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In a recent letter [1], Mon addresses the disagreement between a renormalization predic-
tion [2] and Monte Carlo (MC) analyses of the critical value of the Binder cumulant in the
five-dimensional Ising model. Whereas there is firm evidence supporting his overall conclusion,
namely that the discrepancy can be explained by strong finite-size corrections [3], there is no
such evidence for Mon’s identification of the nature of this correction. This is highly relevant
for the discussion of this problem, because neglecting the dominant correction to scaling can
evidently explain the incorrect conclusions drawn from previous simulations.

The discrepancy concerns the value of the dimensionless amplitude ratio Q ≡ 〈m2〉2/〈m4〉,
or, equivalently, the so-called Binder cumulant g ≡ −3+1/Q. Several Monte Carlo simulations
have yielded estimates for g which differ significantly from the renormalization prediction. In
order to determine whether finite-size corrections may be responsible for this discrepancy,
Mon calculates Monte Carlo estimates for two other universal amplitude ratios, viz. the first
and third absolute magnetization moments divided by the appropriate power of the second
magnetization moment, and compares these quantities with their respective renormalization
predictions. Renormalization theory predicts a leading finite-size correction proportional to
L−1/2 (L is the linear system size), which originates from the so-called shift in the critical
temperature. Mon analyzes the difference between the MC estimates and the respective
predicted thermodynamic limits and concludes that these differences can indeed be described
by an inverse square-root law. Subsequently he analyzes the Binder cumulant in a similar way
and concludes that also in this case L−1/2 corrections may account for the existing discrepancy
between the renormalization prediction and MC calculations.

We find this explanation unconvincing. It is correct, as Mon claims, that an L−1/2 correction
was not taken into account in ref. [4], but the very reason for this was that such a correction
could not be observed in the finite-size data, although the maximum available system size
was larger than in ref. [1]. This is in agreement with the results presented in ref. [3], where
the Binder cumulant was analyzed for a more general class of systems above the upper critical
dimensionality. These systems are described by essentially the same renormalization equations,
and their Binder cumulants were shown to coincide with the renormalization prediction within
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very small error margins. The amplitude of the L−1/2 term, or more generally the Lyi/2

term (where yi denotes the leading irrelevant exponent), turned out to be negligible for these
systems. In fact, also Mon finds for the first and third absolute moment correction amplitudes
which are equal to zero within one standard deviation. Furthermore, the finite-size corrections
for these quantities are small compared to the error bars and the range of system sizes is
limited. Hence, it seems well possible that a different power law can be fitted to them as
well. However, the dominant contribution in ref. [3] came from the next-to-leading finite-size
correction. This correction, which originates from a nonlinear term in the renormalization
equations, is proportional to L−1 in the five-dimensional Ising model. Hence, instead of fitting
the finite-size corrections to a square-root curve, it would be more clarifying if they were
fitted to a general expression ∝ Lx. Indeed, it is obvious from fig. 3 in ref. [1] that the L−1/2

expression does not describe the corrections very well at all. Only three out of seven data points
lie within one standard deviation from the curve. Mon remarks that this might indicate that
the renormalization theory does not provide a good description of the tails of the distribution
function for small L. Figure 3 in [1] shows that the finite-size corrections for the system sizes
5 ≤ L ≤ 11 lie on a curve which is definitely steeper than L−1/2. Data points for L = 3, 4 and
L = 12, 13, 14—for which the first and third absolute moments are available in [1]—could help
to clarify the L dependence of the finite-size correction, but are missing in fig. 3.

Figure 1 below shows the data points as extracted from fig. 3 in [1] along with Mon’s L−1/2

curve and a L−1 curve fitted to it. Naturally, if sufficient (accurate) data were available, one
would use a curve containing both (or even more) terms. The L−1 curve clearly constitutes
a much better description of the data, covering all available data points instead of only those
for the three largest system sizes. Furthermore, we have tried to determine the exponent of
the correction from the data: x = −1.2± 0.3, i.e. within one standard deviation from −1. If
we restrict this fit to the three largest system sizes, i.e. those used in ref. [1], we find that
the exponent is completely undetermined, x = −1.4 ± 3.0. Any conclusion based upon this
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Fig. 1. – The critical fourth-order cumulant in the five-dimensional Ising model as a function of the
linear system size L. The dashed curve indicates the L−1/2 curve from ref. [1], fitted to the data for the
three largest system sizes. The dotted curve denotes the next-to-leading finite-size correction, which is
proportional to L−1, fitted to all data points. The horizontal line marks the value of the fourth-order
cumulant in the thermodynamic limit.
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restricted data set thus seems premature. We believe that all this provides evidence that in
the five-dimensional Ising model the Lyi term constitutes the dominant finite-size correction for
the Binder cumulant, just as it does for lower-dimensional systems with algebraically decaying
(long-range) interactions [3], and that the above-mentioned discrepancies can be attributed to
ignoring this correction. We see no reason to doubt the validity of the renormalization theory
for the smaller system sizes, because it predicts adequate finite-size corrections.

Finally we remark that a solid basis for the “alternative theory” mentioned at the end of
ref. [1] has not been given, while numerical evidence, i.e. a value for the Binder cumulant
which differs significantly from the renormalization prediction, is absent. Furthermore it was
noted in [3] that this alternative shift of the critical temperature is not well compatible with the
renormalization theory. It would imply the presence of an additional term of unknown origin
in one of the basic renormalization equations.

***

It is a pleasure to thank Prof. H. Blöte for useful discussions and a critical reading of the
manuscript.
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