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Abstract. Monte-Carlo results for the moments 〈Mk〉 of the magnetization distribution of the nearest-
neighbor Ising ferromagnet in a Ld geometry, where L (4 ≤ L ≤ 22) is the linear dimension of a hypercubic
lattice with periodic boundary conditions in d = 5 dimensions, are analyzed in the critical region and
compared to a recent theory of Chen and Dohm (CD) [X.S. Chen and V. Dohm, Int. J. Mod. Phys. C 9,
1007 (1998)]. We show that this finite-size scaling theory (formulated in terms of two scaling variables) can
account for the longstanding discrepancies between Monte-Carlo results and the so-called “lowest-mode”
theory, which uses a single scaling variable tLd/2 where t = T/Tc − 1 is the temperature distance from
the critical temperature, only to a very limited extent. While the CD theory gives a somewhat improved
description of corrections to the “lowest-mode” results (to which the CD theory can easily be reduced
in the limit t → 0, L → ∞, tLd/2 fixed) for the fourth-order cumulant, discrepancies are found for the
susceptibility (Ld〈M2〉). Reasons for these problems are briefly discussed.

PACS. 05.70.Jk Critical point phenomena – 64.60.-i General studies of phase transitions –
75.40.Mg Numerical simulation studies

1 Introduction

Since about 15 years the five-dimensional Ising model is
used as a “laboratory” [1–8] to test theoretical concepts
about critical phenomena, in particular the concept of
finite-size scaling [9–32], which has become an extremely
valuable and indispensable tool for the study of phase
transitions in condensed matter [22,33,34] and gauge the-
ories of elementary particle physics [35,36]. In this context,
the d = 5 Ising model is of particular interest, since it ex-
ceeds the upper critical dimension, d∗ = 4, and hence the
Landau mean-field exponents exactly describe the critical
behavior [37,38]. Also correction-to-scaling exponents [39]
are known precisely [38] and fluctuations around the lead-
ing mean-field description can be dealt with by simple
perturbation theory; a renormalization-group treatment
of fluctuation effects is not required here [37,38]. While
for d > d∗ the hyperscaling relation dν = γ + 2β (ν,
γ, β being the standard critical exponents for correla-
tion length ξ, susceptibility χ and order parameter M ,
respectively) does not hold and hence finite-size scaling in
its standard version (“the linear dimension L scales with
ξ” [9–12,16,20,23]) does not hold either [12–14], a simple
extension was proposed [1,2,17,18] which can be phrased
as [2] “the linear dimension L scales asymptotically with
a thermodynamic length `T = (M2

b/χb)−1/d ∝ t−2/d”.
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Moreover it was suggested that ratios of moments of the
order parameter distribution, such as Q ≡ 〈M2〉2/〈M4〉 or
〈|M |〉2/〈M2〉 can easily be calculated from the so-called
lowest-mode approximation [17], which was believed to be
exact for the limit L→∞, t→ 0, L/`T fixed and should
yield, apart from scale factors, universal finite-size scaling
functions of L/`T.

In view of these rather definite predictions [17], appar-
ent discrepancies between the theoretical results and the
Monte-Carlo simulations [1–3] have been disturbing and
it has been a matter of debate [4–8,27,29–31] whether
the discrepancies reflect corrections to finite-size scaling.
In reference [8] it was shown that the Monte-Carlo data
for Q are indeed compatible with the predictions of Brézin
and Zinn-Justin [17] if one takes into account two, theo-
retically predicted, corrections to scaling. However, this
still left the very slow convergence of Q as a function of L
toward its predicted asymptotic value as a remarkable fea-
ture (in Ref. [3] the data for Q for the considered range
of system sizes appeared to have a common intersection
point unequal to this value). More importantly, the cor-
rectness of the treatment in reference [17] has recently
been doubted [31] (see below). This controversy is cum-
bersome because the fact that it is apparently very dif-
ficult to disentangle the leading and subleading terms in
finite-size scaling analyses even in a case where all involved
critical exponents are known precisely naturally leads to
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some doubt on analyses where one wants to extract un-
known critical exponents from finite-size scaling [22,23,26,
34]. In addition, the problem also is of interest in the con-
text of physical systems that are nearly described by Lan-
dau theory, such as systems with a long but finite range
of interaction [25,28], polymer mixtures near their critical
point of unmixing [40], etc.

