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Chapter 1

Introduction and outline

Among the most challenging problems in theoretical physics are those which involve
a large number of coupled degrees of freedom. In such problems, the macroscopic
properties of a system are determined by microscopic behaviour on many different
length scales, all of which must be taken into account for the solution of the prob-
lem. Examples are quantum electrodynamics, turbulence and critical phenomena.
The latter subject deals with the behaviour of systems near a critical point. From
every-day experience, we know that substances can appear in different phases; e.g.,
water can be a solid, a liquid or a gas. Transitions between these phases can be in-
duced by changing the temperature of the substance or the pressure under which it is
placed. Starting in the gas phase and increasing the pressure while keeping the tem-
perature fixed at some (sufficiently low) value, the substance will at a certain pres-
sure go over to the solid or to the liquid phase. This transition is marked by a sudden
change (a discontinuity) in the density of the substance. However, if we repeat the
same experiment at a higher temperature, the jump in the density will be smaller,
and at some temperature it will even vanish. At this critical point (i.e., at this partic-
ular temperature and pressure) the distinction between the gas and liquid phase has
completely disappeared. Here, some remarkable aspects arise: despite the fact that
the fundamental interactions are short-ranged, they cooperate in such a way that
density fluctuations occur at all length scales. The correlation length, which mea-
sures the size of the largest fluctuations in the system, diverges. This divergence, in
turn, is responsible for the fact that several macroscopic properties are independent
of the microscopic details—they are universal. Indeed, these properties solely de-
pend on a small number of global features of the system under consideration: its di-
mensionality, the number of components of the order parameter, the symmetry of
the interaction and of the order parameter and the range of the interactions. Hence,
at their critical point greatly different physical systems exhibit a close resemblance.
In order to calculate the macroscopic properties, the fluctuations at smaller length
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scales can by no means be neglected. What is the proper way to deal with this phe-
nomenon? How can one explain the universality of critical properties and the way in
which they depend on global parameters? In which way can the universal parameters
be calculated? These questions have plagued theorists for a long time. The relevance
of this problem can hardly be overestimated: gas–liquid critical points, the onset of
superconductivity and superfluidity, magnetic ordering and Bose–Einstein conden-
sation all constitute examples of critical phenomena, whereas also the Higgs mecha-
nism for the generation of quark masses is based on a spontaneous symmetry break-
ing. To handle such problems, Kenneth G. Wilson introduced in 1971 the idea of the
renormalization group.1 He showed that the problem could be tackled by treating
one length scale at a time, i.e., by integrating out the short-distance fluctuations and
subsequently rescaling the remaining part of the Hamiltonian. Upon iteration, this
Hamiltonian then approaches a fixed point and universality emerges from the ex-
istence of such fixed points in the space of Hamiltonians. Furthermore, he demon-
strated that the universal properties can be calculated with the help of methods from
quantum field theory. For these insights, he was awarded the Nobel Prize in Physics
in 1982. References [1, 2] provide a simplified account of the ideas underlying the
renormalization-group theory.

Naturally, the invention of the renormalization-group (RG) theory did not im-
ply the immediate solution of all outstanding problems in the field of critical phe-
nomena. In the first place does this theory rely on several nontrivial assumptions
and hence it is important to justify these assumptions by independent confirmations
of the RG predictions. Secondly, there are problems in which no agreement exists
on the proper application of the RG theory. Furthermore, in general the RG theory
cannot provide us with information on nonuniversal aspects of critical-point phe-
nomena. An alternative tool is provided by computer simulations, the application
of which has greatly been stimulated by the increase of computer power over the last
decades. Among these methods, Monte Carlo simulations enjoy a particular popu-
larity. Because near the critical point the microscopic details of the system are irrele-
vant, it is most convenient to consider spin models, which consist of a lattice structure
with a (classical) spin placed on each lattice site. An additional advantage of these
models is that extremely efficient simulation algorithms have been developed for
them in recent years. The investigation of critical phenomena by means of such nu-
merical calculations requires some particular considerations. Namely, one can only
investigate systems of finite extent, in which the diverging correlation length will be
truncated, such that critical singularities are rounded. However, this hindrance can
be turned into an advantage by invoking the results of RG theory. Indeed, due to
the scale invariance at the critical point, thermodynamic properties scale with the

1Although the concept of renormalization predates the ideas of Wilson, he was the first to apply
them successfully to the field of critical phenomena. See Ref. [1] for a historical review.
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correlation length in a precisely predicted way, from which one can derive the finite-
size dependence of these properties and extrapolate the numerical data accordingly.
This is called finite-size scaling. Thus, considerable effort has been spent in the past
on the verification of renormalization predictions. In particular, attention has been
paid to the dependence of critical properties on the number of spatial dimensions
and on the number of components of the order parameter. However, much more
scarce are studies of their dependence on the range of the interactions. Actually, the
vast majority of the pertinent results are RG calculations and approximate numerical
treatments of one-dimensional systems. The reason for this is evident: the required
computational efforts rapidly grow with increasing interaction range, which until
now has prevented accurate investigation of these systems. It is the main purpose of
this thesis to change this situation.

In Chapter 2 we introduce a new Monte Carlo algorithm for spin models with
(isotropic) long-range interactions. This algorithm forms one of the cornerstones
for the research presented in the remaining part of this thesis. It is an algorithm
of the Wolff-cluster type; as a consequence critical slowing down is virtually elim-
inated. The novelty of this algorithm, however, lies in the fact that its speed is in-
dependent of the number of spin–spin interactions per spin. This may be called a
remarkable property, since in Monte Carlo simulations the evolution of a system is
determined by taking into account all interactions that are present. Thus, the inter-
action range no longer poses a limit on simulations of spin models, which clearly
opens the way to many new applications. We will use this algorithm to study the
critical behaviour of one-component spin models with a variety of spin–spin inter-
actions. The combined effects of the reduction of critical slowing down and the in-
dependence of the number of interactions lead to an increase of the computational
efficiency that, for the largest systems studied, amounts to a factor of the order of
108 with respect to Metropolis-type simulations.

However, before actually applying this algorithm we will first study (Chapter 3)
one of the most well-known spin models: the three-dimensional Ising model. The
important rôle of this model in the field of phase transitions and critical phenomena
justifies a high-precision determination of its universal critical properties. In addi-
tion, this chapter provides a nice illustration of the concept of universality: we inves-
tigate three different models which all are believed to belong to the same universality
class and we show that they indeed exhibit (within the statistical uncertainties) the
same critical exponents. As a side-effect, this allows us to introduce many concepts
that will prove to be useful in the subsequent study of spin models with long-range
interactions.

The following two chapters are then devoted to spin models with interactions
that decay as a power of the distance between the spins. This type of interactions pro-
vides an interesting extension of short-range interactions. On the one hand, these
interactions are essentially identical to short-range forces if their decay is very rapid.
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On the other hand, one recovers classical or mean-field-like behaviour (i.e., the be-
haviour found in systems in which all interactions are identical) if the decay is suf-
ficiently slow. Since the decay parameter can be varied continuously, a smooth in-
terpolation between these two extremes is possible. Indeed, by increasing the power
with which the interactions decay, critical fluctuations are less suppressed, which is
similar to the effect caused by decreasing the spatial dimensionality in systems with
only short-range interactions. In Chapter 4 we treat the regime where the critical
behaviour is essentially classical, for spin models in one, two and three dimensions.
Between this classical regime and the short-range regime, an intermediate region is
expected, which remains hitherto largely unexplored. Even the very boundaries of
this region in terms of the decay rate of the spin–spin interactions are subject to de-
bate. It is the objective of Chapter 5 to clarify many of the open questions in this
regime.

As will be shown, the regimes in Chapters 4 and 5 are separated by the upper
critical dimension. In a parameter space that incorporates both the interaction range
and the dimensionality, short-range models constitute just a special case, where the
pivotal rôle is played by the four-dimensional model. Thus it is natural to study
some high-dimensional models with short-range interactions as well, which is done
in Chapter 6. In this counterpart of Chapter 3 we present an extensive study of the
critical properties of the Ising model in four and five dimensions. We pay consid-
erable attention to the peculiar effects at the upper critical dimension. The close
connections between quantum field theory (QFT) and critical phenomena, as re-
vealed by RG theory, and the fact that QFT operates in four dimensions make this
case particularly interesting. Indeed, it is believed that the universal properties of
the Ising model are described by a scalar φ4 field theory, which is renormalizable in
four dimensions. Furthermore, we verify various renormalization predictions for
the five-dimensional Ising model. These numerical investigations require highly ac-
curate numerical data, which also yield, as a spin-off, very precise estimates for the
critical couplings.

In Chapter 7 we take a different approach to the crossover from Ising-like to
classical critical behaviour. It is expected that a system exhibits such crossover be-
haviour if the difference between the temperature and the critical temperature is in-
creased. However, the precise nature of this behaviour has remained unclarified un-
til now, because it extends over a large temperature range and hence most systems
have left the critical region before completing the crossover. We cope with this situ-
ation by studying systems with a variable interaction range, such that each spin in-
teracts equally with all its neighbours within a distance R. Also these systems can be
dealt with by the algorithm presented in Chapter 2. In this way we can tune the pa-
rameter that determines the crossover behaviour without making the temperature
distance to the critical point too large. This not only allows us to observe the entire
crossover region, but also provides strong evidence for the universal nature of the
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crossover.
This thesis is the result of my research over the last three and a half years. Natu-

rally, my insight in the renormalization-group theory and in critical phenomena has
evolved over time. The extremely lucid lecture notes of the late Shang-keng Ma [3]
have set me on the right track on many occasions. Next, I turned to Daniel Amit’s
book [4], which has become such a dear travel companion to me that is has acquired
the honorary title of “The Green Book”. Indeed, although I started out as a statis-
tical physicist, this book has convinced me of the power of the field-theoretic for-
mulation of renormalization theory (also called renormalized perturbation theory),
which will continue to captivate me for a long time to come. It is well possible that
this thesis reflects this change of perspective at a few instances, but it has been my
concern that clarity be maintained. Finally, it is my hope to have demonstrated that
numerical calculations can provide a very useful extension of theoretical concepts.
However, I also want to state that the converse—numerical work without theoret-
ical knowledge—is an inefficient approach to physical problems and should be left
to computer enthusiasts alone.

References
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Chapter 2

Monte Carlo algorithm for spin
models with long-range

interactions

2.1 Introduction

The study of systems with long-range interactions is notoriously difficult, due to the
large number of interactions that has to be taken into account. This has discouraged
the application of Monte Carlo methods, whereas at the same time only very few ex-
act solutions are available for these models. Furthermore, other numerical analyses
of these systems suffer from serious difficulties. They often truncate the interaction
beyond a certain distance, thus introducing errors in the calculation, or are restricted
to small system sizes, which limits the accuracy that can be obtained in a finite-size
analysis. In this chapter, we present a Monte Carlo method for the simulation of
spin models with long-range interactions which is capable of simulating large sys-
tems within a reasonable amount of computing time. The algorithm, which is based
on the well-known Wolff cluster method [1], does not make any approximation ex-
cept for the inherent statistical errors. In the process of cluster formation the amount
of time per spin visit is independent of the system size, despite the fact that each spin
interacts with all other spins in the system. This fact, together with the reduction of
critical slowing down in cluster algorithms, makes this algorithm very suitable for
the study of critical phenomena in models with long-range interactions. Therefore
it will allow an accurate numerical analysis of a variety of ferromagnetic long-range
models, some of which are considered in this thesis.

The outline of this chapter is as follows. In Sec. 2.2 we start with a brief review of
the Wolff cluster algorithm. Then, two efficient cluster-building algorithms for long-
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range interactions are discussed in Sec. 2.3. We illustrate this Monte Carlo method
in Sec. 2.4 with some simulations of the mean-field Ising model. Section 2.5 contains
generalizations of the algorithm to other systems, such as general O(n)models with
long-range interactions.

2.2 Cluster methods

Cluster algorithms for spin models [2] are based on the Fortuin–Kasteleyn mapping
of the Potts model on a random-cluster model [3, 4]. The Potts Hamiltonian HP is
given by

βHP = −K
∑
〈i j〉
δsis j

(s = 1, . . . , q) , (2.1)

where β = 1/kBT ,
∑

〈i j〉 denotes a summation over all nearest-neighbour pairs and
q is the possible number of states for each spin. The partition function is thus given
by

ZPotts =
∑
{si}

exp(−βHP) . (2.2)

It can be shown that this is equivalent to the Whitney polynomial [5], which gives
the partition function of the random-cluster model,

ZRC =
∑

G

qCvl , (2.3)

where
∑

G denotes a sum over all graphs on the lattice, l denotes the number of
bonds in the graph, v = eK − 1 and C is the number of connected components in
the graph. A connected component consists of sites connected directly or indirectly
by bonds (a single, isolated site is regarded as a cluster as well). Now, the random-
cluster distribution of graphs is reproduced by the Potts model by activating bonds
between parallel spins with a probability v/(1+v), where G is the set of active bonds.
Spins connected by active bonds are said to form a cluster.

All spins belonging to one cluster are in the same state and uncorrelated with all
other spins in the system. Swendsen and Wang [6] were the first to realize that this
can be used to construct an efficient Monte Carlo algorithm, which was subsequently
improved by Wolff [1]. Let us briefly review the Wolff cluster method for the Ising
model. First, a random site is chosen, which contains the first spin of the cluster.
Then bonds are activated between this spin and its neighbours, with probability

p(si, s j) = δsis j

v

1 + v
= δsi s j

(1 − e−K ) , (2.4)
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where K is the Potts coupling between neighbouring spins. This process is repeated
iteratively by activating bonds between each newly added spin and its neighbours,
thus creating a cluster of spins connected by active bonds. Then all the spins in this
cluster are reversed and a new cluster is formed. The great advantage of the Wolff
cluster algorithm for this system compared to the Metropolis algorithm is the dras-
tic change in critical slowing down. For example, for the two-dimensional Ising
model the dynamical critical exponent z is reduced from z = 2.1665 ± 0.0012 [7]
to z ≈ 0.25 [8] and for the three-dimensional Ising model from z ≈ 2.05 [9]
to z ≈ 0.4 [10]. So, roughly speaking, for a system consisting of Ld spins, the
amount of time to reach equilibrium is decreased by a factor O(L2). The dynami-
cal critical exponent for the mean-field Ising model, is reduced from z = 2 [11] to
z = 0 [10, 12]. However, in this case the correlation length ξ does not scale with the
linear system size, but with Ld/4, so the correlation time τ scales as τ ∼ ξ 2 ∼ Ld/2

and critical slowing down is hence reduced by a factor O(Ld/2). This result is in
agreement with the requirement that in the mean-field model only the total number
of particles Ld should appear in the scaling relations.

The Fortuin–Kasteleyn mapping can also be applied to systems with different
interaction strengths by associating a certain type of bond with each type of inter-
action. The corresponding generalization of Eq. (2.3) is then [5]

Z =
∑

G

qCvl1
1 vl2

2 vl3
3 · · · , (2.5)

where now li denotes the number of bonds of class i in the graph and vi = eKi − 1
(Ki is the strength of the coupling between two spins connected by a bond of class i).

This allows the application of the Wolff cluster method to spin models with
an arbitrary number of different interactions, in particular long-range interactions.
With each value of the interaction strength, i.e., with each spin distance, we associate
a different bond class. Then, we activate bonds between each spin in the cluster and
all other spins in the system with a bond-activation probability p that depends on
the interaction strength between the two spins. Once a complete cluster has been
formed, its spins are reversed and the formation of a new cluster is started. Clearly,
this process becomes very time consuming if the range of the spin–spin interactions
becomes large, just as in the case of Metropolis-type simulations. Here, we present a
method in which the number of operations required to activate a bond is indepen-
dent of the number of spins in the system. The efficiency of this method can be illus-
trated by the following simple example. If p were equal for each spin pair, one out of
p−1 spins would be added to the cluster, and it would take O(p−1) ∼ O(L0) opera-
tions per spin to update a configuration, compared to O(Ld ) operations per spin for
a Metropolis algorithm. Taking into account the decrease in critical slowing down,
we see that the efficiency of this method is typically a factor O(Ld+z) larger than the
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conventional Monte Carlo algorithm. Since our method only concerns the cluster-
formation process, it may also be applied to the Swendsen–Wang method [6].

2.3 Building clusters in systems with long-range interactions

2.3.1 Long-range Hamiltonian

In systems with long-range interactions, the Hamiltonian (2.1) is generalized to

βHLR = −
∑
〈i j〉

Ki jδsi s j
, (2.6)

where the sum runs over all spin pairs. As an example, we will take Ki j = f r−(d+σ)
i j

( f > 0), which is one of the most commonly studied long-range interactions and
to which also a large part of this thesis will be devoted. Here ri j denotes the distance
between spins si and s j, d is the dimensionality of the system and σ > 0 is a param-
eter which determines the power-law decay of the interaction. We have written the
exponent as the sum of d and σ to emphasize the fact that the integrated interaction
does not converge for σ ≤ 0.

We now have to devise an algorithm to build a cluster of spins, activating bonds
between each pair of spins with a probability given by Eq. (2.4) in which K is re-
placed by Ki j. For simplicity we discuss here a one-dimensional system, but below
the method will be generalized to arbitrary dimensionalities. We start with a spin on
a randomly chosen site i and activate bonds between this spin and all other spins s j

in the system with a probability p(si, s j ) = δsis j
pi j, where pi j denotes the probability

of activating a bond between two spins in the same state at distance |i − j| (in units
of lattice spacing). Generalizing Eq. (2.4), we find pi j = 1−exp[− f |i− j|−(d+σ)] =
1 − exp(−Ki j). Each time we activate a bond, the corresponding spin is added to
the cluster. Furthermore, the spin address is placed on the stack. This is a list of spin
addresses from which an address is removed once it has been read. When all neigh-
bours of the first spin have been considered, we read a new spin from the stack and
repeat the process. This cycle ends when the stack is empty, i.e., if all neighbours
of all spins in the cluster have been considered. The spin from which we are cur-
rently activating bonds will be called the current spin. Now, the essential point of
our algorithm is the avoidance of considering each single bond. The key element in
achieving this lies in splitting up the bond-activation probability p(si, s j ) into two
parts, namely the Kronecker delta testing whether the spins si and s j are identical1

and the “provisional” bond-activation probability pi j. This enables us to define the

1For convenience, the term “identical” will be used to refer to spins in the same state.
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concept of the cumulative bond probability C(k), from which we can read off which
bond is the next one to be provisionally activated,

C( j) ≡
j∑

n=1

P(n) (2.7)

with

P(n) =

n−1∏

m=1

(1 − pm)


 pn . (2.8)

p j ≡ 1 − exp(−Kj ) is an abbreviation for p0 j (and Kj ≡ K0 j), i.e., we define the
origin at the position of the current spin. P(n) is the probability that in the first step
n − 1 bonds are skipped and the nth bond is provisionally activated. Now the next
bond j that is provisionally activated is determined by a (pseudo)random number
g ∈ [0, 1〉: j − 1 bonds are skipped if C( j − 1) ≤ g < C( j). If the jth bond is
placed to a spin s j that is indeed identical to the current spin si then s j is added to
the cluster (i.e., the jth bond is activated). Subsequently we skip again a number of
bonds before another bond at a distance k > j is provisionally activated. Due to the
requirement k > j we must shift the function P,

Pj(k) =

 k−1∏

m= j+1

(1 − pm)


 pk , (2.9)

and Eq. (2.8) is simply a special case of Eq. (2.9). The appropriate cumulative prob-
ability is now given by a generalization of Eq. (2.7),

Cj(k) =
k∑

n= j+1

Pj(n) . (2.10)

By using the specific form of the bond-activation probability one finds that this re-
duces to

Cj(k) = 1 − exp


−

k∑
n= j+1

Kn


 , (2.11)

i.e., the probability that the next bond will be activated to a spin at a distance in the
range [ j+1, k] is given by an expression that has the same form as the original bond-
activation probability, in which the coupling constant is replaced by the sum of all
the couplings with the spins in this range. In the following subsections we consider
two possibilities of calculating the bond distance k from a given Cj(k).
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2.3.2 Look-up table

The first possibility is the construction of a look-up table. This means that we carry
out the sum in (2.11) explicitly for a large number of distances k, up to a certain
cutoff, and store the results in a table. Then, after drawing a random number, we
can derive the corresponding bond distance from this table. In principle we need
for each value of j another look-up table containing the Cj(k). This is hardly feasible
and fortunately not necessary, as follows from a comparison of Eqs. (2.7) and (2.10).
Namely (assume k > j),

C(k) = C0(k) = C( j)+

 j∏

i=1

(1 − pi)


Cj(k)

= C( j)+ [
1 − C( j)

]
Cj(k) (2.12)

or Cj(k) = [C(k)−C( j)]/[1 −C( j)]. So we can calculate Cj(k) directly from C(k).
In practice one realizes this by using the bond distance j of the previous bond that
was provisionally activated to rescale the (new) random number g to g′ ∈ [C( j), 1〉;
g′ = C( j) + [1 − C( j)]g. Since we only consider ferromagnetic interactions,
lim j→∞ C( j) exists and is smaller than 1, cf. Eq. (2.11).

This method is very fast, since we have to calculate all cumulative probabilities
only once, but it has two major drawbacks. First, we can accommodate only a lim-
ited number of bond distances in our look-up table and must therefore devise some
approximation scheme to handle the tail of the long-range interaction, which is es-
sential for the critical behaviour in the case of slowly decaying interactions (smallσ).
This issue is addressed in the next subsection. Secondly, this method is impractical
in more than one dimension, as the number of distances for which the cumulative
bond probability has to be calculated increases quickly with the dimensionality of
the system (for a fixed cutoff).

Finally, let us mention here one detail that has been omitted in the above dis-
cussion. In Eqs. (2.8) and (2.9), pm denotes the probability of activating a bond to
a spin at distance m. This means that this is the probability of a bond to the right or
to the left. This can be taken into account by doubling the interaction strength Km.
Once a bond distance m has been obtained, its direction can be determined by an
additional random number. Some care has to be exercised to ensure that a bond at
the same distance but in the opposite direction is still allowed.

2.3.3 Continuous bond probability

An alternative for the look-up table exists for interactions which can be explicitly
summed. In those cases, Eq. (2.11) can be solved for k, yielding an expression for
the bond distance in terms of Cj(k), i.e., in terms of the random number g. For the
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interaction Ki j = f |i − j|−(d+σ) the sum appearing in the right-hand side of (2.11)
is (for j = 0) the truncated Riemann zeta function, which cannot be expressed in
closed form. However, we may approximate this sum by an integral,

k∑
n= j

Kn =
k∑

n= j

f

nd+σ ≈ f

∫ k+ 1
2

j− 1
2

dx x−(d+σ) . (2.13)

By replacing the sum by this integral we still have an exact Monte Carlo scheme, but
the interaction has been altered from Ki j to

K(|i − j|) = f

∫ |i− j|+ 1
2

|i− j|− 1
2

dx x−(d+σ) . (2.14)

Since both interactions exhibit the same long-range behaviour, we expect the same
universal properties, e.g., the same critical exponents. However, their short-range
behaviour differs, so all nonuniversal quantities, such as the critical temperature,
will have different values. We can estimate the difference between the discrete and
the continuous interaction by expanding the integrand in Eq. (2.14) in a Taylor se-
ries,

K(m) =
∫ m+ 1

2

m− 1
2

dx
f

xd+σ = Km + K (2)
m

∫ m+ 1
2

m− 1
2

dx
1

2
(x − m)2 + O(K (4)

m )

≈ Km + 1

24
K (2)

m . (2.15)

So up to leading order in 1/m the relative difference between Km and K(m) is given
by

1

24

K (2)
m

Km
= (d + σ)(d + σ + 1)

24m2
. (2.16)

This approach is easily generalized to any number of dimensions. The interac-
tion with a spin at lattice site n is then given by the integral of K over the elementary
d-dimensional (hyper)cube centered around n and the cumulative bond probabil-
ity yields the (not necessarily integer-valued) distance k at which the first provisional
bond is placed. To this end, the sum in (2.11) is replaced by a d-dimensional integral
of the coupling K. As K is isotropic, only an integral over the radius remains, which
runs from the minimal bond distance ( j) up to k. Thus for d = 2 Eq. (2.11) reduces
to

Cj(k) = 1 − exp

[
−2π f

σ

(
1

jσ
− 1

kσ

)]
(2.17)
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and in d = 3 the factor 2π is simply replaced by 4π . Equating Cj(k) to the random
number g we find

k =
[

j−σ + σ

2π f
ln(1 − g)

]−1/σ

. (2.18)

Rescaling of the random number is no longer required: the lowest value, g = 0,
leads to a provisional bond at the same distance as the previous one, k = j. If
g = Cj(∞) = 1 − exp[−(2π f /σ) j−σ] the next provisional bond lies at infinity and
thus g ∈ [Cj(∞), 1〉 yields no bond at all. Once the distance k has been obtained,
d − 1 further random numbers g1, g2, . . . are required to determine the direction of
the bond. In d = 2, we set φ = g1/(2π ). The coordinates of the next provisional
bond (relative to the current spin) are then (rx, ry) = (k cosφ, k sinφ), which are
rounded to the nearest integer coordinates. Finally, the periodic boundary condi-
tions are applied to map these coordinates onto a lattice site. For the next provisional
bond, j is set equal to k (not to the rounded distance!) and a new k is determined. If
no bond has been placed yet, j is set to 1/2, the lowest possible bond distance. Hence
it is possible to find a 1/2 ≤ k <

√
2/2 and an angle φ such that the corresponding

lattice site is the origin. This does not affect the bond probabilities, but it is of course
a “wasted” Monte Carlo step. For d = 3 the process is similar, except that we need
another random number g2 to determine a second angle −π/2 < ψ ≤ π/2, such
that sinψ is distributed uniformly; sinψ = 1−2g2. The bond coordinates are given
by (k cosψ cosφ, k cosψ sinφ, k sinψ).

This approach can also be applied in the one-dimensional case, where the geo-
metrical factor 2π in (2.17) must be replaced by 2, which reflects the fact that bonds
can be put to the left and to the right of the origin. The direction of the bond is then
simply determined by another random number. This approach can be used to cope
with the first problem mentioned at the end of Sec. 2.3.2, namely the limited size M
of the look-up table: beyond the bond distance M the sum in (2.11) is approximated
by an integral. Thus, if the random number g lies in the interval [C(M),C(∞)〉, the
bond distance k is determined from the one-dimensional version of (2.18), where
the lower part of the integral is replaced by an explicit sum

k =
[(

M + 1

2

)−σ
+ σ

(
1

K
ln(1 − g)+

M∑
n=1

1

n1+σ

)]−1/σ

. (2.19)

Here, the geometrical factor is absent, since the expressions in Sec. 2.3.2 are con-
cerned with one direction only. The use of an additional random number may be
avoided by treating “left” and “right” separately in the simulations. The approxima-
tion (2.19) effectively introduces a modification of the spin–spin interaction, which
however can be made arbitrarily small by increasing M. Note that the offset 1/2 in
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the first term ensures a precise matching of the discrete sum and the integral ap-
proximation: the random number g = C(M) = 1 − exp[−K

∑M
n=1 n−(1+σ)] yields

k = M + 1/2 which is precisely the lowest k that is rounded to the integer bond
distance M + 1.

The accuracy of this procedure is further limited by the finite resolution of ran-
dom numbers. Suppose, e.g., that the original random numbers are integers in the
range [0, 232 − 1]. Then the discreteness of the random numbers is no longer negli-
gible for bond distances l such that C(l) − C(l − 1) is of the order 2−32. For higher
dimensionalities, the discreteness of the angles also limits the lattice sites that can be
selected for a provisional bond, but this generally occurs at distances larger than l.
Once the value of l has been determined, with a safe margin, there are various ap-
proaches to this limitation. One may, e.g., draw another random number to deter-
mine the precise bond distance. A simpler approach is to distribute all bonds be-
yond l uniformly over the lattice, in order to prevent that certain lattice sites are
never selected. However, one should take care that such simple approaches do not
modify the critical behaviour in an essential way. If l is relatively small, the error in-
troduced by a random distribution of the bond distances might be larger than the
effect of an interaction which decreases slightly nonmonotonically at large distances.
Furthermore, in order to preserve the symmetry of the lattice, such a uniform dis-
tribution of the bonds should occur outside a square (cube) with sides that are a
multiple of the linear system size instead of outside a circle (sphere) with radius l.

2.3.4 Comparison to conventional cluster algorithms

We may check independently that the probability of activating the first bond at a
distance k, as calculated from the cumulative probability, is equal to that in the con-
ventional approach. We first treat the situation in which all bond-activation proba-
bilities p are equal.

Consider a cluster spin, say s0, with a chain of neighbours denoted s1, . . . , sk, of
which m spins are antiparallel to s0 and l = k − m spins are parallel to s0, among
which sk. In the conventional Wolff cluster algorithm, the probability that sk is the
first spin to be added to the cluster is given by

1m(1 − p)l−1 p = (1 − p)l−1 p . (2.20)

On the other hand, if we use the cumulative bond probability (2.10), this probabil-
ity is calculated as follows. Either the kth spin is selected directly [if the first ran-
dom number lies between C(k − 1) and C(k)] or one of the m antiparallel spins is
selected, say sa, which is of course not added to the cluster. In the latter case, an-
other random number is drawn and a new spin is selected. Again, this may be the
kth spin, or one of the remaining antiparallel spins between sa and sk. Now, let us
show that the sum of these probabilities of adding sk as the first spin to the cluster
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is equal to (2.20). Denote the number of selected, “intermediate”, antiparallel spins
by i. There are (m

i ) possibilities of selecting i intermediate spins. The probability of
selecting sk after each of these sequences of spins is pi(1 − p)m−i(1 − p)l−1 p. The
total probability is the sum over all numbers of intermediate spins

m∑
i=0

(
m
i

)
pi(1 − p)m−i(1 − p)l−1 p = (1 − p)l−1 p , (2.21)

which is indeed equal to (2.20).
Now, we can extend this reasoning to the situation in which not all p are equal.

We assume again that there are m sequentially numbered antiparallel spins and in-
troduce a mapping A[n], such that A[1], . . . , A[i] are the i selected intermediate
spins and A[i+1], . . . , A[m] the remaining antiparallel spins. The factor pi(1−p)m−i

in Eq. (2.21) is now replaced by
∏i

j=1 pA[ j]
∏m

j=i+1(1− pA[ j]) and the problem is re-
duced to proving that the sum over all permutations A and all numbers i ∈ [0, m]
yields unity. Although we cannot use the binomial theorem in this case, it is easily
seen that this statement holds. Namely, for any sequence characterized by the prod-
uct pA[1] . . . pA[i](1 − pA[i+1]) . . . (1 − pA[ j]) . . . (1 − pA[m]) (i < j ≤ m) there exists
an identical sequence except that the intermediate spin A[ j] is selected as well. In the
corresponding product, the factor (1 − pA[ j]) is replaced by pA[ j] and the two prod-
ucts add up to a new product in which the factor for the spin in case is equal to unity.
This procedure can be repeated until all permutations have been added. In words,
this simply comes down to the statement that any intermediate spin is selected or
not, and the total probability for this is of course unity.

2.4 A “trivial” example: the mean-field model

As an illustration of the method described in this chapter, we have carried out a
Monte Carlo simulation of the mean-field model, described by the Hamiltonian

βHMF = − K

2N

∑
i

∑
j 6=i

sis j (s = ±1) , (2.22)

in which N is the number of spins in the system. This model can be regarded as an
extremely long-range system, since each spin interacts equally with every other spin.
It is equivalent to the system described by Eq. (2.6) with Ki j = f r−(d+σ)

i j in the limit
σ ↓ 0, where periodic boundary conditions are employed and the coupling Ki j must
be suitably normalized.2 It has been solved exactly and exhibits a phase transition

2For the one-dimensional case with interactions decaying as n−(d+σ ), this can be easily shown by
calculating the effective coupling between two spins. This yields a sum over all periodic images, which
can be expressed in terms of the generalized Riemann zeta function ζ (s, q) ≡ ∑∞

i=0(i + q)−s (q > 0).
Since limσ↓0 σζ (1 + σ , q) = 1, we find that all spin–spin interactions are equally strong.
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at K = Kc = 1 (see, e.g., Chapter 3 of Ref. [13]; note the difference in the coupling
constant in Eq. (3.1.3) of this reference compared to Eq. (2.22) above). Furthermore,
it has classical values for the critical exponents α, β, γ and δ. It should be noted that
for this particular model a relatively efficient Monte Carlo simulation can be carried
out even with the Metropolis algorithm, since the total interaction energy between
one spin si and all the other spins is simply given by

− K

2N
si

∑
j 6=i

s j = − K

2N
si(M − si) . (2.23)

Here M = Nm = ∑
j s j is the total magnetization. Of course, this is only possi-

ble because the coupling between all spin pairs is equal in this model. In our sim-
ulations, which purely serve as a test for the algorithm described above, we have
not used the total magnetization. For other cluster simulations of this model, see
Refs. [12, 14].

We have carried out Monte Carlo simulations for systems with sizes in the range
2 to 64 000, constructing 106 Wolff clusters per simulation. This took less than 30
hours of CPU time on a modest workstation, of which approximately 20 hours were
spent on the two largest systems, consisting of 32 000 and 64 000 spins, respectively.
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Figure 2.1: Comparison between exact (dashed line) and Monte Carlo data for the
dimensionless amplitude ratio Q at the critical temperature for system sizes in the
range 2 to 64 000. For most systems, the size of the error bars does not exceed the
symbol size. The exact data for system sizes smaller than 10 000 were obtained by
explicit summation over all values of the magnetization, whereas the data for larger
systems were calculated from the finite-size expansion (A.14).



18 C 2: MC   - 

Of the various quantities that were sampled we consider here only the dimensionless
amplitude ratio

Q ≡ 〈m2〉2

〈m4〉 , (2.24)

which is directly related to the fourth-order cumulant introduced by Binder [15].
Figure 2.1 shows the Monte Carlo data for Q(Kc) as a function of the system size to-
gether with exactly calculated values. One observes that the Monte Carlo data con-
form quite well to the exact curve. In the thermodynamic limit, this amplitude ra-
tio takes at the critical temperature the value 402( 3

4 )/0
2( 1

4 ) ≈ 0.45694658 . . . . In
Appendix A (page 195), we derive an expression for Q(Kc) for finite systems to or-
der 1/N by expansion of the partition function. The form of this expansion agrees
with the expression for QN obtained from finite-size scaling [16],

QN = Q∞ + a1Ny′ + a2N2y′ + a3N3y′ + · · ·
+ b1tNyt + b2(tNyt )2 + · · · . (2.25)

Here y′ is the exponent of the leading correction to scaling (which is derived in Ap-
pendix A as well), yt is the temperature exponent and t represents the temperature
field, in which we have also included a correction to scaling,

t = (K − Kc)[1 + b3Ny′
] , (2.26)

where Kc denotes the critical coupling. Note that we have expressed the scaling func-
tion in terms of N . The usual values for the exponents are recovered by replacing N
by Ld.

In Fig. 2.2, Q is plotted versus the spin–spin coupling for a range of system sizes.
Fitting our data for N ≥ 4 to Eq. (2.25), we have obtained the results listed in Ta-
ble 2.1. The estimates for Q, Kc, yt and a1 were obtained while keeping y′ fixed at its
theoretical value. Vice versa, the result for y′ was obtained in a similar analysis, in

Table 2.1: Results of a least-squares analysis of the Monte Carlo data for the mean-
field model. The numbers in parentheses represent the errors in the last decimal
places.

Theory MC

Q∞ 0.45694658 . . . 0.4565 (5)

Kc 1 0.99998 (3)

yt
1
2 0.498 (4)

y′ − 1
2 −0.52 (4)

a1 0.214002 . . . 0.219 (6)
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which the thermal exponent yt was kept fixed. Given the amount of computer time
invested, the accuracy of the Monte Carlo data is very good and the agreement be-
tween the theoretical values and the results of the Monte Carlo simulations is quite
satisfactory.
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Figure 2.2: The dimensionless amplitude ratio Q as a function of the spin–spin cou-
pling for several system sizes. For clarity the following system sizes that were used
in the finite-size analysis have been omitted from the figure: N = 6, 10, 14, 16, 18,
24, 28. The size of the error bars does not exceed the symbol size. Note the large
corrections to scaling for small systems.

2.5 Generalizations

The algorithm described in Sec. 2.3 can be generalized in several ways. First, the
form of the interaction may be modified. As long as the interaction is an integrable
function of the distance, this generalization is completely straightforward. If the in-
teraction is not integrable, one can use a look-up table in the one-dimensional case,
whereas an approximation scheme may be devised for a system of higher dimension-
ality. Secondly, the algorithm may also be applied to long-range XY and Heisenberg
models. The generalization to these systems is as follows. First, for each new clus-
ter a spin-flip direction i is chosen at random. Then each spin which may be added
to the cluster is selected just as in the case of the Potts model, i.e., with a probabil-
ity 1 − exp(−K ), where K is the Potts coupling with this spin. So, the concept of the
cumulative probability can be applied in precisely the same way. However, the condi-



20 C 2: MC   - 

tion in the Potts model that only bonds between identical spins are activated, which
is expressed by the Kronecker delta in Eq. (2.4), must be replaced by the condition
that the bond between s1 and s2 is activated with probability

1 − exp(min{0, Ks1,is2,i})
1 − exp(−K )

. (2.27)

The numerator in this expression is equal to that derived by Wolff [1, Eq. (5)], where
sk,i refers to the projection in direction i of spin sk. It should be noted that the spin
from which we are currently activating bonds, s1, has already been flipped, which
explains the absence of a minus sign in front of K. The denominator comes from
the fact that we have selected spin s2 with a probability 1 − exp(−K ). So once a spin
has been selected, its component in direction i is reversed with a probability given
by Eq. (2.27). In this way, the algorithm described above can be extended to general
O(n) models, just as the original Wolff algorithm.

