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Monte Carlo tests of theoretical predictions for
critical phenomena: still a problem?
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Abstract

Two Monte Carlo studies of critical behavior in ferromagnetic Ising models are described: the first one deals with the
crossover from the Ising class to the mean field class, when the interaction range increases. The second study deals with
the finite size behavior at dimensionalities above the marginal dimension where Landau theory applies. The numerical results
are compared to pertinent theoretical predictions, and unsolved problems are briefly described. 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Since the development of renormalization group
methods [1–3] the theory of critical phenomena has
seen spectacular progress. However, there are still a
number of challenging problems: e.g., while an im-
pressive accuracy in the estimation of critical expo-
nents has been reached (see, e.g., [3–5]), the accuracy
of work dealing with the study of crossover phenom-
ena from one universality class to another is much less
good. This is true even for the simplest case; crossover
from the Ising universality class to Landau mean field
behavior as the range of interactionR increases [6–
15,19,17]. This problem is experimentally relevant for
the understanding of critical phenomena both in small
molecule fluids [18] and in polymer mixtures [16,20,
21]. Monte Carlo simulations now can provide bench-
marks against which various theoretical approaches
can be tested [13–15,17].
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Another issue where there has been a longstanding
controversy between theory and simulation is the
question of finite size scaling at dimensionalitiesd
above the marginal dimensiond∗ where mean field
theory becomes valid [22–30]. For systems with short
range forces,d∗ = 4, so ind = 5 all critical exponents
(including corrections to scaling) are known, and
hence finite size scaling methods can be exposed
to a stringent test. However, it will be shown that
comparison between theory [29] and simulation [30]
is still disappointing!

2. Monte Carlo study of crossover for Ising
models with medium range interactions

While the (normalized) susceptibility χ̂ ≡
kBTc(∂m/∂H)T in the mean field limit obeys a sim-
ple Curie–Weiss law,̂χ ∝ t−1 wheret is the reduced
temperature distance from the critical temperatureTc,
t = T/Tc − 1, a nontrivial exponent(γ ) applies in
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the Ising universality class,̂χ ∝ t−γ , with γ = 7/4
in d = 2 andγ ≈ 1.24 in d = 3 [1–5]. Here we con-
sider a model with a large but finite rangeR of the
exchange interactionsJij between spins at sitesEri , Erj ,
with Jij = J if r = |Eri − Erj | 6 Rm but Jij = 0 else-
where,

R2=
∑
j ( 6=i)

Jij r
2/
∑
j ( 6=i)

Jij = z−1
∑

j ( 6=i), r6Rm
r2,

z=
∑

j ( 6=i), r6Rm
1. (1)

Now one expects that in the limitt → 0 Ising
exponents are observed, irrespective ofR; however, if
t is small but still larger than the so-called “Ginzburg
number” G [31] one expects to see an “effective
exponent” close to the mean field value (1). Such
effective exponents are defined as (± refers toT ≷ Tc)

γ±eff ≡−d ln χ̂/d ln |t|. (2)

Since the variation ofγeff is spread out over many
decades in the crossover scaling variablet/G, see
Fig. 1, calculation ofγeff by computer simulation has
been a particular challenge – only very recently this
challenge could be overcome [13–15,17] by combin-
ing data taken for a wide range of values ofR, not-
ing thatG = G0R

−6 in d = 3 andG = G0R
−2 in

d = 2 [11,31]. Of course, simulation of the critical be-
havior of systems with largeR requires the use of huge
lattice sizes: this has only become possible due to the
invention of a novel cluster algorithm [32] whose ef-
ficiency does not deteriorate whenR increases. With
this algorithm, estimation ofγ±eff also has been possi-
ble in d = 2, where predictions of corresponding an-
alytical theory are completely lacking. Note that the
variation ofγ−eff is nonmonotonic, i.e.γ−eff ≈ 0.85 for
tR2≈−1 (Fig. 2) while forT > Tc no such minimum
occurs.