New light has been shed on this state of affairs by
Chen and Dohm (CD) [29–31], who presented detailed ar-
guments that for d > d∗ the standard treatment of the φ4

field theory in continuous space [17,18,38] yields a mis-
leading description of finite-size behavior, different from
the finite-size behavior of a φ4 model on a lattice, which
one believes to be equivalent to an Ising model [37,38].
Chen and Dohm emphasized that therefore the justifica-
tion given for the lowest-mode theory is invalid, and stated
that the moment ratios mentioned above “do not have the
universal properties predicted previously and that recent
analyses of Monte-Carlo results for the five-dimensional
Ising model are not conclusive” [31].

In view of this criticism, a reanalysis of the available
Monte-Carlo results (including also some recent unpub-
lished results [41] used in [42]) is clearly warranted. Such
an analysis, where we compare the Monte-Carlo data in
detail with the result of the CD theory (which treats or-
der parameter fluctuations perturbatively to one-loop or-
der for the Ising case [31]) is given here. For the sake of a
coherent presentation, we summarize the pertinent theo-
retical results in Section 2, while Section 3 gives a detailed
comparison of the results for Q and for the susceptibility
χ = Ld〈M2〉 with the CD theory. Section 4 summarizes
our conclusions.

2 Theoretical background

The singular part of the free-energy density fL of a system
with linear size L in an external field h is written as (see,
e.g., Ref. [14])

fL = L−df (tLyt , hLyh, uLyi) , L→∞, (1)

where t = T/Tc − 1 and u is an irrelevant variable, in the
renormalization-group sense (exponents yt > 0, yh > 0,
yi < 0). Now for d > d∗ = 4 we have yt = 2, yh = (d+2)/2
and yi = 4− d, but u is a “dangerous irrelevant variable”
(see, e.g., Refs. [43,44]), which means that the scaling
function f(x1, x2, x3) is singular in the limit x3 → 0 and
cannot simply be replaced by f(x1, x2, 0). In terms of the
bulk correlation length ξb = ξ0t

−ν (above Tc in zero field),
the first argument of equation (1) can be interpreted as
(L/ξb)2. Taking suitable derivatives of equation (1) with
respect to the field we can thus write for the order param-
eter, the susceptibility and the ratio Q (in zero field)

〈|M |〉 = L−(d−2)/2PM
{
t(L/ξ0)2, (L/`0)4−d

}
, (2)

χ =

(
∂2fL

∂h2

)
= Ld〈M2〉

= L2Pχ
{
t(L/ξ0)2, (L/`0)4−d

}
(3)

and

Q =
〈M2〉2

〈M4〉
= PQ

{
t(L/ξ0)2, (L/`0)4−d

}
, (4)

where PM , Pχ and PQ are the (universal [22]) finite-size
scaling functions of the quantities 〈|M |〉, χ and Q. The
correlation-length amplitude ξ0 of the bulk correlation
length now appears as a scale factor for the variable x1

and for the variable x3 we have introduced the correlation-
length amplitude `0 of the bulk correlation length at Tc

in a small field [31] as a scale factor. In this way, the
arguments of the scaling functions PM , Pχ and PQ are

dimensionless, as they should be. Note that u ∝ `d−4
0 .

For large L the variable x3 ∝ (L/`0)4−d clearly be-
comes very small, and hence it is an obvious question to
ask how all these functions fL, PM , Pχ, PQ behave in the
limit x3 → 0. It was assumed in reference [1] that then
the dangerous irrelevant variable x3 enters in the form of
multiplicative singular powers of x3, e.g.,

fL(x1, x2, x3) = xp3

3 f̃L(x1x
p1

3 , x2x
p2

3 ). (5)

This assumption was in the first place motivated by the
fact that this is the mechanism that operates for the scal-
ing in the bulk for d > 4 [44], and secondly by various
phenomenological arguments. In particular, it was argued
that standard thermodynamic fluctuation theory requires
for T < Tc and sufficiently large L that the distribu-
tion function PL(M) of the magnetization per spin for
M near the spontaneous magnetization ±Mb is a sum of
two Gaussians [1,2,12],

PL(M) =
Ld/2

2
√

2πχb

{
exp

[
−(M −Mb)2Ld/2χb

]
+ exp

[
−(M +Mb)2Ld/2χb

] }
. (6)

