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Abstract. The cluster algorithm pioneered by Swendsen and Wang is widely acclaimed for its
ability to suppress dynamic slowing down near a critical point. However, the cluster approach
permits the formulation of Monte Carlo algorithms that yield important additional efficiency gains.
For systems with long-range interactions, Luijten and Blöte have introduced a method in which
the number of operations per spin flip is independent of the number of interactions between a
spin and the other spins in the system. Thus, the computational effort for the simulation of an N -
particle system is reduced from �(N 2) to �(N ), which has helped to resolve several open questions
concerning critical behavior in systems with long-range interactions. As a second example of what
can be achieved with cluster methods, we discuss some illustrative properties of a newly-developed
geometric cluster algorithm for interacting fluids.

INTRODUCTION

The first cluster Monte Carlo algorithm was introduced by Swendsen and Wang over 15
years ago [1] and has had a large impact on the study of critical phenomena in lattice spin
models. Conventional, Metropolis-type algorithms suffer from dynamic slowing down
near the critical point: the autocorrelation time diverges as a power-law with increasing
system size. Thus, the computing time required to generate an independent configuration
increases superlinearly with the system volume and it becomes prohibitively difficult to
obtain accurate data for large system sizes. Since numerical results over an appreciable
range of system sizes are required for an accurate finite-size scaling analysis of critical
phenomena, this behavior has proven to be a limiting factor (cf. Ref. [2] for a more
detailed discussion). The Swendsen–Wang algorithm features nonlocal spin updates
that lead to a rapid decorrelation of spin configurations and consequently to a strong
suppression of critical slowing down. Wolff’s single-cluster implementation [3], which
is now the most widely used variant because of its particular simplicity, improves
the situation even further. It is important to stress that these cluster algorithms go
beyond a mere collective update of a group of spins: such updates will typically lead
to exponentially small acceptance rates. By contrast, the methods discussed here rely on
the Fortuin–Kasteleyn mapping of the Potts model on the random cluster model [4, 5],
which relates the Potts Hamiltonian to a sum over independent clusters of spins. Thus,
upon decomposition of a spin configuration into appropriate clusters, an arbitrary spin
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state can be assigned to each cluster in a rejection-free scheme.
In recent years, it has transpired that cluster Monte Carlo algorithms offer specific

advantages that go beyond the elimination of the problem of critical slowing down.
In particular, it has been shown [6] that, for ferromagnetic interactions, the cluster
construction process can be formulated such that it becomes independent of the number
of interactions per spin, making it particularly efficient for systems with long-range
interactions. Indeed, for systems with power-law interactions, where each of the N spins
in a system interacts with all other spins, a conventional algorithm requires an �(N )

effort to update a single spin. The long-range cluster algorithm reduces this effort to
�(1), making it as efficient as algorithms for short-range interactions. In this sense, the
performance gain is comparable to what has been achieved by particle mesh Ewald [7]
and fast-multipole methods [8, 9] in the case of electrostatic interactions. Since the
suppression of critical slowing leads to an additional efficiency improvement �(Lz),
where z is the dynamic critical exponent, the total speed-up compared to Metropolis-
type algorithms amounts to a factor N · Lz = Ld+z at criticality, which is as large as
108 for the largest systems studied. In this paper, we briefly discuss the basic ideas
underlying the long-range cluster algorithm.

In a rather different development, cluster methods have also been able to overcome
long-standing computational hurdles in off-lattice fluids. We have generalized the geo-
metric cluster algorithm of Dress and Krauth [10] to interacting fluids and demonstrated
that it is capable of achieving very significant performance increases for various classes
of systems. Some illustrative examples are provided below.

CLUSTER METHOD FOR LONG-RANGE INTERACTIONS

Consider a regular short-range Ising model, featuring a d-dimensional lattice structure
with a spin si = ±1 on each lattice site i . Nearest neighbors interact via a ferromagnetic
coupling K . Schematically, Wolff’s version of the cluster algorithm works as follows:

1. Randomly choose a spin si from the lattice. This spin becomes the first member of
a cluster.

2. Consider each spin that interacts with this spin si . It is added to the cluster with a
probability p = 1− exp(−2K ), provided that it has the same sign as si .

3. Repeat step 2 in turn for each spin that is newly added to the cluster, where one now
considers all spins that interact with this spin, rather than with si . This is iterated
until all neighbors of all spins in the cluster have been considered for inclusion.

