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Abstract. Correlations in the motion of reptating polymers in a melt are investigated by means of Monte
Carlo simulations of the three-dimensional slithering-snake version of the bond-fluctuation model. Surpris-
ingly, the slithering-snake dynamics becomes inconsistent with classical reptation predictions at high chain
overlap (created either by chain length N or by the volume fraction φ of occupied lattice sites), where the
relaxation times increase much faster than expected. This is due to the anomalous curvilinear diffusion in
a finite time window whose upper bound τ+(N) is set by the density of chain ends φ/N . Density fluctua-
tions created by passing chain ends allow a reference polymer to break out of the local cage of immobile
obstacles created by neighboring chains. The dynamics of dense solutions of “snakes” at t � τ+ is identical
to that of a benchmark system where all chains but one are frozen. We demonstrate that the subdiffusive
dynamical regime is caused by the slow creeping of a chain out of its correlation hole. Our results are in
good qualitative agreement with the activated-reptation scheme proposed recently by Semenov and Rubin-
stein (Eur. Phys. J. B, 1 (1998) 87). Additionally, we briefly comment on the relevance of local relaxation
pathways within a slithering-snake scheme. Our preliminary results suggest that a judicious choice of the
ratio of local to slithering-snake moves is crucial to equilibrate a melt of long chains efficiently.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 83.10.Kn Reptation
and tube theories – 83.80.Sg Polymer melts

1 Introduction

Background

The molecular-level description of the dynamics of non-
dilute polymer liquids remains a challenging problem of
great fundamental interest as well as practical impor-
tance [1]. In the last 30 years, attention has largely fo-
cused on the applicability of the reptation concept intro-
duced by de Gennes and Edwards [2,3]. This approach
postulates that individual chains, constrained by their
neighbors, move primarily along their own contours in
a snakelike fashion. Reptation-based models have been
very successful in reconciling a wide range of experimen-
tal observations [1] and are broadly in agreement with
more recent computational results as reviewed in [4,5].
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All evidence amounts to the existence of an additional and
chain-length–independent length scale. This length scale
is called the “tube diameter” de ∼ Nν

e with Ne(φ, lp) the
associated “entanglement length”, φ the molecular den-
sity, lp the persistence length and ν the Flory exponent
of the polymer chain. The density and persistence length
dependence of de have been probed by various numerical
methods [6–10], indicating that it is proportional to the
excluded-volume blob size ξ(φ, lp). While, strictly speak-
ing, not having the (more prestigious) status of a “scien-
tific theory”, the reptation concept is widely (though not
generally) seen as a physically appealing starting point
any further modeling approach has to compete with.

First motivation

The simulation of entangled polymer melts is a challenging
task and it is a matter of debate if the (suspected) reptat-
ing motion of polymer chains has already been reproduced
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GLOBAL MOVE: SNAKE

LOCAL MOVE

Fig. 1. Sketch of the bond-fluctuation model (BFM) with lo-
cal (top chain) and slithering-snake moves (bottom chain). We
show a two-dimensional projection of the three-dimensional
Monte Carlo algorithm. Monomers (squares) are connected by
108 possible bonds (bold lines) allowing for 87 angles between
bonds (in three dimensions). In the original BFM, monomers
make only local jumps in six spatial directions, in (automatic)
agreement with the imposed topological constraints. In this
paper we study the dynamics of the slithering-snake algorithm
(SSA). As depicted for the bottom chain, monomers move col-
lectively along the chain in the SSA. Effectively, this amounts
to removing a monomer (the striped one on the left), con-
necting it to the other end of the chain and leaving the middle
monomers unchanged. Therefore, density fluctuations and con-
straint release only occur at the chain ends.

numerically in a sufficiently large simulation box [11].
Without any doubt, it will be near to impossible to sim-
ulate within the near future by means of locally realistic
dynamics industrially relevant problems, such as the rheol-
ogy of polymer melts with fillers. It is, therefore, tempting
to accept the snakelike motion as a basic ingredient in a
coarse-grained algorithm and to verify if a meaningful dy-
namic interpretation of the well-known “slithering-snake
algorithm” (SSA) [12–14] can be given. This algorithm
is sketched in Figure 1. It has been extensively used for
three decades in simulations of static properties because
of its efficiency in exploring phase space. Clearly, it would
be extremely useful if a (simple and transparent) map-
ping of this algorithm on its corresponding local dynami-
cal scheme could be achieved.

Self-consistency of reptation

While most of the current computational work appears to
focus on the demonstration of the curvilinear chain mo-
tion [5,9–11,15], here we take this key reptation hypoth-
esis for granted. Therefore, we are not interested in the
Rouse-like dynamics at short times and for chain length
smaller than Ne. For the SSA we expect Ne ≈ 1, so that
it should be possible to explore the dynamics of the so-

called “primitive path” [3]. What we do question, how-
ever, is an additional (and arguably less profound) mean-
field assumption made in the original versions of repta-
tion which supposes the uncorrelated motion of neighbor-
ing “snakes”1. In the following we refer to this assumption
as the “uncorrelated reptation hypothesis” (URH). One of
its immediate consequences is, for instance, the linear time
dependence of the mean-square displacements (MSD) of
the center of mass or of the curvilinear motion of an inner
chain monomer for the snake dynamics. The verification
of the influence of the interchain correlations on reptating
snakes is the second motivation of this study.

Internal modes, tube fluctuations

In recent years a number of theoretical models and nu-
merical schemes [3,16–18] have been developed in order
to explain the observed molecular-weight dependence of
the zero-shear viscosity η ∼ N3.4±0.2 for N � Ne [1,3].
The main idea of these theories is to account for the in-
ternal modes of polymer dynamics inside the reptation
tube (“tube-length fluctuations”) or to introduce a finite
lifetime of the tube (“double reptation” [18]) without ad-
dressing, however, the possibility of correlated chain mo-
tion. While these are undoubtedly valiant efforts, they are
of no concern here, as we are, to stress it again, inter-
ested in the physics at much larger molecular weights and
correspondingly longer time scales.

Coupling between dynamics and density fluctuations

The possibility of a coupling between primitive path
dynamics and the fluctuating excluded-volume interac-
tions of neighboring chains was first investigated by
Deutsch [19]. He suggested that the reptation of a chain
tail from its original tube to a new environment implies a
finite free-energy penalty F (s) proportional to the curvi-
linear length of the tail s. Moreover, it was assumed that
this additional activation energy of the snake can relax
as soon as the spatial size of the escaped portion be-
comes of the order of the mean distance between chain
ends dend ∼ N1/3. Taking into account the Gaussian
chain statistics in a dense polymer solution, Deutsch ob-
tained an exponential increase τ ∼ η ∼ N3 exp(N2/3)
for the relaxation times and viscosities in concentrated
polymer solutions with extremely large molecular masses.
More recently, these ideas have been elaborated further
by Semenov and Rubinstein [20–22] and implemented in
a slightly different and thermodynamically fully consis-
tent way. They predict that the URH breaks down for
N � N3

e [22]. Since we expect Ne to be of order 1 for
the SSA, it should be possible to test this “activated-
reptation” hypothesis (ARH) in our simulations.

1 We will often use the term “snake” as a short form for
“chains moving according to the slithering-snake algorithm”.
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Brief summary of our work

We have harnessed a SSA of the bond-fluctuation lat-
tice model and compared its dynamics for consistency
with the URH of the classical reptation model. We find
that the dynamics rapidly slows down with chain overlap
and becomes strongly subdiffusive in a finite time inter-
val τ− � t � τ+, whose bounds are determined by the
blob size ξ and the mean distance between chain ends
dend. This slowing-down is at variance with the URH and
indicates strong correlations between neighboring chains.
To corroborate our results for the SSA dynamics in an
annealed molecular field, referred to as “annealed SSA”
(aSSA) hereafter, we have considered a different version of
the SSA where all chains but one have been quenched. We
will refer to this version as the “quenched SSA” (qSSA).
The comparison of both dynamical schemes demonstrates
the mutual influence of the correlation hole retaining the
snakes by means of an effective force and the fluctuating
chain ends which allow the snakes to sneak out of the local
cage of immobile monomer sites.

Outline

This work is presented as follows. Our numerical scheme
is briefly recapitulated in the next section. The parameter
range and some technical points concerning the configu-
rations and measurements are presented in Section 3. The
relevant analytical predictions according to the URH and
ARH are summarized in Section 4. The numerical results
of this paper are presented in Section 5 where we charac-
terize and compare aSSA and qSSA dynamics. The impli-
cations and possible extensions of our work are discussed
in the final Section 6. There, we speculate on the impor-
tance of local motion to obtain a fully consistent mapping
of a slithering-snake scheme on a locally realistic model.

2 Simulation model

Bond-fluctuation model

In this investigation we use the extensively studied “bond-
fluctuation model” (BFM) [7,23,24], a lattice Monte Carlo
scheme introduced by Carmesin and Kremer [25]. Figure 1
depicts a two-dimensional projection of both the original
BFM with local monomer dynamics (upper chain) and
the BFM with global snakelike moves (lower chain). These
versions have been discussed elsewhere in detail [23,24,26]
and we concentrate here on some salient features.