Furthermore, an extension of this algorithm to the case in which additional
antiferromagnetic interactions are present may be envisaged (cf. Refs. [17, 18]).
Although competing interactions will move the system away from the percolation
threshold and thus annul the advantage of the suppression of critical slowing down,
the gain due to the fact that not every bond has to be considered remains in existence.
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Chapter 3

Critical properties of the
three-dimensional Ising model

3.1 Introduction

The objective of this chapter is twofold. In the first place we present the results of
an accurate study of three models which are expected to belong to the universality
class of the three-dimensional Ising model. Very precise results for the critical prop-
erties of these models are obtained. Secondly, in the course of this chapter we in-
troduce the concepts that will return in many of the investigations presented in later
chapters, such as the derivation of scaling functions and the determination of the
critical point with the help of a universal amplitude ratio. The relative simplicity of
the models treated in the current chapter allows for a particular clear illustration of
these concepts.

As mentioned in Chapter 1, the universality hypothesis states that the nature of
a phase transition is solely determined by global properties of the system, such as its
dimensionality and the symmetry of the order parameter. Thus, it is believed that
most three-dimensional systems with short-range interactions and a scalar order pa-
rameter (such as density or unidirectional magnetization) belong to the 3D Ising
universality class. This implies that the critical exponents, as well as other univer-
sal quantities, are identical for all these models. This universality class comprises, in
addition to anisotropic magnetic systems, also models for binary alloys, gas–liquid
systems and liquid mixtures.

In the case of two-dimensional Ising-like models, the evidence that universality
holds is very strong. However, in three dimensions, where exact results are scarce
and numerical techniques tend to be less accurate than in two dimensions, the sit-
uation is less satisfactory. Numerical uncertainties in the renormalization expo-
nents amount to the order of several times 10−3. Since many years the most accu-
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rate results are those obtained by ε-, coupling-constant and series expansions [1–
11], whereas in recent times quite accurate estimates have also been obtained by
the coherent-anomaly method [12] and the Monte Carlo renormalization-group
method [13, 14]. However, the increasing power of computers as well as the advent
of new algorithms has opened the way to very precise numerical studies of Ising-
like models. As far as the universal properties are concerned, the simulation of spin
models offers a clear advantage because of the availability of highly efficient cluster
algorithms that are easily implemented. This has led to increasingly accurate results
from Monte Carlo-based methods [15–26].

However, slight differences occur between recent results for the scaling dimen-
sions (exponents). One possible explanation is that universality is not satisfied. In
order to solve the issue whether these deviations are real, it is desirable to obtain
more accurate Monte Carlo data for the supposed universal quantities. An impor-
tant obstacle for higher accuracies of these analyses is the presence of corrections to
scaling. The dominant correction is attributed to an irrelevant renormalization ex-
ponent with an approximate value yi ≈ −0.83 [8]. This means that the corrections
decay rather slowly (albeit we will encounter much worse cases in later chapters) and
thus jeopardize the accuracy of the analysis. For this reason, we explore what mod-
ifications of the simple cubic Ising model with nearest-neighbour interactions can
influence the amplitude of these corrections to scaling. If we can thus suppress the
leading irrelevant field, we may expect a decrease of the ill effects due to the correc-
tions to scaling. One can, for instance, choose a different lattice structure. Series
expansions using the body-centered cubic lattice [8] have indicated that corrections
to scaling are relatively small in this model. However, here we prefer to introduce
continuously variable parameters to adjust the irrelevant scaling field.

It is known [27] that the introduction of positive couplings with a range beyond
the nearest neighbours in the simple cubic Ising model leads to a decrease of the
correction-to-scaling amplitudes. We quote some results for the Hamiltonian

H/kBT = − Knn

∑
〈nn〉

sis j − K2n

∑
(2n)

sis j − K3n

∑
[3n]

sis j − K2

∑
2

sis jsksl , (3.1)

where the subscripts 〈nn〉, (2n) and [3n] indicate a sum over nearest-neighbour,
second-neighbour (diagonals of the elementary faces) and third-neighbour pairs
(body diagonals in the elementary cubes), respectively, and 2 indicates a sum over
four-spin products in all elementary faces of the cubic lattice. The associated cou-
plings are denoted by Knn, K2n, K3n and K2, respectively. The spins si can assume
the values +1 and −1. These results were obtained by Monte Carlo simulation on
the Delft Ising System Processor (DISP) [28, 29]; they indicated that the introduc-
tion of positive K2n, K3n or K2 reduces the correction-to-scaling amplitude. Third-
neighbour couplings K3n appear to be quite effective; for a ratio K3n/Knn ≈ 0.4 the
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corrections were found to be small. Considerably stronger second-neighbour cou-
plings are required to obtain a similar effect [27].

Another approach is to introduce a third spin state si = 0: this yields the spin-1
Ising model. The weight of the si = 0 state can be varied by means of a term D

∑
i s2

i
in the Hamiltonian. Preliminary calculations showed that the corrections become
small for D ≈ 0.7. In our actual simulations we have used D = ln 2, for reasons that
will be explained in Sec. 3.2.

Thus, we have selected the following three Ising models: (1) the spin- 1
2 Ising

model with K3n/Knn = 0 (the nearest-neighbour model), (2) the spin- 1
2 Ising model

with K3n/Knn = 0.4 and (3) the spin-1 model with D = ln 2 and nearest-neighbour
interactions. The algorithms used to simulate these models are described in Sec. 3.2.
In addition to corrections to scaling, another obstacle to higher accuracies is the re-
quirement of sufficiently accurate random numbers, in order to avoid biased results.
In Sec. 3.3 we briefly comment on the random-number generator that has been used.
An analysis of the results for the dimensionless ratio Q = 〈m2〉2/〈m4〉 is given in
Sec. 3.4, followed by an analysis of the magnetic and temperature renormalization
exponents in Sec. 3.5. The results for the three models turn out to satisfy univer-
sality: they are equal within the statistical inaccuracies. Assuming universality, Q as
well as the critical points of the three models can be obtained with a better preci-
sion, as is demonstrated in Sec. 3.6. Finally, a discussion of these results in relation
with the existing literature and with fundamental questions concerning universality
is presented in Sec. 3.7.

3.2 Models and algorithms

The present Monte Carlo analysis concerns three different Ising models. These can
be represented in terms of a spin-1 Hamiltonian on the simple cubic lattice,

H/kBT = − Knn

∑
〈i j〉

sis j − K3n

∑
[kl]

sksl + D
∑

m

s2
m , (3.2)

where the subscripts “nn” and 〈i j〉 refer to nearest neighbours and “3n” and [kl] to
third-nearest neighbours (along body diagonals of the elementary cubes), respec-
tively. The spins can assume three discrete values si = 0, ±1. The three models are
specified in Table 3.1.

For D = −∞ the si = 0 states are excluded and thus models 1 and 2 can be
simulated by the Swendsen–Wang (SW) [30], the largest-cluster (LC) [31] or the
Wolff [32] method. In cluster algorithms, one has to “activate” a bond between
two spins si and s j, coupled with strength Ki j, with a probability p(Ki j )δsis j

, where
p(Ki j ) ≡ [1 − exp(−2Ki j)]. The presence of different types of bonds in model 2
thus leads to different bond probabilities but poses no further problems. If the bond
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Table 3.1: The ratio K3n/Knn and the value for D [see Eq. (3.2)] for the three models.

Model # K3n/Knn D Description of model

1 0 −∞ spin- 1
2 model with nn couplings

2 0.4 −∞ spin- 1
2 model with nn and 3n couplings

3 0 ln 2 spin-1 model with nn couplings

is active, sites i and j belong to the same cluster. The simplest way to simulate this
is to draw a random number for each bond and check whether it is smaller than
p(Ki j )δsis j

. Following this procedure, the speed of the algorithm decreases as the
number of interacting neighbours increases. When the couplings (and hence the
bond probabilities) are small, a more efficient procedure is possible, which in essence
is a simplified version of the algorithm described in Chapter 2. As a first step in the
SW or LC cluster formation process one obtains, for each type of bond Ki j, a list of
bonds that should be activated if they connect equal spins. To this purpose, one in-
troduces bond variables bi j = 0 or 1; the probability that bi j = 1 is equal to p(Ki j).
The distribution P(k) ≡ p(1−p)k−1, where we write p as an abbreviation for p(Ki j),
expresses the probability that (k−1) subsequent bond variables equal zero, while the
kth bond variable is one. Thus one random number r can be transformed into an
integer k,

k = 1 + [ln(r)/ ln(1 − p)] , (3.3)

where the square brackets denote the integer part. After evaluation of k, the next
(k − 1) entries in the list of bond variables are set to zero and the kth variable is set
to one. By repetition of these steps a complete list of bond variables (for all bonds
with strength Ki j in the lattice) is obtained. Such lists are generated for each differ-
ent type of bond. After completion of these lists, the cluster formation is trivial. This
procedure was found to improve the speed of the simulation of model 2 consider-
ably. One may still choose between the Swendsen–Wang or largest-cluster method.
The latter method was observed to lead to shorter relaxation times and is therefore
more efficient. The same principle was applied to Wolff-type simulations of model 2.
Random numbers are, as above, transformed into integers k. During the cluster for-
mation, (k − 1) bonds of the pertinent type are skipped and the spin connected to
the kth bond is added to the Wolff cluster provided that it has the right sign. This
leads to a considerably faster Wolff algorithm, in particular because the generation
of high-quality random numbers is relatively time consuming.

In the spin-1 case, transitions between zero and nonzero spin values require spe-
cial attention. It is not immediately obvious how cluster algorithms could produce
these transitions. We follow two different methods for the simulation of the spin-1
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model. The first one uses a hybrid algorithm in which Metropolis sweeps alternate
with cluster steps. The cluster algorithm acts on the nonzero spins only. Since we do
not come close to the tricritical point where the ordered Ising phases meet the spin-
zero phase, the regions of zero spins remain limited in size and we do not expect se-
rious critical slowing down due to the equilibration between zero and nonzero spin
values.

The second method uses a mapping on a spin- 1
2 model. We consider a Hamil-

tonian with two spins ti = ±1 and ui = ±1 on site i (for all i) of the simple cubic
lattice,

Hh/kBT = − M1

∑
〈i j〉
(ti + ui)(t j + u j)− M2

∑
m

tmum . (3.4)

Using the transformation si = (ti + ui)/2 and vi = (1 + ti)(1 − ui)/4, the partition
function of this model is, up to a constant factor,

Zh =
∑
{sk}


∏

〈i j〉
exp

[
4M1sis j

]∏
m

1−|sm|∑
vm=0

exp
[
2M2s2

m

] , (3.5)

with si = 0, ±1. Summation over the allowed values of vm yields a factor 2 if sm = 0.
Thus

Zh = 2N
∑
{sk}

exp


4M1

∑
〈i j〉

sis j + (2M2 − ln 2)
∑

m

s2
m


 , (3.6)

where N denotes the number of spins in the system. This is, apart from the prefactor
2N , precisely the partition sum for Eq. (3.2) for Knn = 4M1, K3n = 0 and D =
ln 2 − 2M2. Equation (3.4) may thus serve for the application of cluster algorithms
to the spin-1 Ising model. The special choice D = ln 2 leads to M2 = 0 so that the
spin- 1

2 Hamiltonian simplifies. We have used three different methods to simulate the
spin-1 model: the Metropolis–cluster (MLC) method, the full-cluster (FC) method
and the Metropolis–Wolff (MW) method. In the Metropolis-type simulations the
transition probabilities were chosen such that after each step the probability of a state
is described by the Boltzmann distribution (so-called heat-bath probabilities). The
MLC method alternates one Metropolis sweep with one largest-cluster inversion and
the MW method alternates one Metropolis sweep with 5 or 10 (depending on the
system size) Wolff steps. The FC method applies largest-cluster flips to the spin- 1

2
representation of the model: no Metropolis sweeps are included here.
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3.3 Random numbers

Significant systematic errors may be introduced in Monte Carlo simulations by using
inadequate random-number generators. It is well known that linear congruential
methods based on the truncation of 32-bit integers are unsuitable for long simula-
tions. Even their period of about 109 would be too restrictive. On the other hand,
also random-number generators based on binary feedback shift registers may intro-
duce serious errors (see, e.g., Refs. [28, 33–36]). In most cases, the production rule
selects two bits from the register and assigns their modulo-2 sum to the new bit.
Thus the deviations from randomness are dominated by three-bit correlations. A
number of algorithms of this type, using 127-bit shift registers with a period in the
order of 1038, have been rejected on the basis of long tests [29] using Metropolis sim-
ulations of the critical Ising model. Recent tests by Ferrenberg et al. [37] have shown
that such deviations also occur when cluster algorithms are used together with ran-
dom generators based on a generalized feedback shift register [38].

It is clear that, for the long simulations implied by the present analysis of the
3D Ising model, the random-number generators should be selected with great care.
All our simulations, both those in this chapter and those in later chapters, employed
random-number generators that are based on extensive research [39, 40]. In the
majority of the simulations we used a generator based on a feedback shift register
with a large length, which was then combined via an exclusive-or operation with
another shift-register-based generator of a different length, in order to suppress the
dominant (three-bit) correlations. These generators used the production rules ai =
ai−9218 ⊕ ai−9689 and bi = bi−97 ⊕ bi−127, respectively, where ai and bi are 32-bit
integers and ⊕ stands for bitwise modulo-2 addition.

The data in Ref. [23] were obtained using a generator that combined the se-
quence ai with random numbers generated by a multiplicative rule. No obvious
discrepancies between those data and our results were observed, nor were there any
systematic differences between the Swendsen–Wang, largest-cluster and Wolff-type
simulations. Also in the case of models 2 and 3 we checked for the presence of sig-
nificant differences between the result of the different types of spin-updating algo-
rithms (see Table 3.2) but none were found. This may be viewed as a confirmation
of the high quality of the random-number generator used.

3.4 A test of universality

We have performed extensive simulations of models 1, 2 and 3, using the cluster
methods described in Sec. 3.2. The total simulation time amounts to approximately
two years on three average workstations. We chose systems with size L × L × L and
periodic boundaries. The lengths of the runs for the various models and methods



3.4. A    29

are given in Table 3.2 for each system size.
We have sampled and analyzed the dimensionless amplitude ratio

QL(Knn) = 〈m2〉2
L

〈m4〉L
, (3.7)

where m is the magnetization density. This quantity, which will play an important
rôle throughout this thesis, is directly related to the Binder cumulant B ≡ −3+1/Q
(see Ref. [41]; several equivalent definitions have been introduced by subsequent au-
thors), which in turns differs by a (nontrivial) factor (L/ξ )d from the renormalized
coupling constant. The finite-size scaling behaviour of QL can be derived within
the framework provided by the renormalization-group theory. By f (t , h, u, L−1) =
L−dF we denote the free-energy density as a function of the temperature and mag-
netic scaling fields, an irrelevant field u and the finite-size field [42, 43]. Here, we
define the free energy as F = ln Z, so without the normal factor −kBT . Its behaviour
under renormalization with a scale factor b is

f (t , h, u, L−1) = b−d f (bytt , byhh, byiu, b/L)+ g(t , h) , (3.8)

where yt, yh and yi are the pertinent renormalization exponents, d = 3 is the dimen-
sionality and g is the analytic part of the transformation. In a φ4 theory this analytic
term does not depend on the magnetic scaling field, as this field only couples to the
uniform magnetization (the k = 0 mode in momentum space). However, in a lat-
tice model this dependence cannot a priori be omitted. By differentiating k times
with respect to h, and setting b = L and h = 0, one obtains

f (k)(t , u, L−1) = Lkyh−d f (k)(Lytt , Lyiu, 1)+ g(k)(t ) , (3.9)

where the dependence on h is no longer needed and therefore suppressed. The ex-
pectation values of the second and fourth magnetization moments require differen-
tiations of the free energy with respect to the physical magnetic field H ,

〈m2〉 = L−d

(
∂2 f

∂H2

)
H=0

(3.10)

and

〈m4〉 = L−3d

(
∂4 f

∂H4

)
H=0

+ 3L−2d

(
∂2 f

∂H2

)2

H=0
. (3.11)

The Ising up–down symmetry implies that h is an odd function of H . Thus the cor-
respondence between the derivatives with respect to h and H is

∂2 f

∂H2
= f (2)

(
∂h

∂H

)2

(3.12)
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Table 3.2: Length of Monte Carlo runs in millions of sampled configurations. SW
stands for Swendsen–Wang, LC for largest cluster and W for Wolff. For SW and LC,
each new configuration corresponds with one cluster decomposition of the lattice.
In the Wolff case, 5 (5W) or 10 (10W) Wolff clusters were flipped before a new con-
figuration was used for data taking. For the spin-1 model (model 3) LC, 5W and
10W are preceded by M in order to indicate a Metropolis sweep through the lattice.
FC indicates the full-cluster algorithm for the spin-1 model; it flips the largest cluster
of a spin- 1

2 version of the model.

Model 1 Model 2 Model 3
L SW LC 5W 10W SW LC 5W 10W FC MLC M5W M10W
3 48 52 200 100 200 100 100 300
4 160 40 200 150 100 100 100 300
5 48 52 200 150 100 100 100 400
6 48 52 200 150 100 100 100 400
7 48 52 200 150 100 100 100 400
8 48 52 200 10 140 100 100 100 400
9 48 52 200 10 140 100 100 100 300

10 48 52 200 10 140 100 100 100 300
11 48 52 200 150 100 100 100 300
12 28 72 200 150 100 100 100 200
13 28 72 200 100 100 250
14 28 72 200 100 100 200
15 20 30 200 50 100 200
16 20 30 150 50 100 200
18 12 38 150 50 50 120
20 20 10 70 50 50 120
22 18 12 70 20 80 120
24 8 12 80 20 80 150
28 10 10 100 20 80 50 50
32 2 18 180 25 75 100
40 10 90 20 80 100
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and

∂4 f

∂H4
= f (4)

(
∂h

∂H

)4

+ 4 f (2)
∂h

∂H

∂3h

∂H3
, (3.13)

where, as before, f (k) stands for ∂k f /∂hk and all derivatives with respect to H are
evaluated at H = 0. In the vicinity of the finite-size limit (t small and L finite), we
may Taylor-expand the right-hand side of Eq. (3.9) in t and u. After the appropriate
substitutions, the finite-size expansion of QL(Knn) follows as

QL(Knn) = Q + a1(Knn − Kc)L
yt + a2(Knn − Kc)

2L2yt

+ a3(Knn − Kc)
3L3yt + · · · + b1Lyi + b2Ly2 + · · · , (3.14)

where the ai and bi are nonuniversal coefficients and y2 = d − 2yh. The last term
is due to the above-mentioned possible field dependence of the analytic part g in
Eq. (3.9). The nonlinear dependence of h on H leads to even more rapidly decaying
contributions, which are omitted. Terms of the same form, but with different expo-
nents, may be due to other (subdominant) irrelevant fields. Because powers of the
geometric factor ∂h/∂H cancel in the first term, Q is a universal constant.

The bulk of the numerical data were taken at couplings Knn = 0.221653,
0.128006 and 0.393410 for models 1, 2 and 3 respectively, close to the critical points.
The results in terms of QL are collected in Table 3.3. A few points at somewhat dif-
ferent couplings were included in order to estimate the (thermal) coefficients ai in
Eq. (3.14). The procedure of the analysis is as follows. We computed QL(Knn) for
several values of L and Knn (near the critical points Kc) for the three models and fitted
Eq. (3.14) to the data. The following parameters were used as input: yt = 1.584 (4)
(from ε-expansion [6]; because the data were taken at couplings so close to the crit-
ical points, the results of the fits are practically independent of the precise value);
yi = −0.83 (5) (from series expansions [8]; the fit for model 1 is rather sensitive
to the precise value) and y2 = −1.963 (3) (from renormalization arguments given
above and the ε-expansion result [6] for the magnetic exponent; the fit is insensi-
tive to the precise value because this is a subdominant correction to scaling). The
results are summarized in Table 3.4. It is stressed that the error margins quoted
here include the uncertainty due to the possible variations in yi, yt and y2 (yh). The
fits for model 1 indicated that system sizes L < 7 should be discarded; they reveal
finite-size effects not included in Eq. (3.14), exceeding the statistical error margins.
The fits for models 2 and 3, which exhibit much smaller finite-size effects, include
system sizes L ≥ 6. The fit for model 2 clearly reveals a correction with exponent
y2 ≈ −1.96. In fact, the large residuals in the absence of such a correction demon-
strated its presence. As indicated above, this correction may arise from the analytic
part of the transformation, although we cannot exclude contributions due to a sec-
ond irrelevant exponent. Since there is no obvious reason why this term should be
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Table 3.3: Numerical results for the dimensionless ratio QL = 〈m2〉2
L/〈m4〉L for the

three Ising models defined in Sec. 3.2. These data were taken at couplings Knn =
0.221653, 0.128006 and 0.393410 for models 1, 2 and 3, respectively.

L Model 1 Model 2 Model 3
3 0.66839 (2) 0.64244 (3) 0.61894 (2)
4 0.65976 (2) 0.63164 (3) 0.62134 (2)
5 0.65373 (2) 0.62642 (3) 0.62242 (2)
6 0.64919 (2) 0.62370 (3) 0.62273 (2)
7 0.64579 (3) 0.62217 (3) 0.62277 (2)
8 0.64318 (3) 0.62126 (3) 0.62288 (2)
9 0.64107 (3) 0.62087 (3) 0.62280 (3)

10 0.63943 (3) 0.62051 (4) 0.62280 (3)
11 0.63803 (3) 0.62045 (4) 0.62275 (3)
12 0.63688 (3) 0.62026 (4) 0.62272 (3)
13 0.63591 (4) 0.62030 (4) 0.62267 (5)
14 0.63514 (4) 0.62034 (5) 0.62262 (5)
15 0.63441 (3) 0.62041 (4) 0.62266 (5)
16 0.63376 (4) 0.62050 (5) 0.62247 (5)
18 0.63270 (4) 0.62057 (6) 0.62248 (7)
20 0.63187 (6) 0.62081 (6) 0.62230 (8)
22 0.63117 (6) 0.62101 (6) 0.62211 (8)
24 0.63052 (6) 0.62098 (7) 0.62201 (7)
28 0.62958 (6) 0.62142 (7) 0.62177 (9)
32 0.62879 (5) 0.62174 (8) 0.62129 (8)
40 0.62761 (8) 0.62250 (9) 0.62050 (9)

absent in general, we have included it in the fitting procedures for models 1 and 3
as well. Furthermore, we observe that the amplitude b1 of the leading correction to
scaling can be suppressed. This amplitude has become small in the spin-1 model
(model 3) and has even changed sign in model 2. In model 1, the amplitude b1 is
relatively large and we have attempted to determine the irrelevant exponent by in-
cluding it as a parameter in the fit. However, for an acceptable fit it was necessary to
include the correction term b2Ly2 . Unfortunately, this frustrated the determination
of yi for model 1: if we fixed y2 = −1.963 the exponent yi shifted toward y2 and if
we included both yi and y2 as free parameters, they approached the same value.

In order to take into account the finite-size effects revealed by the system sizes
omitted in the previous fits, we have repeated our data analysis with an additional
correction to scaling b3Ly3 in Eq. (3.14), where y3 = −2yh. This term, which is due
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Table 3.4: Results of a data analysis of the three models, including system sizes L ≥ 7
for model 1 and L ≥ 6 for models 2 and 3. Besides the amplitude ratio Q, the critical
couplings Kc and the nonuniversal coefficients a1, a2, b1 and b2 are listed.

Model 1 Model 2 Model 3
Q 0.6232 (8) 0.6229 (3) 0.6231 (2)
Kc 0.2216542 (8) 0.1280034 (4) 0.3934214 (8)
a1 0.862 (10) 1.43 (4) 0.659 (6)
a2 0.54 (6) 1.5 (2) 0.352 (15)
b1 0.102 (10) −0.043 (4) 0.001 (2)
b2 0.11 (3) 0.351 (13) −0.018 (9)

to the nonlinear dependence of the magnetic scaling field on the physical magnetic
field, enabled us to include all system sizes L ≥ 5 for models 1, 2 and 3 in the analy-
sis. The results, which are presented in Table 3.5, are consistent with those obtained
previously. Again, the error margins quoted include the uncertainty due to the er-
rors in yi, yt and yh. The results for Q satisfy universality within a margin of less than
10−3. To our knowledge, this is the most precise verification so far for 3D Ising-like
models.

Table 3.5: Results of a data analysis of the three models, where all system sizes L ≥ 5
were used and a third correction term was included. Besides the ratio Q, the nonuni-
versal coefficients a1, a2, b1, b2 and b3 and the critical couplings Kc are listed.

Model 1 Model 2 Model 3
Q 0.6235 (7) 0.6231 (4) 0.6235 (3)
Kc 0.2216547 (8) 0.1280036 (5) 0.3934224 (10)
a1 0.862 (9) 1.43 (4) 0.659 (6)
a2 0.54 (6) 1.5 (2) 0.352 (15)
b1 0.098 (9) −0.045 (6) −0.004 (3)
b2 0.15 (4) 0.37 (2) 0.02 (2)
b3 −4.9 (8) −1.4 (8) −2.0 (7)

3.5 Determination of the renormalization exponents

This section presents finite-size analyses of the energy, specific heat, spin–spin corre-
lations over half the system size, susceptibility, the temperature derivative of the sus-
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ceptibility and the temperature derivative of the ratio QL. Taking h = 0 and b = L
in Eq. (3.8) leads to

f (t , u, L−1) = L−d f (Lytt , Lyiu, 1)+ g(t ) . (3.15)

Expansion in t and u yields

f (t , u, L−1) = L−d
(

f (0,0) + f (1,0)Lytt + 1

2
f (2,0)L2ytt2 + · · ·

+ f (0,1)Lyiu + f (1,1)Lyt+yitu + · · ·
)

+ g(0) + g(1)t + 1

2
g(2)t2 + · · · , (3.16)

where f (k,l) stands for ∂k+l f /∂kt∂ lu. The finite-size scaling behaviour of the energy
and that of the specific heat follow by differentiation.

3.5.1 The energy

In the simulations the nearest-neighbour sum Snn = ∑
〈nn〉 sis j was sampled. For

model 1, this sum is proportional to the energy; for models 2 and 3 its scaling be-
haviour is similar. Its expectation value is equal to

〈Snn〉 = ∂ f

∂Knn
= ∂ f

∂t

∂t

∂Knn
+ ∂ f

∂u

∂u

∂Knn
. (3.17)

The finite-size scaling behaviour of this quantity thus follows by differentiating
Eq. (3.16) and substitution in Eq. (3.17),

〈Snn〉 = c0 + c1(Knn − Kc)+ · · ·
+ Lyt−d [a0 + a1(Knn − Kc)L

yt + a2(Knn − Kc)
2L2yt + · · ·

+ b1Lyi + b2Lyi−yt + · · ·] , (3.18)

where the ai, bi and ci are unknown coefficients. Analysis of the numerical results
for 〈Snn〉 enables a determination of these coefficients and of yt. The dominant sin-
gular term in Eq. (3.18) is the one with amplitude a0. The (Knn − Kc)-dependent
term with amplitude c1 is dominated by the term with coefficient a1 and has there-
fore been omitted from the scaling formula. Since the bulk of the data were taken
very close to the critical points, only linear and quadratic terms in (Knn − Kc) have
been included. Without the correction term with coefficient b2, we had to exclude
system sizes L < 8 in the analysis of model 1 in order to obtain an acceptable resid-
ual. The resulting estimate for yt is: 1.586 (6). Inclusion of the second irrelevant
term enabled us to include all system sizes L ≥ 5. For consistency, we have included
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this term in the data analyses for models 2 and 3 as well. Table 3.6 summarizes the
results obtained from least-squares fits according to Eq. (3.18), at the critical points
listed in Table 3.5, for system sizes L ≥ 5. Since the singular behaviour of 〈Snn〉 is
rather weak, the results yt ≈ 1.59 for each of the three models are relatively inaccu-
rate but consistent with the existing literature. The uncertainty due to the errors in
Kc and yi has been included in the error margins.

Table 3.6: Results of a data analysis of the nearest-neighbour sum 〈Snn〉 for the three
models.

Model 1 Model 2 Model 3
yt 1.599 (8) 1.589 (9) 1.591 (7)
c0 0.99051 (8) 0.66298 (9) 0.59451 (6)
a0 2.14 (6) 2.20 (7) 1.73 (4)
b1 0.14 (15) 0.16 (17) 0.04 (12)
b2 −2.0 (4) −0.6 (4) −0.9 (3)

3.5.2 The specific heat

The fluctuations in Snn are related to the specific-heat-like quantity

cnn = K2
nn

∂2 f

∂K2
nn

= K2
nn

[〈S2
nn〉 − 〈Snn〉2] . (3.19)

We consider f as a function of the scaling fields t and u,

cnn = K2
nn

[
∂ f

∂t

∂2t

∂K2
nn

+ ∂ f

∂u

∂2u

∂K2
nn

+ ∂2 f

∂t2

(
∂t

∂Knn

)2

+ 2
∂2 f

∂t∂u

∂t

∂Knn

∂u

∂Knn
+ ∂2 f

∂u2

(
∂u

∂Knn

)2
]

. (3.20)

Taking the appropriate derivatives in Eq. (3.16) and collecting the leading analytic
and singular terms leads to

cnn = p0 + p1(Knn − Kc)+ · · ·
+ L2yt−d [q0 + q1(Knn − Kc)L

yt + q2(Knn − Kc)
2L2yt + · · ·

+ r1Lyi + · · ·]
+ Lyt−d [s0 + s1(Knn − Kc)L

yt + · · · ] . (3.21)
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The numerical results for cnn of models 1–3 were subjected to a fit of this form with
yi = −0.83 and the Kc values in Table 3.5 as input parameters. The terms with am-
plitudes p1 and s1 are dominated by that with amplitude q1 and were omitted from
the fit formula, as well as quadratic terms in (Knn − Kc). System sizes L < 6 dis-
play finite-size corrections not included in Eq. (3.21) and were discarded. The main
results of these fits are shown in Table 3.7, where the error margins include the un-
certainties in Kc and yi. Also in the present case we find consistent, but inaccurate
values of yt. This may be related to the fact that the leading power of L in Eq. (3.21) is
close to zero, so that this term, which has the coefficient q0, interferes with the term
with coefficient p0.

Table 3.7: Results of a data analysis of the specific-heat-like quantity cnn obtained
from the fluctuations of the nearest-neighbour sum Snn for each of the three models.

Model 1 Model 2 Model 3
yt 1.60 (2) 1.579 (15) 1.59 (2)
p0 −0.8 (7) −0.6 (3) −3 (2)
q0 1.5 (5) 0.8 (3) 3.5 (14)
q1 2.2 (2) 1.39 (12) 3.7 (4)
r1 −0.4 (4) 0.11 (14) 0.0 (9)
s0 −0.4 (3) −0.24 (13) −1.0 (7)

3.5.3 The spin–spin correlation function

In our simulations we have also sampled the spin–spin correlation function g(r),

g(r) = 〈s(0)s(r)〉 , (3.22)

over half the system size (r = L/2), for even system sizes. This quantity can be de-
rived from the free energy F by differentiating with respect to two physical magnetic
fields H0 and Hr, which couple to the spins at positions 0 and r, respectively. We con-
sider the two fields as independent and find

g(r) =
(

∂2F

∂H0∂Hr

)
H0=Hr=0

=
(

∂2F

∂h0∂hr

∂h0

∂H0

∂hr

∂Hr

)
H0=Hr=0

, (3.23)

where h denotes the leading magnetic scaling field and the derivatives with respect to
this field are evaluated at h0 = hr = 0. Using Eq. (3.9) one obtains upon expansion
in t and u the scaling behaviour of the correlation function,

g = L2yh−2d [a0 + a1(Knn − Kc)L
yt + a2(Knn − Kc)

2L2yt + · · ·
+ b1Lyi + · · ·] , (3.24)
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where the coefficients ai and bi are different from those in Eq. (3.18). The volume
factor L−2d results from the fact that both H0 and Hr only couple to a local spin.

We have fitted the terms shown in (3.24) to our data. The large residuals for all
three models strongly suggested the presence of an additional correction to scaling
b2Ly′

. A problem for the determination of y′ is the presence of the leading correc-
tion term b1Lyi . Only in the spin-1 model (model 3), where the amplitude b1 is small
and the term thus may be omitted, a reasonable determination was possible, yield-
ing y′ = −2.1 (1). This could be a second irrelevant exponent, although we have
not observed it in the analysis of the ratio Q or the energy-like quantity Snn. In Q,
it may have been masked by the term b2Ly2 , but this is less likely for Snn, where the
exponent of the second correction term is approximately equal to −2.4. A more con-
vincing explanation can be given by considering correlation functions between local
“blocks” of spins, centered around the positions 0 and r, respectively. In terms of a
real-space renormalization transformation one can easily envisage that such block
correlations arise in the renormalization process. These functions will contain, in
addition to the leading contribution decaying as r−η−1 (where we have introduced
the critical exponent η = 5 − 2yh), contributions coming from spins originally sep-
arated by, e.g., a distance r ± 1, which hence decay as (r ± 1)−η−1. Thus, the total
correlation function can be written schematically as

r−η−1

[
1 +

(
r + 1

r

)−η−1

+
(

r − 1

r

)−η−1
]

, (3.25)

which can be expanded around r, yielding a function of the form r−η−1[1 + zr−2 +
O(r−4)]. Although this is not unlike the expansion postulated by Kadanoff [44] and
Wilson [45], the so-called Operator Product Expansion or Short Distance Expan-
sion (SDE), it should be kept in mind that these expansions were concerned with
two-point correlation functions at short distances, cf. also Refs. [46, Sec. II-2-6]
and [47, Ch. 12]. Whereas the SDE yields higher-order contributions that differ
from the leading contribution to the correlation function by even negative powers of
the wave vector (for large momenta), the expansion mentioned here yields higher-
order contributions differing from the leading singular behaviour by even negative
powers of the spin–spin distance r. The reason for this is that the present expansion
relies on the fact that the distance r between correlated blocks is large with respect to
the difference between r + 1 and r (or the block size). Setting r = L/2 we find addi-
tional corrections in Eq. (3.24) decaying as powers of L−2. This is in good agreement
with the above-mentioned value for y′ and hence we have included this correction in
the scaling formula. Table 3.8 shows the main results of an analysis for system sizes
L ≥ 8, where we have included three correction terms, b1Lyi , b2Ly′

and b3L2y′
, with

the exponents yi and y′ fixed at −0.83 and −2, respectively. We have not included
the term proportional to L2yi because b1 is already quite small. The errors quoted in
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the table include the uncertainties in Kc, yt and yi. The estimates of yh for each of
the three models are consistent and in agreement with the existing literature.

Table 3.8: Results of a data analysis of the spin–spin correlation function g for the
three models.

Model 1 Model 2 Model 3
yh 2.480 (2) 2.482 (3) 2.482 (3)
a0 1.54 (3) 1.09 (3) 0.91 (3)
a1 4.91 (6) 6.14 (10) 2.36 (4)
a2 6.9 (3) 14.4 (7) 2.60 (6)
b1 −0.44 (17) 0.19 (16) 0.02 (15)

3.5.4 The magnetic susceptibility

The magnetic susceptibility χ can be calculated from the average square magnetiza-
tion, which is sampled in the Monte Carlo simulations,

χ = Ld〈m2〉 . (3.26)

Using Eqs. (3.9), (3.10) and (3.12), we find for the finite-size scaling behaviour:

χ = g(2)(t )+ L2yh−d f (2)(Lytt , Lyiu, 1) , (3.27)

which yields, upon expansion in t and u,

χ = c0 + c1(Knn − Kc)+ · · ·
+ L2yh−d [a0 + a1(Knn − Kc)L

yt + a2(Knn − Kc)
2L2yt + · · ·

+ b1Lyi + · · ·] , (3.28)

where the ai, bi and ci are nonuniversal coefficients. In Table 3.9, we present the re-
sults of fits of the susceptibility for the models 1–3 at the critical points listed in Ta-
ble 3.5. For model 1, system sizes L ≥ 8 were included in the analysis and for models
2 and 3, which exhibit smaller corrections to scaling, all system sizes L ≥ 6 were used.
The coefficient c1 in Eq. (3.28) was set to zero in all analyses, because the term con-
taining it is much smaller than the (Knn − Kc)-dependent term with amplitude a1.
The errors include the margins due to the uncertainties in Kc, yi and yt. For each of
the three models the coefficients a0, a1, a2 and b1 are in good agreement with the
corresponding coefficients in Table 3.8.
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Table 3.9: Results of a data analysis of the susceptibility χ for the three models.