Fig. 1 shows that the theoretical curves all disagree
with the Monte Carlo data fort/G . 10. However,
one does expect that a universal crossover scaling
function does exist in the limitG→ 0, t → 0,G/t
finite. A possible interpretation of the discrepancy in
Fig. 1 is the idea of Anisimov et al. [12,18], that
for not too smallG (i.e. not too largeR) a second
variable is needed to describe the crossover in addition
to G, namely the short wavelength cutoffΛ. Thus
γeff in Figs. 1, 2 is not a unique function, but it

Fig. 1. Effective susceptibility exponentγ+eff for thed = 3 variable
range Ising model on the simple cubic lattice forT > Tc plotted vs.
the logarithm of the crossover scaling variable. Different symbols
show various choices ofR, as indicated. Three theoretical predic-
tions are included: Belyakov–Kiselev (BK) [9], Bagnuls–Bervillier
(BB) [8] and Seglar–Fisher (SF) [6]. From Luijten and Binder [17].

Fig. 2. Effective susceptibility exponentγ−eff for thed = 2 variable

range Ising model on the square lattice forT < Tc plotted vs.tR2;
different symbols show various choices ofR, as indicated. From
Luijten et al. [14].

fans out at the Ising side in a family of curves (each
value of R then belongs to a piece of a different
curve) [18].

While a description of both experiments [16] and
the Ising simulations [18] with this theory [12] is
possible, it is not very satisfactory since several
adjustable parameters occur. Also the question must
be asked how accurate the universal limit of the
scaling function in Fig. 1 is known – after all the three
analytical results are not in full mutual agreement
either, and some are based on somewhat uncontrolled
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extrapolations of low order renormalization group
expansions.

3. Finite size scaling for the five-dimensional Ising
model

The theory of finite size scaling [33–35] is one of
the standard tools to extract information on critical
properties from Monte Carlo simulations on finite
lattices. However, since usually neither the leading
critical exponents nor the corrections to scaling are
known exactly, usually a lot of parameters have to be
determined simultaneously, and hence the judgement
of accuracy is subtle.

In view of this fact, the Ising model ind = 5 is a
nice “laboratory” for computer simulation, since the
exponents are known precisely. Thus, the singular part
of the free energy for a finite hypercubic lattice of
volumeLd (and periodic boundary conditions) scales
as [34–36]

fL = L−d f̃
{
t (L/ξ0)

2, hL1+d/2, uL4−d}, (3)

where the first argument of the scaling functioñf
could also be written as(L/ξ)2 with ξ = ξ0t−1/2

the correlation length in mean field. The second term
involves the fieldh conjugate to the order parameter,
and the last term the coefficientu of the quartic term
in the Landau expansion. AlthoughuL4−d → 0 for
L→∞ in d > 4, this term must not be omitted since
u is a “dangerous irrelevant variable” [2,36].

Introducing a corresponding length`0 viau∝ `d−4
0 ,

we can write the susceptibility and the cumulant ratio
Q≡ 〈M2〉2/〈M4〉 of the magnetization as follows

χ =−∂
2fL

∂h2

∣∣∣∣
h=0
= L2Pχ

{
t (L/ξ0)

2, (L/`0)
4−d}, (4)

Q= PQ
{
t (L/ξ0)

2, (L/`0)
4−d}. (5)

Eqs. (4), (5) differ from standard finite size scal-
ing forms for d < d∗ [χ = Lγ/νPχ (tL1/ν), Q =
PQ(tL

1/ν), whereξ ∝ t−ν ] by the presence of a sec-
ond variable.