In the BFM each monomer occupies the eight corners
of the unit cube on a simple cubic lattice. The bonds be-
tween adjacent monomers can vary in length and direc-
tion, subject only to excluded-volume constraints and en-
tanglement restrictions. Basically, due to the larger num-
ber of degrees of freedom —87 angles between bonds are
possible— the BFM does not suffer from the same ergod-
icity problems that classical Monte Carlo schemes of self-
avoiding random chains on simple cubic lattices are prone

to [13,14]. (We come back to this point in Sect. 5.5.) In the
original BFM version only local jumps to nearest-neighbor
sites are allowed. The excluded volume then automatically
forbids any intersection of bonds.

Slithering-snake schemes: aSSA and qSSA

If snakelike moves are considered, the uncrossability of
bonds has to be checked explicitly to avoid configurations
which cannot be attained or unraveled by the original lo-
cal scheme [27]. The snake move along the existing back-
bone of a chain is equivalent to removing an end monomer
and connecting it to the other end of the chain, leaving
the lattice positions of the middle monomers unchanged.
Therefore, density fluctuations occur only at chain ends if
no local moves are allowed.

The main focus of this study is the dynamics of the
“annealed SSA” (aSSA) where all chains are allowed to
move: A chain and one of its ends are selected at random
and a global move in a randomly chosen bond direction
is attempted. We compare this with the “quenched SSA”
(qSSA) of systems where all chains but one are quenched,
thus disallowing temporal density fluctuations (at chain
ends or elsewhere). We sample the dynamics of the re-
maining free snake and average over all chains of one
quenched equilibrium configuration. Unless stated other-
wise, in the following we always refer to aSSA properties.
Data from aSSA (qSSA) are generally indicated by open
(full) symbols.

Definition of a Monte Carlo step

Following Sokal [14] we have chosen to set the unit of
the Monte Carlo time step (MCS) such that on average
each monomer is attempted once per cycle, irrespective of
whether this attempt occurs through local or snake moves.
If only the latter are allowed, every chain is on average
visited once per MCS. Our definition of the time scale
differs from the one used traditionally in the description of
slithering snakes, which focuses on the computational time
required to equilibrate samples. Indeed every snake move
requires (essentially) the same CPU time irrespective of
N , since all monomers are moved simultaneously. Hence,
the computational relaxation time is proportional to τt/N ,
where τt stands for the terminal relaxation time in our
units.

3 Parameters, configurations, measurements

This section presents various technical aspects of the simu-
lation and introduces the important static and dynamical
quantities for the subsequent analysis. When a quantity is
defined, we often refer to the figures where its dependence
on N , φ or time is shown, without discussing the figure in
detail, however. This discussion will be done in Section 5.

Parameters

In this paper we study athermal systems (no additional
potential parameters) containing monodisperse snakes
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Table 1. Various static and dynamical properties for slithering snakes with aSSA dynamics at volume fraction φ = 0.5 versus
chain length N : the mean bond length l, the effective bond length b(N) = Re/N

1/2, the acceptance rate A (Fig. 2), the effective
mobility m+(N) from g1(t) (Fig. 5), the spatial self-diffusion constant Ds = limt→∞ g3(t)/6t (Fig. 7), the curvilinear diffusion
constant Dc = limt→∞ g6(t)/2t (Fig. 6) and, finally, the time scales τ1 and τend obtained from g1(τ1) = Rg

2 and g1(τend) = dend
2,

respectively (Fig. 9). The first of these times indicates the terminal time (τ1 ≈ τt), the latter separates the strongly correlated
anomalous chain diffusion from the free curvilinear diffusion at longer times (τend ≈ τ+). The mean bond length l and the
acceptance rate A are essentially chain length independent while the effective mobility m+ clearly is not.

N l b(N) A m+ NDs Dc τ1 τend

16 2.602 2.9 0.08433 0.0164 0.057 0.136 299 376
32 2.603 3.0 0.08478 0.0123 0.040 0.085 1588 1257
64 2.603 3.1 0.08502 0.0071 0.022 0.045 14527 5434
128 2.603 3.1 0.08515 0.0035 0.010 0.021 1.3 · 105 27826
256 2.603 3.2 0.08506 0.0012 0.0037 0.0075 1.6 · 106 192900
512 2.602 3.2 0.08637 0.0003 0.0010 0.0021 1.8 · 107 0.4 · 107

1024 2.603 3.0 0.08606 0.0001 0.0002 0.0005 2.5 · 108 0.2 · 108

Table 2. Same properties as in Table 1, but for a lower volume fraction φ = 0.125. Note that the effective bond length
b(N) = Re/N

1/2 increases slightly with chain length: the chain overlap is weaker than at φ = 0.5 and larger chains are needed
to screen the excluded-volume correlations. For the relatively dilute systems N ≤ 64 the time scale τend becomes larger than
the terminal relaxation time τ1.

N l b(N) A m+ NDs Dc τ1 τend

16 2.689 3.4 0.62045 0.15 0.91 1.7 25 116
32 2.690 3.5 0.62493 0.15 0.86 1.5 94 188
64 2.691 3.7 0.62759 0.13 0.79 1.2 533 743
128 2.692 3.8 0.62888 0.11 0.66 1.0 2246 1680
256 2.692 3.9 0.62940 0.09 0.57 0.8 15142 6425
512 2.692 3.9 0.63008 0.085 0.36 0.5 94401 20059
1024 2.692 4.0 0.63006 0.055 0.28 0.3 780000 26329

(i.e., disallowing any local move) at volume fractions φ
ranging from dilute solutions to dense melts (φ ≈ 0.5).
The volume fraction is defined by φ = 8NNp/L

3, where
N , Np and L are the chain length, the number of polymers
in the system and the linear dimension of the simulation
box, respectively. In the present work, we primarily in-
vestigate the scaling of dynamical properties with mass
N (see, e.g., Figs. 2, 6–9, 17, 18). Chain lengths ranging
from N = 16 up to N = 1024 have been simulated. This is
sufficient to put theoretical predictions to the test. We use
a periodic cubic lattice of linear size L = 128. At φ = 0.5,
this corresponds to 131072 monomers per simulation box.
Note that all length scales are given in units of the lattice
spacing a (i.e., a = 1 in the following).

In fact, we report here the first results from a larger
and still on-going study, where in addition to N and φ we
have also varied the ratio ω of local to snake moves over
several orders of magnitude ranging continuously from
purely local (ω = ∞) to pure snake dynamics (ω = 0).
For the sake of comparison, the results of the local dy-
namics are included in some figures (Figs. 3, 18). At the
end of this paper, we briefly comment on the influence
that a finite value for ω has on the dynamics (Fig. 18).

Measurement of static properties

Obviously, the static properties of an ergodic system do
not depend on the dynamics of the algorithm. This has

been carefully checked for the annealed SSA. (Numeri-
cally, it also appears to be true for the qSSA, even though
ergodicity is less obvious in this case, since the environ-
ment of reference chains is frozen. Note, however, that
all initial qSSA chains are taken from an equilibrated an-
nealed ensemble.) This allows us to use the precise charac-
terization obtained in previous studies, e.g., for the mean
bond length l, the mean end-to-end distance Re or the
mean radius of gyration Rg. The first quantity gives the
mean curvilinear distance along the chain associated with
every successful snake move, the second the typical dis-
placement Re/N of the center of mass per snake move.
We recall that a polymer chain has a fractal dimension
1/ν with ν being the Flory exponent: Re ∝ Rg ∼ Nν .
The Flory exponent for dilute chains in a good solvent is
ν = ν0 ≈ 3/5. Above the overlap density φ∗ ≈ N/Rg

3 ∼
N1−3ν0 , the chains become Gaussian chains of blobs [2]
with ν = 1/2. An important length scale for the sub-
sequent discussion is the mean distance between chain
ends, dend = (4N/φ)1/3, which we will often refer to as
“mean end distance” in the following. Frequently, we use
the “effective bond length” [3] b(φ) ≡ limN→∞Re/N

ν=1/2

which is weakly density dependent. This definition is chain
length independent only for systems above φ∗. In the di-
lute limit, we have Re/N

ν0 , which yields b0 ≈ 3 forN � 1.
Some of these properties are summarized in Tables 1 and
2 for φ = 0.5 and φ = 0.125, respectively. Note that
Rg � dend = 2N1/3 at φ = 0.5 for N ≥ 16, while for
φ = 0.125 chains with N < 64 do not overlap, Rg < dend.
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Various definitions of dynamic properties measured

As dynamical properties we have sampled various spatial
and curvilinear mean-square displacements (MSD) gi(t),
as well as associated times, diffusion coefficients and his-
tograms. Following previous work [7], we define the spatial
MSD g1(t) for the middle monomer (with monomer index
n = N/2), g2(t) for the motion of the middle monomer
in the frame of the center of mass, g3(t) for the center-
of-mass motion, g4(t) for the end monomer motion (aver-
aged over n = 1 or n = N) and g5(t) for the motion of
the end monomers in the center-of-mass frame. Examples
are given in Figures 4, 5. The MSD related to the curvi-
linear motion along the backbone is called g6(t) =

〈
s(t)2

〉
where s is the curvilinear distance traveled by the middle
monomer n = N/2 in time t. It is presented in Figures 12,
13 and 14. As we will see below, the scaling of g6(t) and
the associated histograms (see Figs. 15, 16, 17) are crucial
for the understanding of the slithering-snake dynamics.