Upon completion of this process, all spins that are part of the cluster are inverted, and
the next cluster is constructed. This mechanism can be directly generalized to systems
with an arbitrary number of different interaction types per spin, cf. Ref. [11]. In this
case, step 2 above must be repeated for each spin s j that interacts with si , and p depends
on the coupling strength Ki j . This allows application of a cluster algorithm to systems
with ferromagnetic long-range interactions. However, in such systems K will typically
be very small, and hence p ≈ 2K . The magnitude of p can be estimated through a mean-
field approximation, in which the critical coupling Kc satisfies zKc = 1, where z is the
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coordination number. For long-range interactions in a system containing N spins, this
becomes N Kc = 1 or p ≈ 2/N . Thus, �(N ) operations are required to add a single spin
to the cluster, just as in a Metropolis-type scheme.

Now, the important observation is made that the cluster construction process outlined
here can be reformulated in such a way that each operation leads to a spin that is
actually added to the cluster. This will be illustrated here for a one-dimensional spin
chain in which all spins interact via a distance-dependent coupling Ki j = K (|i − j |).
Upon random selection of a starting spin si , all other spins in the system are added to
the cluster with a probability p(si ,s j ) = δsi s j pi j , where pi j = 1 − exp[−2K (|i − j |)]
and the Kronecker delta asserts that the spins have the same sign. For each spin that
is actually added to the cluster, its address is also placed on the stack. When all spins
interacting with the first one have been considered, a new spin is read from the stack and
the process is reiterated until the stack is empty. The spin from which we are currently
adding spins is called the current spin. In order to avoid testing each single spin for
inclusion in the cluster, we first consider the provisional probability pi j appearing in
p(si ,s j ) and introduce the concept of the cumulative probability C( j),

C( j) ≡
j∑

n=1

P(n) (1)

with

P(n) =



n−1∏

m=1

(1− pm)



 pn . (2)

p j ≡ 1−exp(−2K j ) is an abbreviation for p0 j (and K j ≡ K0 j ), i.e., we define the origin
at the position of the current spin. P(n) is the probability that, starting from the current
spin, n −1 spins are skipped and the nth spin is added, provided that it has the same sign
as the current spin. Thus, the next spin j that is provisionally added can be determined
from the cumulative probability by means of a single random number g ∈ [0,1〉: j − 1
spins are skipped if C( j − 1) ≤ g < C( j). If the j th spin indeed has the same sign as
the current spin then s j is added to the cluster. Subsequently, again a number of spins is
skipped before the spin at a distance k > j is provisionally added. Owing to the condition
k > j , the function P must be shifted,

Pj(k) =



k−1∏

m= j+1

(1− pm)



 pk , (3)

and Eq. (2) is simply a special case of Eq. (3). The corresponding cumulative probability
is given by a generalization of Eq. (1),

C j (k) =
k∑

n= j+1

Pj(n) . (4)
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By using the specific form of the probability pi j one finds that this reduces to

C j (k) = 1− exp



−2
k∑

n= j+1

Kn



 . (5)

Thus, the probability that the next spin that will be added lies at a distance in the range
[ j +1,k] is given by an expression that has the same form as the original probability, in
which the coupling constant is replaced by the sum of all the couplings with the spins
in this range! There are various ways to exploit this property [6]. In essence, C j (k) is
equated to a random number and Eq. (5) is solved for k. Thus, each random number
leads to a spin that is actually added to the cluster (provided it has the correct sign). See
also Ref. [12] for further technical details.

The algorithm described here has been applied to address a variety of questions
pertaining to the critical behavior of systems with long-range interactions, which were
hitherto essentially inaccessible to Monte Carlo methods. These include systems with
algebraically decaying interactions [13], where the upper critical dimension, separating
classical from non-classical critical behavior, is a function of the decay rate of the
interactions. This made it possible to resolve a long-standing controversy regarding the
nature of finite-size scaling above the upper critical dimension [14]. Another example
concerns the study of crossover phenomena, which are relevant in critical fluids and
in the demixing behavior of polymer blends. Crossover scaling functions have been
obtained through application of the long-range cluster algorithm [15, 16, 17], permitting
a reanalysis of experimental data [18] and a stringent test of analytical theories [19]. In
addition, the occurrence of a Kosterlitz–Thouless transition in one-dimensional systems
has been demonstrated [20] and an old controversy regarding the boundary between
long-range and short-range criticality has been resolved [21]. Further works have applied
and extended the algorithm to q-state Potts chains [22] and spin layers with dipolar
interactions [23].