Model 1 Model 2 Model 3
yh 2.4812 (11) 2.4817 (10) 2.4826 (9)
c0 −0.6 (2) −0.20 (7) −0.50 (6)
a0 1.559 (16) 1.126 (9) 0.926 (7)
a1 4.88 (6) 6.16 (8) 2.36 (3)
a2 6.9 (4) 14.4 (7) 2.62 (7)
b1 −0.37 (5) 0.14 (3) −0.05 (2)

On the other hand, one might derive the scaling formula for χ from that of the
spin–spin correlation function g, because χ is equal to the spatial integral of g,

χ =
∫

g(r) rd−1dr . (3.29)

Assuming that the integral in Eq. (3.29) preserves the form of the corrections to scal-
ing in g (for η nonzero), we expect the same type of corrections in the correlation
function and the susceptibility. Only the terms proportional to c0, c1, . . . in (3.28),
which arise from the analytical part of the free energy, are absent in Eq. (3.24). These
contributions come from the small-r cutoff in Eq. (3.29). Thus, we have included
in the scaling formula the additional corrections that we observed in the analysis of
the correlation function. As the term proportional to Ly′

interferes with the con-
stant contribution c0, we have only included the correction b2L2y′

. This allowed us
to include system sizes L ≥ 5 for all three models. The results, which are presented
in Table 3.10, are consistent with those obtained in the previous analysis. Just as in

Table 3.10: Results of a data analysis of the susceptibility χ for the three models,
where all system sizes L ≥ 5 were employed and an additional correction to scal-
ing was included in the scaling formula.

Model 1 Model 2 Model 3
yh 2.4812 (11) 2.4810 (14) 2.4817 (13)
c0 −0.4 (2) 0.0 (2) −0.33 (13)
a0 1.560 (15) 1.134 (13) 0.934 (10)
a1 4.88 (6) 6.18 (8) 2.37 (3)
a2 6.9 (3) 14.5 (7) 2.64 (7)
b1 −0.37 (4) 0.10 (6) 0.01 (13)
b2 −4.5 (12) −2.9 (16) −2.6 (13)
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the analysis of the correlation function, we find consistent results for yh, which are
in agreement with the literature. However, the values for yh are more accurate than
those obtained in the previous subsection and our resulting estimate for the mag-
netic renormalization exponent is yh = 2.4815 (15). The error margin amounts to
two standard deviations, in order to take into account a possible arbitrariness in the
fit formula.

3.5.5 The temperature derivative of χ

In the simulations we have also sampled the correlation between m2 and Snn. This
allows us to calculate the temperature derivative of the susceptibility,1

∂χ

∂Knn
= Ld (〈m2Snn〉 − 〈m2〉〈Snn〉) . (3.30)

The scaling behaviour of this quantity can be derived directly from that of the sus-
ceptibility, Eq. (3.28),

∂χ

∂Knn
= c1 + · · ·

+ L2yh+yt−d
[

a1 + 2a2(Knn − Kc)L
yt + 3a3(Knn − Kc)

2L2yt + · · ·

+ b̃1Lyi + · · ·
]

. (3.31)

The term with amplitude b̃1 comes from a term proportional to (Knn −Kc)Lyt+yi , in-
cluded in the ellipsis in Eq. (3.28). Just as in the analysis of the spin–spin correlation
function, the residuals for all three models indicated the presence of an additional
correction to scaling b̃2Ly′

, which indeed follows from the discussion in the previ-
ous subsection. Table 3.11 shows the results of an analysis at the critical points listed
in Table 3.5, where this additional correction was included. All system sizes L ≥ 6
were used. The exponents yi and y′ were kept fixed at −0.83 and −2, respectively.
The error margins include the uncertainties in Kc and yi. The fit yields values for
(2yh + yt) and the results for yt have been obtained by fixing yh at the best estimate
from the previous subsection. This implies an additional error margin of 0.003 for
yt. For models 1 and 3, there is a reasonable agreement between the amplitudes a1

and a2 as shown in Table 3.10 and those in Table 3.11. The differences are explained
from the approximations in the scaling formulae. For model 2, no such agreement
is expected, because an additional term arises in the temperature derivative of the
susceptibility due to the temperature dependence of K3n (the ratio between Knn and
K3n is fixed).

1This refers to the derivative of the scaled susceptibility defined in Eq. (3.26). The actual magnetic
susceptibility carries an additional temperature dependence, since it is defined as χ/kBT .
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Table 3.11: Results of a data analysis of the temperature derivative of the susceptibil-
ity ∂χ/∂Knn for the three models, where all system sizes L ≥ 6 were employed and
an additional correction to scaling was included in the scaling formula.

Model 1 Model 2 Model 3
yt 1.585 (3) 1.584 (4) 1.587 (4)
c1 31 (11) 1 (9) 12 (7)
a1 5.11 (9) 3.73 (6) 2.39 (5)
a2 6.46 (10) 8.04 (9) 2.53 (3)
a3 −2.4 (4) −4.4 (5) −0.53 (5)

b̃1 −2.6 (3) 0.1 (3) −0.1 (2)

b̃2 −13 (3) −6 (2) −5.5 (16)

3.5.6 The temperature derivative of Q

Another quantity of interest arises from the correlation between the magnetization
distribution and the nearest-neighbour sum Snn,

∂Q

∂Knn
= Q

(
2
〈m2Snn〉 − 〈m2〉〈Snn〉

〈m2〉 − 〈m4Snn〉 − 〈m4〉〈Snn〉
〈m4〉

)
. (3.32)

The determination of m and Snn in the simulations enables the sampling of this
quantity with very little additional effort. Returning to Eq. (3.14) and noting that
the ellipses include terms proportional to (Knn − Kc)Lyt+yi and to (Knn − Kc)Ly2 , we
obtain the finite-size scaling behaviour

1

Q

∂Q

∂Knn
= Lyt

[
u0 + u1(Knn − Kc)L

yt + u2(Knn − Kc)
2L2yt + · · ·

+ vLyi + wLy2−yt + · · ·] . (3.33)

The numerical data for the three models were subjected to a fit on the basis of
Eq. (3.33), where we have included system sizes L ≥ 7 for model 1 and L ≥ 5 for
models 2 and 3. In this case the leading power of L stands well apart from the less
singular terms and the results for yt (Table 3.12; uncertainties in Kc, yi and yh are in-
cluded in all error margins) appear to be more accurate than those in the preceding
subsections. The results suggest that the correction due to the leading irrelevant field
is very small. Therefore we have repeated our analysis with the coefficient v fixed to
zero. We expect this to work especially well for models 2 and 3, where the irrelevant
field is notably smaller than in the first model. Indeed, we have obtained accurate
and consistent results for the models 2 and 3, as shown in Table 3.13. These results,
together with those presented in Table 3.12, lead us to our final result, yt = 1.587 (2).
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Just as in the final result for yh in Sec. 3.5.4, we quote here an error margin of two
standard deviations. Both for model 1 and for model 3 there is a reasonable agree-
ment between the quantity u0 (Table 3.12) and a1/Q (Table 3.4).

Table 3.12: Results of a data analysis of the derivative of the quantity Q with respect
to the nearest-neighbour coupling Knn.

Model 1 Model 2 Model 3
yt 1.589 (2) 1.587 (2) 1.5878 (14)
u0 1.341 (14) 1.351 (9) 1.057 (6)
u1 −0.21 (3) 0.00 (5) −0.012 (9)
u2 −10.7 (6) −28.3 (11) −4.80 (12)
v −0.01 (6) 0.00 (3) 0.02 (2)
w −0.5 (2) 0.46 (8) −0.13 (5)

Table 3.13: Results of a data analysis of the derivative of the quantity Q with respect
to the nearest-neighbour coupling Knn for models 2 and 3, where the leading cor-
rection to scaling has been omitted.

Model 2 Model 3
yt 1.5868 (3) 1.5867 (2)
u0 1.3512 (11) 1.0623 (7)
u1 0.00 (5) −0.013 (9)
u2 −28.3 (11) −4.81 (12)
w 0.457 (15) −0.091 (9)

3.6 Simultaneous fits for the three models

Considering the results in the preceding sections, it is reasonable to assume now that
universality is exactly satisfied for the three models under investigation. Thus we
have made a fit of the combined data for the ratio Q, allowing only single values
of Q and yi for the three models. The other parameters a1, a2, Kc, b1 and b2 [see
Eq. (3.14)] are nonuniversal and occur in triplicate. Now, system sizes L < 8 had to
be discarded, except when an additional correction to scaling proportional to L−2yh

was added to the scaling formula. In the latter case, all system sizes L ≥ 5 could be
included. Some of the results are summarized in Tables 3.14 and 3.15, respectively,
where the error margins include the uncertainty introduced by the error in yt and yh.
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Table 3.14: Results of a data analysis assuming universality of QL = 〈m2〉2
L/〈m4〉L

for the three investigated Ising models. System sizes L ≥ 8 were included in the fit.
The table lists nonuniversal parameters: the critical points and the amplitudes of the
two correction terms. Furthermore, this analysis yielded the universal parameters
Q = 0.6232 (2) and yi = −0.78 (3).

Model 1 Model 2 Model 3
Kc 0.2216550 (6) 0.1280037 (4) 0.3934217 (8)
b1 0.086 (8) −0.040 (5) −0.001 (2)
b2 0.18 (3) 0.34 (2) 0.000 (14)

Table 3.15: Results of a data analysis assuming universality of QL = 〈m2〉2
L/〈m4〉L

for the three investigated Ising models. System sizes L ≥ 5 were included in the fit.
The table lists nonuniversal parameters: the critical points and the amplitudes of the
three correction terms. Furthermore, this analysis yielded the universal parameters
Q = 0.6233 (2) and yi = −0.82 (3).

Model 1 Model 2 Model 3
Kc 0.2216546 (5) 0.1280039 (4) 0.3934220 (7)
b1 0.096 (7) −0.046 (5) −0.002 (2)
b2 0.15 (3) 0.38 (2) 0.007 (12)
b3 −4.9 (8) −1.7 (7) −1.7 (5)

Let us now compare the results of the various fits. In the first place, we see that
the results in Tables 3.14 and 3.15 are consistent, just as was the case for Tables 3.4
and 3.5 in Sec. 3.4. Also the values for the universal quantity Q, 0.6232 (2) and
0.6233 (2), respectively, agree. Secondly, the simultaneous fit with only the first two
corrections to scaling (Table 3.14) yields results that are consistent with those pre-
sented in Table 3.4. Only the amplitude b2 and the critical coupling Kc for model 1
appear to be somewhat too low in Table 3.4, as we already had seen from the second
fit in Sec. 3.4. Finally, when we compare the results in Tables 3.5 and 3.15, i.e., in-
cluding a third correction to scaling, as well as the corresponding Q values, we see a
very good agreement. These comparisons, in addition to the fact that the term b3Ly3

allowed us to include all system sizes L ≥ 5, lead us to the conclusion that the fits
presented in Table 3.15 can be considered as the most accurate results. In addition
to the nonuniversal constants given in the table and the universal amplitude ratio Q,
this analysis yielded the (universal) irrelevant exponent yi = −0.82 (3). This value is
in very good agreement with that obtained by Nickel and Rehr [8]. Although there is
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one more unknown (yi), the results for Q and Kc obtained in this section are more
accurate than those of the three separate fits. One of the reasons is that the fit for
model 3 is insensitive to the value of yi, so that, e.g., Q is determined accurately.

3.7 Discussion and conclusion

We summarize our final results for the renormalization exponents: yt = 1.587 (2),
yh = 2.4815 (15), yi = −0.82 (6). To allow for any residual dependences on the
choice of the fitting formulae, we list error margins of two standard deviations. In
Table 3.16 we compare our results with a number of recent estimates obtained by
various methods. Our result for the temperature exponent is markedly lower than
those of Baillie et al. [22] and Gupta and Tamayo [14], which were both obtained
by the Monte Carlo renormalization-group method. This could be explained by a
violation of hyperscaling. However, the accurate agreement between our result and
those of coupling-constant expansion [2], ε-expansion [6], series expansions [8, 9]
and the coherent-anomaly method [12] makes this explanation less likely. Gupta
and Tamayo view their result as support for the notion that the exponents are ratio-

Table 3.16: Some recent results for the renormalization exponents. The estimate for
yi from Ref. [3] has been calculated from the value for θ = −yi/yt presented in this
reference and the value for yt as calculated in the present work.

yt yh yi

Present work 1.587 (2) 2.4815 (15) −0.82 (6)
Hasenbusch and Pinn [26] 1.585 (3)
Butera and Comi [11] (biased) 1.584 (2) 2.481 (2)
Butera and Comi (unbiased) 1.577 (5) 2.481 (5)
Talapov and Blöte [25] 2.4808 (16) −0.81 (4)
Gupta and Tamayo [14] 1.600 (3) 2.488 (3) −0.7
Blöte et al. [13] 1.585 (3) 2.481 (1)
Kolesik and Suzuki [12] 1.586 (4) 2.482 (4)
Guttmann and Enting [10] 1.580 (3)
Landau [24] 1.590 (2) 2.482 (7)
Baillie et al. [22] 1.602 (5) 2.4870 (15) −0.8 to −0.85
Nickel [9] 1.587 2.4823 −0.84
Nickel and Rehr [8] 1.587 (4) 2.4821 (4) −0.83 (5)
Le Guillou and Zinn-Justin [6] 1.584 (4) 2.4813 (13)
Chen, Fisher and Nickel [3] −0.86 (8)
Le Guillou and Zinn-Justin [2] 1.587 (4) 2.485 (2) −0.79 (3)
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nal numbers. However, we remark that at least the simple value yt = 8/5 is incom-
patible with our estimate. We notice that our result for yt is somewhat higher than
the recent series-expansion result of Guttmann and Enting [10]. Also the thermal
exponent of Butera and Comi [11] lies markedly lower, but this discrepancy shrinks
considerably when the critical coupling of Ref. [25] is used (see the entry labeled “bi-
ased”). The result for the magnetic exponent is also in good agreement with most
other estimates, although again the results of Baillie et al. and of Gupta and Tamayo
lie significantly higher than the majority of the results. Also the result of Le Guil-
lou and Zinn-Justin obtained by coupling-constant expansion [2] seems somewhat
too high. The results for the leading irrelevant exponent are not very accurate, but
mostly consistent. In Ref. [14] no explicit error estimate is given for yi, but the nu-
merical data suggest that it is of the order of 0.04. This implies a considerable devi-
ation from the remaining estimates. For easy reference, Table 3.17 summarizes the
exponents α, β, γ , δ, η, ν and θ as calculated from our results for yt, yh and yi, on
the assumption that the hypotheses of scaling and hyperscaling are valid.

Table 3.17: The standard critical exponents as well as Wegner’s correction-to-scaling
exponent θ as calculated from our best estimates for yt, yh and yi.

Exponent Expressed in RG exp. Value
α 2 − d/yt 0.110 (2)
β (d − yh)/yt 0.3267 (10)
γ (2yh − d)/yt 1.237 (2)
δ yh/(d − yh) 4.786 (14)
η 2 − 2yh + d 0.037 (3)
ν 1/yt 0.6301 (8)
θ −yi/yt 0.52 (4)

Furthermore, we can calculate the Binder cumulant B (see Sec. 3.4) from our es-
timate for Q, which yields B = −1.3956 (10). Only few accurate results are available
for this quantity (see, e.g., Ref. [48] for a review) and one of the most accurate es-
timates until now is B = −1.403 (7) [49]. Our result is in agreement with this and
other estimates, but its accuracy is markedly higher.

Table 3.18 presents a comparison of recent results for Kc of the spin- 1
2 nearest-

neighbour Ising model. Again, it should be noted that the error margin of the result
obtained in the present work amounts to two standard deviations. It can be seen
that the amplitude ratio Q, which is used in this work, provides a good means of
obtaining an accurate estimate for the critical coupling. We conclude that the con-
jecture of Rosengren [50] is not correct (see also Ref. [51]). The result of Ferrenberg
and Landau deviates by 1.8 combined standard errors, but the newest estimate of
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Table 3.18: Summary of recent results for the critical point of the spin-1
2 Ising model

with nearest-neighbour couplings.

Reference Value
Present work 0.2216546 (10)
Butera and Comi [11] 0.221663 (9)
Talapov and Blöte [25] 0.2216544 (3)
Gupta and Tamayo [14] 0.221655 (1)
Landau [24] 0.2216576 (22)
Blöte and Kamieniarz [23] 0.221648 (4)
Baillie et al. [22] 0.221652 (3)
Livet [52] 0.2216544 (10)
Ferrenberg and Landau [21] 0.2216595 (26)
Ito and Suzuki [20] 0.221657 (3)
Blöte et al. [17] 0.221652 (5)
Rosengren (conjecture) [50] 0.2216586 (0)

Landau differs by only 1.2 standard deviations from the result presented here. The
difference with Ref. [23] is 1.6 standard errors and is partly due to statistical errors
(the data used in this work include those of Ref. [23] but are much more accurate
and include L = 40 data) and partly because a term with exponent y2 was not in-
cluded in the scaling formula for the ratio Q. The result of Ref. [25] is based on a
superset of the data used in this chapter.

In summary, we have presented strong evidence that the three models investi-
gated in this chapter belong to the same universality class. Thus, for the determi-
nation of universal quantities, one has the freedom to choose a model in which the
corrections to scaling are small. For this purpose the spin-1 model has proven to be
particularly useful. Also the introduction of additional third-neighbour couplings
in the spin- 1

2 model is a viable route, although the change of sign of the leading cor-
rections to scaling (compared to those in the nearest-neighbour Ising model) sug-
gests that the ratio between the third-neighbour and nearest-neighbour couplings
should be somewhat smaller than 0.4.
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Chapter 4

Critical behaviour of spin models
with algebraically decaying

interactions I
At and above the upper critical

dimension

4.1 Introduction

As a first application of the algorithm presented in Chapter 2 we investigate spin
models with algebraically decaying interactions. The critical behaviour of these
models has attracted much attention during the last three decades. For the one-
dimensional case, some analytical results have been obtained [1–11], as well as a
number of numerical results. The numerical results apply to both inverse-square
interactions [12–15] and general algebraically decaying interactions [16–27]. Spe-
cial mention deserves the work by Anderson, Yuval and Hamann [28–31], which
greatly stimulated the interest in spin chains with long-range interactions. These
authors also developed a renormalization-like approach to the one-dimensional
inverse-square model [30, 31]. Further renormalization-group studies of this par-
ticular case are presented in Refs. [12, 32–34]. A major contribution was made by
Fisher, Ma and Nickel [35] and Sak [36], who obtained renormalization predic-
tions for the critical exponents of models of general dimensionality d < 4 with
algebraically decaying interactions (obtained independently by Suzuki et al. [37]).
Other works concerning d > 1 are two conjectures on, respectively, the boundary
between long-range and short-range behaviour and the boundary between classical
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(mean-field) and nonclassical behaviour, both by Stell [38], a (refuted) conjecture by
Griffiths [39], a rigorous confirmation of the upper critical dimension by Aizenman
and Fernández [10] and a variational approach to the Ising model with long-range
interactions [40]. Furthermore, Monte Carlo simulations have been carried out for
one particular choice of the spin–spin interaction in a two-dimensional model [41].
However, to our knowledge, neither any further verifications of the renormaliza-
tion predictions nor any other results are available for higher-dimensional (d > 1)
models. To conclude this summary, we mention that the one-dimensional q-state
Potts model with long-range interactions has been studied analytically [9, 11], nu-
merically [42, 43] and in a mean-field approximation on the Bethe lattice [44].

Why are these models interesting? In the first place from a fundamental point
of view: they enable us to study the influence of the interaction range on the critical
behaviour, which is the main subject of this thesis. For example, in one-dimensional
systems long-range order is only possible in the presence of spin–spin interactions
which decay sufficiently slowly. In the borderline (inverse-square) case, the 1D
model displays a remarkable behaviour: at the critical temperature the order pa-
rameter exhibits a finite jump (see Sec. 4.2), but the free energy has an essential
singularity such that all thermal properties are smooth. In this sense, the phase
transition can be regarded as the one-dimensional analog of a Kosterlitz–Thouless
transition [45, 46], although the jump in the magnetization is not present there, as
follows from the Mermin–Wagner theorem [47]. Just as d = 2 is the lower crit-
ical dimension for the two-dimensional XY model with short-range interactions,
σ = 1 is a critical decay rate in a one-dimensional system with interactions decay-
ing as r−(1+σ), see Ref. [32]. With respect to higher-dimensional systems, we note
that the decay rate of van der Waals forces in realistic three-dimensional systems
is only slightly faster than at the boundary between short-range (Ising-like) and
long-range critical behaviour. The question of criticality in ionic systems, where
the (screened) Coulomb interactions might lead to effectively algebraically decay-
ing interactions, appears still open to debate [48–50]. It has also been claimed that
exponents in the long-range universality class have been observed experimentally
in a ferromagnetic phase transition [51]. Recently, it has been derived that critical
fluctuations may give rise to long-range Casimir forces (decaying much more slowly
than van der Waals interactions) between uncharged particles immersed in a criti-
cal fluid [52]. Furthermore, it was shown by Anderson and Yuval [28, 29] that the
Kondo problem corresponds to a one-dimensional Ising model with a combina-
tion of inverse-square and nearest-neighbour interactions. Yet another application
follows from Ref. [22], where it was shown that random exchange (Lévy-flight)
processes can generate effective interactions which decay algebraically. Hence, the
universal critical properties of the nonequilibrium steady state of these systems are
those of the long-range equilibrium Ising models studied in this and the following
chapter. Finally, these models allow us to use low-dimensional systems to study
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phenomena above the upper critical dimension, since the upper critical dimension
can be varied by tuning the decay rate of the interaction.

Below, we present accurate numerical results for Ising systems with algebraically
decaying interactions in one, two and three dimensions. Until now, the long-range
character of the spin–spin interactions has been the main bottleneck for the exami-
nation of these systems by means of numerical methods (and, in fact, also for their
analytical solution). All previously published numerical results therefore rely on
various extrapolations based on data for small systems. However, our novel Monte
Carlo algorithm for the first time enables us to efficiently simulate these systems. The
high accuracy of the results opens several perspectives: i) verification of the renor-
malization predictions for the critical exponents; ii) accurate observation of loga-
rithmic corrections at the upper critical dimension; iii) first estimates of the critical
temperatures of two- and three-dimensional systems with long-range interactions;
iv) verification of previously obtained estimates of the critical temperatures of one-
dimensional systems, which in addition implies a check on the various extrapola-
tion methods that have been developed; v) verification of predicted bounds on the
critical temperatures; vi) verification of a conjecture on the behaviour of the critical
temperature as a function of the decay parameter. Another problem one encounters
in the simulations is the large parameter space: the simulations for a set of different
temperatures and system sizes have to be repeated for a range of values of the decay
parameter and for d = 1, 2, 3. The total computing time dedicated to the results
presented here amounts to approximately two CPU years on a modern workstation.

The outline of this chapter is as follows. In Sec. 4.2, we sum up the known
rigorous results for the Ising chain with long-range interactions. We review the
renormalization-group (RG) scenario of these models in Sec. 4.3 and derive the
finite-size scaling behaviour of several quantities. These scaling functions include
the corrections to scaling, both at and above the upper critical dimension. Our nu-
merical results are presented and analyzed in Sec. 4.4 and compared with previously
obtained results. Finally, we summarize our conclusions in Sec. 4.5.

4.2 Rigorous results for the one-dimensional case

For the one-dimensional case, the Hamiltonian is given by

H =
∑

i j

J(i − j)sis j , (4.1)

where the sum runs over all spin pairs. Since we are interested in algebraically de-
caying interactions, we have J(n) ∝ n−α . To ensure that the energy of the system
does not diverge, it is required that α > 1. In 1968, Ruelle [1] rigorously proved the
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absence of long-range order in a spin chain with ferromagnetic spin–spin couplings
J(i − j) such that the sum

N∑
n=1

nJ(n) (4.2)

does not diverge in the limit N → ∞. In the case of algebraically decaying in-
teractions, this implies the absence of a phase transition for α > 2. Shortly later,
Dyson [2] proved the existence of a phase transition if the sums

∑N
n=1 J(n) and∑N

n=1(ln ln n)
[
n3J(n)

]−1
both converge, for positive and monotonically decreasing

J(n). In particular, a phase transition occurs for J(n) ∝ n−α with 1 < α < 2.
This partly corroborated the conjecture of Kac and Thompson [53], viz. that there
is a phase transition for 1 < α ≤ 2. Furthermore, Dyson [3] was (as were—much
later—also Rogers and Thompson [6]) able to replace Ruelle’s condition with a
stronger one, which however still left the case α = 2 undecided. This also holds
for an even more stringent criterion by Thouless [4], who generalized the argument
of Landau and Lifshitz [54] for the absence of a phase transition in an Ising chain
with short-range interactions. However, Thouless argued on entropic grounds that
if a phase transition exists for α = 2, the magnetization must have a discontinu-
ity at the transition point. This was later dubbed the “Thouless effect” by Dyson,
who proved it to occur in the closely related hierarchical model [55]. Simon and
Sokal made Thouless’ argument partially rigorous [5], but later Aizenman et al. [9]
showed that, although a discontinuity in the order parameter is indeed present if
there is a phase transition, his argument does not account for this. Namely, Thou-
less had assumed that the spin–spin correlation function 〈s0sr〉 − 〈s0〉〈sr〉 vanishes
in the limit r → ∞, whereas actually the critical exponent η is equal to 1 in this
case. Meanwhile, Fröhlich and Spencer [7] had been able to rigorously prove the
existence of a phase transition in the borderline case and thus to corroborate the
Kac–Thompson conjecture for α = 2 as well. Another interesting point is the rigor-
ous proof for the existence of an intermediate ordered phase in the one-dimensional
model with inverse-square interactions, where the two-point correlation function
exhibits power-law decay with an exponent that varies continuously in a finite tem-
perature range below the critical temperature [11].

4.3 Renormalization-group study of the critical behaviour

Already in a very early stage of the history of the ε-expansion, Fisher, Ma and Nickel
analyzed the critical behaviour of d-dimensional systems (d < 4) with long-range
interactions decaying as r−(d+σ), with σ > 0. [35] They concluded that the upper
critical dimension is given by du = 2σ , as was previously conjectured by Stell [38]
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and later rigorously proven by Aizenman and Fernández [10]. For more slowly de-
caying interactions, 0 < σ < d/2, the critical behaviour is classical, whereas the crit-
ical exponents assume nonclassical, continuously varying values for d/2 < σ < 2.
For σ > 2 they take their short-range (Ising) values. Sak [36], however, found that
already for σ > 2 − ηsr the critical behaviour is Ising-like, where ηsr denotes the ex-
ponent η in the corresponding model with short-range interactions. Several authors
have in turn contested the correctness of Sak’s scenario. We will pay ample attention
to this issue in the next chapter. Here we concentrate on the classical range, for which
we have performed extensive Monte Carlo simulations of spin models in d = 1, 2, 3.
For completeness, we mention that several of the RG results had already been antic-
ipated by Joyce, who generalized the spherical model (exactly solved by Berlin and
Kac [56]) to the case of long-range interactions [57].

First, we outline the renormalization-group scenario for these models, in order
to derive the finite-size scaling relations required to analyze the numerical data. In
particular we discuss some specific issues arising above the upper critical dimension.
We start from the following Landau–Ginzburg–Wilson Hamiltonian in momentum
space,

H(φk)/kBT = 1

2

∑
k

(
jσkσ + j2k2 + r0

)
φkφ−k

+ u

4N

∑
k1

∑
k2

∑
k3

φk1
φk2
φk3
φ−k1−k2−k3

− h
√

Nφk=0 , (4.3)

where the φk are the Fourier components of the order parameter φ(r). In the case of
the Ising model, φ(r) is just a real scalar field, but the formulation can straightfor-
wardly be extended to the case of an n-component order parameter. In Chapter 6 we
will discuss the underlying ideas of the renormalization-group theory in some more
detail. The jσkσ term arises from the Fourier transform of the interactions decay-
ing as r−(d+σ). The j2k2 term normally representing the short-range interactions is
included because it will appear anyway in the renormalization process and will com-
pete with the long-range term [36]. h is the magnetic field, r0 is a measure for the
temperature distance to the critical point and the term proportional to u keeps the
spin φ finite when r0 ≤ 0. Under a renormalization transformation with a rescal-
ing factor b = el , the term jσkσ is transformed into jσk′σ , with k′ = kb. When the
long-range forces determine the critical behaviour, we must keep the coefficient of
the kσ term fixed and rescale the fieldφk toφ′

k′ = b−σ/2φk. Thus, the k2 term changes
as bσ−2, which indeed suggests the conclusion that for σ < 2 the long-range forces
dominate (here we ignore the subtleties discussed in Chapter 5, which may modify
this conclusion near σ = 2). The coefficient of the φ4 term changes proportional
to b2σ−d. Hence, the Gaussian fixed point dominates the renormalization flow for
σ ≤ d/2. This is the situation treated in this chapter. Figure 4.1 displays the regions
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of classical and nonclassical critical behaviour as a function of d and σ . We now pro-
ceed to discuss the renormalization equations. These equations describe how the co-
efficients r0 and u appearing in Eq. (4.3) change under a renormalization transfor-
mation with a rescaling factor b. For a detailed derivation we refer to, e.g., Ref. [58].
While it is possible to formulate these equations in terms of a discrete rescaling, we
have adopted the (more convenient) formulation in differential form.
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Figure 4.1: Dimensionality versus decay parameter σ . The full lines mark the upper
critical dimension, i.e., they separate the classical from the nonclassical critical be-
haviour. Short-range models are described by σ ≥ 2. The open circles indicate the
models investigated in this chapter.

For the sake of generality we treat here the case of an n-component order pa-
rameter with O(n) symmetry, which implies that the parameter u in Eq. (4.3) is re-
placed by a tensor of the form (u/3)(δi jδkl+δikδ jl+δilδ jk), and of course summations
over the indices appear. The renormalization equations are then given by (recall that
l = ln b)

dr0

dl
= σr0 + a(n + 2)u(c − r0) , (4.4a)

du

dl
= εu − a(n + 8)u2 , (4.4b)

where (n+2) and (n+8) are the usual factors arising from the tensorial structure of
the interaction part of the Hamiltonian [59], ε ≡ 2σ − d and a and c are constants.
These equations are not complete to second order, because the O(u2) term is missing
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in Eq. (4.4a). The rescaling factor of the field,1 b−σ/2, is not changed by higher-order
terms and hence we see from the last term in (4.3) that the magnetic field rescales as
h′ = hb(d+σ)/2, yielding the magnetic exponent yh = (d + σ)/2.

We first consider the case ε < 0, i.e., strictly above the upper critical dimension.
The solution of the second equation is given by

u(l) = ūeεl 1

1 + ū a(n+8)
ε

(eεl − 1)
, (4.5)

where ū denotes the value of u at l = 0. This yields, to leading order in u, the fol-
lowing solution for the first equation,

r0(l) = [r̄0 + ac(n + 2)ū/(d − σ)] eσ l

[
1

1 + a(n+8)
ε

ū(eεl − 1)

](n+2)/(n+8)

− ac(n + 2)ūeεl/(d − σ)

1 + a(n+8)
ε

ū(eεl − 1)
, (4.6)

with r̄0 ≡ r0(l = 0). The first factor between square brackets is proportional to
the reduced temperature t ≡ (T − Tc)/Tc and the last term is the so-called shift
of the critical temperature. The factors [1 + a(n + 8)ū(eεl − 1)/ε]−1 in Eqs. (4.5)
and (4.6) are higher-order corrections in u. Under successive renormalization trans-
formations, u approaches the value u∗ = 0 and the Gaussian fixed point (0, 0)
is thus indeed stable. The pertinent renormalization exponents can immediately
be read off from Eqs. (4.5) and (4.6), respectively: the leading irrelevant exponent
yi = ε = 2σ − d and the thermal exponent yt = σ .

At ε = 0, the Gaussian fixed point becomes marginally stable. Solving Eq. (4.4b)
leads to

uuc(l) = ū

1 + a(n + 8)ūl
, (4.7)

where the superscript “uc” indicates that we are operating at the upper critical di-
mension. This solution can be used to solve, again to leading order in u, Eq. (4.4a),
yielding

ruc
0 (l) = [r̄0 + ac(n + 2)ū/(d/2)] eσ l

[
1

1 + a(n + 8)ūl

](n+2)/(n+8)

− ac(n + 2)ū/(d/2)

1 + a(n + 8)ūl
(4.8)

1Unless explicitly stated otherwise, the term “field” refers to the order parameter φ.
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or, in terms of the rescaling factor b,

ruc
0 = [r̄0 + ac(n + 2)ū/(d/2)] bσ

[
1

1 + a(n + 8)ū ln b

](n+2)/(n+8)

− ac(n + 2)ū/(d/2)

1 + a(n + 8)ū ln b
. (4.9)

Since σ is fixed at d/2 the factor d/2 in the last term is identical to the correspond-
ing factor (d − σ) in Eq. (4.6). Further comparison of Eqs. (4.6) and (4.8) shows
that above the upper critical dimension the leading shift of the critical temperature
is proportional to bε, whereas this factor vanishes at the upper critical dimension
itself and the factor (eεl − 1)/ε in the second-order terms turns into a ln b term,
yielding a logarithmic shift of the form 1/(A ln b + B).

From the solutions of the renormalization equations we can derive the scaling
behaviour of the free energy and of (combinations of) its derivatives. For the case
ε < 0 the free-energy density f scales, to leading order, as

f (t , h, u, 1/L) = b−d f
(
byt
[
t + α̃ubyi−yt

]
, byh h, byiu, b/L

)+ g0(b) , (4.10)

where α̃ = −ac(n + 2)/(d − σ) and we have included a finite-size field L−1. g0(b)
denotes the analytic part of the transformation. We abbreviate the first term on the
right-hand side as b−d f (t ′, h′, u′, b/L). However, we must take into account the fact
that, for T ≤ Tc, the free energy is singular at u = 0. This makes u a so-called
dangerous irrelevant variable; see, e.g., Ref. [60]. It leads to the breakdown of finite-
size scaling as noticed in Ref. [61]. The correct finite-size scaling properties can now
be obtained by renormalizing the system to size 1, i.e., by setting b = L. The number
of degrees of freedom then reduces to one and the free energy to

f (t ′, h′, u′, 1) = ln

∫ +∞

−∞
dφ exp

[
h′φ − 1

2
r′

0φ
2 − 1

4
u′φ4

]
. (4.11)

The substitution φ′ = φ/u′1/4 then leads to a new universal function, f̃ , with

f (t ′, h′, u′, 1)+ g0(L) = f̃ (t̃ , h̃)+ g1 , (4.12)

where t̃ = t ′/u′1/2 and h̃ = h′/u′1/4. The analytic part of the transformation also
contributes to the singular dependence of the free energy on t : despite the regular-
ity of this term in each single renormalization step, the infinite number of steps still
leads to the build-up of a singularity. This often neglected point was emphasized
for the first time by Ma [62] and is discussed in some detail in Ref. [58, Ch. VI, § 3].
Since this contribution, contained in g0(L), has the same degree of singularity as the
singular part of the free energy, we absorb it in f̃ . The truly analytic contribution in
g0(L) [cf. Eq. (3.8)] is denoted by g1 on the right-hand side of Eq. (4.12). This latter
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term is ignored for the moment, but we will return to it shortly. Setting b = L in
Eq. (4.10) and combining it with Eq. (4.12) yields

f

(
t , h, u,

1

L

)
= L−d f̃

(
Lyt−yi/2 1

u1/2

[
t + α̃uLyi−yt

]
, Lyh−yi/4 h

u1/4

)
(4.13a)

= L−d f̃

(
Ly∗

t
1

u1/2

[
t + α̃uLyi−yt

]
, Ly∗

h
h

u1/4

)
. (4.13b)

Here, we have introduced the exponents y∗
t ≡ yt − yi/2 = d/2 and y∗

h ≡ yh − yi/4 =
3d/4. The first argument on the right-hand side is the scaled temperature

t̃ = Ld/2 1√
u

(
t + α̃uLσ−d

)
. (4.14)

Interpreting the term α̃uLσ−d as a shift of the “effective critical temperature” for a
finite system, we recover for σ = 2 the result obtained by Brézin and Zinn-Justin for
high-dimensional systems with short-range interactions [63]. Below we will come
back to this shift of the critical temperature. The critical exponents corresponding
to y∗

t and y∗
h indeed assume their fixed, classical values; α = 0, β = 1/2, γ = 1,

δ = 3. The exponent γ is singled out here as a special case; even without taking into
account the modification of yt and yh due to the dangerous irrelevant variable one
obtains the classical value γ = 1. Since the correlation length exponent ν = 1/yt

(it is not affected by the singular dependence of the free energy on u), we see that
hyperscaling is violated, which is a well-known result for systems above their upper
critical dimension [60]. The rescaling of the pair-correlation function g(|r|) (decay-
ing proportional to 1/rd−2+η) relates the exponent η to the rescaling factor of the
field φ. Indeed, the Fourier-transformed correlation function 〈φkφ−k〉 is propor-
tional to kη−2, which is expressed in rescaled wave vectors as (k′/b)η−2. But we also
have 〈φkφ−k〉 = bσ〈φ′

k′φ
′
−k′ 〉 (no higher-order terms contribute to the rescaling of

the correlation function) and hence bσ = b2−η or η = 2−σ . Note that this contrasts
with the short-range case (σ = 2), where η assumes its mean-field value for all di-
mensionalities d ≥ 4. This implies that direct experimental measurement of either
ν or η offers a way to discern whether the interactions in a system are mean-field-
like (ν = 1/2, η = 0) or have the form of a slowly decaying power-law. Below the
upper critical dimension, however, the finite-size scaling behaviour of the spin–spin
correlation function is (apart from a volume factor) identical to that of the magnetic
susceptibility χ , as we have seen in the previous chapter. This relation yields a con-
tradiction above the upper critical dimension, sinceχ depends on the scaled combi-
nation tLy∗

t , instead of tLyt . Indeed, the susceptibility diverges as t−γ and the finite-
size behaviour of χ is thus χ(L) ∝ Lγ y∗

t = Ld/2, corresponding to g(L) ∝ L−d/2. On
the other hand, if one assumes that the finite-size behaviour of the correlation func-
tion is identical to its r dependence, one expects that g(L) ∝ L−(d−2+η) = L−(d−σ).
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Only at the upper critical dimension, du = 2σ , these two predictions coincide. We
will return to this point at the end of this section. Furthermore, we will examine the
behaviour of the spin–spin correlation function in Sec. 4.4.