The curvilinear and spatial diffusion coefficients, pre-
sented in Tables 1 and 2 and in Figures 6, 7 and 18, are de-
fined by Dc ≡ limt→∞ g6(t)/2t and Ds ≡ limt→∞ g3(t)/6t.
From the diffusion coefficients we introduce the time scales
τs ≡ Rg

2/Ds and τc ≡ (Nl)2/(π2Dc). The prefactor in the
last definition has been introduced for convenience (see the
discussion of Fig. 15 in Sect. 5.5). Additional times can
be introduced to characterize the different MSDs. Follow-
ing again reference [7], the time scales τ1, τ2, τ3 and τ4
are defined by g1(t ≡ τ1) = Rg

2, g2(t ≡ τ2) = 2Rg
2/3,

g2(t ≡ τ3) = g3(t = τ3) and g5(t ≡ τ4) = Rg
2. In ad-

dition to this, we shall use g1(t ≡ τend) = dend
2 and

g1(t ≡ τd) = d2 where d is an arbitrary distance. To char-
acterize the curvilinear motion of the chains, we also define
the time τN/2 for the diffusion of the middle monomer over
half of the chain’s contour by g6(t ≡ τN/2) = (Nl/2)2.
From the analysis it will turn out that two time scales,
τ1 and τend, are particularly important. They have been
included in Tables 1 and 2.

Finite-size effects

Finally, we note that the results obtained for N = 1024
and φ = 0.5 have to be taken with some care. The config-
uration contains only 128 chains and as L ≈ Re ≈ 96, we
cannot rule out dynamical finite-size effects —especially
for the quenched SSA. Some very large motions have been
observed due to chains taking advantage of the image
of their own correlation hole in the neighboring periodic
boxes. Unfortunately, a systematic study of the influence
of the box size L is beyond our computational capabilities
at present.

4 Analytical expectations

In the following paragraphs we summarize the relevant
theoretical expectations for the analysis of the simulation
data.

Mean-square displacements: general properties

If the chains do not become permanently trapped, one
expects free curvilinear and spatial diffusion, i.e.

g6(t) ∼ 2Dct , (1)
g1(t) = g3(t) = g4(t) ∼ 6Dst , (2)

for times larger than the terminal relaxation time τt and
for distances larger than the radius of gyration Rg. Fur-
thermore, g2 and g5, both defined with respect to the
center of mass of the chains, must yield a purely static
quantity, the radius of gyration,

g2(t) ≈ g5(t)/4 ∼ Rg
2 , (3)

for very long times in any ergodic dynamical scheme [8].
At short times the spatial displacement is directly ex-

pressible in terms of the curvilinear displacement s along
a fractal object characterized by the Flory exponent ν.
For the MSD of the center of mass this suggests

Ng3(t) ≈ N
〈(
�Re

N

s(t)
l

)2〉
MF≈

〈
R2

e

〉
N

g6(t)
l2

≈ (b/l)2g6(t) ,

(4)
where the penultimate step follows from a (seemlingly in-
nocent) mean-field assumption. The last step uses the fact
that in the melt ν = 1/2. For the monomer displacements
along the backbone a similar reasoning gives

g1(t)=g2(t)≈g4(t)=g5(t)≈
〈
R(s(t))2

〉 MF≈ b2
(
g6(t)/l2

)ν
,

(5)
where

〈
R(s)2

〉
is the size of a piece of chain of curvilinear

length s. We have again made a mean-field approximation
and assumed the fractal behavior of asymptotically long
chains.

Uncorrelated reptation hypothesis

Until now everything is fairly general and is valid for both
the URH and the ARH. For uncorrelated snakes, the mo-
tion along the backbone must be linear with respect to
time. This fixes the short-time predictions of the URH:

g6(t) ≈ 2Dct , g3(t) ≈ 6Dst , (6)
g1(t) = g2(t) ≈ g4(t) = g5(t) ∼ tν . (7)

Equation (6) refers, strictly speaking, to the approximately
free diffusion along the chain backbone. As our simula-
tion does not deal with phantom chains, there must be
a small correction even for very dilute solutions. (An iso-
lated chain is not a phantom chain. It still interacts with
itself.) At long times the MSDs must obey equations (1–3).

Activated-reptation hypothesis for a quenched molecu-
lar field

The description of the MSDs within the ARH is best
outlined by considering chains in a molecular field that
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is quenched at t = 0 (qSSA). Hence, we start with an
equilibrium ensemble of reference chains. This implies
that the chains initially sit in their correlation hole with
relatively low conformational free energies. To creep
out of the local, well-adapted environment a free-energy
penalty must be paid on average. It is then reasonable
to assume [21,22] i) that fluctuations of the initial free
energy may be neglected (i.e., we consider a typical
initial chain), ii) that the curvilinear displacement s may
be taken as the reaction coordinate for the associated
Kramers escape problem, and iii) that the same penalty
F (s) may be associated with the possibly different
conformations characterized by the same s —a simple,
but less obvious mean-field approximation.

To estimate the dependence of the energy penalty on
s it was argued in references [21,22] that F (s) = fsϕ for
s � s+(N) where f is a constant. The upper limit s+(N)
depends on the relaxation (escape) mechanism. Since we
assumed the molecular field to be quenched, it seems nat-
ural to take s+ ≈ N � 1: At distances larger than the
radius of gyration, translational entropy must ultimately
win over all other free-energy contributions. To close the
escape problem we still need to specify the physics for
s > s+. Because of the gain of the translational entropy
F (s) should decrease logarithmically at large distances. A
crude, but physically sufficient approximation is to relax
the penalty completely: F (s) ≡ 0 for s > s+ [21]2.

The exponent ϕ appears to be a matter of debate.
In references [19,22] a linear relationship was suggested
(ϕ = 1). This implies that the chemical potential for a
curvilinear move is constant and thus independent of the
tail length s. On the other hand, it was suggested in ref-
erence [20,21] that the free-energy penalty should result
from fluctuations of the molecular field rather than from a
fixed chemical potential. The elaboration of this argument
yields ϕ = 1/2.

Given the free-energy barrier one can calculate the
mean-square displacements via equations (4, 5) if one
knows the probability distribution p(s, t). In principle,
p(s, t) can be obtained from the solution of the one-
dimensional Smoluchowski equation. Analytically, this
calculation has not been done yet3, but the qualitative
behavior of the MSDs may be inferred from the following
arguments. At short times (t � τ−), we have s� s+, and
thus F (s)/kBT � 1. In this limit, one obviously recovers
the free curvilinear diffusion of equations (6) and (7). If
time increases, there should be an interval τ− � t � τ+
such that kBT � F (s) � F (s+). Here, we expect that
the chain is temporally localized in its correlation hole,
which should lead to a subdiffusive behavior due to in-
termittence of large-scale displacements. The subdiffusive
regime should extend up to a “hopping time” τ+. τ+ is
the time taken by the chain to diffuse over the curvilinear
distance s+ and thus to overcome the activation barrier.

2 It is not sufficient to set F (s) = F (s+) for s > s+ as
this corresponds to a much too high return probability for the
one-dimensional Kramers problem into which we have cast the
original three-dimensional model.

3 We determined p(s, t) in the simulations, see Figure 16.

This implies τ+ ∼ s+2 exp[F (s+)/kBT ]. Only for t � τ+
the chain can diffuse freely.

Activated-reptation hypothesis for an annealed molec-
ular field

Up to now, we considered the molecular field to be
quenched. If all chains are allowed to move simultane-
ously, this annealing should reduce the activation bar-
rier. For this case it has been suggested that s+(N) ∼
dend

2 ∼ N2/3 [19,21,22]: The free-energy constraints can
be relaxed by the reptation of other chains. For short
times corresponding to s � s+, the difference between
a quenched or an annealed molecular field should be neg-
ligible. In this limit, the correlations between neighboring
chains should be essentially of static nature. On the other
hand, for s ≈ s+ the correlations are expected to be due to
the cooperative rearrangements of several chains. Semenov
and Rubinstein have proposed [22] an intricate exchange
mechanism which allows the relaxation of the free-energy
penalty between different snakes at s ≈ s+. It is not obvi-
ous to us if one can still cast these processes in the simple
form of a one-dimensional Kramers escape problem. In any
case, this should only affect the probability distributions
and MSDs around s ≈ s+.

Relaxation times and diffusion coefficients

The relative scaling of the terminal time τt and the dif-
fusion coefficients is imposed by equation (4) which fixes
the ratio of both diffusion coefficients:

τt ≈ (Nl)2

Dc
≈ Re

2

Ds
. (8)

This ensures the matching of the long- and short-time be-
havior. Hence, τt(N), Dc(N), Ds(N) are expected to con-
tain the same information. This should hold, irrespective
of whether the URH or the ARH applies4.