Using Mb = M̂b|t|β = M̂b(−t)1/2 and χb = χ̂′b|t|
−γ =

χ̂′b(−t)−1 the arguments of the exponential functions have
the form

1

2

[
(M/M̂b)|t|−1/2 ∓ 1

]2
(L/`T)d, (7)

with `dT = M−2
b χb = M̂−2

b χ̂′bt
−2. Taking moments of this

distribution one hence expects that the scaling functions
in equations (2–4) reduce to scaling functions of a single
variable (L/`T)d/2 ∝ tLd/2 or, keeping the amplitudes ξ0
and `0 explicitly present, tLd/2ξ−2

0 `
(4−d)/2
0 , i.e.,

〈|M |〉 = L−d/4P̃M

(
tLd/2ξ−2

0 `
(4−d)/2
0

)
, (8)

χ = Ld/2P̃χ

(
tLd/2ξ−2

0 `
(4−d)/2
0

)
(9)

and

Q = P̃Q

(
tLd/2ξ−2

0 `
(4−d)/2
0

)
. (10)

Note that scale factors for the magnetization and the sus-
ceptibility have been absorbed in PM (or P̃M ) and Pχ
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(or P̃χ), respectively, while in ratios such as Q (and hence

in PQ and P̃Q) such scale factors are divided out and fully
universal functions remain.

These arguments as they were presented in
references [1,2] did not tell anything about the ex-

plicit form of the scaling functions P̃M (x), P̃χ(x) and

P̃Q(x), however, and hence no prediction for the suppos-

edly universal constant P̃Q(0) was made. In fact, making
the (premature!) assumption that linear dimensions
L = 3 to 7 lattice spacings are already large enough to
obtain the limit x3 ∝ (L/`0)−1 → 0 in d = 5 dimensions,
it was argued that at Tc there occurs a distribution of the
scaled order parameter PL(φ) ∝ exp(Aφ2 − φ4), which
implies a shift of Tc as Tc(L)/Tc(∞) − 1 ∝ AL−d/2, if
Tc(L) is defined as the temperature where PL(φ) starts
to develop a two-phase structure. However, the next step
in the development, due to Brézin and Zinn-Justin [17],
suggested that in the scaling limit PL(φ) ∝ exp(−φ4)
at Tc, since the shift of Tc as defined above should only
exhibit a scaling with a higher power of L−1, namely
Tc(L)/Tc(∞) − 1 ∝ L2−d, because it results from correc-
tions to the scaling description given in equations (8–10).
According to reference [17], the asymptotic behavior is
simply given by the homogeneous order parameter M in
the finite system,

PL(M) = exp

[
−Ld

(
1

2
r0M

2 + uM4

)]
, (11)

where r0 = a0t changes sign at Tc, u is the dangerous ir-
relevant variable mentioned above, both a0 and u being
nonuniversal constants. From equation (11) it is straight-
forward to derive that [17]

P̃Q(0) = 8π2/Γ 4(1/4) ≈ 0.456 947. (12)

However, the statements of CD imply that the continuum
model considered in [17] actually leads to a behavior dif-
fering from equation (11) and thus at this point also equa-
tion (12) seems without safe foundation. CD obtain, in the
large-n limit of the n-vector model on the lattice rather
than in the continuum, a result for the scaling function
Pχ(x, y) (Eq. (3); x = t(L/ξ0)2, y = (L/`0)4−d) which is
believed to be asymptotically exact, namely

Pχ(x, y) =
2

J0

[
δ(x, y) +

√
[δ(x, y)]2 + 4y

]−1

, (13)

where J0 is the interaction range of the φ4 model on the
d-dimensional hypercubic lattice (the lattice spacing being
taken as unity here throughout),

J0 =
1

dLd

∑
i,j

Jij |ri − rj |
2, (14)

and δ(x, y) is given by

δ(x, y) = x− yI1(J−1
0 P−1

χ ), (15)

with the function Im(x), m = 1, 2, . . . , being

Im(x) =
1

(2π)2m

∫ ∞
0

dy ym−1 exp(−xy/4π2)

×

(π
y

)d/2
−

(
∞∑

p=−∞

e−yp
2

)d
+ 1

 . (16)