At the upper critical dimension itself, i.e., at ε = 0, the free-energy density scales
as

f

(
t , h, u,

1

L

)

= b−d f

(
byt

(1 + β̃u ln b)(n+2)/(n+8)

[
t + α̃b−yt

u

(1 + β̃u ln b)6/(n+8)

]
,

byhh,
u

1 + β̃u ln b
,

b

L

)
+ g (4.15a)

= L−d f̃

(
Lyt

(1 + β̃u ln L)(n+2)/(n+8)−1/2

1

u1/2

[
t + α̃L−yt

u

(1 + β̃u ln L)6/(n+8)

]
,

Lyh
h

u1/4
[1 + β̃u ln L]1/4

)
, (4.15b)

where β̃ = a(n + 8) and we have set b = L in the last line. u is now a marginal
variable and although we again have to perform the substitution φ → φ′ (the Gaus-
sian fixed point is marginally stable), the exponents yt and yh coincide with y∗

t and
y∗

h, respectively, because yi vanishes. Thus, the scaling relations (4.13b) and (4.15b)
differ to leading order only in the logarithmic factors arising in the arguments of f̃ .

Just as in Chapter 3, the finite-size scaling relations are now found by taking
derivatives of the free-energy density with respect to the appropriate scaling fields.
In the Monte Carlo simulations we have sampled the second and the fourth moment
of the magnetization density, the dimensionless amplitude ratio Q ≡ 〈m2〉2/〈m4〉
(introduced in Sec. 3.4) and the spin–spin correlation function over half the sys-
tem size (for even system sizes). The second moment of the magnetization density is
(apart from a volume factor) equal to the second derivative of the free-energy den-
sity with respect to h,

〈m2〉 = L−d ∂
2 f

∂h2
(t , h, u, 1/L) = L2y∗

h−2du−1/2 f̃ (2)
(

Ly∗
t

t̂

u1/2
, Ly∗

h
h

u1/4

)
, (4.16)

where f̃ (2) stands for the second derivative of f̃ with respect to its second argument
and t̂ ≡ t+α̃uLyi−yt . At ε = 0, logarithmic factors do arise not only in the arguments
of f̃ (2), but also in the prefactor,

〈m2〉 = L2yh−2d

(
1 + β̃u ln L

u

)1/2

×
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× f̃ (2)
(

Lyt

(1 + β̃u ln L)(n+2)/(n+8)−1/2

1

u1/2

[
t + α̃L−yt

u

(1 + β̃u ln L)6/(n+8)

]
,

Lyh
h

u1/4
[1 + β̃u ln L]1/4

)
. (4.17)

For the fourth magnetization moment similar expressions hold and in the amplitude
ratio Q all prefactors divide out, both for ε < 0 and ε = 0. Thus we find that the
ratio Q is given by a universal function Q̃,

QL(T ) = Q̃

(
Ly∗

t
t̂

u1/2

)
+ q1Ld−2y∗

h + · · · , (4.18)

where we have omitted the h dependence of Q̃, since we are only interested in the
case h = 0. The additional term proportional to q1 arises from the h dependence
of the analytic part of the free energy [the contribution g1 in Eq. (4.12)], as dis-
cussed in Sec. 3.4, and the ellipsis stands for higher powers of Ld−2y∗

h (faster-decaying
terms). At ε = 0, t̂ must be replaced by the first argument within square brackets in
Eq. (4.15b), multiplied by the factor (1 + β̃u ln L)1/2−(n+2)/(n+8).

An additional result we can derive from Eq. (4.13b) is the shift and rounding of
critical singularities in finite systems. If we ignore the corrections to scaling due to
the analytic part of the free energy, we can express observables in terms of universal
functions of the two arguments that appear in the right-hand side of (4.13b). For
example, the specific heat can be written as the product of a power of the system size
and a universal function of the scaled fields. Let the maximum of this function occur
at t̃ = c (c a constant). Then, the specific-heat maximum occurs at a temperature
which differs, to leading orders in L, from the critical temperature by

1t = c
√

uL−d/2 − α̃uLσ−d = c
√

uL−d/2
[

1 − α̃

c

√
uLσ−d/2

]
. (4.19)

Note that this expression holds for σ < d/2. For σ = d/2 we find

1t = c
√

uL−d/2 1

(1 + β̃u ln L)(4−n)/[2(n+8)]

[
1 − α̃

c

√
u

1 + β̃u ln L

]
, (4.20)

where we have assumed n 6= 4. Also in Eq. (4.19) n-dependent factors arise, but
only in higher-order terms. For example, the analog of the logarithmic prefactor in
Eq. (4.20) is a factor [1 + β̃u(Lyi − 1)/yi]

(n−4)/[2(n+8)].
Interestingly, the finite-size properties of the spherical model with long-range

interactions have been studied in Refs. [64, 65], where it was found that the finite-
size shift of the (pseudo)critical temperature is proportional to Lσ−d . This analytical
result precisely agrees with the renormalization prediction (4.19) [i.e., the last term
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of (4.14)]. Indeed, the form of the shift term does not change in the n → ∞ limit,
which corresponds to the spherical model [66].

Clearly, also the function Q̃ [Eq. (4.18)] has a universal value Q at criticality
and it was shown in Ref. [63] that this quantity can be calculated exactly: Q =
8π2/04( 1

4 ) = 0.456947 . . . . This is just the value of Q in the mean-field model as
calculated in Appendix A.

Finally, let us reconsider the finite-size scaling behaviour of the spin–spin cor-
relation function g(|r|), where we may explicitly indicate the L dependence by writ-
ing g(r, L). In Sec. 3.5.3, we derived this scaling behaviour by differentiating the free-
energy density to two local magnetic fields, which couple to the spins at positions
0 and r, respectively, and assuming that the finite-size behaviour is identical to the
r dependence of g. However, it turns out that above the upper critical dimension one
must distinguish between two different limits, viz. limL→∞ g(r, L) (where r is kept
finite) and limL→∞ g(λL, L), where 0 < λ < 1. If we do not take into account the
dangerous-irrelevant-variable mechanism, we find g(L) ∝ L2yh−2d = L−(d−σ), just
as we found before from η = 2−σ . However, replacing yh by y∗

h yields g(L) ∝ L−d/2,
in agreement with the L dependence of the magnetic susceptibility. This clarifies the
difference between the two predictions: at short distances (large wave vectors), the
jσkσφkφ−k term will be the dominant term in the Landau–Ginzburg–Wilson Hamil-
tonian and there is no “dangerous” dependence on u. Hence, the finite-size be-
haviour of the spin–spin correlation function will be given by L−(d−2+η). For k = 0
(which corresponds to the second limit), the coefficient of the φ2 term vanishes and
thus the uφ4 term is required to act as a bound on the magnetization. To account
for this singular dependence on u, we rescale the field, which implies that yh is re-
placed by y∗

h and g(L) scales as L2y∗
h−2d. In a finite system, the wave vectors assume

discrete values, k = (nx, ny, nz)2π/L, and thus it is easily seen that even for the low-
est nonzero wave vectors (i.e., large but finite r) jσkσφkφ−k constitutes the dominant
bounding term on the magnetization. Namely, the coefficient of the φ4 term con-
tains a volume factor L−d [cf. Eq. (4.3)] and this term is thus (above the upper critical
dimension) a higher-order contribution decaying as L2σ−d.

4.4 Numerical results and comparison with earlier results

4.4.1 Simulations

We have carried out Monte Carlo simulations for systems described by the Hamil-
tonian

H/kBT = −
∑
〈i j〉

J(|ri − r j|)sis j , (4.21)
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where the sum runs over all spin pairs and periodic boundaries were employed. The
precise form of the (long-range) spin–spin interaction J(r) as used in the simula-
tions was chosen dependent on the dimensionality. For d = 1 we have followed the
conventional choice J(r) = K/rd+σ (with discrete values for r), as this allows us to
compare all our results (including nonuniversal quantities) to previous estimates.
However, as explained in Chapter 2, this discrete form requires the construction of
a look-up table, which becomes inefficient for higher dimensionalities. For d = 2
we have thus applied an interaction which is the integral of a continuously decaying
function,

J(|r|) = K

∫ rx+ 1
2

rx− 1
2

dx

∫ ry+ 1
2

ry− 1
2

dy (x2 + y2)−(d+σ)/2 , (4.22)

where r = (rx, ry). In d = 3 the corresponding volume integral was used for J(|r|).
This modification of the interaction does only change nonuniversal quantities like
the critical temperature, but should not influence the universal critical properties
like the critical exponents and dimensionless amplitude ratios, since the difference
between the continuous and the discrete interaction consists of faster decaying terms
that are irrelevant according to renormalization-group theory.

The following system sizes have been examined: chains of length 10 ≤ L ≤
150 000, square systems of linear size 4 ≤ L ≤ 240, and cubic systems of linear size
4 ≤ L ≤ 64. At the upper critical dimension simulations for even larger systems have
been carried out in order to obtain accurate results from the analyses: L = 300 000
in d = 1 and L = 400 in d = 2. (Thus, in terms of numbers of particles the largest
system size for d = 2 is considerably smaller than for d = 1 and d = 3.) The
efficiency gain due to the application of the algorithm described in Chapter 2 is of
the order of 108 for the largest system sizes. For each data point we have generated
between 106 and 4 × 106 Wolff clusters.

4.4.2 Determination of the critical temperatures, the amplitude ratio Q
and the thermal exponent

The critical couplings Kc of these systems have been determined using an analysis
of the amplitude ratio Q. The finite-size scaling analysis was based on the Taylor
expansion of Eq. (4.18), which for ε < 0 reads [cf. Eq. (3.14)]:

QL(T ) = Q + p1t̂Ly∗
t + p2t̂2L2y∗

t + p3t̂3L3yt + · · ·
+ q1Ld−2y∗

h + · · · + q3Lyi + · · · . (4.23)

The term proportional to α̃ in t̂ yields a contribution q2Lyi/2 = q2Lσ−d/2, as fol-
lows from Eq. (4.14). Such a correction, with an exponent that is only half of the
leading irrelevant exponent, is specific for finite-size scaling above the upper critical
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Table 4.1: The amplitude ratio Q and the thermal exponent y∗
t for systems with long-

range interactions in one, two and three dimensions, for several values of the decay
parameter 0 < σ ≤ d/2. The values in the fifth column have been obtained with
Q fixed at the theoretically predicted value (see text) and the last column lists the
renormalization predictions for y∗

t .

d σ Q y∗
t y∗

t RG

1 0.1 0.4566 (8) 0.507 (7) 0.507 (7) 1
2

1 0.2 0.455 (4) 0.54 (4) 0.504 (12) 1
2

1 0.25 0.457 (3) 0.500 (8) 0.500 (5) 1
2

1 0.3 0.454 (2) 0.519 (14) 0.506 (12) 1
2

1 0.4 0.457 (3) 0.50 (2) 0.50 (2) 1
2

1 0.5 0.462 (6) 0.51 (5) 0.49 (2) 1
2

2 0.2 0.4574 (10) 1.01 (2) 1.01 (2) 1

2 0.4 0.455 (2) 1.02 (2) 1.009 (15) 1

2 0.6 0.450 (6) 1.04 (4) 1.008 (17) 1

2 0.8 0.454 (6) 1.03 (9) 1.03 (3) 1

2 1.0 0.450 (10) 1.02 (3) 1.03 (2) 1

3 0.2 0.4581 (11) 1.51 (3) 1.513 (18) 3
2

3 0.4 0.4561 (10) 1.521 (18) 1.512 (15) 3
2

3 0.6 0.453 (3) 1.53 (4) 1.521 (14) 3
2

3 0.8 0.458 (2) 1.48 (2) 1.487 (10) 3
2

3 1.0 0.453 (10) 1.52 (7) 1.508 (9) 3
2

3 1.2 0.447 (8) 1.56 (2) 1.519 (10) 3
2

3 1.4 0.454 (5) 1.48 (3) 1.48 (3) 3
2

3 1.5 0.449 (8) 1.53 (5) 1.46 (3) 3
2

dimension. The next correction, q3Lyi , comes from the denominator in Eq. (4.5).
The coefficients pi and qi are nonuniversal. In addition to the corrections to scal-
ing in Eq. (4.23) we have also included higher powers of q3Lyi , which become par-
ticularly important when yi is small (i.e., when σ is close to d/2), higher powers of
q1Ld−2y∗

h = q1L−d/2 and the crossterm proportional to Ly∗
t +yi .

Several analyses have been carried out in order to determine the thermal expo-
nent yt, the amplitude ratio Q and the critical couplings as a function of the decay
parameter σ . First, we have only kept fixed the exponents in the correction terms, yi

and y∗
h. The corresponding estimates for Q and y∗

t are shown in the third and fourth
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column of Table 4.1. One observes that the Monte Carlo results for both Q and y∗
t

are in quite good agreement with the renormalization predictions Q = 0.456947 . . .
and y∗

t = d/2. However, the uncertainties in the estimates increase considerably
with increasing σ , because the leading irrelevant exponent becomes very small. An
exception is the relatively large uncertainty in y∗

t (d = 1, σ = 0.2), which originates
from the fact that the Monte Carlo data were taken in a rather narrow temperature
region around the critical point. Furthermore, an accurate simultaneous determina-
tion of Q and y∗

t is very difficult, because of the correlation between the two quan-
tities. Therefore we have repeated the same analysis with Q fixed at its theoretical
prediction—as appears justified by the values for Q in Table 4.1—in order to obtain
more accurate estimates for y∗

t . The results, shown in the fifth column of Table 4.1,
are indeed in good agreement with the theoretically expected values (last column).
Thus, we have kept the thermal exponent fixed at its theoretical value in the further
analysis. The corresponding results for Q and Kc are shown in Table 4.2. Over the
full range of σ and d the Monte Carlo results for Q show good agreement with the
renormalization prediction, thus confirming the universality of this quantity above
the upper critical dimension.

The universality of Q is illustrated graphically in Figs. 4.2(a)–4.2(c), where the
increasing importance of corrections to scaling upon approaching the upper critical
dimension clearly follows from the size of the error bars. At the upper critical di-
mension itself (ε = 0) this culminates in the appearance of logarithmic corrections,
where the finite-size scaling form of QL is given by

QL(T ) = Q + p1Lyt(ln L)1/6

[
t + v

L−yt

(ln L)2/3

]

+ p2L2yt(ln L)1/3
[

t + v
L−yt

(ln L)2/3

]2

+ · · ·

+ q1Ld−2yh + · · · + q3

ln L
+ · · · . (4.24)

The ellipses denote terms containing higher powers of Ld−2yh and 1/ ln L. The ex-
tremely slow convergence of this series is reflected in the uncertainty in the resulting
estimates for Q at the upper critical dimension. To illustrate the dependence of the
finite-size corrections on εmore directly, Fig. 4.3(a) displays (for equally-spaced val-
ues of σ) the finite-size scaling functions as they follow from a least-squares fit of the
data for d = 1 to Eqs. (4.23) and (4.24), respectively. Although one clearly observes
the increase of finite-size corrections when σ → d/2, the true nature of the loga-
rithmic corrections in (4.24) cannot be appreciated from this graph. To emphasize
the difference between ε = 0 and ε < 0, we therefore also show [Fig. 4.3(b)] the
same plot for the enormous range 0 < L < 1010. Now it is evident how strongly
the case ε = 0 differs even from a case with strong (i.e., slowly decaying) power-law
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Figure 4.2: The amplitude ratio Q as a function of the decay parameter σ in d = 1,
d = 2 and d = 3 dimensions. The solid line marks the renormalization prediction.
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corrections, such as σ = 0.4 (ε = −0.2).
We have used the universality of Q to considerably narrow the error margins

on Kc by fixing Q at its theoretical value in the least-squares fit. The correspond-
ing couplings are shown in Table 4.2 as well. The relative accuracy of the critical
couplings lies between 1.5 × 10−5 and 5.0 × 10−5. For the one-dimensional case,
we can compare these results to earlier estimates, see Table 4.3. One notes that the
newest estimates are more than two orders of magnitude more accurate than pre-
vious estimates. The first estimates [18] were obtained by carrying out exact calcu-
lations for chains of 1 to 20 spins and subsequently extrapolating these results us-
ing Padé approximants. Note that the estimates for Tc in Ref. [18] are expressed in
units of the inverse of the Riemann zeta function and thus must be multiplied by
ζ (1 + σ). All couplings are somewhat too high, but still in fair agreement with our
estimates. The results of Doman [19] have no error bars. Still, his results are worry-

Table 4.2: The amplitude ratio Q and critical couplings Kc for systems with long-
range interactions in one, two and three dimensions, for several values of the decay
parameter 0 < σ ≤ d/2. The thermal exponent (see Table 4.1) was kept fixed at its
theoretical value in all analyses. The estimates for Kc in the last column have been
obtained by fixing Q at its renormalization prediction. The numbers between paren-
theses represent the errors in the last decimal places.

d σ Q Kc Kc

1 0.1 0.4565 (8) 0.0476162 (13) 0.0476168 (6)
1 0.2 0.4579 (7) 0.092234 (2) 0.0922314 (15)
1 0.25 0.4579 (15) 0.114143 (4) 0.1141417 (19)
1 0.3 0.4567 (15) 0.136113 (4) 0.136110 (2)
1 0.4 0.457 (3) 0.181151 (8) 0.181150 (3)
1 0.5 0.463 (5) 0.229157 (8) 0.229155 (6)
2 0.2 0.4573 (10) 0.028533 (3) 0.0285324 (14)
2 0.4 0.4565 (17) 0.051824 (4) 0.0518249 (14)
2 0.6 0.456 (4) 0.071364 (7) 0.071366 (2)
2 0.8 0.458 (5) 0.088094 (7) 0.088094 (2)
2 1.0 0.447 (8) 0.102556 (5) 0.102558 (5)
3 0.2 0.4584 (9) 0.0144361 (10) 0.0144354 (6)
3 0.4 0.4569 (8) 0.0262927 (16) 0.0262929 (7)
3 0.6 0.4581 (9) 0.036050 (2) 0.0360469 (11)
3 0.8 0.4562 (13) 0.044034 (2) 0.0440354 (10)
3 1.0 0.4571 (14) 0.050515 (2) 0.0505152 (12)
3 1.2 0.457 (3) 0.055682 (3) 0.0556825 (14)
3 1.4 0.455 (5) 0.059666 (2) 0.0596669 (11)
3 1.5 0.449 (7) 0.061251 (2) 0.061253 (2)
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Figure 4.3: The amplitude ratio Q in a one-dimensional system as a function of the
system size L for various values of σ . Figure (a) illustrates the increase of the finite-
size corrections when the upper critical dimension (σ = d/2) is approached. Fig-
ure (b) emphasizes the difference between finite-size corrections above the upper
critical dimension (power-law) and at the upper critical dimension itself (logarith-
mic).
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ing, since he carries out a cluster approach, obtaining critical couplings which start
at the mean-field value for cluster size zero and increase monotonically with increas-
ing cluster size, as they should, since mean-field theory yields a lower bound on the
critical couplings (see below). Thus, he argues that the true couplings will lie higher
than his best estimates (obtained for cluster size 10). However, all these best esti-
mates lie already above our estimates, which seems to indicate a problem inherent
in his approach. Reference [20] presents results of an approximation coined “finite-
range scaling” with error margins of 1%. For σ = 0.1 the error is underestimated,
but for the other values of the decay parameter the couplings agree with our results
well within the quoted errors. The same technique was applied in Ref. [42], but now
the uncertainty in the couplings was estimated to be less than 10%, for small σ a few
times larger. This is clearly a conservative estimate, as the difference with our results
is only a few percent for σ = 0.1 and considerably less for larger σ . In Ref. [21],
the coherent-anomaly method was used to obtain two different estimates without
error margins. We have quoted the average of the two results, with their difference
as a crude measure for the uncertainty. The agreement is quite good, although all re-
sults lie systematically above our values. Yet another approach has been formulated
in Ref. [27], where the Onsager reaction-field theory was applied to obtain a general
expression for the critical coupling,

Kc(σ ) = 0(1 + σ) sin(πσ/2)

(1 − σ)π1+σ . (4.25)

Unfortunately, no estimate for the accuracy of this expression is given, but it seems
to generally underestimate the critical coupling by a few percent. Finally, some es-
timates have recently been obtained by means of the real-space renormalization-
group technique [43].

In addition, Monroe has calculated various bounds on the critical couplings as
shown in Table 4.4. The Bethe lattice approximation [24] was used to obtain both
upper and lower bounds, to which our results indeed conform, although it must be
said that the upper bounds do not constitute a very stringent criterion (they amount
to roughly twice the actual values). Furthermore, the application of Vigfusson’s
method [25] has yielded even closer lower bounds for σ = 0.1 and σ = 0.2.

Apart from these approximations, one may also use mean-field theory to make
some predictions concerning the critical coupling in the limit σ ↓ 0. It was shown
by Brankov [67] that in this limit the d-dimensional system with an interaction po-
tential ∝ σ/rd+σ is equivalent to the Husimi–Temperley mean spherical model. (Re-
mark that actual mean-field-like couplings are only recovered for σ = −d.) More
specifically, it was conjectured by Cannas [26] that for the one-dimensional case
limσ→0 Kc ∼ σ/2, which is also the first term in the Taylor expansion of Eq. (4.25).
Indeed, in mean-field theory one has zKMF

c = 1, where z is the coordination num-
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Table 4.3: Comparison between our best estimates of the critical couplings Kc for the one-dimensional system and earlier
estimates.
σ This work Ref. [18] Ref. [19] Ref. [20] Ref. [42] Ref. [21] Ref. [27] Ref. [43]

0.1 0.0476168 (6) — 0.0478468 0.0505 (5) 0.04635 0.04777 (12) 0.0469 0.0481
0.2 0.0922314 (15) 0.0926 (5) 0.0933992 0.0923 (9) 0.09155 0.0928 (3) 0.0898 —
0.25 0.1141417 (19) — — — — — 0.1106 —
0.3 0.136110 (2) 0.1370 (7) 0.138478 0.1362 (14) 0.1359 0.1375 (10) 0.1314 0.144
0.4 0.181150 (3) 0.1825 (10) 0.184081 0.1815 (18) 0.1813 0.183 (2) 0.1750 —
0.5 0.229155 (6) 0.2307 (14) 0.230821 0.230 (2) 0.2295 0.231 (4) 0.2251 0.250

Table 4.4: Comparison of our best estimates of the critical couplings for the one-dimensional system with some lower and
upper bounds.

σ This work Ref. [24] Ref. [24] Ref. [25]
0.1 0.0476168 (6) ≥ 0.04726 ≤ 0.09456 ≥ 0.04753
0.2 0.0922314 (15) ≥ 0.08947 ≤ 0.1792 ≥ 0.09162
0.3 0.136110 (2) ≥ 0.1273 ≤ 0.2558 —
0.4 0.181150 (3) ≥ 0.1615 ≤ 0.3258 —
0.5 0.229155 (6) ≥ 0.1923 ≤ 0.3903 —
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Figure 4.4: The critical coupling Kc as a function of the decay parameter σ for d = 1.
Also shown is the asymptotic behaviour for σ ↓ 0 as predicted by mean-field theory
and mean-field values for Kc over the full range of 0 < σ < 1/2.

ber. For d = 1 this corresponds to the requirement

2KMF
c (σ )

∞∑
n=1

1

n1+σ = 2KMF
c (σ )ζ (1 + σ) = 1 , (4.26)

where ζ (x) denotes the Riemann zeta function. The expansion of ζ (x) around x = 1
yields the conjectured relation limσ↓0 KMF

c = σ/2.
Figure 4.4 shows the Monte Carlo results for the critical coupling as a function

of the decay parameter σ along with KMF
c (σ ) from Eq. (4.26) and the asymptotic

behaviour for σ ↓ 0. One observes that Kc(σ ) indeed approaches KMF
c (σ ) when σ

approaches zero. Furthermore, KMF
c (σ ) is smaller than Kc(σ ) for all σ , as one ex-

pects from the fact that mean-field theory overestimates the critical temperature. It
is interesting to note that for σ = 0.1 (KMF

c ≈ 0.047239) this lower bound already
excludes the estimates given in Refs. [42] and [27] (cf. Table 4.3). ReplacingzKMF

c by
the integrated interaction, we can generalize Eq. (4.26) to higher dimensionalities,

KMF
c (σ )

2πd/2

0
(

d
2

) ∫ ∞

m0

dr
1

r1+σ = 1 . (4.27)

For d > 1, the lower-distance cutoff m0 of the integral, i.e., the minimal interaction
distance with the nearest neighbours, does not have an isotropic value, since there
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is no interaction within an elementary cube around the origin. Nevertheless, a con-
stant value m0, e.g., m0 = 1/2, is a good approximation. Furthermore, for d = 1 the
integral is only a first-order approximation of Eq. (4.26), but for d = 2 and d = 3 it
precisely (except for the constant value of m0) corresponds to the interaction (4.22)
and its generalization to d = 3, respectively. As a first estimate one thus obtains

lim
σ↓0

KMF
c (σ ) =

0
(

d
2

)
2πd/2

σmσ
0 . (4.28)

An expansion in terms of σ shows that the first term is independent of m0. For
d = 1, 2, 3 one finds, respectively, KMF

c ∼ σ/2, KMF
c ∼ σ/(2π ), KMF

c ∼ σ/(4π ).
Figures 4.5(a) and 4.5(b) show Kc(σ ) for d = 2 and d = 3, the corresponding
asymptotes and Eq. (4.28) with m0 = 1/2.

The deviation of Kc(σ ) from KMF
c (σ ) is also expressed by the last term in the

renormalization expression (4.6). However, in order to assess the σ dependence of
this term one has to calculate the σ dependence of the coefficients a and c, arising
from the integrals of the σ-dependent propagators.

4.4.3 Determination of critical exponents

Magnetic susceptibility

At criticality, the spontaneous magnetization vanishes and hence the magnetic sus-
ceptibility χ is directly proportional to the average square magnetization density,

χ = Ld〈m2〉 . (4.29)

Thus, we can use Eq. (4.16) to analyze the finite-size data. Expanding this equation
in t and u we obtain for ε < 0

χ = L2y∗
h−d

(
a0 + a1t̂Ly∗

t + a2t̂2L2y∗
t + · · · + b1Lyi + · · ·

)
(4.30)

and for ε = 0

χ = L2yh−d
√

ln L

×
[

a0 + a1Lyt(ln L)1/6
(

t + v
L−yt

(ln L)2/3

)

+ a2L2yt(ln L)1/3
(

t + v
L−yt

(ln L)2/3

)2

+ · · · + b1

ln L
+ · · ·

]
. (4.31)

The analytic part of the free energy might give rise to an additional constant, but
this could not be observed in our simulations, because it is dominated by the correc-
tions to scaling. In Table 4.5 we list the results of an analysis of the numerical data.
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Figure 4.5: The critical coupling Kc as a function of the decay parameter σ for d =
2 and d = 3. Also shown is the asymptotic behaviour for σ ↓ 0 as predicted by
mean-field theory and approximate mean-field values for Kc over the full range of
0 < σ < d/2, as discussed in the text.
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Table 4.5: Estimates for the critical coupling Kc and the exponent y∗
h as obtained

from the analysis of the magnetic susceptibility. The values for y∗
h in the fifth col-

umn have been obtained by fixing Kc at their best estimates from Table 4.2; the error
margins include the uncertainty in these values for Kc.

d σ Kc y∗
h y∗

h RG

1 0.1 0.0476161 (19) 0.7487 (14) 0.7493 (10) 3
4

1 0.2 0.092239 (4) 0.752 (2) 0.7504 (18) 3
4

1 0.25 0.114145 (4) 0.7477 (15) 0.747 (2) 3
4

1 0.3 0.136110 (5) 0.747 (3) 0.749 (2) 3
4

1 0.4 0.181170 (10) 0.749 (5) 0.746 (3) 3
4

1 0.5 0.229153 (6) 0.748 (2) 0.7490 (18) 3
4

2 0.2 0.028537 (5) 1.500 (6) 1.495 (3) 3
2

2 0.4 0.051830 (6) 1.498 (9) 1.496 (3) 3
2

2 0.6 0.071370 (5) 1.497 (6) 1.498 (3) 3
2

2 0.8 0.088095 (10) 1.496 (5) 1.495 (3) 3
2

2 1.0 0.102556 (3) 1.495 (4) 1.497 (3) 3
2

3 0.2 0.0144347 (9) 2.249 (2) 2.2504 (14) 9
4

3 0.4 0.026296 (2) 2.250 (6) 2.246 (4) 9
4

3 0.6 0.036046 (3) 2.246 (7) 2.244 (5) 9
4

3 0.8 0.0440349 (17) 2.243 (4) 2.246 (4) 9
4

3 1.0 0.050516 (3) 2.239 (9) 2.243 (8) 9
4

3 1.2 0.055679 (2) 2.247 (11) 2.251 (8) 9
4

3 1.4 0.0596636 (18) 2.27 (3) 2.26 (2) 9
4

3 1.5 0.061251 (2) 2.257 (12) 2.249 (7) 9
4

For all examined systems we have determined the exponent y∗
h and the critical cou-

pling. The estimates for the latter are in good agreement with those obtained from
the analysis of the universal amplitude ratio Q. Furthermore, the exponents agree
nicely, for all dimensionalities, with the renormalization prediction y∗

h = 3d/4. Just
as before, the uncertainties increase with increasing σ , although the analyses at the
upper critical dimension itself seem to yield better results than those just above it.
Compare in particular the results for σ = 1.4 (yi = −0.2) and σ = 1.5. The loga-
rithmic prefactor in Eq. (4.31) can be clearly observed in the sense that the quality
of the least-squares fit decreases considerably when this factor is omitted. To reduce
the uncertainty in the exponents we have repeated the analysis with Kc fixed at the
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Table 4.6: The correlation length exponent ν for the one-dimensional model as a
function of σ , together with earlier estimates and the renormalization predictions.

σ This work Ref. [20] Ref. [42] Ref. [43] RG
0.1 9.3 (6) 9.12 9.9 10.48 10.0
0.2 4.9 (3) 4.90 4.95 — 5.0
0.25 4.00 (8) — — — 4.0
0.3 3.27 (12) 3.41 3.32 3.90 3.3.. .
0.4 2.50 (13) 2.71 2.68 — 2.5
0.5 2.04 (8) 2.34 2.33 2.81 2.0

Table 4.7: The magnetization exponent β for the one-dimensional model as a func-
tion of σ , together with earlier estimates and the renormalization predictions.

σ This work Ref. [18] Ref. [21] RG

0.1 0.494 (8) — 0.495 1
2

0.2 0.495 (13) 0.5 0.482 1
2

0.25 0.506 (8) — — 1
2

0.3 0.497 (15) 0.48 0.460 1
2

0.4 0.51 (2) 0.45 0.435 1
2

0.5 0.51 (2) 0.39 0.408 1
2

best values in Table 4.2, i.e., those obtained with fixed Q. The corresponding esti-
mates of y∗

h are also shown in Table 4.5 and are indeed in good agreement with the
renormalization predictions.

Now we can calculate the critical exponents and compare them to earlier esti-
mates for d = 1. We do this for the correlation length exponent ν = 1/(y∗

t + yi/2)
and the magnetization exponent β = (d − y∗

h)/y∗
t . The exponent y∗

t is taken from
Table 4.1 and the exponent y∗

h from Table 4.5. The irrelevant exponent yi, which is
required to calculate yt (the inverse of ν) from y∗

t , is assumed to take its theoretical
value 2σ−1. The results are shown in Tables 4.6 and 4.7. Since all our estimates for
y∗

t and y∗
h agree with the renormalization values, also ν and β are in agreement with

the classical critical exponents. Unfortunately, the accuracy in both exponents is se-
riously hampered by the uncertainty in y∗

t , which has only been determined from the
temperature-dependent term in Q. In particular the results for ν from Ref. [42] are,
for small σ , in better agreement with the theoretically predicted values than our esti-
mates. However, all previous results, both for ν and for β, deviate seriously from the
predicted values when σ approaches 1/2, which is not the case for our values. This
can probably be attributed to the fact that corrections to scaling have been taken into
account more adequately.
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Spin–spin correlation function

In Sec. 4.3 two different decay modes for the spin–spin correlation function were
derived. The relative magnitude of r and L determines which of the modes applies.
In the bulk of our simulations we have restricted r in g(|r|) to r = L/2. Since this
quantity reflects the k = 0 mode of the correlation function, we write for ε < 0 an
expression analogous to that for the magnetic susceptibility,

g(L/2) = L2y∗
h−2d

[
c0 + c1t̂Ly∗

t + c2t̂2L2y∗
t + · · · + d1Lyi + · · ·

]
(4.32)

and for ε = 0

g(L/2) = L2yh−2d
√

ln L

×
[

c0 + c1Lyt(ln L)1/6
(

t + v
L−yt

(ln L)2/3

)

+ c2L2yt(ln L)1/3

(
t + v

L−yt

(ln L)2/3

)2

+ · · · + d1

ln L
+ · · ·

]
. (4.33)

For values of r such that g(|r|) does not correspond to this mode of the correlation
function, the σ-dependent exponent yh will appear in (4.32) instead of y∗

h. Further-
more, the logarithmic prefactor in (4.33) will be absent, as it arises from the dan-
gerous irrelevant variable [cf. Eq. (4.17)]. The results of our analysis are shown in
Table 4.8. They evidently corroborate that the exponent y∗

h coincides with that ap-
pearing in the susceptibility. Also the factor

√
ln L in (4.33) was clearly visible in the

least-squares analysis. The critical couplings agree with the estimates from Q and χ
and we have again tried to increase the accuracy in y∗

h by repeating the analysis with
Kc fixed at their best values in Table 4.2. The accuracy of the results is somewhat
less than of those obtained from the magnetic susceptibility, because we have now
only used numerical data for even system sizes. The fact that the L dependence of
g(L/2) is determined by the k = 0 mode raises the question whether one can also
observe the power-law decay described by η in finite systems, i.e., the short-distance
behaviour which is determined by the k 6= 0 modes (cf. the discussion at the end of
Sec. 4.3). To this end, we have sampled g(r) as a function of r in the one-dimensional
model. In order to clearly distinguish between the two predictions for the decay
of g(r) we have examined a system far from the upper critical dimension, viz. with
σ = 0.1. It turned out to be necessary to sample very large system sizes to observe
the regime where g(r) ∝ r−(d−σ). Figure 4.6 displays the spin–spin correlation func-
tion scaled with Ld/2 versus r/L. The scaling makes the results collapse for r of the
order of the system size. Here, the correlation function levels off. This is the mean-
field-like contribution to the correlation function, which dominates in the spatial
integral yielding the magnetic susceptibility. For small r the data do not collapse at
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Table 4.8: Estimates for the critical coupling Kc and the exponent y∗
h as obtained

from the analysis of the spin–spin correlation function. The values for y∗
h in the fifth

column have been obtained by fixing Kc at their best estimates from Table 4.2; the
error margins include the uncertainty in these values for Kc.

d σ Kc y∗
h y∗

h RG

1 0.1 0.047619 (3) 0.750 (2) 0.7488 (13) 3
4

1 0.2 0.092233 (7) 0.749 (3) 0.751 (2) 3
4

1 0.25 0.114148 (10) 0.750 (5) 0.747 (3) 3
4

1 0.3 0.136116 (7) 0.753 (5) 0.752 (4) 3
4

1 0.4 0.181158 (15) 0.747 (7) 0.750 (5) 3
4

1 0.5 0.229150 (7) 0.749 (2) 0.7503 (15) 3
4

2 0.2 0.028535 (7) 1.499 (9) 1.496 (4) 3
2

2 0.4 0.051831 (6) 1.505 (6) 1.499 (4) 3
2

2 0.6 0.071369 (6) 1.507 (4) 1.502 (4) 3
2

2 0.8 0.088091 (6) 1.495 (7) 1.497 (4) 3
2

2 1.0 0.102554 (4) 1.490 (6) 1.496 (4) 3
2

3 0.2 0.0144348 (16) 2.256 (6) 2.254 (4) 9
4

3 0.4 0.026296 (3) 2.257 (8) 2.245 (6) 9
4

3 0.6 0.036053 (4) 2.262 (10) 2.246 (5) 9
4

3 0.8 0.044035 (4) 2.252 (11) 2.250 (7) 9
4

3 1.0 0.050511 (5) 2.228 (15) 2.249 (10) 9
4

3 1.2 0.055680 (3) 2.253 (14) 2.257 (10) 9
4

3 1.4 0.059667 (2) 2.22 (4) 2.30 (4) 9
4

3 1.5 0.061251 (5) 2.26 (3) 2.248 (9) 9
4

all, which shows that g(r) exhibits a different scaling behaviour in this regime. In-
deed, the correlation function decays here as r−(d−σ) = r−0.9 and not as r−d/2. Note,
however, that this regime is restricted to a small region of r and can only be observed
for very large system sizes.