As we attempt to move all N monomers of a snake col-
lectively, the curvilinear diffusion coefficient should be in-
dependent of chain length for uncorrelated snakes. Hence,
it follows from equation (8) and from the URH that

Dc/l
2 ≈ mN0 , Ds ≈ m(Re/N)2 , τt ≈ N

2

m
, (9)

m being the N -independent mobility which, due to the
URH, should be given by the acceptance rate, m ≈ A ∼
N0. Note that these equations differ by a factor of N from
the usual ones characteristic of reptating chains within the
URH [3]. This is due to the fact that there, a factor N is
spent by the internal Rouse dynamics along the primitive
path. It is precisely this missing factor which makes the

4 In Section 5.3 it will be checked explicitly that this general
relation still holds for the annealed SSA at different densities
(Fig. 8). As we shall see, it fails, however, for the quenched
SSA at high density (Figs. 11, 13).
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Fig. 2. Acceptance rate A versus N for various densities φ,
as indicated in the figure. The large open symbols correspond
to the annealed SSA dynamics, while the small, filled symbols
indicate the quenched SSA data. Both results are identical. For
the SSA the acceptance rate is independent of chain length.
Contrary to that, the bold line indicates A at φ = 0.5 for the
BFM with purely local moves. Here, a slight dependence on N
is found.

SSA attractive in the first place to explore the dynamics
of extremely long chains.

Within the ARH the curvilinear diffusion is fixed by
the hopping time τ+ to reach a distance s+ within the
potential formed by the local correlation hole, i.e.,

Dc(N)/l2 ≈ (s+/l)2

τ+
≈ m exp

[ − F (
s+(N)

)]
=

m exp
( − fs+(N)ϕ

) ≡ m+ , (10)

which in turn implies Ds(N) and τt(N) according to equa-
tion (8). Equation (10) is obviously subject to the specific
dependences of s+(N) and F (s) on their respective pa-
rameters. We will try to estimate both τ+(N) and F (s) in
Figures 14 and 16.

5 The dynamics of annealed and quenched
snake fields

We begin our presentation of the slithering-snake dynam-
ics in Section 5.1 with the characterization of local phe-
nomenological dynamical scales. Dilute and moderately
dense systems are shown in Section 5.2 to be well de-
scribed by the predictions of the URH. Diffusion coeffi-
cients and characteristic time scales for a broad range of
densities are presented in Section 5.3. We then focus on
the dynamical properties of systems of dense solutions and
melts. The various MSDs and their scaling are discussed
in the next section. By analyzing various displacement his-
tograms, possible ergodicity problems are explicitly ruled
out for the annealed SSA in Section 5.5. The histograms
of the curvilinear displacements allow us to estimate the
free-energy penality F (s) mentioned above.
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0.4
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A(aSSA,ω=0)
A(qSSA,ω=0)
A(Local:1/ω=0)
m(aSSA,ω=0)
m(qSSA,ω=0)

Fig. 3. Acceptance rate A (spheres) and local mobility m
(squares) versus φ for pure slithering-snake moves (ω = 0):
annealed SSA (open symbols) and quenched SSA (small, filled
symbols). Both A and m are not affected by the freezing of the
molecular field. Also included are the acceptance rates from the
BFM with local moves only (ω = ∞), extrapolated to infinite
chain length: limN→∞ A(N, φ) (bold line). For the SSA the
acceptance rate and the local mobility are independent of N .

5.1 Local phenomenological dynamical parameters

Acceptance rate

The simplest and statistically most accurate dynamical
property sampled in any Monte Carlo simulation is the ac-
ceptance rate A (= ratio of accepted to proposed moves).
It is included in the tables and plotted versus N in Fig-
ure 2 and versus φ in Figure 3. We note en passant that the
acceptance rates of the aSSA and the qSSA are identical.
The SSA acceptance rates are also completely indepen-
dent of chain length. We recall that in contrast a weak,
but systematic chain length dependence of A is found for
local dynamics due to the higher mobility of the chain
ends compared to inner monomers (see, e.g., Fig. 10 of
Ref. [7] and the bold line in Fig. 2).

As shown in Figure 3, A is density independent below
φ ≈ 0.01, where it is also much larger for the SSA than for
purely local dynamics. This indicates that for these den-
sities the blob size ξ becomes sufficiently large to allow
dilute SSA dynamics on distances smaller than ξ. Above
φ ≈ 0.1 density effects become pronounced and the accep-
tance rate of the SSA decreases strongly. This decrease
may be explained as follows: one monomer is inserted in
the SSA, i.e., 8 free lattice sites are needed, whereas 4
empty sites suffice for local moves, in which a monomer is
shifted from its original position by one lattice constant.
Hence, the observed smaller acceptance rate for the SSA
at large density (φ = 0.5) is expected.

Local mobility

Obviously, it would be naive to believe that the accep-
tance rate of the Monte Carlo process necessarily sets the
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2t1/2) for the displace-
ments of the central monomer is shown at the melt density
φ = 0.5. The mass N varies, as indicated. Open symbols re-
fer to the annealed SSA. We also included the qSSA results
for N = 64 and N = 128 (filled symbols). For comparison,
we show a power law with exponent −1/4 (dashed line) and
g1(t) ≈ 3.5 log(t)− 3.8 (bold line) which fits well the subdiffu-
sive behavior of the qSSA. From the two horizontal envelopes
of the curves we estimate the short-time mobility m(φ) ∼ N0

and the effective mobility of the snake dynamics m+(N, φ).
(The latter quantity is not visible for qSSA, as a much longer
simulation run would have been required.) As can be seen from
the figure, m+ strongly depends on chain length.

scale for the local mobility of the monomers. There may
be many allowed moves not contributing to the motion.
(They would also persist in a glass where the mobility is
zero.) In order to measure directly the monomeric mobil-
ity m in the SSA we exploit equation (7) and compare the
simulation data with

g1(t) = b2 (mt)
ν
. (11)

This equation provides a reasonable description of the
MSD of the central monomer at short times, as Fig-
ure 4 illustrates for a dilute solution and Figure 5 for a
dense melt.

For dilute systems it is appropriate to fit g1(t) using
ν = ν0 and the density-independent effective bond length
b0 ≈ 3. The same analysis can also be done in semidilute
solutions for times shorter than the time required to cross
the blob size so that the excluded-volume interaction is
not yet screened. This approach was also applied in refer-
ence [7] to extract m for the BFM in the case when only
local moves are allowed. Our results for m for both the
annealed and the quenched SSA are included in Figure 3.

However, equation (11) with b = b0 and ν = ν0 is not
the only possible way to do the analysis. For overlapping
systems another choice is b = b(φ) and ν = 1/2. This
measures the effective mobility on distances of several blob
sizes. Equation (11) then suggests that g1(t) should scale
as g1(t) ∼ b(φ)2t1/2 at short times, independent of chain
length. Figure 5 confirms this expectation. If the mobility
is now extracted from Figure 5, the differences between
the new values and those obtained before (using b = b0
and ν = ν0) are negligible.

Here, the important point is that the local mobility is
the same for all chain lengths at a given density. (Note
that the mobilities obtained by Paul et al. [7] for the local
dynamics are also independent of chain length.) Further-
more, Figures 4 and 5 also show that m is independent
of whether the system is annealed (aSSA) or quenched
(qSSA). For both dynamical schemes, the mobility rapidly
decreases with density if φ > 0.1. This behavior is quali-
tatively the same as that of the acceptance rate. Similar
results are obtained if equation (11) is fitted to the MSD
of the chain ends g4(t) (not shown). For the SSA, the
chain ends are more mobile than the central monomer by
a factor of order one.

In summary, the acceptance rate or the local mobility
cannot explain the unexpected chain length dependence
of the motion of strongly entangled chains to be discussed
in Sections 5.3–5.5.

Effective mobility for the aSSA

A glance at Figure 5 shows that in fact two fits using equa-
tion (11) are possible for the annealed SSA once φ� φ∗.
The rescaling y = g1(t)/b(φ)2tν=1/2 yields a data collapse
at very short times, t � τ−. From the resulting plateau
the local mobility m, shown in Figure 3, was extracted.
For larger times, however, y decreases within the window
τ− � t� τ+(N). The existence of such a time window is
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Fig. 6. Curvilinear diffusion coefficient Dc/A versus N for var-
ious volume fractions φ (A = acceptance rate). The open sym-
bols show the results for the annealed SSA, the filled symbols
for the quenched SSA. Only in the dilute limit Dc/A ∼ N0,
as expected. Although the effect strongly increases with φ, we
find deviations from this expectation at all densities for large
chain overlap φ/φ∗(N) � 1. The effective power law with ex-
ponent β = 4/3 roughly characterizes the chain length depen-
dence at φ = 0.5 for the aSSA dynamics. A better fit, which
properly takes into account the curvature of the data, is given
by the stretched exponential exp(−0.8N1/3) (bold line). The
qSSA data at φ = 0.5 are well fitted by an effective power law
(β ≈ 1.5) without any noticeable curvature (dash-dotted line).

obviously at variance with the uncorrelated reptation hy-
pothesis. For still larger times, τ+ � t � τt, the rescaled
MSD becomes approximatively horizontal. This allows us
to define an effective mobility m+(N) (included in the ta-
bles). It reflects the complicated correlations in the second
regime τ− � t � τ+, which are responsible for its pro-
nounced dependence on N . The importance of m+ for the
description of diffusion coefficients and relaxation times
will be clarified in Section 5.3. Finally, for t > τt, Figure 5
shows that y ∝ √

t, implying that the monomers diffuse
freely.