In terms of the Hamiltonian of the n-vector model with
n-component vectors φi on the lattice,

H =
∑
i

[r0
2
φ2
i + u0(φ2

i )
2
]

+
∑
i,j

Jij

2
(φi − φj)

2, (17)

the characteristic lengths ξ0, `0 in equations (2–4) are
given by

ξ2
0 =

J0

a0
(1 + Sb

c ), `d−4
0 =

4u0n

J2
0

1

1 + Sb
c

, (18)

with r0 = r0c + a0t and

Sb
c = u0n

∫
dk [δJ(k)]−2, δJ(k) = J(0)− J(k), (19)

where J(k) ≡ L−d
∑
i,j Jij exp[−ik · (ri − rj)]. For the

n-vector model with n = 1, which is supposed to belong
to the Ising universality class, comparable results are ob-
tained only to one-loop order in perturbation theory [31].
Although the results are not exact, their scaling structure
is analogous to equations (13–16) and this structure is not
expected to be changed by the higher-order terms of the
loop expansion. Defining reduced moments

θm(Y ) =

∫∞
0 dφφm exp

[
− 1

2Y φ
2 − φ4

]∫∞
0 dφ exp

[
− 1

2Y φ
2 − φ4

] (20)

CD find [31,45]

Pχ(x, y) =
1

J0

θ2(Y (x, y))√
y + 36I2(r̄)y2

, (21)

PQ(x, y) =
[θ2(Y (x, y))]2

θ4(Y (x, y))
, (22)

with

Y (x, y) =

[
x− 12yI1(r̄)− 144θ2(xy−1/2)I2(r̄)y3/2

]
[y + 36I2(r̄)y2]

1/2
,

(23)

where r̄ ≡ x+ 12θ2(xy−1/2)y1/2. As should be clear from
what has been said above, the results (21–23) should hold
for sufficiently large L.

Armed with these results we are now in a better
position to reconsider the question already posed in
reference [1], namely to take the limit y → 0. For this
purpose we first consider the large-n limit, where we can
rewrite equation (13) as

Pχ(x, y) =
1

J0
√
y

[
δ(x, y)

2
√
y

+
√

1 + [δ(x, y)/(2
√
y)]2

]−1

.

(24)
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In the limit y → 0 we see from equation (15) that Pχ(x, y)
depends, apart from the prefactor, on x and y through the
variable

δ(x, y)

2
√
y
→

x

2
√
y
−

1

2

√
yI1(J−1

0 P−1
χ )

=
1

2
tLd/2ξ−2

0 `
(4−d)/2
0 −

1

2
(L/`0)(4−d)/2I1(J−1

0 P−1
χ ).

(25)

Thus we see that there exists a limit t → 0, L → ∞,
tLd/2 fixed, where the susceptibility scales exactly as pos-
tulated in equation (9), since then the correction term
of order (L/`0)(4−d)/2 in equation (25) clearly is negligi-
ble (J−1

0 P−1
χ tends toward zero in this limit, so the func-

tion I1 approaches a finite constant). Contrary to state-
ments made by CD themselves, viz. that the structure of
equations (8–10) is incorrect for the φ4 lattice model, we
rather think that they have proven(!) the correctness of
equation (11), in the limit specified above, at least for the
large-n limit, and gratifyingly there is no contradiction at
all between equations (13–19) and the ideas of reference [1]
that led to equations (8–10). Of course, the strong merit
of the CD treatment is that it yields not only the scal-
ing structure but also the explicit scaling function and a
full description of the corrections due to the dangerous
irrelevant variable u0.

We arrive at similar conclusions in the case n = 1,
though one must recall that these results are only based
on a one-loop order approximation. In the considered limit
y → 0 the quantity Y (x, y) in equation (23) reduces to

Y (x, y)→
x
√
y

[1− 18I2(r̄)y]− 12I1(r̄)
√
y

= tLd/2ξ−2
0 `

(4−d)/2
0

[
1− 18I2(r̄)(L/`0)4−d

]
− 12I1(r̄)(L/`0)(4−d)/2, (26)

which is, apart from the additional O(L4−d) correction,
fully analogous to equation (25). In the limit of inter-
est (t → 0, L → ∞, tLd/2 fixed), r̄ vanishes and the
functions I1, I2 take finite values, so we see again that
equations (9, 10) hold. Moreover, one concludes that at
the critical temperature Y (0, y → 0) → 0 and hence also
equation (12) holds, as noted already by CD. It remains
to be seen whether (12), which is less general than the
scaling structure of equations (8–10), holds to all orders
in the loop expansion.

