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Translocation of polymers out of confined geometries
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Abstract

We consider the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical calculations allow
us to arbitrate between competing scaling predictions. We find that, for moderate confinement, the free energy exhibits a power-law dependence
on cavity size that is different from what is observed for planar and cylindrical confinement. At high monomer concentrations, crossover to
another scaling regime occurs. One of the consequences of these findings is a new prediction for the escape time of a polymer from a spherical
confinement. By means of additional simulations, we confirm that the translocation time can be described by a scaling law that exhibits a nonlinear
dependence on the degree of polymerization that is sensitive to the nature of the confining geometry. The geometry dependence contradicts earlier
predictions but is in quantitative agreement with findings for the free energy of confinement.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Translocation through a nanopore is one of the fundamen-
tal biological mechanisms through which long molecules can
be exchanged between different regions compartmentalized by
biological membranes [1]. Examples of this phenomenon in-
clude the injection into host cells of DNA packed inside virus
capsids [1] and the transport of proteins through biological
membranes. Furthermore, pioneering experiments have demon-
strated that DNA can be translocated through a nanopore by
means of an external electric field, and that this event can be
probed by measuring the variation in ionic current through the
pore [2]. This has opened the prospect of creating efficient
and economical DNA sequencing devices and has resulted in
a widespread theoretical and experimental interest in polymer
translocation [3–8].

The passage of a flexible chain through a narrow opening
involves a large entropic barrier, so that most polymer translo-
cation phenomena require a driving force. In a typical exper-
imental setup [2] the driving force is provided by an external
electric field; however, one can also imagine the use of other
forces, e.g., an osmotic pressure resulting from the geometrical
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confinement of the polymer in one of the chambers. This last
case is the focus of this article.

Confinement of a polymer drastically reduces its number
of accessible conformations and thus results in an excess free
energy �F . The dependence of the excess free energy on geom-
etry, degree of confinement and chain length determines the
partitioning of polymers and the entropic force on the polymer.

As the translocation time τ is expected to be inversely pro-
portional to the driving force acting on each monomer [6–8],
τ ∼ (�F/N)−1, it is crucial to understand how �F scales with
the degree of confinement.

The calculation of the entropy loss due to the confinement
of an ideal chain is an old problem [9–11]. For a polymer con-
fined between two parallel plates at separation R the free energy
β�F increases as (RG/R)2, where RG is the radius of gyra-
tion of the unperturbed chain and β = 1/(kBT ), with kB Boltz-
mann’s constant and T the absolute temperature. This result,
that Casassa [9] has proven to also hold for a long capillary and
a spherical geometry, can be obtained by means of a “blob” de-
scription of the polymer [11]. For planar and cylindrical geome-
tries, the generalization to self-avoiding (non-ideal) polymers is
straightforward [11],

(1)β�F ∼
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R
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where ν ≈ 0.588 is the Flory exponent and σ denotes the
monomer size. However, it is less widely appreciated that the
applicability of Eq. (1) to spherical cavities is controversial.
While some studies explicitly state [12] and employ [6] this
relation for such a geometry, two alternative theories have
been put forward. First, self-consistent field theory (SCFT) pre-
dicts [13]

(2)β�F ∼ N2
(

σ

2R

)3

= Nφ,

where φ = N(σ/(2R))3 is the monomer volume fraction. This
mean-field estimate is just the leading correction to the free
energy of an ideal polymer due to excluded-volume interac-
tions [14]. Secondly, a blob scaling description has been pro-
posed [13,15] which explicitly recognizes that—unlike in a pla-
nar or cylindrical geometry—the monomer concentration in a
spherical geometry increases upon confinement,

(3)β�F ∼
(

RG

R

)3/(3ν−1)

∼ Nφ1/(3ν−1).

The differences between these predictions are by no means mi-
nor: Eq. (3) predicts �F ∝ R−3.93, compared to �F ∝ R−3 in
Eq. (2) and �F ∝ R−1.70 in Eq. (1). Here, we resolve this con-
troversy by means of numerical simulations and measure how
the translocation time of confined flexible polymers is affected
by the specific geometrical constraint. A more detailed account
is given in Refs. [16,17].

2. Methods

The polymer is described via a bead–spring model, i.e. a lin-
ear series of N spherical beads of diameter σ connected by
bonds of maximal extension �max = 1.9σ . All monomers in-
teract via a hard-core repulsion and the nearest-neighbor bonds
are described as entropic springs

(4)ub(ri,i−1) =
{

0 if ri,i−1 � �max,

∞ if ri,i−1 > �max.

We explore the statistical properties of the model by means of
Monte Carlo simulations involving local monomer moves. Con-
finement is enforced using an external spherically symmetric
potential centered around the origin,

(5)uα(λ) =
N∑

i=1

1

(λ − ri)α
(α > 0),

so that ri is the distance of monomer i from the center of the
sphere and λ represents the radius of the cavity. The computa-
tion is performed in two stages. In the first stage the polymer
chain is equilibrated within the confining geometry and the free
energy of confinement is computed via thermodynamic inte-
gration [18] in the NVT and the NPT ensemble. Next, a smooth
pore of radius 1.3σ is created to allow ejection of the polymer
and the translocation time of the polymer is recorded.
Fig. 1. Free-energy cost of planar, cylindrical and spherical confinement of a
self-avoiding flexible polymer chain of N = 256 monomers as a function of the
compression parameter RG/R.