5.2 Dilute and weakly overlapping systems

Before analyzing the intricate physics at high chain over-
lap, we briefly consider the simpler situation of dilute or
weakly overlapping solutions. These systems serve as a ref-
erence point for the following discussion of concentrated
solutions and melts. That the predictions of the URH ap-
ply in the limit of high dilution can be inferred from Fig-
ures 6, 7 and 9 below. The rescaling used for the vertical
axes of the three figures is motivated by equation (9) and
the fact that the local mobility m ≈ A(φ) ∼ N0. The
figures confirm the validity of the URH by showing that
Dc ∼ N0, NDs ∼ N2ν0−1 and τt ≈ τ1 ∼ N2.

Figure 4 presents the spatial MSDs for a typical di-
lute or weakly overlapping configuration. We compare the
measured MSDs with the expected long-time behavior
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Fig. 7. Spatial diffusion coefficient Ds = limt→∞ g3(t)/6t ver-
sus chain length N for different volume fractions φ, as indi-
cated in the figure (annealed SSA only). The large symbols
correspond to the rescaled value NDs/Ab(φ)2 where we use
the acceptance rate A(φ) ∼ N0 to characterize the local mo-
bility. The small symbols (top) have been obtained by using
the effective mobility m+(N, φ), obtained from g1(t) (Fig. 5),
as a measure of the local mobility instead of A. The dash-
dotted line corresponds to the prediction in the dilute limit,
β = 1− 2ν0 ≈ 0.176. The data at φ = 0.5 are compared to the
effective power law with exponent β = 4/3 (dashed line) and
the stretched exponential exp(−0.8N1/3) (bold line).

(Eqs. (2, 3)) and the short-time predictions of the URH
(Eqs. (6, 7) using ν = ν0). Note that the MSD of the cen-
ter of mass g3(t) is linear over several orders of magnitude,
implying that corrections due to excluded-volume corre-
lations of the snake with itself are very small. The same
applies to the curvilinear motion g6(t) (not shown). In-
cidentally, the excellent agreement confirms that our pro-
gram is running properly and that the URH is appropriate
as long as chain interactions are weak. The presented data
are for the annealed SSA, but absolutely identical results
have been obtained for qSSA, as expected.

The above statements remain valid for all configura-
tions and both dynamical schemes provided that φ � φ∗.

5.3 Diffusion constants and time scales

Diffusion coefficients for the aSSA

The curvilinear and spatial diffusion coefficients, Dc and
NDs, are displayed in Figures 6 and 7 not only for dilute
solutions, but also for densities ranging up to the melt den-
sity φ = 0.5. We plotted Dc/A and DsN/Ab

2 versus chain
length, since we expected to find more or less horizontal
curves (see Eq. (9)).

Surprisingly, equation (9) breaks down with increasing
chain overlap. For a given density the data points become
progressively curved in log-log coordinates. In fact,Dc and
NDs drop over more than two decades at φ = 0.5, as N
increases. It is important to stress that the chain length
dependence of Dc and NDs increases gradually with chain
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Fig. 8. Rescaled times τi/τ1 (defined in Sect. 3) at φ = 0.5
(aSSA only). Similar behavior is also found for other densi-
ties. This confirms that all these times are proportional to
one characteristic time scale —the “terminal time” τt— con-
taining the same information as the diffusion coefficients. The
horizontal lines are comparisons with the Rouse model where
τ4/τ1 ≈ 0.279, τ2/τ1 ≈ 0.846 and τ3/τ1 ≈ 3.112. Here, we did
not include τend, as its scaling is different (see Fig. 9).

overlap and that this effect is by no means a pathology of
a lattice model at high density.

The data for φ = 0.5 may be compared to a phe-
nomenological power law Dc ≈ NDs ∼ N−β with ex-
ponent β = 4/3. This power law is merely a guide to the
eye and a rough attempt to characterize the slope in log-
log coordinates for the available chain lengths. However,
the stretched exponential Dc ≈ NDs ≈ exp(−0.8N1/3)
motivated by equation (10) describes the data much bet-
ter. Our scaling is, in fact, in excellent agreement with
the ARH and the proposed energy barrier exponent ϕ =
1/2 [21]. The alternatively suggested value ϕ = 1 [19,22]
is not compatible with the simulation data (at least for
the chain lengths simulated up to now).

If, instead of the acceptance rate, we use m+(N) to
rescale the diffusion coefficient, i.e., NDs/m+b(φ)2, we
find a very good data collapse (small symbols at the top
of Fig. 7). A similar collapse is also possible for Dc/m+

(not shown). This shows that it is possible to absorb the
complicated physics at short times into one parameter,
m+(N). Thus, the dynamics for τ+ � t � τt is per-
fectly described in terms of uncorrelated reptation dy-
namics along the fractal chains. It remains to describe
and possibly explain the dynamics in the second regime,
τ− � t� τ+, of Figure 5.

Diffusion coefficients for the qSSA

With increasing chain overlap the qSSA diffusion coeffi-
cients decrease even more rapidly with density and chain
length than their aSSA counterparts. In fact, while we
have obtained most of the curvilinear diffusion coefficients
from our qSSA simulations, we have been unable to mea-
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Fig. 9. Unscaled times versus N . The open symbols present
the results of the annealed SSA, the filled symbols of the
quenched SSA. For the aSSA dynamics τ1, τend and τd=3 (de-
fined in Sect. 3) are shown. In the dilute limit (φ = 0.0078)
we find τ1 ∼ N2, as expected (small spheres, thin line). All
other data are for φ = 0.5. The stretched exponentials are mo-
tivated by the ARH. They provide a good fit for both τ1 ≈
N2 exp(0.8N1/3) (bold line) and τend ≈ N2/3ν exp(0.8N1/3)
(dash-dotted line) at high densities. For the qSSA dynamics
the filled spheres, triangles and diamonds correspond to τ1,
τN/2 (also defined in Sect. 3) and τ+q at φ = 0.5. τ+q is the
crossover time to free curvilinear diffusion for the qSSA (see
Fig. 10 for its definition in the aSSA case). As expected, the
relaxation times for the qSSA increase much faster than for
the aSSA. An effective power law τN/2 ∼ N3.5 is found in
agreement with the corresponding diffusion coefficient Dc (see
Fig. 6). The crossover to free curvilinear diffusion for the qSSA
is roughly characterized by τ+q ∼ N2 without noticeable cur-
vature.

sure Ds for φ > 0.125. This surprising statement is ob-
viously at variance with equation (8). It indicates that
curvilinear and spatial motions decouple for these high
densities due to the localization of the snakes within their
correlation hole in the quenched case. Furthermore, at
high density Dc is found to be a power law without any
detectable curvature (Fig. 6). However, it is interesting
to check whether equation (10) with s+(N) = N for the
qSSA and ϕ = 1/2 (for both schemes) yields a reasonable
fit. This is indeed the case: Dc/A ≈ 20 exp(−0.15N1/2) is
hardly distinguishable from the indicated slope β ≈ 1.5.
Longer chains are obviously necessary to confirm the ex-
ponential behavior expected by the ARH.

Relaxation times for the aSSA

In Figures 8 and 9 we display some of the characteristic
times defined at the end of Section 3. In the first figure we
test equation (8) by plotting various ratios τi/τ1. Appar-
ently, the ratios are independent of chain length. We find
τs/4 ≈ τc/5 ≈ τ1 ≈ τ2/0.85 ≈ τ3/4.7 ≈ τ4/0.3 ≈ τN/2/6.
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Only the data for φ = 0.5 have been included, but the
same results prevail for all densities. This demonstrates
that all indicated times are proportional to one character-
istic time scale, the “terminal time” τt, containing the
same information as the diffusion coefficients. That is,
equation (8) still holds, although equation (9) fails.

Accordingly, Figure 9 shows, e.g., that τ1 is propor-
tional to N2 in the dilute limit, but increases like τ1 ≈
N2/Dc ∼ N2 exp(0.8N1/3) in the melt. The figure also
includes τd for d = 3 and τend. The first time indicates
the distance d up to which g1(t) remains independent
of N , and characterizes the extent of the first dynami-
cal regime displayed in Figures 5 and 12 below. In fact,
it strongly decreases with monomer density, and we ex-
pect it to scale like the time needed to diffuse over the
excluded-volume blob ξ. From the observed behavior ofDc

one anticipates for τend the scaling τt � τend ≈ s2end/Dc ∼
N2/3ν exp(0.8N1/3), where send ∼ dend

1/ν . This is again
consistent with the data presented in the figure.