GEOMETRIC CLUSTER ALGORITHMS

A radically different cluster approach is based upon the identification of clusters via a
geometric operation, as proposed by Dress and Krauth for hard-sphere fluids [10]. In
this method, a particle configuration is rotated over an angle π around an arbitrary pivot
and then overlaid with the original configuration. Overlapping spheres lead to clusters
of particles, which are exchanged with their counterparts at the opposite side of the piv-
otal point. The non-local character of the particle moves helps in overcoming so-called
jamming problems that plague simulations of liquids containing particles with differ-
ent sizes. If the size asymmetry becomes large, the intrinsic time scales of the different
constituents start to differ widely and the larger species move prohibitively slowly com-
pared to the smaller species. This profound problem affects Monte Carlo and molecular
dynamics simulations alike and has essentially prevented the study of collective phe-
nomena in systems with a size asymmetry (measured in terms of particle diameter ratio)
larger than 10. Although not hindered by large size asymmetries, the method of Dress
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FIGURE 1. Two-dimensional illustration of the interacting geometric cluster algorithm. Light and dark
colors label the particles before and after the geometrical operation, respectively. The small circle denotes
the pivot. a) Initial configuration; b) construction of a new cluster and move of particles 1–3 to new
positions through point reflection with respect to the pivot; c) final configuration.

and Krauth faces a fundamental limitation: it only pertains to particles with hard-core
interactions. Accordingly, every (non-overlapping) configuration has the same Boltz-
mann factor and the formulation of a valid MC scheme is straightforward. The inclu-
sion of additional pair interactions has been attempted by imposing a Metropolis-type
acceptance criterion [24], in which, upon construction, a cluster is only moved with
a certain probability. It is a priori clear, however, that such an approach faces severe
consequences: (i) Smooth interparticle potentials (e.g., Lennard-Jones) cannot be sim-
ulated, as the cluster-building process imposes a repulsive core of infinite strength. (ii)
The Metropolis criterion requires the computationally expensive calculation of all inter-
actions between particles that constitute the cluster and the remainder of the system; for
strong interactions, the large number of “broken” pair interactions will lead to a very
low acceptance probability. (iii) The absence of a relation between actual interactions
and the cluster construction process implies that the percolation threshold will not co-
incide with the critical point, a flaw that has been proven to be fatal in other situations,
such as frustrated systems.

The generalization of the hard-sphere algorithm to fluids of interacting particles
(schematically illustrated in Fig. 1) addresses these issues via a cluster-construction pro-
cedure that takes into account all interactions [25]. The resulting, rejection-free algo-
rithm exhibits several features that make it particularly suitable for the study of colloid–
nanoparticle solutions, binary mixtures, and other fluids in which the constituents have
a large size asymmetry. The efficiency gain that can be reached is illustrated through
the simulation of a mixture of large and small hard spheres, in which the large particles
also have a Yukawa repulsion. Both particle types occur at identical packing fraction 0.1
and have a diameter ratio α. Figure 2(a) shows the energy autocorrelation time as a
function of α, both for Metropolis-type updates and for the interacting geometric cluster
algorithm. Already for a modest size ratio of 7, a performance increase by more than
three orders of magnitude is achieved. Figure 2(b) illustrates that also in the absence of
a size asymmetry the new algorithm yields an improvement. The divergence of the en-
ergy autocorrelation time for a critical Lennard-Jones fluid, which scales as a power law
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FIGURE 2. (a) Energy autocorrelation time in unit of sweeps of large particles as a function of size
ratio. The open squares represent a conventional Metropolis-type method; the circles pertain to the
geometric cluster algorithm. For a further discussion see the text. (b) Ratio of energy autocorrelation
times for Metropolis-type updates and the geometric cluster method in a critical Lennard-Jones fluid, as a
function of linear system size. The efficiency improvement amounts to approximately a factor L2.

of the system size, is suppressed in the geometric cluster algorithm by approximately a
factor L2. This makes this method particularly appropriate for the study of critical fluids.

CONCLUSION

In summary, we have demonstrated that cluster methods not only suppress critical slow-
ing down—a feature for which they rightfully have become famous—but also allow a
rethinking of existing concepts in Monte Carlo simulations. The application of the al-
gorithms described is an area full of opportunities and unsolved issues. The long-range
cluster algorithm can be generalized to vector-spin models (XY , Heisenberg) with alge-
braically decaying interactions, a topic that has received only scant attention. Also the
dynamic critical properties of systems with such interactions, have not been investigated
numerically. We anticipate that the geometric cluster algorithm for interacting fluids will
find widespread application in the simulation of complex fluids.
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