Fig. 2. Concentration dependence of the free energy of confinement per
monomer, obtained at constant volume (NVT) and constant pressure (NPT).
The coinciding curves for different chain lengths confirm the extensive char-
acter of the free energy. For φ < 0.15 the data exhibit a power-law behavior
�F ∝ φ1.28 (dashed line), in agreement with Eq. (3). The dotted line is a guide
to the eye, indicating the systematic deviations at high concentrations (see text).

3. Results

Fig. 1 summarizes the free energy calculations for N = 256
and permits two crucial observations [19]. First, it confirms that
�F exhibits the same power-law dependence R−γ for planar
and cylindrical confinement and shows that our approach yields
a quite accurate estimate of this power law: (RG/R)1.69±0.06 for
parallel plates and (RG/R)1.65±0.06 for a cylinder, both in good
accordance with (RG/R)1/ν . Secondly, spherical confinement
clearly shows a much stronger increase of the free energy with
decreasing R.

To accurately determine the corresponding power law and to
minimize possible artifacts due to the use of short chains, we
compute (see Fig. 2) the free energy of confinement as a func-
tion of monomer volume fraction φ for three different chain
lengths (N = 512,1024,2048), as measured in the NPT and in
the NVT ensemble. It is rewarding that the results for both en-
sembles are in good agreement, ruling out ensemble-dependent
artifacts. Furthermore, upon normalization per monomer, all
curves collapse [20], confirming the extensive character of the
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Fig. 3. Double logarithmic plot of the average translocation time τ for a linear,
flexible polymer escaping from a spherical and a planar geometry, as a func-
tion of the degree of confinement R. The translocation times are expressed in
units of 106 Monte Carlo steps. These data confirm the striking dependence on
confinement geometry.

free energy at fixed φ. For moderate values of φ, all data coin-
cide on a line with slope γ = 1.28±0.06, in agreement with the
prediction of Eq. (3), γ = 1/(3ν − 1) = 1.31, and in contrast
with the linear concentration dependence predicted by SCFT
(Eq. (2)).

It is of interest to also discuss the limitations of the scaling
prediction. For concentrations exceeding approximately 0.2,
the data cross over to an effective power-law behavior with an
exponent γ ≈ 2. The break-down of the blob scaling descrip-
tion at these concentrations should not come as a surprise as
the number of monomers per blob at large volume fractions be-
comes rather small; already for φ � 0.2 there are only about
five monomers per blob. On the other hand, in the dilute regime
we anticipate considerable finite-size effects, since there the
total number of blobs becomes very small. For example, at
φ = 0.01 there are approximately 200 monomers per blob, so
that even our longest chain (with N = 2048) consists of only
10 blobs.

Now that we understand how the free energy of a polymer
increases upon spherical, cylindrical and planar confinement,
we turn to the problem of translocation. As already stated, the
free energy of confinement per monomer, �F/N , is responsi-
ble for driving the polymer out of the restricted geometry. In
light of our results we can expect that for a planar, cylindrical
or spherical geometry the following scaling laws apply, respec-
tively,

(6)τ ∼
{

N1+ν(R/σ)1/ν plane/cylinder,

N1+νφ1/(1−3ν) sphere,

where the exponent 1 + ν in the prefactor represents the lower
bound proposed in Ref. [8].

First, we consider the role of the degree of confinement. We
calculate τ for a fixed, long chain length (N = 256 for pla-
nar and N = 512 for spherical confinement). Fig. 3 displays
τ as a function of R. The escape times from both geometries
are accurately described by a power-law dependence, but with
strikingly different exponents. For confinement within a pla-
nar geometry, the driving force is relatively weak and we use
smaller separations than for the spherical geometry (as small
as R = 4.8σ ). A least-squares fit of both data sets to the ex-
pression τ(R) = τ0 + aRγ yields γ = 1.54 ± 0.10 for planar
confinement and γ = 3.65 ± 0.08 for spherical confinement.
These results are in good agreement with the exponents in 1/ν

and 3/(3ν −1), respectively, and thus confirm the linear depen-
dence of τ on (�F/N)−1.

The dependence of the translocation time on the degree
of polymerization N is determined via a similar analysis, at
constant �F/N . We find that for both geometries τ is ac-
curately described by a power-law dependence τ ∼ Nδ with
δ = 1.55 ± 0.04 for planar confinement and δ = 1.59 ± 0.03
for spherical confinement. Both results agree with 1 + ν ≈
1.59 [8].

4. Summary

We have demonstrated, for the first time, that the free energy
of a flexible self-avoiding polymer confined to a spherical cav-
ity exhibits a different dependence on pore size than the free
energy of a polymer confined between parallel plates or within
a cylindrical geometry. We have also shown that the average
confinement-driven translocation time can be described by a
simple scaling relation, τ ∼ N1+ν/(�F/N), which results in a
geometry-dependent power law when expressed in terms of the
length scale of confinement—distance between parallel plates
for a planar geometry and cavity radius for a spherical geome-
try.
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