Relaxations times for the qSSA

Data points for τ1 and τN/2 at φ = 0.5 have been included
for the qSSA in Figure 9. Unfortunately, the range of N ,
which could be simulated, is insufficient to check if indeed
τ1 ≈ N2 exp(constN1/2). The time scale τN/2, measuring
the curvilinear motion over N/2 monomers, shows an ef-
fective power law which is consistent with the correspond-
ing diffusion coefficient from Figure 6: τN/2 ≈ N2/Dc ∼
N2+1.5. Note that τ1 and τN/2 scale differently in contrast
to what was observed for the annealed SSA (Fig. 8).

5.4 Mean-square displacements of dense snakes

Long-time limit

Focusing on systems in the melt limit (φ = 0.5) we
now discuss several MSDs and their scaling in detail
(Figs. 10–14). As a glance at the presented MSDs shows,
the long-time predictions (Eqs. (1–3)) are in very good
agreement with the data for the aSSA, indicating that the
chains do not get trapped and that the simulation runs
have been long enough. This can be seen in Figure 10
for the spatial MSDs for N = 512, in Figure 11 for
both spatial and curvilinear MSDs for N = 128 and in
Figure 12 for the curvilinear MSD g6(t).

The situation is more complex for the data of the qSSA
(included in Figs. 11-12). Figure 11 shows that the spa-
tial MSDs increase (approximately) logarithmically for the
longest times we have been able to simulate. This must be
a transient: For very long times these MSDs must either
become constant, i.e., the chains become localized on a
length scale (presumably) given by the radius of gyration,
or ultimately, they diffuse freely in space. So far, we have
been able to show conclusively only the correctness of the
second proposition for small chains (N ≤ 32).

At first sight surprisingly, it is much less difficult to
reach the free curvilinear diffusion limit, as may be seen
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Fig. 10. Spatial MSDs for a dense system of chain length
N = 512 at volume fraction φ = 0.5 for the annealed SSA
(pure slithering-snake dynamics, i.e., ω = 0). The symbols are
the same as in Figure 4. While the behavior at large times is
the same as in the previous figure, much slower dynamics and
strong curvature are found at short times. This is a typical
result for strongly overlapping chains (either large φ or large
N). According to equation (12), we compare g1(t) = g2(t) ≈
g4(t) = g5(t) and g3(t) with power laws characterized by an
effective exponent α = 1/2. The time scale τ+ characterizes the
crossover between subdiffusive and free (linear slope) center-
of-mass motion. Its scaling with N is discussed in Figure 14.

from Figure 11, where g6(t) and Ng3(t) are directly com-
pared for N = 128, and from Figure 12, where the g6(t)
for different masses are presented. This indicates that for
the qSSA the curvilinear and spatial MSDs decouple for
t� τcoup and s� scoup (see Fig. 11); although unable to
move much further in space, the snakes manage to move
relatively rapidly within the cage of their correlation hole.
This is why we prefer to call this surprising behavior of
dense qSSA snakes (permanent or transient) localization
in contrast to a trivial local blocking of the snake moves
(on a scale given by the monomer density), which must
obviously occur at very high densities.

Short-time limit for the aSSA

While the MSDs are well described by the power laws
of the URH in the dilute limit (Fig. 4), this becomes
strikingly different at larger densities in the time window
τ− � t� τ+. This is revealed by the direct comparison of
dilute and dense systems with N = 512, as given in Fig-
ures 4 and 10. In this paper we attempt to characterize
and to explain the features visible in the latter plot.

We have tentatively described the subdiffusive behav-
ior of the aSSA data by means of an effective power law:

Ng3(t) ≈ g1(t)2 ≈ g6(t) ∼ tα with α ≈ 1/2 . (12)

This power law provides a remarkable fit for τ− � t� τ+
(compare Figs. 5, 10, 12), even though some curvature is
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Fig. 11. Double logarithmic plot of spatial and curvilinear
MSDs for the annealed SSA (open symbols) and the quenched
SSA (filled symbols) for N = 128, φ = 0.5 versus time. As
suggested by equation (4), we rescaled the curvilinear MSD
g6(t) by Nl2/b2 ≈ 2N/3 to compare it with g3(t). For the
aSSA spatial and curvilinear motion are coupled for all times:
g6(t) ∼ Ng3(t). For the qSSA the run is too short to reach the
spatial free diffusion limit for N = 128. However, aSSA and
qSSA dynamics are identical for small times t � τfluc ≈ τend

(see Eq. (14)). Roughly logarithmic behavior is found for the
qSSA dynamics, as indicated by the two fits g1(t) ∼ log(t) and
Ng3(t) ≈ g6(t) ∼ log(t)2. The time τfluc denotes the time where
the density fluctuations of the annealed field become relevant,
τcoup the breakdown of the coupling of curvilinear and spatial
displacements for the qSSA.

evident in log-log coordinates. The alternative fit

Ng3(t) ≈ g1(t)2 ≈ g6(t) ∼ log(t)4α (13)

is less satisfactory for our aSSA data (fitting a smaller time
interval), as may be seen from Figure 11. (The exponents
in the two previous equations have naturally been cho-
sen consistently with the general relationship expressed
by equations (4, 5) using ν = 1/2.)

Short-time limit for the qSSA

Equation (13), however, reasonably fits the qSSA data.
This may be seen from Figures 5 and 11. While for the spa-
tial MSDs this fit works for all times t� τ−, g6(t) becomes
linear for t � τ+q, t � τ+a with τ+q � τ+a (compare
aSSA and qSSA in Figure 12 for N = 64, 128 and 1024),
where we altered the index to distinguish the different al-
gorithms. Note that annealed SSA and quenched SSA data
are identical for small times t � τfluc(N) (Figs. 11,12).
This is due to the low probability that a snake in the
aSSA may interact with the density fluctuations created
by neighboring snakes at short times. Hence, the molec-
ular fields probed behave in the same way. As τfluc(N)
increases strongly with N (see below), this suggests that
the logarithmic behavior might be seen for aSSA snakes
as well, if we could simulate longer chains.
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Fig. 12. Rescaled MSD of the curvilinear diffusion of the cen-
tral monomer y = g6(t)/(2t). The MSD is normalized to yield
the curvilinear diffusion coefficient Dc as a plateau value. The
annealed SSA data (open symbols) comprise all N for the den-
sity φ = 0.5. For comparison, we also included the qSSA re-
sults for N = 64, 128, 1024 (filled symbols). At short times
t � τ− ≈ 50, all curves merge. For larger times the dynamics
progressively slows down as a function of chain length. Only for
times t � τ+(N) (indicated here for N = 1024) we obtain the
expected free curvilinear diffusion. The intermediate decrease
for the aSSA dynamics is very roughly fitted by the power law
α − 1 ≈ −1/2 (dashed line). The qSSA data for N = 1024 are
well fitted by the logarithmic relation g6(t)

1/2 ≈ log(t) (bold
line). This suggests that for much longer chains even the aSSA
dynamics might approach this logarithmic and chain-length–
independent envelope.

Scaling of g1(t), g3(t) versus g6(t)

In Figure 13 we verify now directly whether the time de-
pendence of all spatial MSDs is indeed fully encapsulated
in terms of the curvilinear MSD g6(t), as suggested by
both the URH and the ARH. In the main panel of the fig-
ure we check this for the aSSA data at φ = 0.5 by plotting
g1(t) and g3(t) versus g6(t). The MSD of the center of mass
is linear with regard to g6, as expected. This is in accord
with the previous finding Dc ≈ NDs for Gaussian chains.
We find a similar data collapse for g1(g6) for t � τt. For
sufficiently long chains, we clearly recover the anticipated
power law of equation (7) for the diffusion on an object of
inverse fractal dimension ν = 1/2 (dashed line in Fig. 13).
(The departure from the slope 1/2 for small g6(t) is due
to the non-Gaussian statistics for small distances along
the chain.) We conclude that the curvilinear and spatial
diffusion are translated into each other, as expected, and
that the departure from the URH can be traced back to
the anomalous curvilinear diffusion depicted in Figure 12.

In the inset of Figure 13, we present Ng3(g6) for the
qSSA for two chain lengths and two densities. While for
the lower density g3(t) remains a (roughly) linear function
of g6(t), this is only true for short times at φ = 0.5, where
the spatial displacements increase much more strongly.
Note that both densities appear to be independent of chain
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Fig. 13. Relative scaling of the spatial and curvilinear dis-
placements for the aSSA (main figure) and qSSA (inset) dy-
namics. The MSDs are defined in Section 3. (Main figure) the
spatial MSDs g1(t) and g3(t) are plotted versus the curvilinear
MSD g6(t) for various chain lengths, as indicated (φ = 0.5). As
g3(t) is strictly linear with respect to g6(t) for all t and N , we
only included the data for N = 64 and N = 256 for the sake
of clarity. As expected, we find g1(t) ≈ b2(g6(t)/l2)ν=1/2 ∝ N0

for t � τt (dashed line labeled by ν = 0.5). Hence, the antic-
ipated relations between curvilinear and spatial diffusion are
verified for the aSSA dynamics and the anomalous dynam-
ics must be fully encapsulated in terms of the curvilinear dis-
placement g6(t). (Inset) rescaled spatial MSD 2Ng3(t)/3 versus
g6(t). Only at short times and for densities φ ≤ 0.125 we find
both quantities to be equal. The curvilinear motion decouples
from the spatial motion for larger densities, where the snakes
become localized within the correlation hole.

length. This indicates a very weak mass dependence for
scoup.

