems up to linear size L = 22,
which corresponds to more than 5×106 spins. Periodic boundaries were employed. The results
have a high statistical accuracy, which is required to resolve the various finite-size corrections.
The majority of the results were obtained on a Cray T3E massively parallel computer at Delft
University. A total amount of 4000 (one-processor) CPU-hours was invested. One quarter of
the total time was spent on the two largest system sizes, L = 20, 22. As in ref. [6], we used the
Wolff cluster algorithm [12] to suppress critical slowing-down. Samples were taken at intervals
containing a number of Wolff steps approximately equal to the inverse of the average relative
cluster size. Table I gives the details for the various system sizes.

Results and discussion. – The main quantity of interest is the universal L → ∞ limit of
the amplitude ratio

Q(T, L) ≡
〈m2

L〉
2

〈m4
L〉

, (1)

which is directly related to the Binder cumulant B = −3 + 1/Q. In order to analyze the
finite-size data for Q(T, L) we need a description of the corrections to scaling. Above the upper
critical dimension, the theory of scaling differs from that below du, because of the presence of
a so-called dangerous irrelevant variable. This leads to a violation of hyperscaling. A detailed
discussion of the form of the finite-size scaling functions is given in ref. [4]. The resulting
prediction of renormalization theory is

Q(T, L) = Q̃
(
t̂Ly

∗
t , uLyi

)
+ b1L

d−2y∗h + · · · , (2)

where Q̃ is a universal function, t̂ = t+αLyi−yt and uLyi originates from irrelevant higher-order
contributions in the renormalization equations [4]. t ≡ (T −Tc)/Tc is the reduced temperature.
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Table I. – Details of the Monte Carlo simulations. The table shows both the number of Wolff clusters
per sample and the total number of samples taken for each system size.

System size Clusters/sample Million samples

2 5 40
3 10 36
4 20 21
5 30 13
6 50 13
7 70 5.3
8 100 5.8
9 120 3.0

10 200 2.7
11 200 1.6
12 250 1.9
13 320 0.77
14 400 0.95
15 500 0.51
16 600 0.64
17 700 0.38
18 800 0.32
19 900 0.29
20 1000 0.26
22 1400 0.19

The asterisks indicate that the exponents are modified by the dangerous irrelevant variable.
Following the notation of ref. [4] we have y∗t = yt − yi/2 and y∗h = yh − yi/4, where in turn
yt = 2 is the thermal exponent, yh = (2+d)/2 the magnetic exponent and yi = 4−d the leading
irrelevant exponent. Thus, y∗t = d/2 and y∗h = 3d/4. The one-loop correction αL2−d in t̂ is the
so-called shift in the critical temperature, which leads to a finite-size correction proportional
to Lyi/2 = L2−d/2 in Q(T, L). The term b1L

−d/2 arises from the analytic part of the free
energy and the ellipsis stands for higher-order terms. Upon expansion of the scaling formula
for Q(T, L) near criticality, one finds:

Q(T, L) = Q+ a1t̂L
y∗t + a2t̂L

2y∗t + · · ·+ b1L
d−2y∗h + · · ·+ c1L

yi + · · · . (3)

We have fitted eq. (3) to our finite-size data. All data for L ≥ 5 were included in the analysis.
In addition to the terms in (3) we also used one cross-term in the expansion, viz. t̂Ly

∗
t +yi . The

exponents of the correction terms, yi and d − 2y∗h, were kept fixed. The results are shown
in table II. In the first analysis, one observes that both y∗t and Q agree with the theoretical
predictions, y∗t = d/2 and Q = 8π2/[Γ (1

4 )]4 ≈ 0.456947. Comparing this to previous studies,
we make the following remarks. The best estimate in ref. [3] is Q = 0.489 (6), more than five
standard deviations from the renormalization prediction. This value deviates approximately
four (combined) standard deviations from our result. Furthermore, the quoted error margin is
of the same order as ours. Since our data have much smaller statistical errors, this indicates
that less correction terms were taken into account in ref. [3]. Indeed, the absence of certain
finite-size corrections was suggested in ref. [4] as a possible explanation for the discrepancy. In
ref. [6] the finite-size data were directly compared to the renormalization prediction for L =∞;
no actual extrapolations to infinite system size were made. Hence, our results now confirm the
renormalization prediction for the Binder cumulant of the five-dimensional Ising model for the
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Table II. – Results of the least-squares fits of the universal amplitude ratio Q. The numbers in
parentheses denote the errors in the last digit.

Analysis y∗t Q Kc

1 2.46 (9) 0.456 (6) 0.1139149 (7)
2 2.50 (fixed) 0.454 (5) 0.1139147 (6)
3 2.50 (fixed) 0.45694658. . . (fixed) 0.1139150 (4)

first time, in the sense that the accuracy of our analysis exceeds the level needed to distinguish
between the competing results for Q [3], [10].