However, it soon was suggested [22,23] that for
L→∞ Eqs. (4), (5) reduce to a one-variable scal-
ing form, but withξ being replaced by the “thermody-
namic length”̀ T ∝ t−2/d ,

χ→Ld/2P̃χ
{
tLd/2ξ−2

0 `
(4−d)/2
0

}
,

Q→ P̃Q
{
tLd/2ξ−2

0 `
(4−d)/2
0

}
= P̃Q

{
(L/`T )

d/2}, L→∞. (6)

Brézin and Zinn-Justin [24] then suggested that
one could also find the scaling functions̃Pχ and
P̃Q explicitly, noting that one should single out from
the effective Boltzmann factor the contribution of the
uniform magnetizationM,

exp

[
−H{Si}
kBT

]
= exp

[
− (M

2/M2
b − 1)2

8kBT χb/M
2
b

Ld + · · ·
]
,

(7)

whereMb, χb are the mean field bulk magnetization
{Mb ∝ (−t)1/2} and susceptibility, respectively, and
the terms not written represent nonuniform magneti-
zation fluctuations.

Eqs. (6) result from the “zero mode theory” that ne-
glects these fluctuations altogether; i.e. the distribution
of the magnetization in the finite system is simply

PL(M)∝Ld/2 exp
{−[M2/M2

b − 1
]2
(L/`T )

d/8
}
.

(8)

In particular, fort = 0 (T = Tc) one obtains [24]
P̃Q(0) = 8π2/Γ 4(1/4) ≈ 0.456947 in d = 5, but
this seemed to be in conflict with the Monte Carlo
results [22,23,25]!

Now recently Chen and Dohm [29,37] criticized all
previous work [22–28], claiming that one must not
take the step in Eqs. (6), (7) that yields Eq. (8), and
suggesting that one always must keep both arguments
of PQ andPχ .

In view of this criticism, it is clearly appropriate
to reanalyze this problem and compare recent very
precise Monte Carlo data with the predictions of [29]
as well. Fitting the susceptibility fort > 0 and large
L to the Curie–Weiss law, we obtain the amplitude
ξ0 ≈ 0.549, taking the lattice spacing as our unit
of length [30]. Fittingχ at Tc for L→ ∞ to the
appropriate power law,̀ 0 = 0.603 is found, and
hence a comparison with the theory of [29] could be
performed without any other adjustable parameters.
Fig. 3 shows that both the Monte Carlo data and
the theory [29] converge towards the “zero mode”
results asL increases: however the Monte Carlo data
lie systematically below the asymptotic curve, and
the theory of [29] lies above it! An expanded view
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Fig. 3. Plot ofχL−5/2 versustL5/2 including Monte Carlo data for
the nearest neighbor Ising lattice ind = 5, for L = 4 andL = 12.
Broken curves show the corresponding predictions of Ref. [29], full
curve is the zero mode result. From Luijten et al. [30].

Fig. 4. Plot ofχL5/2= p0+p1L
−1/2+p2L

−1+p3L
−3/2, with

p0= 1.87±0.02. Dotted curve is the result of [29], which converges
to the same constantp0 asL→∞. From Luijten et al. [30].

of the L-dependence atTc (Fig. 4) shows that in
the accessible range ofL (L 6 22) there are still
pronounced deviations from the asymptotic behavior
Eq. (6) present, but the theory of Chen and Dohm [29]
clearly is not useful in this range of sizes. This failure
may be due either to the neglect of terms of higher
order than contained in the first order of the loop
expansion, or to the presence of other corrections by
which an Ising model might differ from aφ4 theory
on a lattice treated in [29].

4. Concluding remarks

In this work two simple aspects of the bulk crit-
ical behavior of ferromagnetic Ising models were
discussed, and it was shown that both problems
(crossover from one universality class to another, and
finite size scaling above the marginal dimension) still
are incompletely understood. Actually there are still
many more problems about critical phenomena that
deserve attention – interfacial and wetting phenomena,
effects of random quenched disorder, etc., just to name
a few. Progress in computer power and new algorithms
– such as the cluster algorithm [32] emphasized here –
allow to take a new look on these problems with com-
puter simulation methods.
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