Scaling with chain length

We now discuss in more detail the chain length depen-
dence of the subdiffusive behavior at fixed volume fraction
φ = 0.5. Since we have shown (Fig. 13) that the spatial
MSDs of the annealed SSA scale in terms of g6(t), we
can concentrate on the N -dependence of the latter quan-
tity (Fig. 12). The vertical axis is normalized to yield the
curvilinear diffusion coefficient Dc as the plateau value for
long times. At short times t� τ− ≈ 50, all curves merge.
Hence, τ− is chain length independent, but depends
weakly on the density, as may be shown by a similar plot
containing data for different φ. For times beyond τ− the
dynamics slows down more and more until it reaches the
plateau of free diffusion at τ+a(N) for aSSA and τ+q(N)
for qSSA, respectively. Apparently, the correlations be-
come more and more pronounced with increasing N .

We have directly computed the four times τ+a, τ+q,
τfluc and τcoup and the related curvilinear displacements.
Our measurements are not very precise (particularly, for
the qSSA data better statistics is needed), and we only
present some general trends here. A comparison of all
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Fig. 14. Scaling attempts for g6(t) in order to determine the
time scale at which the curvilinear dynamics (for the aSSA)
becomes freely diffusive. The natural attempt τ+ = τ1 (shifted
for clarity) fails. In contrast, the scaling τ+ = τend is successful,
demonstrating that there is an additional characteristic time
related to the density of chain ends. The power law with ex-
ponent α ≈ 1/2 for the envelope is indicated (dashed line).

chain lengths shows that

τfluc(N) ≈ τ+a(N) ≈ τend(N) , (14)
τcoup(N) ≈ τ+q(N) ∼ N2 . (15)

In other words, both pairs of time scales correspond to
different definitions of the same physical processes. In the
first case, these are the density fluctuations in the an-
nealed scheme, causing aSSA and qSSA to differ and the
curvilinear motion to become eventually diffusive. The
second equation corresponds to the free curvilinear diffu-
sion of the snake trapped in its quenched correlation hole.
The power law indicated in equation (15) is an estimate
motivated by the data given in Figure 9 (diamonds).

The last claim of equation (14), which is central to
the understanding of the observed correlations and is in
line with the ARH [19,22], is further tested in Figure 14.
The attempt τ+a ≈ τ1 fails to scale the crossover regime
between the subdiffusive time window and the free curvi-
linear diffusion at late times. (Note that there is always
the time scale τ− ∼ N0 for the free diffusion at very short
times and no scaling covering all regimes is possible.) In-
stead, the alternative τ+a ≈ τend is successful. The ob-
served scaling confirms equation (14) and demonstrates
that the crossover from correlated to mean-field behavior
is determined by dend.

Finally, we note for the second, less important, re-
laxation process for the qSSA that s+q increases very
weakly with mass, s2+q ∼ N0.25. (However, this does not
contradict the scaling documented in the inset of Fig-
ure 13. Note also that this is again a rough estimate, but
we definitely have to rule out the two “natural” guesses
s+q ∼ N or s+q ∼ N0.) Interestingly, s2+q ∼ N0.25

and τ+q(N) ∼ N2 are compatible with the (very pre-
cisely measured) qSSA diffusion coefficient from Figure 6,
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Fig. 15. Distribution of the first-passage time tfp required to
reach a curvilinear distance Nl/2. We consider aSSA systems
at φ = 0.5 (main figure) and at chain length N = 256 (inset).
Symbols are indicated in the figure. The data points of all
systems (φ, N) collapse on the same master curve if rescaled
by the mean first-passage time τfp ≡ 〈tfp〉. At large times the
histograms decrease exponentially according to exp(−t/τc), as
expected.

Dc ≈ s2+q/τ+q ∼ 1/N1.5, and, hence, with the time scale
τN/2 ∼ N3.5 shown in Figure 9. While this is satisfactory,
we presently cannot explain the scaling behavior of τ+q

and s+q.

5.5 Histograms and non-Gaussianity

So far, we have discussed results obtained from the sam-
pled mean-square displacements and related diffusion con-
stants and time scales. We now turn to the additional
information contained in the histograms and higher mo-
ments of the curvilinear displacements. Merely results
from the annealed field dynamics are discussed here, since
statistics is too poor for the qSSA.

An important, not only technical, question concerns
the possibility that some chains or monomers become lo-
cally completely blocked. We have paid much attention
to this issue and have carefully checked that, in fact, all
chains and monomers ultimately move arbitrarily far in
space for the densities studied (φ ≤ 0.5). Clearly, for some
higher density this must eventually break down.

One may readily construct by hand chain configura-
tions of the BFM, which lead to blocked chains for any
dynamical scheme under consideration, even if local moves
are allowed. These extremely rare points of the phase
space also exist for our slithering-snake scheme, although
they are apparently excluded from our initial configura-
tions (which is the physically important point to make
here). These states cannot be accessed (by construction)
and in this strict mathematical sense our dynamics is not
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Fig. 16. Normalized histograms of the curvilinear motion
(aSSA data only) for N = 1024, φ = 0.5 and for different
time intervals ∆t, as indicated in the figure. The histograms
are rescaled in such a way that all data should collapse if
they were self-similar for all times. We show that the his-
tograms are approximately exponential within the time inter-
val τ− ≈ 50 � t � τ+ = τend(N = 1024) ≈ 0.2 · 108. The
histograms become Gaussian again at much longer times.

ergodic. However, this is completely irrelevant for the ther-
modynamic and dynamic behavior5.

Histogram of first-passage time

Two checks are presented in the histograms given in Fig-
ures 15 and 16. The first figure presents the histograms of
first-passage times of the central monomer over a curvi-
linear distance s = lN/2 for various chain lengths and
densities. At long enough times, typically 10 τfp, where
τfp = 〈tfp〉 is the mean first-passage time, all chains have
crept out of their initial tube. If properly rescaled, the
data collapse onto a master curve. The distribution of the
first-passage times can be calculated if free curvilinear dif-
fusion is assumed. It is a linear superposition of modes p
with an exponential time dependence exp(−p2tfp/τc). For
long times, this sum is dominated by the lowest mode and,
accordingly, we find an exponential decrease exp(−tfp/τc)
for all systems. As expected, the mean first-passage time
scales like the terminal time, τfp ≈ 6τ1 ≈ 5τc/6, and is
of the same order as τN/2 which was defined as the time
where g6(t) corresponds to the same curvilinear distance.

5 In this context it is also of relevance that one obtains the
same dynamics if a small amount of local hopping moves,
ω � 1, is included in the algorithm which allows additional
transitions between points of the phase space. See Figure 18
below.
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Histogram of curvilinear displacements s

Figure 16 presents the histogram of s(∆t) for N = 1024
and φ = 0.5 for various time intervals, as indicated. We
focus on the interesting time window τ− � t� τ+ � τt.
First of all, we stress that the histograms have (very
qualitatively) the same shape and fall off monotonously
without any singularity at the origin or elsewhere, i.e.,
no snake gets blocked at small s. If no correlations were
present, the rescaled histograms should all collapse onto
a single Gaussian. More importantly, however, Figure 16
shows that the different dynamical regimes correspond to
(slightly) different distributions. While at times t � τ−
and t � τ+(N = 1024) ≈ 0.2 · 108 the distributions are
in fact Gaussian6, they are essentially exponential in the
subdiffusive regime where density fluctuations are impor-
tant. The distribution is thus much broader than originally
expected, but all moments of the distribution exist. Al-
though this is not an equilibrium distribution measuring
directly the free energy as a function of s, the Smolu-
chowski equation suggests that − log(p(s)) should be pro-
portional F (s). We have therefore compared the two pro-
posed exponents for the activation penality ϕ = 1 (bold
line) and ϕ = 1/2 (dots) with the data. Unfortunately
at large s, the statistics becomes too poor to distinguish
between both exponents. More work is required to relate
the form and scaling of the observed histograms to the
respective MSD.

Non-Gaussian parameter

The non-Gaussian parameter α2 ≡ 1
3

〈s4〉
〈s2〉2 −1 gives a com-

pact means to describe the Gaussianity of these distri-
butions as a function of time. This is presented in Fig-
ure 17. We recall that α2 = 0 for a Gaussian and α2 = 1
for an exponential distribution. At short times α2(t) de-
creases rapidly and is chain length independent. The non-
Gaussianity at these times is due to local monomer in-
teractions. In agreement with the histograms shown in
Figure 16, α2(t) increases strongly for larger times. This
shows again that correlations become more pronounced.
The effect increases strongly with chain length in agree-
ment with the subdiffusive behavior in Figure 12. Note
that α2 becomes even much larger than 1 for our largest
chain N = 1024, reflecting the existence of a broad tail in
the distribution shown in Figure 16. We caution, however,
that finite-size effects might contribute to this effect, as the
end-to-end distance of this configuration is comparable to
the box size. It is possible that some snakes manage to
find their way rapidly through the periodic box by taking
advantage of their own groove spanning the box. For times
larger than τ+(N) the non-Gaussianity vanishes again for
all N , as it should.