In order to compare equations (20–23) to numerical
Monte-Carlo data, it is clearly of interest to consider sim-
ple limiting cases of the susceptibility, where then the
nonuniversal parameters ξ0 and `0 can be extracted. Since
accurate Monte-Carlo estimations of correlation lengths
are much more difficult to perform than estimations of the
susceptibility we note that in the large-n limit (Eqs. (13–
19)) the bulk susceptibility is [29]

χb = −
∂2fb(t, h)

∂h2
=
ξ2
b

J0
=

1 + Sb
c

a0t
, (27)

where ξb = ξ0t
−ν . The same result is obtained from

equations (3, 13) using that, at fixed small t, δ(x, y) ≈ x
in the limit L→∞ and hence

Pχ(x, y → 0) ≈ (J0x)−1 ⇒ χ = L2/[J0(L/ξb)2] = χb.
(28)

In contrast, at the critical temperature the result is

J0χ(T = Tc) = Ld/2`
(4−d)/2
0 . (29)

Thus, one can determine both parameters of interest, ξ0
and `0, from the behavior of χ in two simple limits. The
same procedure can also be carried out in the n = 1 case,
considering the limit y → 0 at fixed small t,

χt =
ξ2
0

J0

x√
y + 36I2(r̄)y2

θ2(Y (x, y))
y→0
−→

ξ2
0

J0
, (30)

while in the finite-size scaling limit (x = 0, y small) one
obtains for d = 5

χ =
L2

J0

1
√
y
θ2(0) =

Ld/2

J0

√
`0

Γ (3
4 )

Γ (1
4 )
. (31)

As we already noted, the interest of equations (20–23)
is not only the combination of the scaling structure,
equations (8–10), in the limit t → 0, L → ∞, tLd/2 =
const, but these equations also incorporate the effect of the
corrections to the lowest-mode approximation, which we
would recover if in equation (23) we had Y (x, y) = xy−1/2.

3 Comparison of the Chen-Dohm predictions
with simulation results for the d = 5 Ising
model

In reference [8] only numerical data for the amplitude ra-
tio Q have been considered, with 5 ≤ L ≤ 22. In order to
estimate the scaling parameter `0 we now analyze the cor-
responding data for the magnetic susceptibility. Thus, we
apply a finite-size expansion similar to equation (3) in [8],

χ(T,L) = Ld/2
(
p0 + p1t̂L

y∗t + p2t̂
2L2y∗t

+q1L
yi + q2L

2yi
)
, (32)

where t̂ = t + αLyi−yt and y∗t = yt − yi/2. So the term
t̂Ly

∗
t = tLd/2 + αL(4−d)/2 just corresponds to the scal-

ing variable in equations (25, 26). The additional term in
equation (26) was already mentioned in [8] as the “cross
term” t̂Ly

∗
t +yi ; in contrast to the analysis of Q, it turns

out to have a negligibly small coefficient in the analysis
of the susceptibility. The leading power Ld/2 (Eq. (31))
has been confirmed numerically within less than one per-
cent in reference [42]. In our analysis we have kept this
power as well as the irrelevant exponent yi fixed. This
yielded a critical coupling J/kBTc = 0.113 9152(4), in ex-
cellent agreement with the value found in reference [8]
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Large-T asymptote
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Fig. 1. Log-log plot of 1/(tχ) versus tL5/2, for the five-
dimensional nearest-neighbor Ising model. Squares denote
Monte-Carlo data as mentioned in the text, dashed lines repre-
sent equations (30, 31), respectively, with the parameters from
equation (33). The finite-size asymptote included here refers
to the limit L→∞ and has been estimated as described after
equation (32).