It is interesting to note that already Nagle and Bonner [18] have tried to calculate
η in a spin chain with long-range interactions from finite-size data for the suscep-
tibility. Because this calculation relied on the assumption that χ(L, Kc) − χ(L −
1, Kc) ∼ g(L) ∼ L−(d−2+η), they called the corresponding exponent η̃. The re-
sults for η̃ turned out to assume a constant value approximately equal to 1.50 for
0 < σ ≤ 0.5. Thus, the identification of η̃ with η was assumed to be invalid in
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Figure 4.6: The spin–spin correlation function versus r/L in the one-dimensional
model with σ = 0.1. Results for various system sizes are shown. For a discussion
see the text.

Ref. [35]. Now we see that η̃ is in excellent agreement withη∗ ≡ d+2−2y∗
h = 2−d/2.

4.5 Conclusions

In this chapter we have studied systems with long-range interactions decaying as
r−(d+σ) in one, two and three dimensions in the regime where these interactions
lead to classical critical behaviour, i.e., for 0 < σ ≤ d/2. From the renormalization
equations we have derived the scaling behaviour, including the corrections to scal-
ing, for various quantities. These predictions, in particular the critical exponents
and the scaling behaviour of the amplitude ratio 〈m2〉2/〈m4〉, have been verified by
accurate Monte Carlo results. At the upper critical dimension, the logarithmic fac-
tors appearing in the finite-size scaling functions could be accurately observed. Our
analysis has also yielded estimates for the critical couplings. For d = 1 these values
have an accuracy which is more than two orders of magnitude better than previous
estimates and could thus serve as a check for half a dozen different approximations.
For d = 2 and d = 3 we have, to our best knowledge, obtained the first estimates
for the critical couplings. Finally, we have given both theoretical and numerical ar-
guments that above the upper critical dimension the decay of the critical spin–spin
correlation function in finite systems consists of two regimes: one where it decays as
r−(d−2+η) and one where it is independent of the distance.
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Chapter 5

Critical behaviour of spin models
with algebraically decaying

interactions II
Below the upper critical dimension

5.1 Introduction

In this chapter we continue the study of the models with long-range interactions
introduced in the previous chapter. Until now, we have restricted ourselves to the
regime where the spin–spin interactions decay sufficiently slowly, such that the sys-
tems exhibit essentially classical critical behaviour. Here, however, we focus on inter-
actions decaying as r−(d+σ) with d < 2σ . Although in reality the dimensionality d is
discrete (and fixed) and only the decay rate σ can be varied continuously (at least in
a numerical simulation), an insightful view is obtained by allowing for noninteger d
as well. As shown in Sec. 4.3, the upper critical dimension is then given by du = 2σ
and the Gaussian fixed point reigns the renormalization flow for d ≥ du. For d < du,
on the other hand, this fixed point is unstable and a nontrivial fixed point takes over.
Just as in the “conventional” ε-expansion, critical properties for these models can be
calculated from a perturbation expansion in the distance ε ≡ du − d to the upper
critical dimension. The possibility to vary du offers an interesting extension of the
well-known expansion in powers of 4−d. Indeed, this expansion is divergent for all
ε > 1 and a Borel summation is required to obtain accurate results for the physically
relevant cases d = 2, 3. For integer d, Borel summability has indeed been proven
rigorously [1], but still a direct test of this expansion for ε � 1 would be useful.
This holds even stronger for the ε-expansion of finite-size scaling functions. Brézin
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and Zinn-Justin [2] demonstrated that such an expansion indeed exists in terms of
powers of

√
ε and they calculated the series for the amplitude ratio 〈m2〉2/〈m4〉 up

to O(ε). As for this quantity only numerical results for integer dimensions are avail-
able, a real comparison has not been possible until now. Evidently, models in which
ε can be varied continuously offer here an interesting opportunity.

However, also further below the upper critical dimension interesting questions
arise, at which we have already hinted in Chapter 4. In systems with a discrete order
parameter short-range forces can maintain long-range order at sufficiently low tem-
peratures provided that d > 1. Since we study the cases d = 1, 2, 3, we expect to ob-
serve a striking difference between d = 1 on the one hand and d = 2, 3 on the other
hand when increasing the decay rate of the interactions. In the former model a phase
transition will be absent when the interactions decay sufficiently rapidly, whereas
the latter two should cross over to the well-known short-range universality classes
at some value for σ . Since several contradictory renormalization-group (RG) sce-
narios for this crossover have been proposed in the literature, it is highly desirable
to study this issue with numerical methods. Indeed, a resolution of this question
might shed light on much broader theoretical issues underlying the disagreement
between the various RG treatments.

Many aspects of these models have been discussed in extenso in the preceding
chapter: Section 4.1 provides a comprehensive list of earlier studies of systems with
long-range interactions, Sec. 4.2 summarizes the steps toward a rigorous determina-
tion of the maximum decay rate for which long-range order is possible at nonzero
temperatures in the one-dimensional Ising chain and Sec. 4.4.1 introduces the pre-
cise spin–spin interactions that have been used in our numerical simulations. Be-
cause of the differences between the various dimensionalities, we have opted to treat
the three cases separately. Thus, this chapter is organized as follows. In Sec. 5.2 we
outline the RG scenario for the critical behaviour of long-range systems below their
upper critical dimension and give a detailed treatment of the renormalization con-
siderations concerning the crossover to short-range critical behaviour. Numerical
results for the one-dimensional case with 1/2 < σ < 1 are presented in Sec. 5.3.
Sections 5.4 and 5.5 treat the nonclassical long-range regime and the short-range
regime for two- and three-dimensional systems, respectively. Our conclusions are
summarized in Sec. 5.6.

5.2 Renormalization-group study of the nonclassical regime

The framework for an RG treatment of spin models with algebraically decaying in-
teractions has already been set up in Sec. 4.3. The starting point is a conventional
Landau–Ginzburg–Wilson (LGW) Hamiltonian (φ4 theory), in which long-range
interactions are incorporated, see Eq. (4.3). Clearly, such interactions tend to sup-
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press critical fluctuations and may modify the critical behaviour. Thus, if their de-
cay is sufficiently slow (σ sufficiently small) one expects these interactions to dom-
inate over any short-range interactions. Indeed, it was shown in Chapter 4 that for
σ < d/2 (with d < 4) the φ4 term in the LGW Hamiltonian is irrelevant, which
results in classical critical behaviour, as was confirmed by our numerical results. On
the other hand, for σ > 2 the r−(d+σ) interactions decay faster than the gradient
term representing the short-range interactions (the k2 term in the momentum-space
representation) such that the latter will dominate. In this case the critical proper-
ties are those of the corresponding short-range model, though with additional cor-
rections to scaling due to the irrelevant contribution of the power-law interactions.
Our knowledge of the intermediate regime, d/2 < σ < 2, heavily relies on various
RG analyses. Fisher, Ma and Nickel [3] carried out an expansion in ε = 2σ − d and
calculated the critical exponents γ and η to order ε2,

γ = 1 + n + 2

n + 8

ε

σ
+
[(

n + 2

n + 8

)2

+ (n + 2)(7n + 20)

(n + 8)3
A(σ )

]( ε
σ

)2

+ O(ε3) , (5.1a)

η = 2 − σ + O(ε3) , (5.1b)

where A(σ ) ≡ σ[ψ(1)−2ψ(σ/2)+ψ(σ)] andψ(x) is the Digamma function (log-
arithmic derivative of the Gamma function). The calculation of the higher-order
terms requires considerable computational effort and it is unfortunate that the de-
tails have never been published [4]. It was conjectured in Ref. [3] that the expres-
sion for η is exact to all orders in ε. Indeed, η follows from the scaling properties
of the spin–spin correlation function, which in turn are determined by the rescaling
factor of the field φ. As long as the long-range interactions dominate the critical be-
haviour and no higher-order terms contribute to the renormalization of kσφkφ−k in
the LGW Hamiltonian, η will therefore stick at 2 − σ . Suzuki et al. [5] have inde-
pendently reproduced these results1 and claimed that also the O(ε3) term vanishes
in the expansion for η. The increase of γ with increasing σ is in accordance with the
fact that for faster decaying interactions critical fluctuations are less suppressed and
hence the susceptibility exhibits a stronger divergence.

It is instructive to show briefly how these results follow from the RG equa-
tions (4.4). The solution of the second RG equation, which is still given by Eq. (4.5),
shows that for positive ε the Gaussian fixed point is no longer stable. Instead, u
flows toward a nonzero value u∗ = ε/[a(n + 8)] + O(ε2), as depicted in Fig. 5.1
for both ū < u∗ and ū > u∗ and various values of ε > 0. The leading irrelevant
exponent yi immediately follows from the decrease of ũ ≡ u − u∗ under successive

1The reader should beware of misprints in the expression for γ −1 in Ref. [5].
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Figure 5.1: The flow of the φ4 coefficient u as a function of the logarithm of the
rescaling parameter. The graphs have been normalized by u∗.

RG transformations. Naturally, the equation describing the behaviour of ũ is very
similar to Eq. (4.4b),

dũ

dl
= −εũ − a(n + 8)ũ2 , (5.2)

and to first order we find yi = −ε. This is in accordance with the result obtained
by Yamazaki and Suzuki [6]. They were the first to address this exponent in systems
with long-range interactions and derived it from the β-function appearing in the
Callan–Symanzik equations,

yi ≡ −ω = −ε + 2(5n + 22)

(n + 8)2
A(σ )

σ
ε2 + O(ε3) . (5.3)

The thermal exponent yt is calculated from Eq. (4.4a), as is easily seen by rewriting
this equation as

dr0

dl
= [σ − a(n + 2)u]r0 + a(n + 2)cu . (5.4)

The last term leads to a finite renormalization (shift) of the critical temperature
[similar to the last term in Eq. (4.6)] and the factor between square brackets yields,
upon substitution of u∗, the thermal exponent,

yt = σ −
(

n + 2

n + 8

)
ε + O(ε2) . (5.5)
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This agrees with the results in Eqs. (5.1), as follows from the scaling relation γ =
(2 − η)ν,

yt = σ −
(

n + 2

n + 8

)
ε − (n + 2)(7n + 20)

(n + 8)3
A(σ )

σ
ε2 + O(ε3) . (5.6)

The magnetic exponent yh is directly related to the exponent η, which, as men-
tioned above, follows from the field rescaling factor. We thus find to leading order
yh = (d + σ)/2, just as in the classical regime. It was conjectured in Ref. [3] that
this expression exactly holds all the way to σ = 2, where the short-range term in
the LGW Hamiltonian starts to dominate. This implies (for d < 4) a discontinuity
in η, since limσ↑2 η = 0 and limσ↓2 η = ηSR 6= 0, where ηSR stands for the ex-
ponent η in the corresponding model with short-range interactions. This intrigu-
ing phenomenon was subsequently studied by Sak [7], who included higher-order
contributions to the renormalization of the φkφ−k term in Eq. (4.3). The leading

(a) (b) (c)

Figure 5.2: The diagrams representing the first-order [(a)] and second-order [(b),
(c)] contributions to the renormalization of the φ2 term.

contributions come from the Feynman graphs shown in Fig. 5.2. The first one, pro-
portional to u, yields the last term in Eq. (5.4) and evidently does not carry any k
dependence. However, of the second and third graphs, which are of order u2, the
last one does depend on k, as it leads to an integral of the form∫

ddq1

(2π )d

∫
ddq2

(2π )d
1

( j2q2
1 + jσqσ1 + r0)( j2q2

2 + jσqσ2 + r0)

× 1

[ j2(k − q1 − q2)
2 + jσ(k − q1 − q2)

σ + r0]
, (5.7)

where the integrals run over the outer momentum shell. It was argued by Sak that
while this yields no contributions proportional to kσ—in agreement with the con-
clusions of both Ref. [3] and Ref. [5]—there is a contribution quadratic in k. From
the fact that the exponents in (5.1) have been calculated to second order, we con-
clude that these diagrams must have been considered for the calculation of the re-
sults presented in Refs. [3, 5] (they are required for yt), but that their consequences
for the renormalization of the j2k2 term in (4.3) have been ignored. Sak obtained an
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interesting result: due to the k2 contribution, short-range forces will always appear
in the renormalization process and compete with the long-range forces. Thus, u∗

depends on the fixed-point values of both jσ and j2. This dependence, which origi-
nates from the integration of propagators [similar to Eq. (5.7)], is immaterial in a sit-
uation where only one type of interaction is present, but now we explicitly incorpo-
rate it in our notation. The coefficient a in Eq. (4.4b) is hence replaced by ( jσ+ j2)−2

and to first order u∗ = ε( jσ + j2)2/(n + 8). Generalizing Sak’s recursion relation
for the coefficient j2 (which was derived from integrations over a momentum shell
of fixed size) we find, for a rescaling parameter b = el ,

d j2
dl

= (σ − 2) j2 + n + 2

2( jσ + j2)3
u2 , (5.8)

and substitution of the fixed-point value u∗ yields

d j2
dl

=
[
σ − 2 + n + 2

2(n + 8)2
ε2

]
j2 + n + 2

2(n + 8)2
ε2 jσ . (5.9)

At the fixed point, j2 indeed takes a nonzero value

j∗2 = η̃ j∗σ
2 − σ − η̃

, (5.10)

where we have written j∗σ because this parameter is kept invariant and we have in-
troduced η̃ ≡ (n+ 2)ε2/[2(n+ 8)2] + O(ε3).2 Clearly, this fixed point is only stable
for σ < 2 − η̃, as also follows from the solution of Eq. (5.9),

j2(l) = j∗2 + ( j̄2 − j∗2 )e
[σ−(2−η̃)]l , (5.11)

with j̄2 = j2(l = 0). For σ > 2 − η̃, j2 will grow without bound under the RG
transformation and we conclude that it is the j2k2 term that determines the critical
behaviour. Indeed, Sak noted that the parameter η̃ determining the crossover loca-
tion agrees to this order with the exponent ηSR. Namely, in terms of ε′ ≡ 4 − d we
have [8]

ηSR = n + 2

2(n + 8)2
ε′2 + O(ε′3) (5.12)

and the difference between ε and ε′ is of order ε2 (we assume ε′ to be small, which
in turns implies ε small). At first sight this result may seem a remarkable coin-
cidence, but actually it is quite natural, as the diagrams are identical to those in
the ε′-expansion. This result led Sak to the conclusion that the crossover occurs at
σ = 2 −ηSR. However, we note that no higher-order contributions to Eq. (5.9) have

2We include the O(ε3) term to anticipate higher-order contributions in a later stage.
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been calculated which confirm this conclusion. Let us explicitly verify the consis-
tency of this renormalization scenario. Thus, we return to the original LGW Hamil-
tonian and choose a different rescaling factor for the field [cf. the discussion below
Eq. (4.3)], φ′

k′ = b−1+ηSR/2φk. This choice ensures that the coefficient j2 remains
constant. Due to the absence of higher-order terms, the RG equation for jσ is exact
and we indeed find that this coefficient rescales as j′σ = b2−ηSR−σ jσ and the long-
range term vanishes at the fixed point. Indeed, this is fully consistent with Eq. (5.9):
all jσ-dependent contributions vanish for σ > 2−ηSR if one replaces jσ by its fixed-
point value (this is similar to the replacement in Eq. (5.9); for a further discussion
see, e.g., Ref. [9]). Furthermore, our new choice of the rescaling parameter implies
that σ − 2 between the square brackets is replaced by −ηSR, which precisely cancels
the remaining higher-order terms. At σ = 2, the LGW Hamiltonian (in momen-
tum space) does not coincide with that of a short-range system, since the kσ term is
replaced by jσk2 ln k [3]. We note that, due to the logarithmic factor, which upon
renormalization is split into two parts, the long-range term directly contributes to
the short-range term. As one may set jσ equal to zero in the renormalization equa-
tion for j2, this contribution does not modify our conclusions concerning the domi-
nance of the short-range term, but it does lead to a logarithmic correction to scaling.
However, this logarithmic factor is subdominant, as it is multiplied by the contribu-
tion of the long-range interactions, which decays as b−ηSR.

Interestingly, the situation at the crossover point itself, σ = 2 − ηSR, seems to
have received little attention. Here, the renormalization equations should not de-
pend on the choice of the rescaling of the field (cf. also Ref. [9]) and we find j′σ = jσ
as we had already obtained in the regime σ < 2 − ηSR. Usually, logarithmic cor-
rections appear if an operator becomes marginal and also in this case the existence
of such corrections is expected [10]. As such corrections are not implied by the
RG equation for jσ, we expect them to appear in the renormalization equation for j2.
Indeed, also for this parameter the choice of rescaling factor should not matter at
σ = 2 − ηSR and we thus may use Eq. (5.9). Diagrammatic considerations show
that for all graphs the number of propagators is one less than the number of fac-
tors ( jσ + j2) coming from the first-order term in u∗. So they all contribute to terms
which are at least linear in jσ or j2. More generally, we note that, by necessity, all
higher-order terms in j2 contribute to ηSR and since the short-range part and the
long-range part of the spin–spin interaction appear together in all propagators, we
conjecture the full equation to be

d j2
dl

= (σ − 2 + ηSR) j2 + ηSR jσ . (5.13)

If this conjecture holds (or even if higher-order terms in jσ appear), we see that j2
is unbounded at σ = 2 − ηSR, due to the nonvanishing character of jσ . Indeed, j2
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diverges logarithmically: j2 = ηSR jσ l = ηSR jσ ln b and the ratio jσ/ j2 decreases as
1/(ηSR ln b).

We note that Sak’s argument hinges on the observation that all propagators in
the higher-order terms can be Taylor-expanded, thus yielding only integer powers
of k. In the regime where σ is very close to 2, one must be careful to use such an ex-
pansion to distinguish between kσ and k2. Nevertheless, the scenario outlined here
has some attractive features. The original discontinuity in the exponent η at σ = 2
is removed. Furthermore, it is in agreement with Ref. [11], where arguments were
given that long-range interactions do not modify the dominant behaviour of the
spin–spin correlation function if the resulting η is smaller than ηSR. Finally, in the
one-dimensional case (with n = 1) the absence of a phase transition for σ > 1 pre-
cisely corresponds to a crossover at σ = 2 −ηSR, because ηSR = 1, reflecting the fact
that the correlation function does not decay algebraically above the critical tempera-
ture. However, it is by no means evident that this permits us to draw any conclusions
for higher-dimensional models: d = 1 is a class on its own, with a nonzero transi-
tion temperature for σ = 1 but Tc = 0 for any σ > 1. The properties of the fixed
point at d = σ = 1 are completely different from that of any other long-range sys-
tem with a one-component order parameter. Nevertheless, all this has led to a rather
wide acceptance of a crossover at σ = 2 − ηSR, despite the absence of any further
evidence. The implications of this issue extend far beyond the mere question as to
where the crossover occurs: it is relevant to the study of long-range correlated ran-
dom impurities [12] and the more general question of dimensional regularization
in systems with interaction terms with different critical dimensionalities [13]. Fur-
thermore, related techniques have been applied to study the relevance of long-range
interactions in spin glasses [14] and other φ3 theories [15]. An expansion around
the lower critical dimension has been carried out for n-component models (n > 2)
with long-range interactions [9], which also yielded 2 − ηSR as the dividing line.

Yet, Sak’s scenario does not get away uncriticized. An interesting contribution
has been made by van Enter [16], who showed that it cannot hold for the XY model
with d ≥ 3. He proved that a long-range perturbation, which is considered irrele-
vant for σ > 2 − ηSR, still restores a broken rotational symmetry for any σ < 2 and
thus modifies the critical behaviour. Yamazaki devoted several papers to the study
of long-range systems by renormalized perturbation theory and found that the re-
sults depended on the precise normalization conditions for the vertex functions. In
Refs. [17, 18], the regime d/2 < σ < 2 was divided into three regions: (i) the region
σ < 2 − ε̃, where the critical behaviour is strictly determined by the long-range in-
teractions and η = 2 − σ ; (ii) an intermediate region 2 − ε̃ < σ < 2 − ηSR, where
η starts to deviate from the classical value; (iii) the so-called weakly long-range re-
gion 2 − ηSR < σ < 2, where the obtained value for η depends on the choice
of the propagator. Indeed, in case (iii), Sak’s result η = ηSR was recovered if the
short-range (k2) propagator is applied, whereas for the long-range (kσ) propagator
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a continuously varying exponent η was found which at σ = 2 coincides with ηSR.
Thus, η varies continuously as a function of σ . The parameter ε̃ has not been rig-
orously defined, but was said to depend on the relative magnitude of ε, ε′ = 4 − d
and 2 − σ . Reference [19] extends this treatment with ε-expansions for other crit-
ical exponents and in Refs. [20, 21] it is applied to the study of long-range models
with a cubic anisotropy. In Ref. [22] the same scenario is outlined again. We find
it difficult to get a consistent picture from Yamazaki’s approach, as he carries out
all calculations twice: either all propagators are expanded in terms of k2 or in terms
of kσ , independent of the question which fixed point is the stable one. For exam-
ple, the above-mentioned continuously varying η was found with a kσ propagator,
whereas at the same time it is admitted that j∗σ = 0. However, if this implies that we
must reject this result, we encounter a mismatch at σ = 2 − ηSR, unless the size of
region (ii) shrinks to zero. But in the latter case, the entire Sak scenario is recovered.

The validity of the various renormalization approaches was reconsidered by
Gusmão and Theumann [23]. According to their analysis, 2 − σ is not a valid ex-
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Figure 5.3: The exponent η as a function of the decay rate σ in the two-dimensional
case. The solid line (“FMN”) denotes the exponent 2 −σ , which is assumed to hold
for any σ < 2 and hence implies a discontinuity at σ = 2; the dashed line (“Sak”)
marks η according to Sak’s prediction of crossover at σ = 2 − ηSR, the dotted line
(“Y”) indicates Yamazaki’s prediction of a smoothly varying exponent and the dash-
dotted line (“SR”) indicates the short-range (2D Ising) exponent 1/4. The small
mismatch between “Y” and “SR” at σ = 2 is caused by the fact that the former is
an ε-expansion result: if all higher-order terms are taken into account, a continu-
ous crossover will be found.
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pansion parameter, i.e., one cannot expand the full propagator in terms of k2, and
hence the calculations of both Sak and Yamazaki are incorrect. They point out an
apparent inconsistency in Yamazaki’s calculations for the two-point vertex func-
tions and conclude that his observation that η deviates from 2 − σ already below
σ = 2 − ηSR [the above-mentioned region (ii)] is erroneous. On the other hand,
also Sak’s result is disputed and different RG equations are obtained for j2 and jσ .
Instead of Eq. (5.10), the fixed-point value of j2 would be

j∗2 = ηSRR(σ ) j∗σ
2 − σ

, (5.14)

where limσ↑2 R(σ ) = 1. Then, short-range forces are indeed generated in the renor-
malization process, but they do not modify the critical behaviour for any σ < 2. On
the other hand, no higher-order terms appear in the recursion relation for jσ and
thus the result η = 2 − σ holds in this entire region. Thus, the original discontinu-
ity at the crossover location is recovered.

The situation is obscured even further by the notion that the long-range fixed
point is only stable if the exponent ω [Eq. (5.3)] is positive [6]. To second order
in ε, we find that for d = 3 this is the case for any 3/2 < σ < 2. However, in two
dimensions, ω first increases when moving away from the upper critical dimension
(σ = 1), but then decreases fairly rapidly and passes (according to the second-order
expression) through zero at σ = 1.428 . . . . In the one-dimensional case the stability
region is even restricted to σ ∈ [0.5, 0.6736]. Although higher-order terms in the
expansion for ω will change the size of this region, the range of validity of the cor-
responding ε-expansion is still remarkably small, in particular for the case d = 1.

In Fig. 5.3 we have collected the various predictions for the exponent η as a func-
tion of σ (for d = 2). Clearly, the proliferation of renormalization scenarios il-
lustrates that a thorough understanding of the crossover from long-range to short-
range critical behaviour is still lacking. Each of the various calculations has its own
attractive features and a different approach is desirable to shed some light on this
issue. Numerical calculations are an obvious choice, but problems may be expected
here as well. As noted before, a one-dimensional model with a one-component or-
der parameter is definitely not a representative case. In three dimensions, the region
2−ηSR < σ < 2 is very small, as are the differences between the various predictions.
Moreover, strong corrections to scaling will be present close to the crossover point,
which will hamper the numerical analysis. Also in the remaining nonclassical re-
gion, 3/2 < σ < 2 −ηSR, one may hardly expect that the numerical error on the ex-
ponent η can be made sufficiently small to distinguish between η = 2−σ on the one
hand and Yamazaki’s slightly different prediction on the other hand. This leaves the
two-dimensional case (with a one-component order parameter) as the most promis-
ing one. Here, the value of ηSR = 1/4 is relatively large, leading to grossly differing
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Figure 5.4: Dimensionality versus decay parameter σ . The full lines mark the upper
critical dimension. “LR” and “SR” stand for long-range and short-range critical be-
haviour, respectively. The dashed curve, for which the numerical results of Ref. [24]
have been used, marks the separation between these two regimes according to the
renormalization scenario of Sak. The dotted vertical line denotes the separation as
it follows from the original renormalization treatment by Fisher, Ma and Nickel, re-
covered by Gusmão and Theumann. For a further discussion see the text. The open
circles indicate the models investigated in this chapter.

predictions as σ approaches 2 from below, whereas also the range of σ where the pre-
dictions disagree has an appreciable size. On the other hand, the remaining nonclas-
sical region 1 < σ < 7/4 may be sufficiently large to allow for the detection of any
deviations from the conjectured value η = 2 − σ without being plagued by strong
corrections to scaling due to the proximity of either of the endpoints.

In conclusion, we note that some rigorous bounds have been derived in Ref. [25]
for general spin models with algebraically decaying interactions. For the present dis-
cussion, the most important result is the bound

d

1 − η/2
≥ d

min{1, σ/2} , (5.15)

which for σ ≤ 2 reduces to η ≥ 2−σ and thus cannot serve to pinpoint the crossover
location.

Figure 5.4, which is the counterpart of Fig. 4.1, shows the various regimes as a
function of both d and σ , including Sak’s crossover criterion. Also the models for
which we have made numerical calculations are indicated.
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5.3 The one-dimensional Ising model with long-range inter-
actions

We have carried out simulations for spin chains of length 10 ≤ L ≤ 150 000 and
a decay parameter 0.55 ≤ σ ≤ 0.95, in intervals of 0.05. For each value of σ we
have determined various critical properties. In contrast with the systems discussed
in Chapter 4, no precise predictions exist for the correction-to-scaling exponents in
this regime. Thus, these exponents have to be determined in the least-squares fits as
well. We have applied the following general scheme for the analysis of the data:

1. Determine the exponent yi of the leading correction to scaling from a least-
squares fit of the amplitude ratio Q and/or the magnetic susceptibility χ . As
this estimate varies somewhat as a function of the minimal system size, we in-
crease the error bars to cover this variation.

2. Make an analysis of both Q and the magnetic susceptibility with this exponent
fixed at its best value. These analyses are then repeated with yi fixed at a value
that lies one standard deviation above and below the best estimate, to deter-
mine the influence of the uncertainty in yi. The advantage of keeping yi fixed
is that one can include more (nonlinear) correction terms and thus include
smaller system sizes in the analysis.

3. Finally, the susceptibility is analyzed with the magnetic exponent fixed at its
conjectured value, where again the uncertainty in yi is taken into account. The
resulting estimate for the critical coupling is then used in an analysis of the
amplitude ratio Q, to make a more precise estimate of this quantity. The ther-
mal exponent is left free in all analyses.

Table 5.1: Results of least-squares analyses of the magnetic susceptibility. Apart from
the Monte Carlo estimates, also the RG conjecture for the magnetic exponent is
included.

σ yi yh yh (RG) yt Kc

0.55 −0.15 (5) 0.777 (5) 0.775 0.499 (10) 0.254775 (14)
0.60 −0.15 (5) 0.798 (4) 0.800 0.502 (8) 0.281793 (10)
0.65 −0.20 (4) 0.826 (3) 0.825 0.503 (10) 0.310503 (10)
0.70 −0.23 (5) 0.848 (3) 0.850 0.491 (10) 0.341226 (12)
0.75 −0.24 (5) 0.875 (2) 0.875 0.469 (15) 0.374530 (15)
0.80 −0.25 (5) 0.896 (4) 0.900 0.457 (10) 0.41104 (3)
0.85 −0.26 (5) 0.9243 (15) 0.925 0.413 (14) 0.45209 (3)
0.90 −0.35 (5) 0.9508 (10) 0.950 0.379 (15) 0.49968 (6)
0.95 −0.32 (2) 0.9754 (7) 0.975 0.287 (6) 0.55870 (15)
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Figure 5.5: Monte Carlo results for the magnetic exponent. The full circles denote
estimates for y∗

h (the classical regime, see Chapter 4) and the open circles indicate
values for yh (the nonclassical regime). The dash-dotted line marks the RG predic-
tion below the upper critical dimension, which is conjectured to hold exactly to all
orders in the ε-expansion.

Table 5.1 shows the results for yi and for the analyses of the magnetic susceptibility as
described in step 2. Here, an expression of the form (4.30) was used to describe the
data, where y∗

h and y∗
t were replaced by yh and yt, respectively. As usual, a cross term

proportional to Lyt+yi had to be included in the scaling formula as well. Evidently,
over the full range of σ , there is an excellent agreement between the Monte Carlo
estimates for yh and the renormalization-group conjecture yh = (d + σ)/2. This is
illustrated graphically in Fig. 5.5. Furthermore, we note that the second-order ex-
pression (5.3) yields a poor description of the irrelevant exponent.

For Q, an expression similar to Eq. (4.23) was applied. Since the analysis is in-
sensitive to the precise exponent in the subdominant correction q1Ld−2yh , the ex-
ponent yh could be kept fixed at its conjectured value, which is also justified by the
results from the susceptibility. The corresponding results are collected in Table 5.2.
The estimates for Kc as obtained from the susceptibility and Q are in mutual agree-
ment. One observes that the critical coupling monotonically increases with increas-
ing σ , as one would expect. Also for the thermal exponent yt the agreement between
Tables 5.1 and 5.2 is quite good.

Next, we have carried out step 3. For later comparison, the results for the critical
coupling, which are our most accurate estimates, are collected in Table 5.5. The es-
timates for yt (both from the analyses of χ and from the analyses of Q) and for Q are
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Table 5.2: Results of analyses of the amplitude ratio Q for different values of the de-
cay parameter σ .

σ Q yt Kc

0.55 0.50 (2) 0.494 (19) 0.254754 (17)
0.60 0.54 (2) 0.497 (8) 0.281781 (14)
0.65 0.590 (8) 0.501 (8) 0.310481 (12)
0.70 0.639 (3) 0.491 (10) 0.341226 (11)
0.75 0.689 (3) 0.491 (14) 0.374517 (11)
0.80 0.742 (2) 0.460 (10) 0.411071 (17)
0.85 0.8019 (11) 0.416 (9) 0.452090 (15)
0.90 0.8637 (8) 0.371 (10) 0.49964 (3)
0.95 0.9302 (12) 0.286 (6) 0.55866 (8)

Table 5.3: Estimates for the thermal exponent and the amplitude ratio from analyses
in which either the magnetic exponent was kept fixed (second column) or the critical
coupling (third and fourth column).

σ yt (χ) yt (Q) Q
0.55 0.502 (16) 0.49 (3) 0.507 (8)
0.60 0.496 (10) 0.505 (10) 0.550 (3)
0.65 0.505 (10) 0.510 (10) 0.595 (3)
0.70 0.485 (9) 0.498 (10) 0.641 (2)
0.75 0.469 (13) 0.484 (10) 0.6911 (15)
0.80 0.450 (14) 0.460 (8) 0.7442 (11)
0.85 0.411 (13) 0.416 (7) 0.8026 (6)
0.90 0.380 (12) 0.372 (14) 0.8634 (6)
0.95 0.289 (4) 0.287 (6) 0.9298 (3)

listed in Table 5.3. All results are consistent with those obtained from the previous
analyses, but for the thermal exponent the new estimates are not necessarily more
accurate. This is caused by the uncertainty in yi, which is now the main source of the
error margins. However, for the amplitude ratio the accuracy has clearly improved.

In Fig. 5.6 we have plotted the most accurate estimates for the thermal exponent
along with the Monte Carlo estimates from the previous chapter and the first- and
second-order ε-expansion results [see Eqs. (5.5) and (5.6), respectively]. Until σ =
0.8 (ε = 0.6) the agreement is quite good. For larger values of σ , on the other hand,
the Monte Carlo data approach the dash-dotted curve indicating the first-order ex-
pansion around the Kosterlitz–Thouless point at σ = 1: yt = √

2(1 − σ) [26]. In
addition, we have plotted the behaviour of Q as a function of the decay parameter
in Fig. 5.7. For ε small, the results quite accurately follow a straight line, which can
roughly be described by the expression QMF(1 + ε). Naturally, this is only an ap-
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Figure 5.6: Monte Carlo results for the thermal exponent. The full circles denote
estimates for y∗

t (the classical regime, see Chapter 4) and the open circles indicate
values for yt (the nonclassical regime). The dashed line and curve mark the first-
and second-order ε-expansions. We have also included an expansion around σ = 1
(dash-dotted curve).

proximation, since there is no a priori reason for the amplitude of the O(ε) term to
be identical to QMF. Further below the upper critical dimension (larger σ), the esti-
mates for Q start to deviate from the straight line, which is in full harmony with the
prediction of a Kosterlitz–Thouless transition at σ = 1.0. Namely, it is predicted
that the order parameter exhibits a jump discontinuity at this point, which in turn
suggests that the critical value of the amplitude ratio Q must be equal to 1 there. In-
deed, the deviations of Q from the straight line are compatible with this value. Below
we will come back to the behaviour of Q as a function of ε.

In Table 5.4 we have collect various earlier estimates for the correlation-length
exponent. The approximations of Refs. [27, 28] apparently break down when σ ap-

Table 5.4: The correlation length exponent ν for the one-dimensional model as a
function of σ , together with earlier estimates and the renormalization predictions.

σ This work Ref. [27] Ref. [29] Ref. [28] Ref. [30] Ref. [31]
0.6 1.98 (2) 1.9 2.16 2.12 2.00 —
0.7 2.01 (4) 1.8 2.123 2.17 1.93 2.66
0.8 2.17 (5) 1.9 2.208 2.24 2.07 —
0.9 2.70 (7) 2.0 2.63 2.30 2.47 3.90
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Figure 5.7: Monte Carlo results for the amplitude ratio Q. The full circles denote
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the values for Q obtained in this chapter. The dashed line indicates a simple guess
for the behaviour of Q just below the upper critical dimension.

proaches 1. The agreement with the results of Refs. [29, 30] is generally quite good.
Finally, we compare our best estimates for the critical couplings with earlier es-

timates, see Table 5.5. Just as in Sec. 4.4, our results supersede all other values by
about two orders of magnitude. Both the series-expansion results of Nagle and Bon-
ner [27] and the finite-range extrapolations of Glumac and Uzelac [29, 30] agree
with our results. The estimates of Ref. [32] now lie below our values, in contrast
with the classical region. The agreement with the coherent-anomaly results [28] de-
creases for increasing σ . This is also true for the approximations from Ref. [33], cf.
Eq. (4.25), which confirms that this is essentially a mean-field-like approach. The
discrepancies (for σ � 0) with the real-space renormalization-group results were al-
ready predicted in Ref. [31]. Furthermore, we see from Table 5.6 that our results con-
form to all predicted bounds. Comparing these bounds with Table 4.4, we find that
the lower bounds become less tight with increasing σ , whereas the upper bounds
become more tight.
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Table 5.5: Comparison between our best estimates of the critical couplings Kc for the one-dimensional system and earlier
estimates.
σ This work Ref. [27] Ref. [32] Ref. [29] Ref. [34] Ref. [30] Ref. [28] Ref. [33] Ref. [31]

0.55 0.254772 (9) — — — — — — 0.2547 —
0.60 0.281800 (5) 0.2832 (18) 0.279092 0.282 (3) — 0.2822 0.282 (6) 0.2894 —
0.65 0.310500 (5) — — — — — — 0.3317 —
0.70 0.341237 (4) 0.343 (2) 0.329139 0.341 (3) — 0.3417 0.338 (7) 0.3855 0.391
0.75 0.374531 (5) — — — 0.388 (5) — — 0.4582 —
0.80 0.411090 (8) 0.412 (3) 0.381071 0.411 (4) — 0.4116 0.401 (7) 0.5642 —
0.85 0.452101 (8) — — — — — — 0.7374 —
0.90 0.49963 (2) 0.499 (4) 0.434861 0.499 (5) — 0.4987 0.4728 (4) 1.079 0.65
0.95 0.55862 (4) — — — — — — 2.096 —

Table 5.6: Comparison of our best estimates of the critical couplings for the one-dimensional system with lower and upper
bounds.