6 For clarity, both regimes are not included in the figure.
Note that Gaussian behavior is only found in the first regime
at much smaller densities than the one discussed in Figure 16.
A sufficiently large blob is required to obtain a Gaussian dis-
tribution.
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Fig. 17. Non-Gaussian parameter α2 ≡ 1
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curvilinear displacement s of the central monomer versus time
for φ = 0.5 and chain lengths as indicated in the figure. We
find that α2 becomes non-monotonous for τ− � t � τ+. Un-
fortunately, the statistics is poor for large N and some binning
is necessary. Only the aSSA data are shown, the statistics is
not sufficient for the qSSA.

6 Summary and outlook: snake versus local
moves

Summary

In this paper we reported first numerical results on the dy-
namics of monodisperse polymer chains moving according
to the slithering-snake algorithm SSA (no local relaxation
pathways). The simulations were done with the three-
dimensional bond-fluctuation model (BFM). We investi-
gated two different dynamical schemes by focusing mainly
on the polymer melts (high monomer densities): Either
we allow all snakes to move (aSSA), which permits fluc-
tuations of the molecular field at the ends of neighboring
chains, or all snakes but one are quenched (qSSA). This
work concentrates on the annealed algorithm, whereas the
second mainly serves as a benchmark to investigate the
role of density fluctuations due to neighboring chains. We
studied the scaling of various spatial and curvilinear mean-
square displacements (MSD), diffusion coefficients and re-
laxation times with chain length. Furthermore, we also
presented the distributions of the curvilinear motion.

Our results are broadly in agreement with the
“activated-reptation” hypothesis (ARH) [19,22]. For the
aSSA, we find that at high chain overlap the terminal re-
laxation time τt increases much more strongly with chain
length N than possible for uncorrelated snakes which are
obtained for dilute and weakly overlapping chains. In fact,
a stretched exponential τt ≈ N2 exp(0.8N1/3) fits our data
well. Similar and directly related (Eq. (8)) behavior can
be found for the spatial and curvilinear diffusion coeffi-
cients, NDs ≈ Dc, and other time scales, such as τend,
which measures the time needed for the diffusion over the
mean distance between chain ends dend. The stretching ex-
ponent 1/3 is in agreement with the free-energy penalty
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F (s) ∼ s1/2 (s being the curvilinear displacement) esti-
mated in reference [21], but is incompatible with the more
recent suggestion F (s) ∼ s of reference [22] (at least for
the chain lengths accessible in the present simulation).

A more detailed study of different moments of the dis-
placements shows that the snake dynamics is only uncorre-
lated (exhibiting a free curvilinear diffusion with Gaussian
distribution) for times smaller than τ−(φ) ∼ N0, which is
determined by the blob size ξ, and for times larger than
τ+ ≈ τend (shown by the scaling collaps of Fig. 14), which
is due to the density fluctuations present for distances
larger than dend. They are responsible for an additional
time scale (other than the terminal time) in the annealed
algorithm, allowing the chains to relax the free-energy pe-
nality caused by their motion in a locally rigid and frozen
network of obstacles retaining them in their correlation
hole. This is supported by the finding that the MSDs of
both the aSSA and the qSSA, which are strictly identical
at small times, become different around τ+.

In the intermediate time interval the dynamics
becomes increasingly subdiffusive and non-Gaussian
(Figs. 16, 17), as the chain length is increased for both
aSSA and qSSA dynamics. The precise description of the
MSDs in this regime is not evident for the masses we have
been able to simulate and our study is not fully conclusive.
While power laws yield nominally better fits for aSSA,
logarithmically slow relaxation processes might also be
appropriate. The observed behavior for the quenched dy-
namics (Figs. 11, 12), which could provide an “envelope”
that the annealed dynamics might follow more closely with
increasing chain length, is indeed better described in this
way. Logarithmic behavior is, however, not easily recon-
ciled with (mean-field) ARH approach which predicts an
algebraic relationship. More simulations are warranted to
clarify this issue.

The curvilinear displacement histograms decrease
monotonously without any singularity at small s. In the
subdiffusive intermediate time they decrease essentially
exponentially (Fig. 16). This suggests that the free-energy
penalty F (s) is indeed of power law form. A direct mea-
surement of the acceptance rate to perform a step s→ s+1
is currently underway using the quenched scheme which
should allow a direct computation of the free-energy cost
for an escape attempt of order s.

In summary, we believe that our study demonstrates
that the activated-reptation approach is relevant for the
description of concentrated solutions and melts of purely
slithering snakes without local motion (ω = 0).

The mapping onto a locally realistic model

It is important to recall that the slithering-snake dynam-
ics discussed in this paper is highly artificial, as no lo-
cal rearrangements are allowed and density fluctuations
can only occur at chain ends. The idea is that the snake
corresponds to the primitive path of the reptation model
and each monomer to a coarse-grained tube segment of an
originally local model. The mapping of both levels of de-
scription is non-trivial. It is not evident whether it can be
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Fig. 18. Spatial diffusion coefficient NDs versus N for differ-
ent ω as indicated in the figure (aSSA only): ω = 0 corresponds
to pure slithering-snake dynamics, 1/ω = 0 (large asterisks) to
the pure local dynamics. The data for ω � 1 are very similar
to the pure slithering-snake limit. For ω ≈ 8, equation (9) is
approximately satisfied. This may define a reasonable “starting
point” for future SSA simulations corresponding to the classi-
cal URH reptation approach. For the local dynamics the power
law prediction Ds ∝ 1/N2 (dashed line) from classical repta-
tion theory is indicated. The data for ω = 512 approximate
the local dynamics limit rather well for the chain lengths we
have been able to simulate.

performed at all without an additional tuning parameter,
such as the frequency of local hopping moves.

The mapping might involve the density. It is possible
that some of the high molecular densities, which we stud-
ied here, are in fact too large to correspond to realistic
volume densities of an underlying microscopic model. A
characteristic density might therefore exist below which
even asymptotically long snakes remain uncorrelated. At
present, our computational results do not seem to fa-
vor this option, as suggested, e.g., by Figure 7. How-
ever, it remains a possibility which is currently pursued
using lower densities and much larger chains such that
1 � φ � φ∗(N). In any case, a more detailed analysis
of the density dependence is warranted to establish the
scaling of τ−(φ) and τ+(N,φ). In other words, it has to
be confirmed unambiguously that the first time scale is
related to the blob size ξ(φ) and the second one to the
mean distance between chain ends dend(N,φ).

On the importance of local motion

Another issue is related to the fact that our slithering
snakes do not have any mechanism to relax constraints via
local pathways. It might well be that some local dynami-
cal degrees of freedom are necessary to tune a mesoscopic
computation scheme such that it becomes consistent with
real reptational dynamics. A finite fraction of local moves
should weaken the strength of the obstacles imposed by
neighboring chains. This is indeed borne out by prelimi-
nary studies presented in Figure 18, where the rescaled
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spatial diffusion coefficient is plotted for various ratios
of local to snake moves ω. For short chains (N < 64),
NDs decreases monotonously with increasing ω, since lo-
cal moves are less efficient in exploring the phase space
and the confinement is neglible. As the mass increases, we
find a striking non-monotonous behavior. The dynamics
first becomes more rapid, as local dense fluctuations be-
come more relevant. This effect apparently saturates at
a frequency of order 10, which causes the diffusion coeffi-
cient to decrease again strongly with increasing ω (at fixed
N). A finite ω generates a lateral tube of size dl(ω, φ) > a,
which should become identical to the tube diameter de(φ)
of the reptation model in the limit of very large ω. Re-
calling that de(φ) ≈ ξ(φ) we speculate that a successful
mapping of a SSA scheme on a local scheme may require
the tuning of the ratio dl(ω, φ)/ξ(φ) = const ≈ 1, which
implies a different ω for each density. We are currently
pursuing further simulations to clarify these questions.

A final word

It might well turn out that even in this larger modeling
space no ω(φ) can be found, where Dc ≈ NDs remains
chain length independent for large N . We would regard
this as a strong evidence for the correctness of the ARH
for a model with fully realistic local dynamics. We believe,
however, that astronomically long chains are required to
obtain measurable effects.

During the course of this work, we had valuable discus-
sions and obtained insights from many colleagues, especially
from M. Müller, A. Johner, M. Fuchs, A.N. Semenov and
S. Obukhov. LM and JPW acknowledge computational sup-
port by IDRIS/France. EL acknowledges support through a
fellowship from the Max Planck Institute for Polymer Research
(Mainz, Germany).
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