from keeping Q fixed at the zero-mode prediction (12),
viz. J/kBTc = 0.113 9150(4) (numbers in parentheses de-
note the uncertainty in the last decimal places). Further-
more, we found y∗t = 2.53(4), very close to d/2, and
p0 = 1.86(7). The quality of the fit in terms of the χ2

criterion was χ2/DOF = 1.06. In order to improve the ac-
curacy of our estimate for p0, we have repeated the anal-
ysis with y∗t fixed at d/2, finding J/kBTc = 0.113 9155(2)
and p0 = 1.91(2) (χ2/DOF = 1.05). All analyses were ob-
tained with 5 ≤ L ≤ 22; upon omitting the smallest sys-
tem sizes, a very similar estimate for p0 was obtained, with
a minor increase in the uncertainty. For a more detailed
analysis we refer to [41,42]. From our estimate for p0 and
equation (31) we find, using J0 = 2J/kBT , `0 = 0.603(13).
For the sake of clarity, it is stressed that this estimate for
`0 thus pertains to the thermodynamic limit and is not a
finite-size quantity.

It is also possible to extract ξ0 from the Monte-Carlo
data. However, here we use the series-expansion result
from reference [46] for this purpose. Assuming the mean-
field exponent γ = 1, it was found that asymptotically χ =
A/(1 − v/vc) with A = 1.311(9) and v = tanh(J/kBT ).
Rewriting this in terms of the reduced temperature t, we
have χ = A[cosh(J/kBTc) sinh(J/kBTc)/(J/kBTc)]t

−1 =
1.322t−1 and equation (30) shows that ξ0 = 0.549(2).

Figure 1 now shows the log-log plot of (tχ)−1

versus the scaling variable tLd/2, using data for T ≥ Tc

only (in view of the very accurate estimates of the criti-
cal coupling, the errors due to the inaccuracy of Tc are
not of major concern here). Available data for smaller
system sizes have been omitted from this graph, because
the rather strong deviations from scaling noted already in
reference [2] would obscure its main purpose, namely to
illustrate the use of the limits (30, 31) to extract ξ0 and
`0. Of course, due to the corrections to scaling included

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
t(L/ξ0)2

0.00
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Q

Fig. 2. Plot of the moment ratio Q ≡ 〈M2〉2/〈M4〉 for d = 5 as
a function of the two variables x = tL2/ξ2

0 and y = (`0/L)d−4,
according to equations (20, 22, 23).

in equation (32) the Monte-Carlo data for L = 12 should
not converge to the finite-size asymptote for L→∞, but
to a slightly shifted straight line. However, on the scale of
Figure 1 the finite-size asymptotes for L = 12 and L→∞
are indistinguishable. Because of their central interest we
repeat our estimates

`0 = 0.603(13), ξ0 = 0.549(2). (33)

The amplitude ξ2
0

√
`0 which normalizes the scaling vari-

able tLd/2 (cf. Eq. (26)) becomes 0.234(4).
In the following graphs, also Monte-Carlo data from

reference [2] (L = 4) and reference [3] (L = 8, 12) are
included and it was found that all the Monte-Carlo data
are, within their statistical errors, nicely compatible with
each other. We have omitted the data of reference [3] for
L ≥ 13 here, since the rather irregular behavior found for
the specific heat and the cumulant intersections for these
system sizes indicates that these data suffer from statis-
tical inaccuracies due to critical slowing down. Note that
reference [3] used a single-spin-flip Metropolis algorithm,
whereas in references [8,41,42] a single-cluster algorithm
was applied. Available data from references [4,5] are re-
stricted to temperatures very close to T = Tc and hence
are unsuitable for our purposes.

We now focus on the quantity Q, equation (4), since
the scaling behavior of this quantity has been so controver-
sial. Figure 2 gives a plot of the CD function (22), keeping
both x and y as separate variables. One can see that for x
large and negative Q = 1 as it must be and for x large and
positiveQ = 1/3, irrespective of y. This simply reflects the
trivial properties of the low- and high-temperature phases,
respectively. For |t(L/ξ0)2| < 1, however, a clear y depen-
dence is seen.