σ This work Ref. [35] Ref. [35]
0.60 0.281800 (5) ≥ 0.2203 ≤ 0.4502
0.70 0.341237 (4) ≥ 0.2458 ≤ 0.5066
0.80 0.411090 (8) ≥ 0.2691 ≤ 0.5596
0.90 0.49963 (2) ≥ 0.2903 ≤ 0.6101
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5.4 The two-dimensional Ising model with long-range inter-
actions

5.4.1 Introduction

As indicated in Sec. 5.2, the two-dimensional case is the most suitable candidate
for resolving the contradicting scenarios for the crossover from nonclassical long-
range critical behaviour to short-range critical behaviour. We recall that the classi-
cal regime ends at σ = d/2 = 1 and the intermediate long-range regime is pre-
dicted to end either at σ = 2 − ηSR = 7/4 or at σ = 2. We have simulated models
with σ ∈ {1.20, 1.40, 1.60, 1.75, 1.85, 1.95, 2.00, 2.05, 2.25, 2.50, 2.75, 3.00} and de-
termined the amplitude ratio Q, the magnetic and thermal exponent and the criti-
cal coupling. Just as in the one-dimensional case, the absence of precise predictions
for the correction-to-scaling exponents considerably reduces the accuracy that can
be obtained in the analyses. In effect, for each value of σ an individual approach is
required. Thus, we have divided the models into three categories: (A) 1 < σ < 7/4;
(B) 7/4 ≤ σ ≤ 2; (C) σ > 2. In the following subsections we discuss these categories
separately.

5.4.2 Regime A: 1 < σ < 7/4

These models (σ = 1.20, 1.40, 1.60), for which we have simulated linear system sizes
4 ≤ L ≤ 400, closely resemble those analyzed in the one-dimensional case. Thus,
we have followed the scheme outlined in Sec. 5.3. As can be seen from Table 5.7,
for σ = 1.20 the irrelevant exponent is in good agreement with the first-order ε-
expansion (−ε = −0.4). At σ = 1.40 the irrelevant exponent has further increased
(in the absolute sense), but at σ = 1.60 it has decreased again. This might indicate
the presence of the short-range fixed point. We cannot exclude that the irrelevant
exponents as listed in the table are only “effective” exponents, representing the com-
bined effects of various corrections to scaling. The magnetic exponent yh is for all
three cases in very good agreement with the renormalization prediction, so it ap-
pears as if for this regime the expression yh = (d + σ)/2 indeed holds exactly. Re-
peating the analysis of the susceptibility with yh fixed yields an accurate prediction
for the critical coupling, which we have used in the analysis of Q. The corresponding
results are shown in Table 5.8.

5.4.3 Regime B: 7/4 ≤ σ ≤ 2

This regime is by far the most difficult to analyze due to very slow convergence of the
numerical data. For the models with σ = 1.75, 1.85, 1.95, 2.00 we have simulated
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Table 5.7: Results of least-squares analyses of the magnetic susceptibility in regime A.
Apart from the Monte Carlo estimates, also the RG conjecture for the magnetic ex-
ponent is included.

σ yi yh yh (RG) yt Kc

1.20 −0.41 (7) 1.597 (8) 1.600 1.00 (2) 0.114966 (4)
1.40 −0.60 (8) 1.693 (8) 1.700 1.00 (2) 0.125297 (4)
1.60 −0.43 (3) 1.795 (15) 1.800 0.98 (3) 0.133397 (7)

Table 5.8: The amplitude ratio Q and the thermal exponent yt in regime A, as ob-
tained with the critical coupling fixed at the estimates in Table 5.7.

σ Q yt

1.20 0.560 (3) 1.02 (3)
1.40 0.6534 (10) 1.04 (3)
1.60 0.759 (2) 1.03 (2)

linear system sizes up to L = 600, 1000, 600, 400, respectively. Here, we discuss the
four cases separately.

For σ = 1.75, the choice of the scaling formula depends on the pertinent renor-
malization scenario. If the crossover between long-range and short-range critical
behaviour indeed occurs at this location (the “Sak” scenario), logarithmic correc-
tions should be present. On the other hand, if the scenario of either Gusmão and
Theumann (GT) or Yamazaki is correct, such corrections are not to be expected
here. However, Sak and GT agree on a magnetic exponent equal to 15/8, whereas
Yamazaki has predicted that this value is only reached in the limit σ ↑ 2. First, we
have analyzed the amplitude ratio Q using an expression which contains only alge-
braically decaying corrections to scaling. This yielded the following estimates for
the universal quantities: Q = 0.804 (9), yt = 1.007 (5) and yi = −0.41 (6). The
χ2 criterion gave no reason to doubt the reliability of this analysis. Subsequently
we used the estimate for yi to analyze the magnetic susceptibility. The resulting es-
timate for the magnetic exponent was yh = 1.831 (12), which yields an incon-
sistency for the GT scenario. Thus, we fitted an expression containing both loga-
rithmically decaying terms and an algebraic correction to the numerical data for Q.
This gave Q = 0.842 (19), yt = 1.003 (9) and yi = −1.1 (6). Since both Q and
the thermal exponent are in agreement with the 2D Ising universality class, we re-
peated the analysis with Q = 0.856216 fixed: yt = 1.000 (7) and yi = −0.86 (8).
The resulting irrelevant exponent was then used for an analysis of the susceptibility,
yielding yh = 1.84 (3). Fixing Kc at the estimate from the last analysis of Q gave
yh = 1.86 (3). While these values are not very accurate, they are in full agreement
with the Sak scenario.

Next, we considered σ = 1.85. The usual analysis of Q to determine the expo-
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nent of the leading correction to scaling resulted in a remarkably large value: yi =
−0.48 (8). Furthermore, we found yt = 0.990 (7) and Q = 0.827 (8). The latter
estimate would—in combination with the first estimate of Q at σ = 1.75—suggest
an amplitude ratio that gradually increases upon the approach of σ = 2. However,
to allow for the situation that this is only an effective correction exponent, we re-
analyzed Q with an additional correction decaying as L−0.10, as predicted for the de-
cay of coefficient jσ in the Sak scenario. This yielded Q = 0.86 (4), yi = −0.51 (5)
and yt = 0.99 (5). As this suggests at least a consistency with crossover at σ = 1.75,
we fixed Q to obtain a better estimate of Kc and yi. For the latter we found yi =
−0.501 (12), which we used in an analysis of the magnetic susceptibility, yielding
yh = 1.86 (4). By fixing Kc we could improve this to yh = 1.87 (3).

For σ = 1.95 we have already approached the point σ = 2 very closely, which
makes it difficult to distinguish the predictions of Sak and Yamazaki. However, it
is a very suitable system to judge the GT scenario, as the discrepancy in η (or yh)
increases with the distance to σ = 7/4. An analysis of Q yielded: Q = 0.86 (3),
yt = 0.991 (5) and yi = −0.31 (4). With Q fixed at its 2D Ising value, we found
yi = −0.34 (4). This exponent presumably incorporates the effects of both the de-
caying long-range term (exponent −0.20) and higher correction terms. The mag-
netic exponent then resulted from an analysis of the susceptibility: yh = 1.873 (16),
which lies already six standard deviations from GT’s prediction yh = 1.975. Fixing
the critical coupling reinforced this conclusion: yh = 1.878 (7).

Finally, we considered the case σ = 2. In fact, this is the counterpart of σ = 1.75,
since now the scenarios of both GT and Yamazaki predict logarithmic corrections,
whereas in Sak’s case they only occur in subdominant correction terms. However,
in all three scenarios Q is expected to take its 2D Ising value. An analysis with only
algebraic corrections gave Q = 0.859 (14) and yi = −0.41 (9). Including logarith-
mic corrections led to the inconclusive result Q = 0.79 (6), so that we made a new
analysis with Q fixed. Without logarithmic corrections we found yi = −0.42 (3)
and inclusion of logarithms hardly modified this estimate; yi = −0.41 (4). Further-
more, the coefficient of the logarithmic term was zero within less than one standard
deviation. This suggests that the logarithms are at least very weak. Fitting the sus-
ceptibility with only algebraic corrections then gave yh = 1.871 (14) and with a fixed
coupling even yh = 1.875 (3).

In summary, we have handled this regime as follows. For each system, the cor-
rections to scaling were determined from the amplitude ratio Q. Since Q was in all
four cases consistent with the 2D Ising value, we obtained a better estimate for the
correction exponent by assuming that Q indeed takes this value. A subsequent anal-
ysis of the susceptibility with this correction then yielded a magnetic exponent which
is in agreement with the 2D Ising value, which corroborates the consistency of our
assumption. In Table 5.9 we have collected our estimates for Q, yh, yt and Kc, where
the latter was obtained with Q fixed.
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Table 5.9: Estimates for the amplitude ratio Q, the magnetic and the thermal expo-
nent and the critical coupling in regime B.

σ Q yh yt Kc

1.75 0.842 (19) 1.86 (3) 1.003 (9) 0.137870 (3)
1.85 0.86 (4) 1.87 (3) 0.99 (5) 0.140074 (2)
1.95 0.86 (3) 1.878 (7) 0.991 (5) 0.141646 (2)
2.00 0.859 (14) 1.875 (3) 0.980 (10) 0.142203 (3)

Table 5.10: Our best estimates for Q, yt, yi and Kc in regime C.
σ Q yt yi Kc

2.05 0.861 (9) 0.97 (2) −0.51 (4) 0.142611 (4)
2.25 0.854 (6) 0.97 (15) −0.68 (4) 0.142832 (3)
2.50 0.859 (3) 0.99 (2) −0.73 (2) 0.140392 (3)
2.75 0.855 (3) 0.997 (15) −0.78 (4) 0.135640 (4)
3.00 0.857 (3) 1.01 (2) −1.01 (7) 0.129266 (4)

5.4.4 Regime C: σ > 2

This regime, which contains the systems with σ = 2.05, 2.25, 2.50, 2.75 and 3.00,
posed much less problems than the preceding one. The analyses of Q in which the
correction-to-scaling exponent was included as a free parameter left little doubt that
the amplitude ratio indeed takes its 2D Ising value for these systems. This in turn al-
lowed for an accurate determination of yi. Table 5.10 lists the results for Q and the
estimates for yt, yi and Kc obtained with Q fixed. When judging the accuracy of these
estimates, one should keep in mind that the largest linear system sizes decrease with
increasing σ ; they are given by L = 400, 400, 300, 200, 200, respectively. Close to
σ = 2, the exponent yi also includes the effect of the correction to scaling caused
by the presence of the long-range term, but for larger σ this is a subdominant cor-
rection. The critical coupling shows a remarkable behaviour: starting from σ = 0
it increases monotonically with σ , although slower and slower when σ = 2 is ap-
proached. Even in regime C, the increase continues, until between σ = 2.25 and
σ = 2.50 the critical coupling starts to decrease. This can be explained from the fact
that we have simulated systems with an interaction that is an integral over a square
around each lattice site (see Sec. 4.4.1). For interactions which decay very fast, the
large value of the integrand near the lower-distance cutoff leads to a strong nearest-
neighbour coupling, explaining the decrease of Kc.

Next, the correction exponents were used in an analysis of the susceptibility, with
Kc both free and fixed. The results are collected in Table 5.11. Clearly, there is strong
evidence that all these models belong to the 2D Ising universality class, although with
much stronger corrections to scaling than the two-dimensional nearest-neighbour
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Ising model itself.

Table 5.11: The exponents yh and yt in regime C. The estimates in the third column
were obtained with the critical couplings fixed at their best estimates from Table 5.10.

σ yh yh yt

2.05 1.873 (11) 1.875 (4) 0.96 (3)
2.25 1.875 (4) 1.8748 (15) 0.97 (2)
2.50 1.876 (3) 1.8749 (10) 0.99 (4)
2.75 1.874 (4) 1.8745 (10) 0.97 (2)
3.00 1.873 (2) 1.8748 (8) 1.01 (2)

5.4.5 Discussion and conclusion

In Fig. 5.8 we have collected the results for Q for all two-dimensional systems inves-
tigated in this and the preceding chapter. Clearly, the region 1.75 < σ < 2.00 is the
most problematic one, but all data are consistent with the 2D Ising value. The data
in the region 1.0 < σ < 1.6 are remarkably well described by a straigth line, just
as in the one-dimensional case (cf. Fig. 5.7). The remarkable point concerning this
apparently linear dependence on ε is that (as mentioned in Sec. 5.1) in Ref. [2] the
dependence of Q on ε′ = 4−d has been calculated for short-range models, for which
a series expansion in

√
ε′ was found (see Fig. 5.9). In this series the coefficient of the

first ε′-dependent term was by no means small compared to higher-order terms. In
view of the close resemblance between the expansions around du = 2σ and du = 4
one would thus expect a clearly observable square-root dependence of Q on ε, es-
pecially because the source of these square roots seems a very general feature. This
indicates an unclarified peculiarity for the ε-expansion around du = 2σ .

Figure 5.10 shows the magnetic exponent for all examined long-range models.
Clearly, our results exclude the renormalization scenario of Gusmão and Theumann,
which we considered as the most serious opponent of Sak’s scenario. In the region
1.00 ≤ σ ≤ 1.75 the conjecture yh = 1 + σ/2 is confirmed to a considerable accu-
racy. The predictions of Yamazaki are more difficult to discern from this conjecture.
Apart from the inconsistencies pointed out in Sec. 5.2, we note the following. First,
we consider the expansions given in Ref. [22]. From Fig. 5.3 one observes that the
discrepancies in η reach their maximum around σ = 1.75, so this is the best lo-
cation to test the predictions of the ε-expansion. At σ = 1.60, the second-order
ε-expansion predicts yh ≈ 1.77 and at σ = 1.75 yh ≈ 1.82. These values agree
less well with our values (while we notice that for the entire region 1.0 < σ < 2.0
the deviations of Sak’s scenario must be small), but the differences are insufficient
to be reliably excluded. Secondly, we have not observed any logarithmic corrections
to scaling at σ = 2.0, which contradicts the predictions of Yamazaki.
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Figure 5.8: Monte Carlo results for the amplitude ratio Q. The full circles denote
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the values for Q obtained in this chapter. The dash-dotted line indicates a simple
guess for the behaviour of Q just below the upper critical dimension.
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5.5 The three-dimensional Ising model with long-range in-
teractions

5.5.1 Introduction

As predicted at the end of Sec. 5.2, the strong corrections to scaling pose consider-
able problems for the analysis of the numerical results in three dimensions, where we
have carried out simulations for linear system sizes up to L = 64. From the situation
in two dimensions we expect long-range critical behaviour for 3/2 < σ <∼ 1.963 and
short-range critical behaviour for larger values of σ . Simulations have been carried
out for σ ∈ {1.6, 1.8, 2.0, 2.2, 2.5, 3.0}. Whereas the latter three systems yield quite
satisfactory estimates for the universal quantities, the results of the former three are
rather poor. For this reason, we treat these two categories separately.

5.5.2 Systems with a decay parameter σ = 1.6, 1.8, 2.0

As in Sec. 5.4.3, we outline the analysis of the numerical results in some detail for
each of these systems individually.

The case σ = 1.6 suffers from the proximity of the upper critical dimension,
which leads to a small correction-to-scaling exponent. From the comparable one-
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and two-dimensional models, we conclude that this exponent in good approxima-
tion is given by yi = −ε = −0.20. Thus, we have analyzed the amplitude ratio Q
with this exponent fixed, which yielded Q = 0.54 (4) and yt = 1.50 (2). A similar
analysis of the magnetic susceptibility yielded yh = 2.29 (2), in agreement with the
conjectured value 2.30. Thus, we fixed this exponent in order to get an accurate esti-
mate of the critical coupling, which was then used to obtain more precise results for
the amplitude ratio and the thermal exponent; Q = 0.522 (19) and yt = 1.523 (16).
Because of the close agreement between the latter value and the second-order ε-
expansion result yt = 1.527, we have repeated the same analysis with the thermal
exponent fixed, but this did not improve the results.

For σ = 1.8 it proved difficult to determine the leading irrelevant exponent from
the analysis, so we made the rough estimate yi = −0.5 (1) and kept it fixed in the
least-squares fits. For the magnetic susceptibility this yielded yh = 2.37 (3) and
yt = 1.54 (4). The magnetic exponent is consistent with the conjecure yh = 2.40
and the thermal exponent agrees with the ε-expansion resultyt ≈ 1.55. The value
of the amplitude ratio varies considerably with the value of yi and we found Q =
0.56 (2). Next we determined the critical coupling from a fit of the susceptibility for
yi = −0.4, −0.5, −0.6. The three resulting, rather different estimates were then used
for three analyses of Q, each with yi fixed at the corresponding value. Surprisingly,
the variation in the results for the amplitude ratio turned out to be much weaker and
our final estimate is Q = 0.554 (12).

At σ = 2.0 the convergence is extremely slow, which can be understood from the
presence of the crossover point. The corrections are predicted to decay as L−ηSR ∼
L−0.037. An accurate confirmation of the universal 3D Ising quantities can therefore
not be obtained from the current numerical data. We found Q = 0.71 (16), yt =
1.59 (4) and yh = 2.39 (8). Especially the magnetic exponent has a strong tendency
to drop below the expected value yh = 2.4815.

5.5.3 Systems with a decay parameter σ = 2.2, 2.5, 3.0

When σ is moved away from the crossover location, the situation rapidly improves.
For σ = 2.2 and σ = 2.5 we clearly observed a correction to scaling which is not
present in the 3D Ising model, but for σ = 3.0 this could not be discerned from the
usual corrections. The general procedure of the analysis was as follows. First we an-
alyzed Q without fixing any parameters. Since in all cases this yielded estimates for
the amplitude ratio and the thermal exponent which are consistent with the 3D Ising
values (cf. Chapter 3), we subsequently kept these parameters fixed in a least-squares
fit of Q to determine yi and Kc more accurately. These values were then used to ana-
lyze the susceptibility. For σ = 2.2 we found yi = −0.411 (10), which is most likely
an effective exponent, as it is twice as large as one would expect. In the susceptibility
the correction with this exponent was only very weak. At σ = 2.5 the correction
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exponent was −0.48 (3), which agrees very well with 2 − ηSR − σ .

5.5.4 Discussion and conclusions

In Table 5.12 we have collected our estimates for Q, yt, yh and Kc, for the three-
dimensional models considered in Secs. 5.5.2 and 5.5.3. All results are consistent
with a crossover at σ = 2 − ηSR, but the accuracy of the estimates is too low to
detect subtle deviations from the predicted scenario. We note that both yt and yh

increase monotonically from their classical values to the 3D Ising values. The same
holds from the fourth-order amplitude ratio, but it is not possible to confirm the lin-
ear dependence on ε as convincing as in Figs. 5.7 and 5.8. The critical coupling ex-
hibits the same nonmonotonicity as could be observed in Table 5.10, again between
σ = 2.2 and σ = 2.5.

Table 5.12: Our best estimates for the amplitude ratio Q, the thermal and the mag-
netic exponent and the critical coupling Kc in a number of three-dimensional sys-
tems with long-range interactions.

σ Q yt yh Kc

1.6 0.522 (19) 1.523 (16) 2.29 (2) 0.0625861 (10)
1.8 0.554 (12) 1.54 (4) 2.37 (3) 0.0645353 (4)
2.0 0.71 (16) 1.59 (4) 2.39 (8) 0.0655958 (18)
2.2 0.62 (2) 1.60 (3) 2.466 (10) 0.0658720 (10)
2.5 0.606 (11) 1.597 (12) 2.479 (3) 0.0650179 (11)
3.0 0.6229 (8) 1.61 (4) 2.476 (6) 0.0610918 (9)

5.6 Conclusion

Let us briefly summarize the results of this chapter. We have analyzed the nonclas-
sical critical behaviour of Ising models with long-range interactions. In the one-
dimensional case, we covered the entire region between the upper critical dimen-
sion and the Kosterlitz–Thouless point. Apart from accurate estimates for the criti-
cal couplings, we showed that the thermal exponent is well described by the second-
order ε-expansion of Fisher, Ma and Nickel, up to ε ≈ 0.6. Close to σ = 1, our
numerical results indeed approach the expansion of Kosterlitz. Our data provide
strong evidence that the renormalization conjecture for the magnetic exponent in-
deed holds exactly up to σ = 1. The universal fourth-order amplitude ratio is quite
well described by a linear function of ε.

For the two-dimensional case, we covered not only the entire nonclassical long-
range regime, but also part of the short-range regime. Again, our results are in good
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agreement with the conjectured value for yh and for Q we observe the linear de-
pendence on ε. Most importantly, however, we provide strong evidence that the
crossover from long-range to short-range critical behaviour occurs at σ = 1.75, i.e.,
at σ = 2 − ηSR. Herewith, we have resolved a long-standing disagreement between
various renormalization-group scenarios for the location of this crossover.

Finally, we have also presented results for the three-dimensional case. Here, the
analyses are greatly hampered by the strong corrections to scaling, but still we could
show that our estimates for the universal properties are consistent with the predicted
values.
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Chapter 6

Critical properties of the Ising
model in four and five dimensions

6.1 Introduction

After the analysis of the critical behaviour of spin models with algebraically decay-
ing interactions in the previous two chapters, we now return to Ising models with
short-range interactions. In fact, these models may be considered as special cases
of the systems studied before, as follows from a brief recapitulation of the results of
Sec. 4.3. Indeed, d-dimensional systems with interactions decaying as r−(d+σ) have
an upper critical dimension du = 2σ . For d ≥ du they display classical critical be-
haviour and for d < du one can obtain information concerning their universal criti-
cal properties from an expansion in powers of ε = 2σ − d. All these properties hold
for systems with short-range interactions if one sets σ = 2, which also restricts ε
to integer values. Whereas the range of the interaction is no longer a free parameter
and we again restrict ourselves to systems with a one-component order parameter,
the universal critical properties still strongly depend on the dimensionality of the
lattice. For the simplest case, d = 1, a phase transition is absent [1, § 149]. The two-
dimensional Ising model on the square lattice was solved by Onsager in 1944 [2]. He
found that the critical exponents strongly deviated from the classical ones. This ex-
act solution was a major achievement and constituted a breakthrough in the study
of critical phenomena. Unfortunately, the practically most relevant case, viz. the
three-dimensional one, has until now defied any analytical solution. Thus we have
to rely on numerical calculations in order to obtain information concerning the crit-
ical behaviour, see Chapter 3. Increasing the dimensionality beyond three, we reach
more solid ground, though exact solutions are probably even more distant. Since the
renormalization-group (RG) theory predicts an upper critical dimension du = 4, we
expect classical or mean-field-like critical behaviour for d ≥ 4. At the upper criti-
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cal dimension itself, the power-law behaviour of observables is modified by multi-
plicative logarithmic corrections, which we already encountered in Chapter 4. Even
though the form of these corrections is predicted by renormalization-group theory,
none of these results is rigorous and hence an independent verification is necessary.
Conversely, accurate verification of the predicted universal properties of systems at
and above their upper critical dimension constitutes an important confirmation of
the renormalization scenario, especially because the RG equations for d = 4 involve
no approximation schemes (such as the ε-expansion). Thus, if this scenario is cor-
rect, the RG results should hold exactly. Furthermore, the critical behaviour of the
four-dimensional Ising model is directly associated with the Gaussian fixed point,
which serves as the basis of the ε-expansion. In this sense, it acts as the focal point
of the modern theory of critical phenomena. Any conceivable error or incomplete-
ness of the renormalization theory would be likely to surface near this fixed point.
For this reason we assign a high priority to a precise verification of the predicted scal-
ing behaviour of the Ising model in four dimensions. Besides, since we have studied
systems with long-range interactions on either side of their upper critical dimension
and also three-dimensional systems with short-range interactions, the investigation
of Ising models with d ≥ 4 emerges naturally. One might raise the objection that
these high-dimensional models are not very realistic. Although their fundamental
interest is an adequate justification, we may add that there exist several models with
du < 4, where the various issues might be of experimental relevance. For example,
the tricritical Ising model has du = 3 and the long-range models in Chapter 4 have
an upper critical dimension that can take any value below four. The nature of finite-
size scaling for d > du has led to some debate in the past. It was shown by Brézin [3]
that conventional finite-size scaling does not hold above four dimensions, since an
additional length scale comes into play. Thereafter Botet et al. [4, 5] presented a phe-
nomenological approach to scaling in mean-field-like systems, but a deeper under-
standing was provided by Privman and Fisher [6], who showed that the finite-size
scaling hypothesis can be extended to d > du if a so-called dangerous irrelevant
variable is taken into account. The dangerous character of this irrelevant variable is
responsible for the violation of hyperscaling as well, as has also been shown within
the context of real-space renormalization [7].

Yet another motivation comes from the intimate connection between quantum
field theory (QFT) and critical phenomena, mentioned in Chapter 1. Indeed, the
former operates at d = 4, which makes the four-dimensional Ising model par-
ticularly relevant. The expected logarithmic corrections to the mean-field critical
behaviour arise from the presence of a marginal operator, which corresponds to
asymptotic (ultraviolet) freedom in nonabelian gauge theories. However, no rigor-
ous proof exists for this so-called triviality of QFT at the upper critical dimension
and additional evidence is therefore required. As logarithmic corrections constitute
the hallmark of a marginal operator, their numerical observation may be viewed as
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such evidence.
The actual amount of available numerical results for high-dimensional systems

turns out to be limited, which can be explained from the fact that the required com-
puting time for a given (linear) system size increases exponentially with increasing
dimensionality. The majority of the research has been focused on four- and five-
dimensional models, which are also the cases studied in this chapter. The main inter-
est in the four-dimensional Ising model stems from its central position in the study
of critical phenomena and the logarithmic factors expected in the scaling functions.
Yet, in most studies until now the numerical accuracy and available system sizes were
such that one could only assume the predicted scaling equations to be correct and
check for consistency with the finite-size data. Indeed, the logarithmic factors lead
to anomalously slow finite-size convergence, which makes this model difficult to an-
alyze. Actually, the most accurate simulations until now had considerable difficulty
to distinguish between different logarithmic factors. The five-dimensional model,
on the other hand, is the first one in which d > du and as such it is well suited to
study the violation of hyperscaling [8]. Interest in this model rapidly grew when
large-scale simulations were reported [9] to have yielded a fourth-order cumulant
(see Sec. 3.4) in striking disagreement with the renormalization prediction [10]. As
such incompatible results for this quantity, which is closely related to the renor-
malized coupling constant, might signal a problem with the renormalization sce-
nario above the upper critical dimension, it is important to investigate this issue
in more detail. In this chapter we present the results of large-scale simulations of
both the four- and the five-dimensional Ising model, for which we have determined
the critical properties with an unprecedented accuracy. An important difference
to the simulations discussed in Chapter 4 is that we have also sampled energy-like
quantities. In systems with long-range interactions this is—despite the new Monte
Carlo algorithm—a very expensive operation, but in high-dimensional systems with
short-range interactions it is still affordable. This offers the possibility of an accu-
rate determination of the thermal exponent, because it is this exponent that deter-
mines the singular behaviour of temperature derivatives of the free energy. Whereas
for the three-dimensional Ising model (Chapter 3) we only considered the energy
and the specific heat, we have sampled two further quantities for the four- and five-
dimensional Ising model, viz. two higher derivatives of the energy with respect to the
temperature. Since these quantities display a more singular behaviour, one might
hope for a better determination of the thermal exponent.

Let us make here some general comments with respect to the analysis of the nu-
merical data. The finite-size scaling formulae that will be derived from RG theory
serve as the basis for the least-squares fits. Clearly, an independent confirmation of
the predicted parameters appearing in the scaling formulae constitutes a confirma-
tion of the validity of the theory. However, often the total number of parameters in a
formula is so large that an insufficient accuracy is obtained when all parameters are
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left free. In such cases, we have fixed some of the parameters at their predicted values.
If the fit then reproduces the theoretical values for the remaining parameters, this is
still an independent verification of the theory, as there would be no reason for these
remaining parameters to take their predicted values if the theory were incorrect. In
all analyses, the χ2 criterion was used to judge the quality of the fits.

The simulations required of the order of one year of (single-processor) CPU
time on a Cray T3E parallel computer, but could in principle also have been ob-
tained using a cluster of workstations. The outline of this chapter is as follows. In
Sec. 6.2 we examine the renormalization-group predictions for systems with d ≥ du

and rederive various results. For the purpose of illustration, we briefly discuss some
finite-size properties of the specific heat of the mean-field model in Sec. 6.3. The
next two sections are devoted to a detailed analysis of the numerical results for d = 5
and d = 4, respectively. In this analysis we apply the scaling functions as derived
within the RG framework. Finally, the results are discussed within the context of
earlier studies in Sec. 6.6.

6.2 Theory

The idea that for d ≥ 4 the classical or mean-field exponents become exact (for
short-ranged systems) predates the renormalization-group theory. Indeed, the re-
quirement of self-consistency already indicates the breakdown of Landau theory be-
low four dimensions, where fluctuations can no longer be neglected [11, 12]. Also
the logarithmic factors appearing in the critical singularities at d = 4 have been cal-
culated before the advent of the RG theory by means of the parquet method [13].
However, the seminal papers of Wilson [14, 15] provided a firm basis for the no-
tion of the “upper critical dimension”. Even the particular scaling behaviour of four-
dimensional systems was already mentioned in the second of these papers, although
the consequential logarithmic factors were not pursued in detail. We first give a brief
outline of the renormalization scenario. Indeed, this scenario is very closely related
to that presented in Sec. 4.3, but here we will put somewhat more emphasis on the
underlying ideas and refer to Chapter 4 for the actual solutions of the renormaliza-
tion equations.

As before, we assume that the universal properties of the system under investi-
gation can be described by a Landau–Ginzburg–Wilson (LGW) Hamiltonian,

H(φ)/kBT =
∫

V
ddx

{
1

2
(∇φ)2 − hφ + 1

2
r0φ

2 + 1

4
uφ4

}
. (6.1)

Here, the first term in the integrand represents the nearest-neighbour coupling be-
tween the spins, h denotes the magnetic field and the terms proportional to r0 and u
are used to determine the probability for the spin (represented by the continuous
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field φ) to have a particular value [15]. Although we consider a system containing
N particles placed on a lattice, we have followed the convention1 and written an inte-
gral running over the volume V instead of a sum over the lattice sites. The renormal-
ization of this Hamiltonian is most conveniently carried out in momentum space, so
we first Fourier-transform it,

H(φk)/kBT = 1

2

∑
k

(k2 + r0)φkφ−k

+ u

4N

∑
k1

∑
k2

∑
k3

φk1
φk2
φk3
φ−k1−k2−k3

− h
√

Nφk=0 . (6.2)

The wave vectors are discrete because we have adopted periodic boundary condi-
tions. In addition, the original lattice structure with lattice spacing a provides a nat-
ural momentum cutoff: the wave vectors are restricted to the first Brillouin zone.
The long-wavelength fluctuations (small wave vectors) are responsible for the crit-
ical singularities, but at the same time we may not neglect the fluctuations with
shorter wavelengths. The RG theory takes this into account by successively integrat-
ing out the outer momentum shells. This yields an analytic contribution, whereas
the remaining part of the Hamiltonian is rescaled such that it again covers the full
Brillouin zone. Under successive renormalization steps the Hamiltonian will ap-
proach a so-called fixed-point Hamiltonian. In general a renormalization trans-
formation will have several fixed points and it depends on the original Hamilto-
nian which of these will be approached. If the spin–spin coupling decreases at each
renormalization step we will finally end up at the so-called “high-temperature” fixed
point. Here the Hamiltonian corresponds to a system in which all spins are indepen-
dent of each other. On the other hand, a spin–spin coupling that increases at each
step leads to the low-temperature fixed point, where the system has a uniform mag-
netization. Finally, if the strength of the spin–spin coupling stays invariant under a
rescaling of the Hamiltonian we approach the nontrivial fixed point. It is a funda-
mental hypothesis of the renormalization-group theory that this fixed point corre-
sponds to the critical point of the spin model that we want to describe. The change
of the coefficients r0 and u in Eq. (6.2) under the renormalization transformation
is expressed by the renormalization equations. For a rescaling factor b = el these
equations are, to first order in r0 and u, given in differential form by

dr0

dl
= ytr0 + αu , (6.3a)

du

dl
= yiu , (6.3b)

1This dates back to Landau and Ginzburg and was adopted by Wilson in his original formulation
of the renormalization-group theory [15].
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in which yt = 2 and yi = 4 − d. For d > 4 the coefficient u of the quartic term will
decrease and hence is an irrelevant variable, and yi is the leading irrelevant exponent.
Since r0 is a measure for the temperature distance to the critical point, yt is called
the thermal exponent. This exponent is positive, indicating that the temperature is a
relevant variable. Thus the Hamiltonian will only flow to the nontrivial fixed point if
the temperature is precisely tuned at its critical value. The parameter α is a constant
that depends on the dimensionality d. These equations coincide with Eqs. (4.4) if
one sets σ = 2, except that we have completely omitted second-order terms here.
Thus, upon integration they yield, to first order in u,

r0(b) = byt
[
(r̄0 − α̃ū)+ α̃ūbyi−yt

]
, (6.4a)

u(b) = byi ū , (6.4b)

where α̃ = α/(yi − yt), r̄0 = r0(b = 1) and ū = u(b = 1). The term (r̄0 − α̃ū) can
now be identified with the reduced temperature t ≡ (T − Tc)/Tc and the term pro-
portional to byi−yt is the so-called shift of the critical temperature with respect to the
mean-field critical temperature (see, e.g., Ref. [16, Ch. 6] and Chapter 4). The rescal-
ing of the last term on the right-hand side of Eq. (6.2) yields the magnetic exponent
yh = 1 + d/2. Thus, one observes that one exactly reproduces the results of Sec. 4.3
for systems with algebraically decaying interactions in the classical regime. This also
holds for the mechanism of the dangerous irrelevant variable, which leads to mod-
ified renormalization exponents y∗

t = yt − yi/2 = d/2 and y∗
h = yh − yi/4 = 3d/4.

These starred exponents coincide with those introduced in Eq. (4.13b) and yield the
classical critical exponents α = 0 [not to be confused with the coefficient in (6.3a)],
β = 1/2, γ = 1, δ = 3. The correlation length exponent ν = 1/yt = 1/2 and hence
the hyperscaling relation dν = 2−α is violated for d > 4. The exponent η can again
be obtained from the rescaling of the pair-correlation function, from which we find
η = 0. As already remarked in Chapter 4, this reveals a remarkable difference be-
tween models with short-range interactions, which have a constant η for d ≥ du, and
those with long-range interactions, for which η depends on σ , i.e., on the distance
to the upper critical dimension.

In addition to the critical exponents, also the amplitude ratio Q takes a universal
(although for d < du geometry-dependent) value at criticality. Brézin and Zinn-
Justin [10] were the first to realize that for hypercubic systems this quantity can easily
be calculated at the tree level (i.e., by ignoring contributions from nonzero modes)
and that for d ≥ 4 (in short-range models) all loop corrections decay as powers
of L−1, so that the mean-field value is exact for all systems at and above the upper
critical dimension.

The derivation of the scaling relations now proceeds along the same lines as in
Sec. 4.3. Thus, for d > 4 we find the following scaling behaviour of the free-energy
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density,

f

(
t , h, u,

1

L

)
= b−d f̃

(
by∗

t
1

u1/2

[
t + α̃ubyi−yt

]
, by∗

h
h

u1/4
,

b

L

)
. (6.5)

As demonstrated in Chapters 3 and 4, the finite-size scaling functions for various
observables are obtained by differentiating with respect to the appropriate scaling
fields and setting b = L. For example, for the average square magnetization density
we find Eq. (4.16) and the scaling behaviour of Q is given by Eq. (4.18). Similarly,
for the four-dimensional Ising model we recover Eq. (4.15) for the scaling behaviour
of the free-energy density,

f

(
t , h, u,

1

L

)

= b−d f̃

(
byt

(1 + β̃u ln b)(n+2)/(n+8)−1/2

1

u1/2

[
t + α̃b−yt

u

(1 + β̃u ln b)6/(n+8)

]
,

byh
h

u1/4
[1 + β̃u ln b]1/4,

b

L

)
, (6.6)

where, for the sake of generality, we consider again the O(n) symmetric case and
the exponents now take the values yt = 2 and yh = 3. Equation (4.17) gives the
corresponding finite-size scaling function for 〈m2〉.

However, the scaling functions for the free-energy density also provide the key to
the scaling relations in the thermodynamic limit. To this end, the rescaling factor b
must be chosen such that the t dependence is removed from the first argument of f̃ .2

We will now derive these relations for several quantities, thereby illustrating that Eqs.
(6.5) and (6.6) form a compact formulation encompassing many known results. The
derivations focus on the situation in d = 4, since in this case logarithmic factors
appear in all the observables. For d > 4 we only quote the resulting expressions.

The order parameter, or magnetization density, is given by the first derivative of
the free-energy density with respect to the magnetic scaling field,

〈m〉 = ∂ f

∂h
(t , h, u, 1/L) = byh−d

(
1 + β̃u ln b

u

)1/4

× f̃ (0,1)
(

byt

(1 + β̃u ln b)(n+2)/(n+8)−1/2

1

u1/2

[
t + α̃b−yt

u

(1 + β̃u ln b)6/(n+8)

]
,

byh
h

u1/4
[1 + β̃u ln b]1/4,

b

L

)
, (6.7)

2In the same way, one can also derive the h dependence of observables at t = 0, see Sec. 6.6.2.
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where f̃ (k,l)(t , h, 1/L) = ∂k+l f̃ (t , h, 1/L)/∂kt∂ lh. In the absence of an external mag-
netic field, h = 0 and we can omit the second argument of the scaling function. Since
we are, for the moment, interested in the thermodynamic limit, the third argument
vanishes and we also omit it. Then, the temperature dependence of 〈m〉 is found by
choosing the scaling parameter b such that the first argument takes some constant
value. This requirement yields, to leading order,

b = t−1/yt
∣∣ln |t |

∣∣(n−4)/[2yt(n+8)] = t−1/2
∣∣ln |t |

∣∣−ζn , (6.8)

where we have also omitted the shift of the critical temperature and introduced the
exponent ζn ≡ (4 − n)/[4(n + 8)]. Without going into further detail we note that
n = 4 constitutes a particular case. Substituting (6.8) in Eq. (6.7) we find that close
to Tc the leading temperature dependence of the order parameter is (for t < 0) given
by

〈m〉 = (−t )1/2
∣∣ln(−t )

∣∣3/(n+8)
m̃(c, 0, 0) . (6.9)

Here, the universal function m̃ is directly proportional to f̃ (0,1) and c is a constant.
Remark that we indeed obtain the mean-field exponent β = 1/2 and a multi-
plicative logarithmic correction that agrees with the result obtained by both Weg-
ner and Riedel [17] and Brézin, Le Guillou and Zinn-Justin [18] within different
renormalization schemes. Corrections to the leading scaling behaviour decaying as
powers of 1/ ln |t | arise from, e.g., the additive term equal to unity in the prefactor
of Eq. (6.7) or a multiplicative constant in the right-hand side of Eq. (6.8). Above
the upper critical dimension, the logarithmic factors disappear and we simply find
〈m〉 ∝ (−t )(d−y∗

h)/y∗
t ∝ (−t )1/2.