Because the thermal exponent agrees with the predicted value, we have repeated the analysis
with y∗t fixed at this value. The resulting estimate for Q again agrees with the prediction.
However, comparing the uncertainty in Q with the error margins quoted in ref. [4], where y∗t was
also kept fixed, we see that the results forQ for the systems with long-range interactions are even
more accurate. Given the large amount of CPU-time spent on the five-dimensional case, this
illustrates how well suited the low-dimensional long-range systems are for the study of universal
properties above the upper critical dimension. Finally, in order to lower the uncertainty in Kc,
we have made a third analysis assuming that Q takes its theoretical value. All three estimates
for the critical coupling agree within one standard deviation.

In order to gain some insight into the nature of the finite-size corrections affecting Q, we have
studied Q(Kc, L) as a function of L [13]. Most of our data were taken atK = 0.1139100, slightly
different from our best estimate forKc. Therefore we have corrected these data for the difference
in coupling strength using eq. (3). Figure 1 shows both Q(K = 0.1139100, L) and Q(Kc, L) as
a function of L. This turns out to be a surprisingly instructive plot. Firstly, one notices that for
the larger values of L the finite-size data for Q are strongly dependent on the coupling, which
is due to the large value of y∗t . This implies that an incorrect estimate of Kc has a considerable
effect on the resulting estimate of the Binder cumulant. Secondly, one observes that the dashed
curve indicating the finite-size corrections as predicted by renormalization theory gives a good
description of the data down to system sizes as small as 4 or 5 (cf. refs. [5], [7], [8]). The
overall approach to the L → ∞ limit is very slow, given the huge number of spins in the
largest system. Returning to the original discrepancy, we have repeated the least-squares
fits with a smaller number of correction terms. Apart from an increase in χ2, indicating the
importance of the higher-order terms, this leads to a higher estimate of the critical coupling
and a correspondingly higher value for Q, although it was by no means as high as the result
in [3]. On the other hand, the shift term ∝ L−1/2 is not the dominant term for small L, as
already suggested in refs. [4], [7], but it is neither negligibly small (in contrast with the results
for systems with long-range interactions). Naturally, for large L it will dominate all other
corrections.

Unlike the Binder cumulant, the critical coupling was estimated in many studies. Let us
therefore compare our estimate for Kc with these previous estimates (table III). The early
result by Fisher and Gaunt [14] already has a remarkable accuracy, but the quoted uncertainty
turns out to be almost ten times too small. Other series expansion results [15], [16] agree with
our prediction; in particular the result of Guttmann (which was obtained by fixing the critical
exponent γ at its mean-field value). Still, the uncertainty in this estimate is more than an order
of magnitude larger than in the newest Monte Carlo result. The most accurate result until now
from equilibrium Monte Carlo simulations was obtained by Parisi and Ruiz-Lorenzo [6] and lies
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Fig. 1. – The Binder cumulant at K = 0.1139100, where most of our data were taken, and K =
0.1139150, our best estimate of Kc, vs. the system size L. The points at the latter coupling were
calculated from those at the former coupling. Furthermore the function describing the finite-size
corrections at criticality (dashed curve) and the L → ∞ limit of the Binder cumulant (solid line) are
shown.

Table III. – Critical couplings for the five-dimensional Ising model as obtained in various studies.

Reference Year Kc Method Remarks

[14] 1964 0.114035 (13) series exp.
[15] 1981 0.113917 (7) series exp. γ fixed

[1], [2] 1985 0.1140 Monte Carlo L ≤ 7
[16] 1993 0.113935 (15) series exp.
[16] 1993 0.11391 (1) dynamic MC L ≤ 48
[3] 1994 0.113929 (45) Monte Carlo L ≤ 17
[5] 1996 0.11389 (13) Monte Carlo L ≤ 14
[6] 1996 0.11388 (3) Monte Carlo L ≤ 16, y∗t fixed

[17] 1996 0.11391 (1) dynamic MC L = 112
This work 1997 0.1139149 (7) Monte Carlo L ≤ 22
This work 1997 0.1139150 (4) Monte Carlo L ≤ 22, Q and y∗t fixed

one σ below our estimate. Since this value was obtained with y∗t fixed, the uncertainty has to
be compared to that of the second analysis in table II. Finally, two (coinciding) estimates were
obtained by studying the critical dynamics of the five-dimensional Ising model [16], [17] for
very large system sizes and requiring that the effective dynamical critical exponent approaches
its asymptotic value z = 2. These results are also in good agreement with our estimate and
the latter may hence be used to make a more accurate study of the critical dynamics of the
five-dimensional Ising model.

Conclusion. – In this paper we have presented numerical results for the five-dimensional
Ising model, in particular for the Binder cumulant and the critical coupling. Using accurate
results for relatively large system sizes we have been able to carry out a detailed analysis
of the various corrections to scaling. The results are in full agreement with the predictions
of renormalization theory and hence resolve the long-standing discrepancy for the Binder
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cumulant. Furthermore, we reinforced our earlier suggestion that this discrepancy was caused
by the neglect of higher-order finite-size corrections. A more elaborate analysis of the critical
properties of the five-dimensional Ising model will be presented elsewhere.
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