In Figure 3 we compare the various Monte-Carlo data
to the CD function forQ as a function of tL2 (i.e., the vari-
able proportional to x). Note that in these plots there are
no adjustable parameters whatsoever, so the agreement
is at first sight very remarkable. At second sight, how-
ever, one does observe that there are slight but systematic
deviations between theory and simulation, which have
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Fig. 3. Plot of Q versus tL2 for (a) L = 4, (b) L = 8 and (c)
L = 12. The full curves denote the predictions of reference [31].
Monte-Carlo data generated at specific temperatures, taken
from references [2,8,41,42] are shown as open or full squares,
respectively, while the histogram extrapolation data of refer-
ence [3] are shown as a broken curve.
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Fig. 4. Magnified plot of Q versus tL2 near tL2 = 0, cf.
Figure 3, to demonstrate the occurrence of spurious cumulant
intersections.

consequences for the intersection of the amplitude ratios
for different system sizes. Figure 4 demonstrates that both
the CD function and the Monte-Carlo data behave qual-
itatively similar: for a range of sizes (4 ≤ L ≤ 12) there
is almost a common intersection point, but it occurs at a
negative value of tL2 and consequently the corresponding
ordinate value Qint is significantly larger than the pre-
dicted asymptotic value (12). While this spurious value of
the CD function, for the range of system sizes considered
here, is about Qint ≈ 0.48, it lies around Qint ≈ 0.52
for the Monte-Carlo data; Rickwardt et al. [3] quoted
Qint ≈ 0.49(1), including data up to L = 17. The lesson to
be learned from this graph is threefold: (i) one must not
pay too much attention to the value of such a cumulant
intersection if one does not have a sufficiently large range
of linear dimensions at one’s disposal; (ii) the CD function
is a nice analytical example of a function that does pro-
duce a spurious “intersection”, as pointed out already in
reference [31]: although it looks so convincing on the
graph, one knows that in the asymptotic limit the inter-
section occurs at t = 0 and yields Q ≈ 0.457 (Eq. (12));
(iii) the CD function produces the same trend as the
Monte-Carlo data only qualitatively, but not quantita-
tively.

What is the consequence of these results for the asymp-
totic scaling, equation (10)? This question is addressed in
Figure 5, where the data from Figure 3 are replotted as a
function of the scaling variable tLd/2: it is seen that the
data for L = 4 deviate from scaling in a systematic way,
while for L = 8, 12 the data scale already rather nicely,
although they are still a little bit set off in comparison
to the theoretical scaling curves. Note that on these large
scales one cannot distinguish the CD curve for L = 12
from the lowest-mode result! The general trend appears
that in the neighborhood of T = Tc equation (22) yields
a too small value for Q(L).

In order to highlight the differences, we now amend
the plot of Q at Tc as a function of L, which was shown
in reference [8], by the prediction that would follow from
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broken curve is the empirical fit, as described in reference [8],
while the horizontal line denotes the asymptotic result of
equation (12). The CD prediction is shown as a dotted line.

CD (see Fig. 6): one indeed observes that the result of
CD underestimates the differences between Q(Tc, L) and

Q(Tc,∞) distinctly – it basically yields a 1/
√
L correc-

tion, while the additional 1/L term resulting from CD is
very small, unlike the rather pronounced 1/L correction
that was found in the the empirical fit of reference [8].
Another, more tentative, way to quantify the differences
is by adjusting `0 such that the CD curve yields a reason-
able description of the numerical data. It turns out that a
value as high as `0 ≈ 3.2 (instead of the estimated value
0.603 ± 0.013) is required to find some agreement in the
region 12 ≤ L ≤ 22. It clearly must be waited for a loop
expansion to second order – which will yield additional
1/L corrections of so far unknown magnitude – before one
can draw final conclusions about the agreement between
theory and simulation (or lack thereof).

While in the comparison of the temperature depen-
dence of Q as predicted by CD theory to the simulation
results we have seen most of the disagreement for t > 0,
Figure 7 shows that much more drastic deviations between
theory and simulation occur for χ in the regime t < 0. The
fact that for t > 0 there is perfect agreement for L = 12 is
no surprise, of course, since these data have been of cen-
tral relevance for the fit in Figure 1 that yielded ξ0 and
`0. It is clear that perhaps a better overall fit of the data
is reached if one would fit `0 to describe the behavior of
χ for tL2 large and negative, but then the behavior for
t > 0 would deteriorate. Let us note in passing that the
term “susceptibility” is just used for convenience here: be-
low Tc the real (reduced) susceptibility is of course given
by Ld(〈M2〉 − 〈|M |2)〉.