From the relation (4.29) between the average square magnetization density and
the magnetic susceptibility we see that the latter is given by Eq. (4.17), in which all
occurrences of L are replaced by b, multiplied by a volume factor. Using Eq. (6.8) we
thus find

χ = t−1
∣∣ln |t |

∣∣(n+2)/(n+8)
χ̃ (c, 0, 0) , (6.10)

where χ̃ is directly proportional to f̃ (0,2). For d > 4 the temperature dependence is
given by χ ∝ t−1. Similarly, the specific heat is proportional to the second deriva-
tive of the free-energy density with respect to the temperature (see Sec. 3.5.2) and to
leading order we find

C ∝ ∂2 f

∂t2
(t , h, u, 1/L) = b2yt−d 1

u
(1 + β̃u ln b)(4−n)/(n+8)

× f̃ (2,0)
(

byt

(1 + β̃u ln b)(n+2)/(n+8)−1/2

1

u1/2

[
t + α̃b−yt

u

(1 + β̃u ln b)6/(n+8)

]
,

byh
h

u1/4
[1 + β̃u ln b]1/4,

b

L

)
, (6.11)
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yielding

C ∝
∣∣ln |t |

∣∣(4−n)/(n+8)
(n 6= 4) . (6.12)

Equations (6.10) and (6.12) agree with the results obtained from diagrammatic tech-
niques (parquet resummation) by Larkin and Khmel’nitskĭı [13] and were obtained
for the first time using the renormalization group by Wegner and Riedel [17]. For
higher dimensionalities, the fluctuations not even bring about a logarithmic diver-
gence in the specific heat, but this quantity just reaches a maximum at criticality (see
also Sec. 6.3).

As mentioned above, the finite-size scaling relations can be derived in a similar
fashion. Several of these relations have already been given in Chapter 4 and therefore
we restrict ourselves to one final example. Kenna and Lang [19] studied the scaling of
the zeroes of the partition function of the four-dimensional φ4 model in the complex
temperature plane, in the absence of an external magnetic field. These zeroes occur
at locations τ ≡ |(K − Kc)/Kc| such that the temperature argument of the free-
energy density takes a certain value and hence we find to leading order

τ ∝ L−2(ln L)−2ζn , (6.13)

which for n = 1 indeed reduces to the result τ ∝ L−2(ln L)−1/6 found in Ref. [19].
Furthermore, to leading order this expression is identical to Eq. (4.20) with d = 4.

6.3 The specific heat of the mean-field model

An instructive illustration of the finite-size behaviour of the specific heat above the
upper critical dimension is given by the mean-field model, which can be identified
with the d → ∞ limit of the Ising model. The Hamiltonian for this mean-field
model is given in Sec. 2.4. Equation (6.12) shows that for d = 4 the specific heat
diverges, albeit slowly, at the critical point. In the mean-field model, however, where
fluctuations are completely suppressed, C only exhibits a jump discontinuity at Tc.
This is illustrated in Fig. 6.1, in which the specific heat per spin for this model is plot-
ted as a function of the spin–spin coupling for systems containing 102 ≤ N ≤ 109

particles. One observes that the maxima of the curves shift toward the critical cou-
pling Kc = 1 with increasing system size. Indeed, this is the shift described by
Eq. (4.19), which can be written in terms of N ,

1t = c
√

uN−1/2 − α̃uN−1 , (6.14)

where we have also taken the limit d → ∞.
The N → ∞ limit of the specific heat C(K, N ) at criticality can now be taken in

three different ways:
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1. limK↓Kc limN→∞ C(K, N ).

2. limN→∞ Cmax(N ), where Cmax denotes the maximum of the specific heat for
a given system size.

3. limN→∞ C(Kc, N ).

The first case yields the specific-heat maximum in the thermodynamic limit, C/kB =
3/2. For the second case, it can be seen from Fig. 6.1 that the peaks of the curves
sharpen up with increasing system size and reach a maximum that, for sufficiently
large systems, clearly exceeds the value 3/2. The excess peak, which has a vanish-
ing width for N → ∞, reaches a finite maximum of approximately 1.657 . . . in this
limit. This overshoot could already be observed in Fig. 1 of Ref. [20], where it how-
ever received no further attention. It may be associated with the onset of critical fluc-
tuations in finite systems. The third case, finally, corresponds to the crossing points
of the finite-size curves at K = 1. As shown in Appendix A, the specific heat at this
point can be calculated exactly as 3

4 − 3[0( 3
4 )/0(

1
4 )]

2 = 0.407290 . . . [Eq. (A.17)].
Neither this value nor the specific-heat maximum are universal quantities, although
one can easily define dimensionless ratios involving the specific heat which take a
universal value at criticality, cf. Ref. [21, Ch. 28].
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Figure 6.1: The specific heat per spin in the mean-field model for systems containing
between 102 and 109 particles.
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6.4 Numerical results for the case d = 5

6.4.1 General considerations

Before considering the four-dimensional model, we first turn our attention to the
five-dimensional case, just as we approached the upper critical dimension from
above in Chapter 4. For this model we have carried out quite extensive Monte Carlo
simulations for hypercubic systems with linear system sizes up to L = 22, which
corresponds to more than 5 × 106 spins. Periodic boundaries were employed. All
simulations were carried out using the Wolff cluster method [22]. Practical details
are collected in Table 6.1. In order to fix the definition of the nearest-neighbour
coupling Knn, we explicitly give the Hamiltonian describing the model under inves-
tigation,

H/kBT = − J

kBT

∑
〈i j〉

sis j = −Knn

∑
〈i j〉

sis j , (6.15)

where the sum runs over all nearest-neighbour pairs on the five-dimensional lat-
tice. Note that in the temperature derivatives that we will encounter below, both the
Boltzmann constant kB and the parameter J have been set to unity.

The procedure is quite similar to that in Chapter 3: we have sampled ten differ-
ent quantities, from which we will determine the universal amplitude ratio Q, the
critical coupling and the thermal and magnetic exponents. In Sec. 6.4.2 we will also
attempt to determine the exponent in the leading correction to scaling. For concise-
ness, all finite-size expansions are expressed in terms of the reduced temperature t .
However, in the actual least-squares analyses, this parameter was (in concordance
with Chapter 3) replaced by (Knn − Kc). One of the main consequences is that the
sign of the coefficients of the linear temperature-dependent terms has been reversed.
Furthermore, it should be noted that, unless explicitly stated otherwise, all the coef-
ficients appearing in the expansions of the scaling functions are defined locally, i.e.,
no relationship is implied between identically named coefficients in finite-size ex-
pansions for different observables.

6.4.2 The amplitude ratio Q

Our interest in the dimensionless amplitude ratio Q = 〈m2〉2/〈m4〉 is twofold: in the
first place we want to verify whether it indeed takes the predicted (universal) value
in the five-dimensional Ising model and in the second place it is very well suited for
accurately determining the critical coupling. The scaling behaviour for Q is given
by Eq. (4.18) and the corresponding finite-size expansion by Eq. (4.23). For easy
reference we repeat the latter formula here,

QL(T ) = Q + p1t̂Ly∗
t + p2t̂2L2y∗

t + p3t̂3L3yt + · · ·
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+ q1Ld−2y∗
h + · · · + q3Lyi + · · · , (6.16)

with t̂ ≡ t + s1Lyi−yt , where the last term is referred to as the shift of the critical tem-
perature.This expansion leaves considerable freedom with respect to the number of
corrections to scaling that are included in the least-squares analysis. In all analyses
we have included two thermal terms, proportional to p1 and p2, and the correction
proportional to q1 with fixed exponent −d/2. Furthermore we included the shift
term in t̂ and at least one irrelevant contribution q3, with yi ≡ 4 − d = −1 fixed.
Finally we also included one cross term in the expansion, viz. tLy∗

t +yi . With this for-
mula we have first tried to determine Q, y∗

t and the critical point, which we will ex-
press in Kc = J/kBTc. All data points for L ≥ 5 were included in the analysis. As
noted in Sec. 4.4.2, simultaneous determination of Q and y∗

t poses some problems
due to the correlation between the two quantities. Table 6.2 summarizes our results.
Analysis 1 contained both the correction term q3Lyi and the above-mentioned cross
term. The result for y∗

t agrees quite well with the theoretical prediction 5/2 and the
agreement for Q is clearly excellent. In order to improve the accuracy for y∗

t we re-
placed the cross term by a second correction term proportional to L2yi, which yielded
analysis 2. The result for the thermal exponent lies indeed closer to the expected

Table 6.1: Details of the Monte Carlo simulations of the five-dimensional Ising
model. The table shows both the number of Wolff clusters per sample and the total
number of samples taken for each system size.

System size Clusters/sample Million Samples
2 5 40
3 10 36
4 20 21
5 30 13
6 50 13
7 70 5.3
8 100 5.8
9 120 3.0

10 200 2.7
11 200 1.6
12 250 1.9
13 320 0.77
14 400 0.95
15 500 0.51
16 600 0.64
17 700 0.38
18 800 0.32
19 900 0.29
20 1000 0.26
22 1400 0.19
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Table 6.2: Results of the various analyses of the amplitude ratio Q in the five-
dimensional Ising model. The best fits are indicated in boldface.

Analysis y∗
t Q Kc

1 2.46 (9) 0.456 (6) 0.1139149 (7)
2 2.52 (4) 0.462 (9) 0.1139160 (12)
3 2.44 (5) 0.459 (6) 0.1139157 (9)
4 2.5 (fixed) 0.454 (5) 0.1139147 (6)
5 2.5 (fixed) 0.464 (7) 0.1139161 (12)
6 2.5 (fixed) 0.455 (5) 0.1139153 (9)
7 2.5 (fixed) 0.45694658 . . . (fixed) 0.1139150 (4)

value, but Q tends to slightly shift away from the theoretical prediction, which is due
to the higher value of Kc. In the third analysis, we included both the cross term and
the second correction term, which allowed us to include the data points for L = 4 as
well. The resulting Q and y∗

t are in agreement with the theoretical predictions, but do
not constitute an improvement compared to analysis 1. All three analyses yielded a
least-squares fit of comparable quality. Given the fact that Q is by no means the best
quantity for an accurate determination of y∗

t , we consider the current results as a suf-
ficient justification for keeping this exponent fixed at its theoretical value. Thus, we
have repeated the three analyses, for which the results are again shown in Table 6.2.
Except for slightly smaller error margins, the results 4, 5 and 6 closely resemble 1, 2
and 3, respectively. The quality (in terms of the χ2 criterion) of the analyses which
included a cross term was somewhat better than of analyses 2 and 5 and hence we
choose our best fit from analyses 4 and 6. Given the somewhat smaller uncertainty
in Kc in analysis 4, we consider this as the best one.

Since the numerical result for the amplitude ratio Q is in good agreement with
the RG prediction, we may make two more analyses. First, we can also keep Q fixed
in order to obtain an accurate estimate for the critical coupling: see analysis 7. Next,
we have attempted to determine the exponent of the leading correction. In practice
one can only include this exponent as a free parameter if there is just one correc-
tion term present. This, in turn, requires omitting the smallest system sizes. Using
L ≥ 10 and again keeping Q fixed, we found that the leading correction has an expo-
nent −0.56 (9), which is in quite good agreement with the exponent yi/2 predicted
from the shift of the critical temperature (cf. also Sec. 4.4.2). Actually, this result
in itself already constitutes a confirmation of the renormalization scenario. Indeed,
pure mean-field theory would have predicted a much weaker finite-size correction
∝ 1/

√
N = L−5/2 [see Eq. (A.14)]. Note that, conversely, in the d → ∞ limit the

corrections proportional to Lyi/2 and Ld−2y∗
h coincide.
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6.4.3 The magnetic susceptibility

While the amplitude ratio Q allows for an accurate determination of the critical
coupling and provides valuable information concerning the universality class, the
magnetic susceptibility is most suitable for the determination of the magnetic ex-
ponent y∗

h. For the analysis we have used Eq. (4.30), which included the two leading
corrections and one cross term (just as for the amplitude ratio). To incorporate the
latter we have replaced t by t (1 + a4Lyi ). A possible analytic contribution was omit-
ted, since it would have been masked by the corrections to scaling. Also the coeffi-
cient of the shift of the critical temperature was insignificant and has therefore been
fixed at zero. All system sizes L ≥ 5 have been included in the analysis. First, the
magnetic exponent and the critical coupling were determined (see Table 6.3): the
former is in good agreement with the theoretical prediction 15/4 and the latter is
identical to the coupling from our best fit (analysis 7) of Q. Since also the error mar-
gins are nearly the same, the estimate for y∗

h can only slightly be improved by fixing
Kc at the value obtained from Q, see again Table 6.3 (in the error margins quoted in
the last column the uncertainty in Kc has been included).

Table 6.3: Results of two analyses of the magnetic susceptibility.
Analysis 1 Analysis 2

y∗
h 3.748 (13) 3.748 (9)

Kc 0.1139150 (5) 0.1139150 (fixed)
a0 1.85 (17) 1.85 (12)
a1 14.2 (11) 14.2 (9)
a2 66 (7) 67 (6)
a4 −0.55 (18) −0.55 (16)
b1 0.8 (6) 0.8 (5)
b2 −5.3 (9) −5.4 (8)

6.4.4 The spin–spin correlation function

In Sec. 4.3 and 4.4.3 we already noted the existence of two different decay modes for
the spin–spin correlation function g(|r|) above the upper critical dimension. Name-
ly, the short-distance behaviour is ruled by the exponent η which is not affected by
the modification of yh into y∗

h, while the large-distance behaviour is identical to that
of the magnetic susceptibility, which depends on y∗

h. For the five-dimensional Ising
model this implies that at short distances g(r) ∝ r−(d−2+η) = r−3 and at large dis-
tances g(r) ∝ r2y∗

h−2d = r−5/2. As we have calculated the spin–spin correlation func-
tion over half the system size (for even system sizes), we expect to observe the latter
behaviour. We have analyzed our results for L ≥ 6 using Eq. (4.32) and listed the
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Table 6.4: Results of two analyses of the spin–spin correlation function over half the
system size.

Analysis 1 Analysis 2
y∗

h 3.75 (2) 3.74 (2)
Kc 0.1139154 (5) 0.1139150 (fixed)
c0 1.8 (3) 1.9 (3)
c1 14 (2) 15 (2)
c2 56 (5) 58 (4)
d1 0.8 (4) 0.8 (4)
d2 −5.8 (12) −6.0 (13)

results in Table 6.4. Indeed, the exponent y∗
h agrees with the prediction 3d/4, cor-

responding to the large-distance decay mode. The critical coupling agrees with that
found from either Q or χ and hence we have repeated the analysis with Kc fixed (see
again Table 6.4). A cross term proportional to Ly∗

t +yi could not accurately be identi-
fied. The coefficients c0, c1, c2, d1 and d2 agree with a0, a1, a2, b1 and b2 (Table 6.3),
respectively, as one expects from the fact that the susceptibility is the spatial integral
of the correlation function. The statistical uncertainty in the results presented here,
however, is considerably larger than for χ . This is due to two effects: first, we have
employed only even system sizes in the current analysis and secondly, the intrinsic
uncertainty in the Monte Carlo results for the correlation function is larger than in
those for the susceptibility.

6.4.5 The fourth power of the magnetization density

The fourth power of the magnetization density, 〈m4〉, which we have sampled for the
calculation of Q, can also be analyzed independently. We have applied a finite-size

Table 6.5: Results of two analyses of the fourth power of the magnetization density.
Analysis 1 Analysis 2

y∗
h 3.739 (11) 3.743 (10)

Kc 0.1139148 (5) 0.1139150 (fixed)
p0 8.4 (13) 8.0 (11)
p1 107 (14) 102 (12)
p2 800 (140) 760 (130)
p4 −1.3 (3) −1.2 (2)
q1 −2 (5) 0 (4)
q2 −26 (8) −28 (7)
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scaling formula analogous to that for the magnetic susceptibility,

〈m4〉 = L4y∗
h−4d

[
p0 + p1t̂ (1 + p4Lyi )Ly∗

t + p2t̂2(1 + p4Lyi )2L2y∗
t + · · ·

+ q1Lyi + q2L2yi + · · ·
]

, (6.17)

where the cross term (with coefficient p4) has now been written out explicitly. No
relationship with the coefficients in Eq. (6.16) is implied. Using all system sizes L ≥ 5
we found (Table 6.5) a quite accurate value for the magnetic exponent and a value for
the critical coupling that closely agrees with the estimate from the amplitude ratio.
Analysis 2 shows the result of the same least-squares fit with Kc fixed. The cross term
in the finite-size expansion was indispensable for an acceptable fit result.

Table 6.6: Results of least-squares fits of the nearest-neighbour sum Snn.
Analysis 1 Analysis 2

y∗
t 2.504 (11) 2.499 (9)

Kc 0.113917 (2) 0.1139150 (fixed)
c0 0.67568 (10) 0.67559 (3)
a0 5.59 (16) 5.69 (14)
a1 59 (3) 60 (3)
a2 220 (20) 230 (20)
a4 −0.41 (13) −0.44 (13)
b1 −1.3 (4) −1.5 (3)

6.4.6 The energy

As mentioned in Sec. 6.1, we have sampled several energy-like quantities. We first
consider the nearest-neighbour sum Snn, which is directly proportional to the en-
ergy. The scaling behaviour of this quantity has been derived in Sec. 3.5.1. We have
used the finite-size expansion

Snn = c0 + · · ·
+ Ly∗

t −d
[

a0 + a1t̂ (1 + a4Lyi )Ly∗
t + a2(1 + a4Lyi )2t̂2L2y∗

t

+ · · · + b1Lyi + · · ·
]

, (6.18)

where the various coefficients should not be confused with those introduced for the
magnetic susceptibility. In the analysis we have kept yi fixed and included all system
sizes L ≥ 5. Table 6.6 lists the results. Just as for the three-dimensional models, the
analytic background is determined very accurately. Note, however, that here we have
not fixed the critical coupling in the first analysis. The resulting estimate (which has
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a moderate accuracy) is in agreement with values obtained before and hence we have
repeated the least-squares fit with Kc fixed. This mainly improved the accuracy in c0.
The most important result is of course the value for y∗

t , which has a much higher
precision than in Table 6.2 and is in close agreement with the predicted value 5/2.

6.4.7 The specific heat

We have also sampled the fluctuations in the energy, which determine the specific
heat,

C ≡ −∂Snn

∂T
= K2

nn

[〈S2
nn〉 − 〈Snn〉2] . (6.19)

The corresponding finite-size expansion is (cf. Sec. 3.5.2)

C = p0 + · · ·
+L2y∗

t −d
[

q0 + q1t̂ (1 + q4Lyi )Ly∗
t + q2t̂2(1 + q4Lyi )2L2y∗

t

+ · · · + r1Lyi + r2L2yi + · · ·
]

, (6.20)

where the analytic contribution could not be separated from the “singular” part and
hence has been omitted in our analyses. This is justified by the first analysis in Ta-
ble 6.7 (obtained from L ≥ 5), which shows that the specific heat conforms to the
predicted scaling behaviour with a thermal exponent close to d/2. The critical cou-
pling lies one standard deviation below the best estimate in Table 6.2. Indeed, if Kc

is kept fixed at the latter value the thermal exponent lies even closer to the renor-
malization prediction, see the last column of Table 6.7. The coefficients for C can be
related to those for Snn, if one realizes that all expansions are formulated in terms
of (Knn − Kc) and differentiation of (6.18) with respect to T thus entails an addi-
tional factor ∂Knn/∂T = −K2

nn. Indeed, a1K2
c = 0.78 (4) (Table 6.6), in good

agreement with q0 = 0.76 (8) (Table 6.7), and 2a2K2
c = 6.0 (5), to be compared

with q1 = 6.5 (11).

Table 6.7: Results of least-squares fits of the specific heat C.
Analysis 1 Analysis 2

y∗
t 2.47 (2) 2.491 (17)

Kc 0.1139142 (8) 0.1139150 (fixed)
q0 0.87 (12) 0.76 (8)
q1 7.7 (14) 6.5 (11)
q2 40 (11) 31 (7)
q4 −1.0 (4) −0.6 (3)
r1 −0.2 (5) 0.2 (3)
r2 −1.7 (8) −2.2 (6)
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6.4.8 The first temperature derivative of the specific heat

In the introductory section, the sampling of higher temperature derivatives of the
energy was justified by the hope for a better determination of the thermal expo-
nent y∗

t . Unfortunately, the advantage offered by their more singular behaviour is
annulled by the lower statistical accuracy from which correlated quantities suffer.
Still, it is interesting to study their scaling behaviour.

In the Monte Carlo simulations we have sampled the quantity

C′ ≡ K3
nn

[〈S3
nn〉 − 3〈S2

nn〉〈Snn〉 + 2〈S3
nn〉] . (6.21)

We will refer, somewhat loosely, toC′ as the “first temperature derivate of the specific
heat”. Strictly speaking this is incorrect, because we have only differentiated the term
between square brackets in Eq. (6.19). The actual relation between C and C′ is

C′ = K3
nn

∂

∂Knn

(
C

K2
nn

)
. (6.22)

Due to the limited numerical accuracy it suffices for the finite-size scaling analysis
to take into account the leading singular behaviour and the analytic contribution.
From Eq. (6.20) we find

C′ = u0 + · · ·
+L3y∗

t −d
[

v0 + v1t̂ (1 + v4Lyi )Ly∗
t + v2t̂2(1 + v4Lyi )2L2y∗

t

+ · · · + w1Lyi + w2L2yi + · · ·
]

, (6.23)

The background u0 is difficult to separate from the correction to scaling w2L2yi and
hence we have only included the latter in the analysis. If u0 is included as a free pa-
rameter instead, comparable results are obtained. As usual we have made the anal-
ysis (for L ≥ 5) with Kc either free or fixed, see Table 6.8. In both cases, good agree-
ment with the expected scaling behaviour is found. Equation (6.22) shows that cor-
responding coefficients in C and C′ differ by a factor Knn. For the leading coefficients
the agreement is quite close: q1Kc = 0.74 (13) and 2q2Kc = 7.1 (16) (Table 6.7),
whereas v0 = 0.69 (18) and v1 = 7 (2) (Table 6.8).

6.4.9 The second temperature derivative of the specific heat

By also sampling the fourth power of the energy, we have been able to calculate one
more derivative, which—in analogy with C′—will be referred to as the second tem-
perature derivative of the specific heat,

C′′ ≡ K4
nn

[〈S4
nn〉 − 4〈S3

nn〉〈Snn〉 − 3〈S2
nn〉2 + 12〈S2

nn〉〈Snn〉2 − 6〈Snn〉4] . (6.24)
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Table 6.8: Results of least-squares fits of the first temperature derivative of the spe-
cific heat.

Analysis 1 Analysis 2
y∗

t 2.50 (3) 2.49 (2)
Kc 0.1139152 (11) 0.1139150 (fixed)
v0 0.7 (2) 0.69 (18)
v1 7 (3) 7 (2)
v2 15 (9) 17 (7)
v4 −1.3 (8) −1.4 (5)
w1 0.4 (9) 0.3 (8)
w2 −3.2 (13) −3.1 (11)

Table 6.9: Results of least-squares fits of the second temperature derivative of the
specific heat.

Analysis 1 Analysis 2
y∗

t 2.491 (13) 2.491 (13)
Kc 0.113915 (2) 0.1139150 (fixed)
v0 0.76 (19) 0.76 (19)
v1 7.4 (15) 7.3 (9)
v2 −80 (50) −80 (50)
v4 −0.7 (16) −0.7 (17)
s1 −0.09 (6) −0.09 (7)
w1 −1.7 (3) −1.7 (3)

Actually this quantity is proportional to the derivative of the term between square
brackets in Eq. (6.21),

C′′ = K4
nn

∂

∂Knn

(
C′

K3
nn

)
= K4

nn
∂2

∂K2
nn

(
C

K2
nn

)
. (6.25)

Evidently, the statistical accuracy decreases quite dramatically when such involved
correlations are sampled. Compared to the magnetic susceptibility, the relative un-
certainties have increased by approximately one order of magnitude, which imposes
a serious limitation on the quality of the least-squares analysis. We have made two
fits for L ≥ 5, using a scaling formula of the same form as Eq. (6.23), but a leading
scaling behaviour proportional to L4y∗

t −d. The results are shown in Table 6.9. In view
of the uncertainties in the coefficients and in Kc, the result for the thermal exponent
is rather precise, which can be attributed to the strong divergence of this observable.
The shift term in t̂ could indeed be observed in this quantity, but its amplitude s1

is difficult to determine. The fixation of Kc does hardly influence the estimates for
the various parameters. Comparing the coefficient of the linear temperature depen-
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dence in C′ with the leading coefficient in C′′, we find from Table 6.8 v1Kc = 0.8 (2),
in agreement with v0 = 0.76 (19) in Table 6.9.

6.4.10 The temperature derivative of the magnetic susceptibility

As in Chapter 3, we have sampled the correlation between 〈m2〉 and Snn, which gives
us the temperature derivative of the magnetic susceptibility [see Eq. (3.30)]. The
analysis of this quantity yields estimates for 2y∗

h + y∗
t , as follows from the scaling

formula,

∂χ

∂Knn
= L2y∗

h+y∗
t −d

×
[

a0 + a1t̂ (1 + a4Lyi )Ly∗
t + a2t̂2(1 + a4Lyi )2L2y∗

t

+ · · · + b1Lyi + b2L2yi + · · ·
]

. (6.26)

Due to the strong divergence of the leading power of L, a possible analytic contribu-
tion could not be distinguished in the analysis. Table 6.10 lists the results of the least-
squares fits, in which all system sizes L ≥ 4 could be included. The estimate for y∗

t is
calculated under the assumption that y∗

h takes its theoretical value 15/4. Comparing
the coefficients in (6.26) with those in the expansion for χ , we find from Table 6.3
a′

1 = 14.2 (9) and 2a′
2 = 134 (12) (where primes have been appended for distinc-

tion). Taking into account the error margins, the agreement between a′
1 and a0 is

quite reasonable and between 2a′
2 and a1 it is even very good.

Table 6.10: Results of least-squares fits of the temperature derivative of the magnetic
susceptibility.

Analysis 1 Analysis 2
y∗

t 2.51 (3) 2.51 (2)
Kc 0.1139151 (4) 0.1139150 (fixed)
a0 12.3 (13) 12.5 (13)
a1 130 (25) 130 (25)
a2 580 (180) 600 (170)
a4 −0.9 (4) −0.9 (4)
b1 11 (5) 10 (6)
b2 −63 (5) −62 (6)
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6.4.11 The temperature derivative of Q

The last quantity we have studied in our simulations of the five-dimensional Ising
model is the temperature derivative of the fourth-order amplitude ratio. As demon-
strated in Sec. 3.5.6, this derivative can be calculated from correlations between the
energy and the magnetization distribution. By differentiating Eq. (6.16) and divid-
ing out a factor Q [see Eq. (3.32)] we arrive at the finite-size scaling formula [cf. also
Eq. (3.33)],

1

Q

∂Q

∂Knn
= Ly∗

t

[
a0 + a1t̂Ly∗

t + a2t̂2L2y∗
t + · · ·

+ b1Ld−2y∗
h−y∗

t + · · · + d1Lyi + d2L2yi + · · ·
]

. (6.27)

The correction proportional to b1 is very weak (it decays as L−5) and has been omit-
ted in the fit (which used L ≥ 5). In contrast to the situation in d = 3, the result-
ing thermal exponent is not very precise, but it agrees with the theoretical predic-
tion. The coefficients a0 and a1 (Table 6.11) agree quite well with the correspond-
ing coefficients in Eq. (6.16) divided by Q. For example, for analysis 4 in Table 6.2,
p1 = 1.02 (6) and 2p2 = 8.6 (7), yielding a0 = 2.23 (13) and a1 = 18.8 (16),
respectively.

Table 6.11: Results of least-squares fits of the temperature derivative of the ampli-
tude ratio Q.

Analysis 1 Analysis 2
y∗

t 2.55 (8) 2.50 (5)
Kc 0.1139160 (13) 0.1139150 (fixed)
a0 1.9 (6) 2.3 (5)
a1 11 (6) 15 (5)
a2 −7 (8) −11 (8)
d1 3 (2) 2.3 (18)
d2 −8 (3) −7 (3)

6.5 Numerical results for the case d = 4

6.5.1 General considerations

We now proceed with the Ising model at its upper critical dimension. We have sim-
ulated hypercubic systems with periodic boundaries containing up to 484 spins,
which amounts to roughly the same number of spins as for our largest system in
five dimensions. Also the further aspects of the simulations closely resemble those
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of the previous section: we have applied the Wolff cluster algorithm (details are
given in Table 6.12) and invested approximately the same amount of computing
time. The Hamiltonian is given by Eq. (6.15), which now of course applies to a
four-dimensional lattice. Again, a considerable number of quantities has been sam-
pled. According to the renormalization scenario, the singular behaviour of each of
these quantities exhibits its own specific multiplicative logarithm correction. Thus,
an independent determination of these corrections would constitute an important
test of the renormalization predictions. However, since these logarithmic factors
vary extremely slowly, their numerical determination poses considerable problems.
For example, the correction factor in the energy varies as (ln L)(1/6) [see Eq. (6.31)
below]. Therefore, only very few numerical tests have been carried out until now,
for a limited number of observables. It is the purpose of this section to present
an exhaustive analysis of the scaling behaviour of various observables in the four-
dimensional Ising model. In particular we aim for an independent assessment of
the logarithmic correction factors. This is possible thanks to the (relatively) large
range of system sizes we have studied and the large statistical accuracy of our results.
For convenience, we define ζt and ζh as the exponents appearing in the logarithmic
factors in the thermal and magnetic argument, respectively, of the free-energy den-
sity f̃ [Eq. (6.6)], for n = 1. Thus, the theoretical predictions for these exponents
are ζt = 1/6 and ζh = 1/4. In the analysis of systems with long-range interactions
at their upper critical dimension (Chapter 4), these exponents have been held fixed
at their theoretical values.

The practical aspects of the analysis, such as the replacement of t by (Knn − Kc),
are identical to those mentioned in Sec. 6.4.1.

6.5.2 The amplitude ratio Q

The finite-size scaling behaviour of the dimensionless amplitude ratio Q at the up-
per critical dimension is described by a universal function Q̃, as has already been
discussed in Chapter 4,

QL(T ) = Q̃

(
Lyt

[
1 + β̃u ln L

]ζt t

u1/2

)
+ q1Ld−2yh + · · · , (6.28)

where for brevity we have omitted here the shift of the critical temperature, which
exhibits a logarithmic factor as well. Just like this shift yields a correction decaying
as the square root of the correction Lyi for systems above the upper critical dimen-
sion, it leads to a correction term proportional to 1/

√
ln L at d = du. This correc-

tion decays very slowly as a function of L, but due to its small coefficient (within one
standard deviation from zero for most observables) it is generally not the dominant
correction to scaling. For a system with a scalar order parameter, the full finite-size
expansion of Eq. (6.28) is given by Eq. (4.24). We have fitted this formula to our
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Table 6.12: Details of the Monte Carlo simulations of the four-dimensional Ising
model. The table shows both the number of Wolff clusters per sample and the total
number of samples taken for each system size.

System size Clusters/sample Million Samples
2 4 41
3 6 33
4 8 20
5 10 16
6 16 10
7 20 8.2
8 25 6.7
9 30 5.3

10 40 4.2
11 50 3.3
12 60 3.0
13 70 2.5
14 80 2.1
15 80 2.0
16 100 1.7
17 100 1.6
18 120 1.3
19 125 1.3
20 140 1.1
21 150 1.1
22 160 0.86
23 180 0.88
24 180 0.88
26 200 0.87
28 240 0.72
30 280 0.56
32 320 0.48
34 360 0.38
36 400 0.40
38 500 0.32
40 600 0.26
44 600 0.26
48 750 0.22
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data, in which we included all data points for 4 ≤ L ≤ 48. The exponent ζt in the
temperature-dependent term was kept fixed, as was the thermal exponent yt. Fur-
thermore we included the corrections q3/ ln L and q4/(ln L)2 and the term propor-
tional to q1. The results are shown in Table 6.13. The estimate for Q has a remark-
ably small error margin and agrees well with the renormalization prediction. Thus it
constitutes a precise confirmation of the calculation by Brézin and Zinn-Justin [10].
Also the accuracy of the critical temperature is encouraging. Fixing Q at its theoret-
ical value (analysis 2) did not yield a further improvement of the results.

Table 6.13: Results of the analysis of the amplitude ratio Q in the four-dimensional
Ising model.

Analysis 1 Analysis 2
Q 0.454 (2) 0.45694658 . . . (fixed)
Kc 0.1496928 (3) 0.1496927 (3)
p1 0.999 (9) 0.999 (9)
p2 2.4 (4) 2.4 (4)
q1 0.56 (16) 0.34 (9)
q3 0.267 (18) 0.239 (6)
q4 −0.26 (4) −0.20 (2)

6.5.3 The magnetic susceptibility

Unlike the amplitude ratio Q, the magnetic susceptibility exhibits a multiplicative
logarithmic correction in the prefactor of the scaling function. It arises from the
differentiation of the free energy with respect to the magnetic scaling field, which in
turn has picked up a power of the marginal variable, see Eq. (4.17). We have analyzed
our data (again for L ≥ 4) using Eq. (4.31), in which we included two temperature-
dependent terms and both a linear and a quadratic term in 1/ ln L. For reference we
repeat the formula here, without the shift of the critical temperature,

χ = L2yh−d(ln L)2ζh

×
[

a0 + a1tLyt(ln L)ζt + a2t2L2yt (ln L)2ζt

+ · · · + b1

ln L
+ b2

(ln L)2
+ · · ·

]
. (6.29)

Table 6.14 summarizes the results of our analyses. First, we have determined yh and
Kc, while keeping ζh = 1/4, yt = 2 and ζt = 1/6. The resulting estimate for the
magnetic exponent lies somewhat above the theoretical value yh = 3, but the dif-
ference is not disturbing and can probably be traced back to an (unavoidable) arbi-
trariness in the scaling formula. The critical coupling is also somewhat higher than
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Table 6.14: Results of three analyses of the magnetic susceptibility.
Analysis 1 Analysis 2 Analysis 3

yh 3.009 (4) 3 (fixed) 3 (fixed)
yt 2 (fixed) 1.93 (4) 2 (fixed)
ζh 1/4 (fixed) 0.31 (4) 0.260 (14)
Kc 0.1496937 (3) 0.1496935 (3) 0.1496930 (1)
a0 1.30 (7) 1.1 (2) 1.39 (9)
a1 8.0 (3) 9.4 (2) 8.6 (2)
a2 25.3 (8) 33 (3) 28.3 (18)
b1 1.18 (11) 1.6 (4) 1.10 (15)
b2 −1.09 (11) −0.98 (11) −0.82 (6)

that obtained from the analysis of Q. Next (analysis 2), we kept yh fixed and allowed
ζh to vary instead. We also included yt as a free parameter. While the resulting Kc

lies close to the first estimate, yt has a clear tendency to drop below 2. This change
is reflected in the variation of a1, which differs considerably from its earlier value.
Only the analysis of an observable with yt in its leading singular behaviour will yield
a thermal exponent that is sufficiently accurate to observe any deviations from the
theoretical prediction. The uncertainty in ζh is rather large and hence any conclu-
sions appear premature. Thus, we have made a third analysis in which we kept yt

fixed as well. Apart from an accurate estimate for Kc (in agreement with the result
from Q), this yielded a very precise value for ζh, in close agreement with the theo-
retically predicted value. Since the error margin for Kc is already smaller than in the
analysis of Q, fixing Kc cannot further improve the precision for ζh.

Approaching this case from a different angle, we have also analyzed the suscep-
tibility under the assumption that the four-dimensional Ising model exhibits purely
classical behaviour, without any multiplicative logarithmic corrections. This turned
out to wreak havoc: apart from a much too high χ2 in the least-squares fit, it also
yielded a magnetic exponent that differed by many standard deviations from the
classical value. This is another strong indication for the presence of such corrections.

6.5.4 The spin–spin correlation function

The analysis of the spin–spin correlation function has proceeded along the same
lines as that of the magnetic susceptibility. Whilst the two different decay modes as
they were discerned above the upper critical dimension (cf. Sec. 6.4.4) now have the
same power-law behaviour (since yh and y∗

h coincide), the large-distance behaviour
exhibits a logarithmic factor that is absent in the short-distance behaviour. Again,
we have calculated the spin–spin correlation function over half the system size and
we thus have used Eq. (6.29) multiplied by a factor L−d . The results from an analysis
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for L ≥ 4, collected in Table 6.15, closely resemble those for the susceptibility. In-
cluding yt as a free parameter gives rather inaccurate results, but for fixed yh and yt

an estimate for ζh is obtained that lies close to 1/4.