Figure 8 shows then a plot of χL−5/2 versus tL5/2,
comparing Monte-Carlo data for L = 4 and L = 12 [8]
with corresponding predictions of the CD theory and the
“zero-mode” curve. Again systematic deviations between
CD theory and simulations are apparent: while the the-
ory [31] converges to the zero-mode result from above,
the Monte-Carlo results fall clearly below the zero-mode
result and nearly coincide with it for L = 12. This coin-
cidence can be understood from a closer consideration of
χ(Tc)L

−5/2 versus L (Fig. 9): after a rapid increase from
below to a value already close to the asymptotic value,
this quantity flattens around L = 12 and then slowly ap-
proaches (not necessarily in a monotonic way) its limiting
value. In the whole region shown, the CD curve qualita-
tively disagrees with the data – this disagreement clearly
cannot be remedied by a different adjustment of the pa-
rameters, because a monotonic decrease (close to a 1/

√
L

behavior) is an intrinsic feature of equations (20–23) and
also occurs in the large-n limit (Eq. (24)). The deviation
at L = 22 cannot be explained from a mis-adjustment
of `0, since both curves approach the same limiting value
for L → ∞, where all finite-size corrections must vanish.
Thus, if `0 would have been chosen such that the CD curve
coincides with the Monte-Carlo result for L = 22, a mis-
match would have occurred at L → ∞, which is clearly
impossible.

Of course, discrepancies between finite-size data for
very small linear dimensions (such as L = 4 and L = 8)
and the CD theory (Eqs. (21–23)), which only fully cap-
tures the leading zero-mode result and the first correction
terms (of order L−1/2) to it, would not be an argument
against the usefulness of the theory. However, Figures 6
and 9 clearly reveal that even for L = 22 one is still far
from the regime where the CD theory satisfactorily de-
scribes the MC data.

4 Concluding remarks

In this paper Monte-Carlo results for five-dimensional
Ising lattices have been reanalyzed and compared to re-
cent theoretical predictions obtained by Chen and Dohm,
in an attempt to clarify a somewhat controversial discus-
sion. Our results can be summarized as follows.
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Fig. 7. Plot of χ versus tL2 for (a) L = 4, (b) L = 8 and (c)
L = 12. The full curves denote the predictions of reference [31],
equation (21), while the squares are Monte-Carlo data of
references [8,41,42].

(i) The CD theory reduces in the limit t→ 0, L→∞,
tLd/2 fixed, to the scaling structure proposed originally by
Binder et al. [1] and explicitly illustrates the mechanism
of multiplicative “renormalization” of variables by a dan-
gerous irrelevant variable. In addition, it yields both the
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Fig. 8. Plot of χL−5/2 versus tL5/2 including Monte-Carlo
data for L = 4 and L = 12. Broken curves show corresponding
CD predictions, full curve is the zero-mode result.
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−5/2 versus L (where J/kBTc =

0.113 9150). The dashed curve is a fit to equation (32) as de-
scribed in the text. The dotted curve is the CD result (21).

asymptotic scaling functions of various moments of the
order parameter distribution as a function of the variable
tLd/2 and the leading corrections to it, which are of order
L(4−d)/2. However, the comparison with the Monte-Carlo
data indicates that strong subleading corrections (of order
1/L for d = 5) are present as well, which are not predicted
by the CD theory, and one would need much larger L than
accessible here (Lmax = 22) in order that these sublead-
ing corrections are visible. So a quantitative agreement
between theory and simulation is still far out of reach!

(ii) The question must be asked to what extent the φ4

model on a lattice for d > 4 yields the same behavior as
the Ising model. Of course, one can take the parameters
r0 → −∞, u0 →∞ in equation (17) in such a proportion
that the model precisely reduces to the Ising model (for a
discussion see, e.g., Ref. [47]). At this point, we have not
attempted to deal with this problem.

(iii) The CD theory yields a nice illustrative example
how one can be misled by apparent cumulant intersec-
tions which converge to the exact result extremely slowly
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as L → ∞. It is rather likely that this is the reason
for the difficulties noted in the Monte-Carlo studies in
references [1–3]. Both the CD theory and the simulations
give clear evidence that for a full understanding of the
problem a variation of parameters over a broad range is
desirable, including the behavior both above and below
Tc, as well as at Tc. Corrections to the leading scaling be-
havior need careful consideration, which was already one
of the central messages of references [6,8,27].

Stimulating discussions with Profs. V. Dohm and X.S. Chen
are gratefully acknowledged, as well as information on their
work prior to publication.
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