Table 6.15: Results of three analyses of the spin–spin correlation function over half
the system size.

Analysis 1 Analysis 2 Analysis 3
yh 3.008 (7) 3 (fixed) 3 (fixed)
yt 2 (fixed) 1.94 (4) 2 (fixed)
ζh 1/4 (fixed) 0.29 (5) 0.229 (18)
Kc 0.1496931 (4) 0.1496931 (3) 0.1496925 (2)
a0 1.19 (12) 1.1 (3) 1.44 (12)
a1 8.0 (5) 9.7 (2) 9.1 (3)
a2 26.6 (10) 34 (4) 31 (2)
b1 0.9 (2) 1.2 (4) 0.6 (2)
b2 −1.3 (2) −1.1 (2) −0.83 (10)

6.5.5 The fourth power of the magnetization density

A promising approach to a precise determination of ζh is the study of the fourth
power of the magnetization density. Namely, the free energy has to be differentiated
four times with respect to the magnetic scaling field in order to obtain the scaling
function, which thus exhibits an accordingly high power of ln L in the prefactor:

〈m4〉 = L4yh−d(ln L)4ζh

×
[

p0 + p1tLyt(ln L)ζt + p2t2L2yt(ln L)2ζt

+ · · · + q1

ln L
+ q2

(ln L)2
+ · · ·

]
. (6.30)

We have carried out three different analyses (for L ≥ 4). The first one was aimed at a
precise determination of the magnetic exponent yh. Hence, both ζh and yt were kept
fixed at their theoretical values. Table 6.16 illustrates the excellent agreement with
the renormalization prediction. In the second analysis we have therefore kept yh = 3
and allowed ζh to vary. Also the thermal exponent in the temperature-dependent
terms was included as a free variable. This yielded not only a value for ζh with an ac-
curacy comparable to the best estimate in Table 6.14, but also a value for yt that does
not suffer from the deviations observed in the analyses of the previous two quanti-
ties. Thus, we made a third analysis in which both the magnetic and the thermal
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Table 6.16: Results of three analyses of the fourth power of the magnetization den-
sity.

Analysis 1 Analysis 2 Analysis 3
yh 3.0023 (15) 3 (fixed) 3 (fixed)
yt 2 (fixed) 1.99 (3) 2 (fixed)
ζh 1/4 (fixed) 0.261 (18) 0.254 (4)
Kc 0.1496933 (2) 0.1496932 (2) 0.1496931 (1)
p0 4.37 (18) 4.2 (8) 4.45 (17)
p1 46.7 (6) 47.3 (10) 47.0 (6)
p2 200 (5) 208 (19) 201 (4)
q1 4.7 (3) 5.0 (12) 4.6 (3)
q2 −4.08 (19) −4.1 (4) −3.94 (13)

exponent were held at their theoretical values. The result for ζh, one standard devi-
ation above the theoretical value, definitely is the best estimate obtained so far, with
an uncertainty of approximately 1.5%.

6.5.6 The energy

The nearest-neighbour sum Snn, directly proportional to the energy, is very well
suited for determination of both yt and ζt. Analogous to Eq. (6.18) we obtain the
following scaling formula,

Snn = c0 + · · · + Lyt−d(ln L)ζt

×
[

a0 + a1tLyt(ln L)ζt + a2t2L2yt (ln L)2ζt + · · · + b1

ln L
+ · · ·

]
, (6.31)

where a possible temperature dependence of the irrelevant field (cf. Sec. 3.5.1) is in-
distinguishable from the 1/ ln L corrections. Because a simultaneous determination
of yt and ζt yields inaccurate results, we have made two separate analyses, in which
either of them was kept fixed. As can be seen in Table 6.17, the thermal exponent
could be confirmed with an accuracy that lies on the promille level, whereas even
for the very weakly varying power of ln L the error lies below the 10% level. Thus,
the deviations in yt as found in the (much less accurate) analyses of χ and g(L/2) are
not confirmed by the current analysis. However, a remarkable point concerning this
analysis is the too low estimate for the critical coupling, which lies two standard de-
viations below the previously obtained values. Since the uncertainty in the coupling
is an order of magnitude larger than in the earlier values (similar to our experiences
for d = 5), the importance of this discrepancy is limited. Such a deviation can usu-
ally be traced back to the neglect of a correction to scaling, although we have not
been able to do so in the present case.
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Table 6.17: Results of least-squares fits for L ≥ 4 of the nearest-neighbour sum Snn.
Analysis 1 Analysis 2

yt 2.002 (4) 2 (fixed)
ζt 1/6 (fixed) 0.175 (14)
Kc 0.149687 (3) 0.149686 (3)
c0 0.77005 (19) 0.77002 (17)
a0 3.67 (5) 3.65 (8)
a1 34.2 (7) 34.6 (5)
a2 112 (15) 98 (11)
b1 0.09 (4) 0.12 (8)

6.5.7 The specific heat

In order to increase the accuracy of our estimate of the exponent ζt we have also sam-
pled quantities which are higher derivatives of the free-energy density with respect to
the temperature and hence exhibit a prefactor that is a higher power of ln L. Unfor-
tunately, the possible improvement in the accuracy of ζt is to a large extent cancelled
by the larger statistical uncertainty in these quantities, cf. Sec. 6.4.8. Nevertheless, we
will attempt to determine their scaling behaviour. The first of these observables is the
specific heat, which follows from the fluctuations in the nearest-neighbour sum Snn.
A detailed derivation of the finite-size scaling function of the specific heat is given in
Sec. 3.5.2. Clearly, in the four-dimensional analog of Eq. (3.20) logarithms abound
and tend to mutually interfere. Thus, it is difficult to include many different correc-
tions to scaling. For the analysis we have applied the following finite-size expansion

C = p0 + · · ·
+ L2yt−d(ln L)2ζt

[
q0 + q1tLyt(ln L)ζt + q2t2L2yt(ln L)2ζt + · · ·

+ r1

ln L
+ r2

(ln L)2
+ · · ·

]
. (6.32)

The analytic background p0 cannot be resolved clearly from the leading additive
logarithmic correction r1/ ln L, which leads to an overall contribution decaying as
1/(ln L)2/3. Thus we have omitted p0 in the first two analyses. Just as for the energy,
we have kept ζt fixed in the first analysis (Table 6.18). This yielded an accurate con-
firmation of the theoretical value of the thermal exponent and hence we see that,
apart from the logarithmic factor, the L dependence of the prefactor of the singu-
lar part in Eq. (6.32) indeed vanishes. The exponent of the logarithmic factor could
be determined rather precisely in the second analysis and agrees well with the pre-
dicted value. Finally we have made a least-squares fit in which we omitted the slowly
varying term r1/ ln L and included the constant contribution p0 instead. Table 6.18
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Table 6.18: Results of least-squares fits for L ≥ 4 of the specific heat.
Analysis 1 Analysis 2 Analysis 3

yt 2.002 (4) 2 (fixed) 2.002 (5)
ζt 1/6 (fixed) 0.16 (2) 1/6 (fixed)
Kc 0.1496930 (4) 0.1496927 (3) 0.1496926 (3)
p0 0.0 (fixed) 0.0 (fixed) 0.28 (9)
q0 0.75 (4) 0.80 (7) 0.63 (8)
q1 3.76 (11) 3.88 (12) 3.78 (14)
q2 10.2 (12) 10.4 (12) 10.2 (13)
r1 0.25 (7) 0.16 (13) 0.0 (fixed)
r2 −0.41 (4) −0.36 (6) −0.31 (2)

shows that the results are in good agreement with that of the first analysis and that
the coefficient p0 has taken over the rôle of r1. This merely illustrates the difficulty
of separating the various corrections to the leading scaling behaviour. The results
for the critical coupling agree well with the estimates from Q, χ and g(L/2), which
corroborates that the results for the energy (Table 6.17) are an exception. Also the
coefficient q0 is in accordance with a1 from Table 6.17: for the first analysis we have
a1K2

c = 0.766 (16) and q0 = 0.75 (4).

6.5.8 The first temperature derivative of the specific heat

The next derivative of the energy that we have sampled is C′, the so-called first tem-
perature derivative of the specific heat (see Sec. 6.4.8). The previous remarks con-
cerning interfering logarithmic corrections apply here a fortiori. The finite-size ex-
pansion that has served as the starting point for our analysis reads

C′ = u0 + · · ·
+ L3yt−d(ln L)3ζt

[
v0 + v1t̂Lyt(ln L)ζt + v2t̂2L2yt(ln L)2ζt + · · ·

+ w1

ln L
+ w2

(ln L)2
+ · · ·

]
, (6.33)

where t̂ ≡ t + s1/(ln L)2/3. In contrast with the previously analyzed observables
for this model, the shift s1 of the critical temperature, which leads to an additional
finite-size correction decaying as 1/

√
ln L (see Sec. 6.5.2), could be observed rather

clearly. Omitting this shift in the analysis of C′ led to a somewhat high χ2 in the
least-squares analysis and to a critical temperature that differed markedly from the
previous estimates. Furthermore, we also expect less singular contributions differ-
ing from the leading one by factors Lyt(ln L)ζt , cf. Eq. (3.20). The first of these terms,
with coefficient u1, has been included in the analysis. This yielded a slightly better
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fit than with the (very similar) term u0. Table 6.19 shows the results of two analyses
for L ≥ 6.

Table 6.19: Results of two least-squares analyses of the first temperature derivative
of the specific heat.

Analysis 1 Analysis 2
yt 2.00 (2) 2 (fixed)
ζt 1/6 (fixed) 0.17 (3)
Kc 0.1496928 (7) 0.1496927 (7)
v0 0.2 (3) 0.2 (2)
v1 5.3 (18) 5.6 (12)
v2 −13 (16) −16 (12)
s1 −0.16 (13) −0.13 (7)
u1 −2.64 (12) −2.63 (14)

6.5.9 The second temperature derivative of the specific heat

As already remarked in Sec. 6.4.9, the limited statistical accuracy of the second tem-
perature derivative of the specific heat, C′′, makes the analysis rather problematic.
Indeed, for the four-dimensional case it proved to be difficult to obtain sensible re-
sults from the least-squares fit. The expected scaling behaviour of this quantity is

C′′ = u0 + · · ·
+ L4yt−d(ln L)4ζt

[
v0 + v1t̂Lyt (ln L)ζt + v2t̂2L2yt(ln L)2ζt + · · ·

+ w1

ln L
+ w2

(ln L)2
+ · · ·

]
. (6.34)

The analytic contribution is very weak compared to the singular part and has there-
fore been omitted. The quality of the fit (in terms of the χ2 criterion) was not very
sensitive to the particular choice of the various logarithmic corrections that were in-
cluded. However, the resulting estimate of the critical coupling rather strongly de-
pended on the inclusion of a shift term s1/(ln L)2/3. Indeed, the agreement of Kc

with the values obtained from other quantities turned out to be a reasonably good
indication for the quality of the analysis. Thus, we included the shift term and the
correction proportional to 1/(ln L)2. The correction w1/ ln L had to be omitted to
allow for a determination of s1. Table 6.20 lists the results for analyses that included
system sizes L ≥ 6. The agreement with the theoretical predictions is satisfactory.
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Table 6.20: Results of two least-squares analyses of the second temperature derivative
of the specific heat.

Analysis 1 Analysis 2
yt 1.995 (8) 2 (fixed)
ζt 1/6 (fixed) 0.16 (3)
Kc 0.149693 (4) 0.149693 (3)
v0 0.1 (3) 0.1 (3)
v1 8 (2) 8 (2)
v2 −44 (13) −42 (12)
s1 −0.16 (6) −0.17 (6)
w2 −0.48 (16) −0.45 (19)

6.5.10 The temperature derivative of the magnetic susceptibility

A temperature derivative which allowed for a less cumbersome analysis is that of the
magnetic susceptibility. Its scaling formula is given by

∂χ

∂Knn
= L2yh+yt−d(ln L)2ζh+ζt

×
[

a0 + a1tLyt(ln L)ζt + a2t2L2yt(ln L)2ζt

+ · · · + b1

ln L
+ b2

(ln L)2
+ · · ·

]
. (6.35)

Table 6.21 lists the results of two analyses for L ≥ 4. In the first one, the power of
ln L in the prefactor was kept fixed. This yields an estimate for 2yh + yt. The value
for yt in the table is calculated under the assumption that yh = 3. In the second fit,
both the magnetic and the thermal exponent were held fixed, yielding 2ζh + ζt in
agreement with the expected scaling behaviour.

6.5.11 The temperature derivative of Q

Finally, we consider the temperature derivative of the amplitude ratio Q. Like for
the temperature derivative of the specific heat, inclusion of the finite-size correction
due to the shift of the critical temperature proved very beneficial for the quality of
the analysis. The following finite-size expansion was applied,

1

Q

∂Q

∂Knn
= Lyt(ln L)ζt

×
[

a0 + a1t̂Lyt(ln L)ζt + a2t̂2L2yt(ln L)2ζt + · · · + b1

ln L
+ · · ·

]
. (6.36)



138 C 6: T I      

Table 6.21: Results of two least-squares analyses of the temperature derivative of the
magnetic susceptibility.

Analysis 1 Analysis 2
yt 2.004 (10) 2 (fixed)

2ζh + ζt 2/3 (fixed) 0.68 (9)
Kc 0.1496934 (3) 0.1496934 (3)
a0 6.4 (4) 6.4 (15)
a1 55 (4) 54 (7)
a2 140 (17) 135 (26)
b1 9.7 (7) 9.5 (15)
b2 −6.8 (6) −6.9 (15)

Table 6.22: Results of two least-squares analyses of the temperature derivative of the
amplitude ratio Q.

Analysis 1 Analysis 2
yt 1.998 (7) 2 (fixed)
ζt 1/6 (fixed) 0.151 (19)
Kc 0.1496925 (6) 0.1496926 (7)
a0 0.94 (19) 0.99 (17)
a1 9.9 (6) 9.7 (6)
a2 −19 (2) −19 (2)
s1 −0.24 (4) −0.24 (3)

The results in Table 6.22 show that both yt and ζt have been determined quite accu-
rately and are in good agreement with the renormalization predictions.

6.6 Discussion and conclusions

6.6.1 The five-dimensional Ising model

First, we summarize our best estimates for some universal critical properties of the
five-dimensional Ising model: Q = 0.454 (5), y∗

t = 2.499 (9) and y∗
h = 3.748 (9),

in excellent agreement with the renormalization predictions Q = 8π2/04( 1
4 ) =

0.4594658 . . . , y∗
t = 5/2 and y∗

h = 15/4. Our best value for the critical coupling is
Kc = 0.113950 (4). In this section we compare these results to those from earlier
studies. Whereas quite some estimates for the critical coupling exist, only few pa-
pers are concerned with the remaining critical properties. In Ref. [23], only the or-
der parameter for system size L = 6 has been studied in a small temperature range
below Tc. Reference [24] constitutes the first extensive study, but since its numer-
ical content has largely been superseded by Ref. [9] we will consider the latter in-
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stead. Also Ref. [25] contains several finite-size scaling results for this model; series-
expansion results for critical exponents are given in Refs. [26, 27].

The most accurate estimate in Ref. [9] for the dimensionless amplitude ratio is
Q = 0.489 (6), which differs more than five standard deviations from the renormal-
ization prediction. This rather disturbing discrepancy led to various new studies.
Mon [28] has argued that neglected finite-size effects might be the cause of the devia-
tion. In Ref. [25] only finite-size data for Q are given, because the statistical accuracy
of the numerical results was insufficient for an extrapolation to the L → ∞ limit.
Whereas the results of Chapter 4 confirmed the renormalization scenario above the
upper critical dimension with a considerable accuracy, one might object that these
results were obtained within a different class of models. Hence, the result obtained
in this chapter is the first confirmation of the renormalization prediction for Q in
the five-dimensional Ising model itself. Our data have much smaller statistical er-
rors than in Ref. [9] and span a larger range of system sizes. Still, the error margin
in our estimate of Q is of the same order as in Ref. [9], which reflects the fact that
we have taken into account more corrections to scaling. Indeed, the earlier found
discrepancy may well be explained from the neglect of the correction to scaling pro-
portional to Lyi in Eq. (6.16).

In order to gain some additional insight in the nature of the finite-size correc-
tions affecting Q, we have studied Q(Kc, L) as a function of the system size. Most
of the data were taken at K = 0.1139100, slightly below our best estimate for Kc.
Therefore we have corrected these data for the difference in coupling strength using
Eq. (6.16). Figure 6.2 shows both Q(K = 0.1139100, L) and Q(Kc, L) as a function
of L. This turns out to be a surprisingly instructive plot. First, one notices that for the
larger values of L the finite-size data for Q are strongly dependent on the coupling,
which is due to the large value of y∗

t . This implies that an incorrect estimate of Kc has
a considerable effect on the resulting estimate of the amplitude ratio. Secondly, one
observes that the dashed curve indicating the finite-size corrections as predicted by
renormalization theory gives a good description of the data down to system sizes as
small as 4 or 5 (cf. Ref. [28]). The overall approach to the L → ∞ limit is very slow,
given the huge number of spins in the largest system. Returning to the original dis-
crepancy, we have repeated the least-squares fits with a smaller number of correction
terms. Apart from an increase in χ2, indicating the importance of the higher-order
terms, this leads to a higher estimate of the critical coupling and a correspondingly
higher value for Q, although it was by no means as high as the result in [9].

No independent determination of the thermal exponent has been attempted in
Ref. [9]: instead, it was checked graphically that the finite-size scaling behaviour of
several observables is consistent with y∗

t = 5/2. In Ref. [25] the shift of the tem-
perature at which the connected susceptibility 〈m2〉 − 〈m〉2 takes its maximum was
studied as a function of the system size (for L ≤ 16). As follows from Eq. (4.19), this
shift is ruled by y∗

t , which is consistent with the result 2.32 (16) found in [25].
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Figure 6.2: The amplitude ratio Q at K = 0.1139100, where most of our data were
taken, and K = 0.1139150, our best estimate of Kc, versus the system size L. The
points at the latter coupling were calculated from those at the former coupling. Fur-
thermore the function describing the finite-size corrections at criticality (dashed
curve) and the L → ∞ limit of the Binder cumulant (solid line) are shown.

The magnetic exponent has been determined in Refs. [9, 25] from the height
of the maximum of the connected susceptibility. Equation (4.30) shows that this
height diverges as L2y∗

h−d . Expressed in terms of the magnetic exponent the results
are: 3.81 (Ref. [9], no error given) and 3.74 (2) (Ref. [25]).

In order to compare our results to series-expansion results, we calculate the crit-
ical exponents β and γ from the renormalization exponents (cf. Table 3.17, where
yt and yh must be replaced by their starred counterparts). This yields β = 0.501 (5)
and γ = 0.999 (10). The accuracy in γ is not as good as in the series-expansion re-
sult of Ref. [27], γ = 1.005 (5), but the accuracy in β surpasses that of the estimate
β = 0.50 (5) from Ref. [26] by an order of magnitude, where it should be remarked
that this series-expansion result was obtained while keeping γ = 1 fixed.

Table 6.23 shows a compilation of estimates for the critical coupling. We briefly
compare these estimates to the value obtained in this chapter. The early result by
Fisher and Gaunt [29] already has a remarkable accuracy,but the quoted uncertainty
turns out to be almost ten times too small. Other series-expansion results [26, 27]
agree with our prediction; in particular the result of Guttmann (which was obtained
by fixing the critical exponent γ at its mean-field value) is very close. Still, the un-
certainty in this estimate is more than an order of magnitude larger than in the
newest Monte Carlo result. The most accurate result until now from equilibrium



6.6. D   141

Monte Carlo simulations was obtained by Parisi and Ruiz-Lorenzo [25] and lies one
standard deviation below our estimate. Since this value was obtained with y∗

t fixed,
the uncertainty has to be compared to that of analysis 4 in Table 6.2. Finally, two
(coinciding) estimates were obtained by studying the critical dynamics of the five-
dimensional Ising model [27, 30] for very large system sizes and requiring that the
effective dynamical critical exponent approaches its asymptotic value z = 2. These
results are also in good agreement with our estimate and the latter may hence be used
to make a more accurate study of the critical dynamics of the five-dimensional Ising
model.

Table 6.23: Critical couplings for the five-dimensional Ising model as obtained in
various studies.

Reference Year Kc Method Remarks
[29] 1964 0.114035 (13) series exp.
[23] 1979 0.1149 (7) Monte Carlo L = 6
[26] 1981 0.113917 (7) series exp. γ fixed

[8], [24] 1985 0.1140 Monte Carlo L ≤ 7
[27] 1993 0.113935 (15) series exp.
[27] 1993 0.11391 (1) dynamic MC L ≤ 48
[9] 1994 0.113929 (45) Monte Carlo L ≤ 17

[28] 1996 0.11389 (13) Monte Carlo L ≤ 14
[25] 1996 0.11388 (3) Monte Carlo L ≤ 16, y∗

t fixed
[30] 1996 0.11391 (1) dynamic MC L = 112

This work 1997 0.1139149 (7) Monte Carlo L ≤ 22
This work 1997 0.1139150 (4) Monte Carlo L ≤ 22, Q and y∗

t fixed

Two other nonuniversal quantities for which estimates exist in the literature
are the internal energy U at criticality and the specific-heat maximum. Whereas
the former vanishes in mean-field theory [31], it does not in the five-dimensional
Ising model, since fluctuations are not completely suppressed. Our best estimate
is |U | = 0.67559 (3) (Table 6.6), to be compared with the value 0.67 (1) [24].
Fluctuations are also responsible for the fact that the maximum of the specific heat,
Cmax/kB = 2.0 (2) [9], exceeds the mean-field value. The height of this maxi-
mum, limT↑Tc C(T )/kB, cannot be found from our analysis, since the parameter q0

(Table 6.7) represents the value of C right at criticality and therefore takes a value
between 0 and Cmax/kB, cf. Fig. 6.1 on page 116. Indeed, q0 is the analog of the
exact value mentioned at the end of Sec. 6.3. Unfortunately, the temperature range
around Tc within which our data have been taken is for the largest system sizes too
small to observe an excess peak of the type discussed in Sec. 6.3.

In conclusion we remark that we have presented accurate results for several crit-
ical properties of the five-dimensional Ising model, which could be obtained thanks
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to precise numerical results for a large range of system sizes. Various renormaliza-
tion predictions for universal quantities have been confirmed, as well as the finite-
size scaling hypothesis for systems above their upper critical dimension.

6.6.2 The four-dimensional Ising model

In summary, our best estimates for some universal critical properties of the four-
dimensional Ising model are given by: Q = 0.454 (2), yt = 2.002 (4), yh =
3.0023 (15), ζt = 0.175 (14) and ζh = 0.254 (4). We recall that the last two ex-
ponents are defined as the powers of the logarithmic factors appearing in the right-
hand side of Eq. (6.6), for n = 1. The theoretical prediction for Q is the same as in
the five-dimensional model and the exponents are predicted to be yt = 2, yh = 3,
ζt = 1/6 and ζh = 1/4. Both the value for Q and the thermal and magnetic ex-
ponents are a strong indication that the four-dimensional model displays classical
critical behaviour. Moreover, the results for the exponents ζt and ζh, which we con-
sider to belong to the main feats of this chapter, accurately confirm the presence of
multiplicative logarithmic corrections.

While no other estimates for Q are known to us, several results for the expo-
nents exist, to which we may compare our values. The first series-expansion re-
sults which did take into account the possibility of logarithmic factors are those by
Moore [32]. He found that the agreement of the critical exponents with the classi-
cal values depended on the inclusion of such logarithms. Also Kadanoff et al. [33]
found agreement with the classical exponents in an RG treatment. Baker [34], how-
ever, claimed from series expansions that hyperscaling was violated in d = 4. The
first determination of the power appearing in a logarithmic factor was then made
by Guttmann [35], for (d = 4, n = 0). From a high-temperature expansion for
the susceptibility he found χ ∝ t−1

∣∣ln |t |
∣∣p with p = 0.23 (4), in agreement with

Eq. (6.10). Subsequently, the case n = 1 was studied by several authors. In Ref. [23],
the temperature dependence of the order parameter close to Tc was determined by
Monte Carlo simulation of a 124 system, where the temperature region was chosen
such that finite-size effects were absent. Good agreement with a factor

∣∣ln |t |
∣∣p was

found, but the graph in Ref. [23] describing the quality of a least-squares fit as a
function of p suggests unlikely strong evidence for p = 1/3 (no explicit estimate
is given). Both the neglect of any finite-size effects up to t = 0.005 and the curves
in Fig. 2 of Ref. [23] point to a considerable error margin in p. Gaunt et al. [36] car-
ried out a series analysis for the susceptibility. Making the same assumption for the
temperature dependence as Guttmann (i.e., assuming the presence of a logarithmic
factor and keeping γ fixed), they found p = 0.33 (7). For comparison we calcu-
late p from the renormalization exponents. Expressing p in terms of ζt and ζh, we
find p = [(d−2yh)/yt]ζt +2ζh = −γ ζt +2ζh and for fixed γ our best estimates thus
yield p = 0.33 (2). The same collaboration also considered the critical isotherm of
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the four-dimensional Ising model [37]. From the critical equation of state one ex-
pects the magnetization to vary as h1/δ

∣∣ln |h|
∣∣q, where the exponent q was estimated

as 0.30 (5) (for fixed δ = 3). Also this relation can be calculated from Eq. (6.6). In-
deed, the rescaling parameter b must be chosen such that the argument involving h
takes some constant value,

b = h−1/yh
∣∣ln |h|

∣∣−ζh/yh . (6.37)

Upon substitution in Eq. (6.7) we find

〈m〉 ∝ h1/3
∣∣ln |h|

∣∣4ζh/3
, (6.38)

yielding q = 0.339 (5).
A subsequent determination of the critical exponents using the Monte Carlo RG

technique [38] again yielded estimates in agreement with the classical ones. How-
ever, logarithmic corrections to scaling could not be observed in this analysis. Ref-
erence [19] is the first work that was actually concerned with a finite-size scaling
analysis of the four-dimensional Ising model. As mentioned in Sec. 6.2, in this pa-
per the location of the zeroes of the partition function in the absence of an exter-
nal magnetic field is studied as a function of the system size. This yields the expo-
nent ζt. Similarly, the location of Lee–Yang zeroes, which for real temperatures lie
on the imaginary field axis, yields the exponent ζh. Since the numerical results ob-
tained in Ref. [19] are presented (with minor differences) in a more extensive form
in Ref. [39], together with results for the Lee–Yang zeroes, we will quote the results
of the second paper. The simulations have been carried out for system sizes L ≤ 24.
Using L ≥ 4, the authors found ζt = 0.217 (12), more than four standard devia-
tions from the renormalization prediction. An analysis for 12 ≤ L ≤ 24 yielded
ζt = 0.21 (4), which is consistent with the theoretical value 1/6. For ζh the two
analyses yielded, respectively, 0.204 (9) (five standard deviations from the predicted
value) and 0.22 (3). The latter value is consistent with 1/4. While the actual obser-
vation of logarithmic factors in a finite-size scaling analysis is a promising result, we
conclude that only a rather crude agreement with the predicted values is obtained.
In fact, the simulations are hardly able to distinguish between the scaling of the two
types of partition-function zeroes.

Finally, we consider several estimates for the critical coupling, see Table 6.24.
The oldest estimates [29, 32] are somewhat high, where in particular the error
quoted in Ref. [29] is much too small. The deviation for Ref. [23] is due to the
fact that the critical coupling was estimated from the maximum in the (connected)
susceptibility for a system with L = 12, without the application of any finite-size
scaling techniques. The series-expansion result found in Ref. [36] is already in rather
good agreement with the best estimates. The first result of Kenna and Lang lies ap-
proximately two standard deviations too high, but in their second, slightly lower
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Table 6.24: Critical couplings for the four-dimensional Ising model as obtained in
various studies. The remarks regarding fixed exponents concern both the critical
exponents and the powers in the logarithmic factors.

Reference Year Kc Method Remarks
[29] 1964 0.14988 (3) series exp.
[32] 1970 0.14981 (7) series exp.
[23] 1979 0.15020 (18) Monte Carlo L = 12
[36] 1979 0.14966 (3) series exp. exponents fixed
[19] 1991 0.149709 (8) Monte Carlo L ≤ 24
[39] 1992 0.149703 (15) Monte Carlo L ≤ 24
[41] 1996 0.1497 (2) Monte Carlo L ≤ 14
[40] 1997 0.149696 (4) series exp. exponents fixed
[40] 1997 0.149694 (5) dynamic MC L = 480, exponents fixed

This work 1997 0.1496930 (3) Monte Carlo L ≤ 48

result they have doubled the error estimate. The newest, consistent results obtained
from a large-scale Monte Carlo study of the critical dynamics and a reanalysis of
series expansions [40] lie very close to our best estimate. This estimate, which is
shown in the table as well, was obtained from the following considerations. The
most precise values emerged from the analyses of the susceptibility and the fourth
power of the magnetization. However, accurate estimates have also been obtained
from the analyses of the amplitude ratio Q and the specific heat, in which all theo-
retically predicted quantities were kept fixed. The latter estimates lie one standard
deviation below the former ones. Such differences can be explained from an arbi-
trariness in the choice of the scaling formula. To account for this, we have quoted
the best values, but increased the error estimate such that the values from Q and
the specific heat are included. Still, this implies an improvement of more than an
order of magnitude compared to earlier estimates. As a side remark we note that
the critical coupling predicted by mean-field theory, which is the inverse of the co-
ordination number, lies 12% too low for the five-dimensional model and 16% for
the four-dimensional model.

In conclusion, we note that we have presented an accurate confirmation of the
renormalization scenario at the upper critical dimension. The predicted logarith-
mic factors have not only been determined with an appreciable precision, but their
occurrence has also been demonstrated in a considerable number of observables.
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Chapter 7

Crossover from Ising to classical
critical behaviour in

two-dimensional systems

7.1 Introduction

As shown in the preceding chapters, the critical behaviour of a physical system
strongly depends on the range of the interactions. The longer the range, the stronger
critical fluctuations will be suppressed. In the limit of infinitely ranged interactions
(which decay sufficiently slowly), we recover classical or mean-field-like critical be-
haviour. For interactions with a finite range, however, fluctuations remain very im-
portant and essentially modify the critical behaviour. As follows from the Ginzburg
criterion [1], sufficiently close to the critical temperature Tc nonclassical critical
exponents apply for any finite interaction range R. This crucial difference between
finite and infinite R implies a crossover from one type of critical behaviour to an-
other as a function of R. Such crossover effects are of great interest for a wealth
of critical phenomena. They occur, e.g., in polymer mixtures (see Ref. [2] and
references therein), as a function of the chain length, and gas–liquid transitions,
as a function of the difference between the temperature and the critical tempera-
ture. The explanation of these phenomena in terms of competing fixed points of
a renormalization-group transformation is one of the important features of the
renormalization-group (RG) theory (see, e.g., Ref. [3]).

In Ref. [4], Mon and Binder have already studied crossover as a function of R
within the context of finite-size scaling, motivated by the crossover in polymer mix-
tures. They predicted that the critical amplitudes of scaling functions display a sin-
gular dependence on R. The various power-law dependences were obtained from
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phenomenological crossover scaling arguments. In this chapter, we will derive this
dependence on R from a renormalization description of the crossover from classical
to nonclassical critical behaviour. The first part of the renormalization trajectory is
governed by the Gaussian fixed point, which is unstable for dimensionalities d < 4.
The corresponding scaling relations have been derived by Rikvold et al. [5]. Suffi-
ciently close to criticality, the final part of the renormalization trajectory is governed
by the Ising fixed point. The resulting relations are in complete agreement with the
predictions from Ref. [4]. In addition, we obtain the R dependence of the leading
corrections to scaling and derive from renormalization arguments a logarithmic fac-
tor in the shift of the critical temperature. This factor was already conjectured in
Ref. [4].

It is interesting to note that the physical mechanism leading to the singular range
dependence of scaling functions is closely related to that leading to the violation of
hyperscaling for d > 4. The latter effect is caused by a singular dependence of ther-
modynamic quantities on the coefficient u of the φ4 term for u → 0 in a Landau–
Ginzburg–Wilson (LGW) Hamiltonian. In other words, u is a so-called dangerous
irrelevant variable (see Chapter 4 for a more detailed discussion). Here, as we will
see, the fact that this coefficient becomes small for large values of R plays again an
essential rôle, although u is relevant for d < 4.

Furthermore, we present Monte Carlo results for two-dimensional Ising models
with an extended range of interaction. A serious problem associated with simula-
tions of such models is that the simulation time tends to increase rapidly with the
number of interacting spins. However, a large interaction range is crucial to observe
the predicted R dependences, as will follow from the renormalization description.
The maximum range that could be accessed in Ref. [4] was too small to verify the
theoretical predictions. We overcome this limitation by means of the cluster Monte
Carlo algorithm described in Chapter 2, in which the simulation time per spin is
practically independent of the range of the interactions.

Subsequently, we use the results of these simulations to determine the scaling
functions describing the crossover from Ising-like to classical critical behaviour,
both as a function of the system size and as a function of the temperature distance
to the critical point. Since this crossover spans several decades in the reduced tem-
perature as well as in the finite-size crossover variable, it has up to now largely
evaded a satisfactory numerical determination, while also on the experimental side
several open questions remain. Accurate results for sufficiently large interaction
ranges are again a crucial ingredient for observing the full crossover region both
above and below the critical temperature. We present strong evidence that our data
reproduce the universal crossover functions. Also the so-called effective exponents
are discussed and we show that these can vary nonmonotonically in the crossover
region.

The outline of this chapter is as follows. In Sec. 7.2, we derive the R depen-
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dence of critical amplitudes from renormalization theory. These results are verified
by Monte Carlo simulations, presented in Sec. 7.3. In the second part of this chapter,
Secs. 7.4 to 7.7, we treat crossover scaling functions and effective exponents. We end
with our conclusions in Sec. 7.8.

7.2 Renormalization-group derivation of the dependence of
critical amplitudes on the interaction range

Chapters 4 and 5 were devoted to models with spin–spin interactions that decay al-
gebraically as a function of the distance r between the spins. By changing the decay
parameter in this model, a changeover can be induced from short-range critical be-
haviour to an intermediate regime with continuously varying critical exponents. For
interactions which decay even more slowly, the critical behaviour is classical. In this
chapter we focus on a different way to interpolate between the long-range (mean-
field) limit and short-range models. Instead, we choose ferromagnetic interactions
which are constant within a range R and zero beyond this range. Thus, we have the
following Hamiltonian:

H/kBT = −
∑

i

∑
j>i

Kd(ri − r j )sis j − h0

∑
i

si , (7.1)

where the spin–spin interaction Kd(r) ≡ cR−d for |r| ≤ R and the sums run over all
spins in the system. This Hamiltonian displays physical behaviour that is different
from the power-law case. In particular, the intermediate regime with variable expo-
nents is absent, and mean-field critical behaviour is restricted to the infinite-range
limit. We analyze the influence of the range R within the context of renormalization-
group theory, starting from a generalized Landau–Ginzburg–Wilson Hamiltonian,
where the [∇φ(r)]2 term normally representing the (short-range) interactions is re-
placed by a term with spin–spin coupling (B.1),

H(φ)/kBT =
∫

V
dr

{
−1

2

∫
|r−r′|≤R

dr′
[ c

Rd
φ(r)φ(r′ )

]
− h0φ(r)

+ 1

2
vφ2(r)+ 1

4
u0φ

4(r)

}
. (7.2)

As a consequence of the normalization factor R−d, the critical value of the tempera-
ture parameter c depends only weakly on R. The first integral runs over the volumeV
which contains N particles. We adopt periodic boundary conditions. The Fourier
transform of the interaction is calculated in Appendix B. It leads to the following
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momentum-space representation of the Hamiltonian

H(φk)/kBT = 1

2

∑
k

[
−c

(
2π

kR

)d/2

Jd/2(kR)+ v

]
φkφ−k

+ u0

4N

∑
k1

∑
k2

∑
k3

φk1
φk2
φk3
φ−k1−k2−k3

− h0

√
Nφk=0 . (7.3)

Jν is a Bessel function of the first kind of order ν. The wave vectors are discrete be-
cause of the periodic boundary conditions. Furthermore, we restrict the wave vec-
tors to lie within the first Brillouin zone, which is reminiscent of the underlying lat-
tice structure. The term containing the Bessel function can be expanded in a Tay-
lor series containing only even terms in kR. This means that we will be mainly con-
cerned with the term of order (kR)2, because higher-order terms will turn out to be
irrelevant. The constant term in the Taylor series is absorbed in v̄ and the coefficient
of the quadratic term as a factor in c̄. This yields a new Hamiltonian

Ht(φk)/kBT = 1

2

∑
k

[
c̄R2k2 + v̄

]
φkφ−k

+ u0

4N

∑
k1

∑
k2

∑
k3

φk1
φk2
φk3
φ−k1−k2−k3

− h0

√
Nφk=0 . (7.4)

Since we are free to choose the scale on which the fluctuations of the order parameter
are measured, we may rescale φ → ψ ≡ √

c̄Rφ. This is generally the most conve-
nient choice because the dominant k-dependent term becomes independent of R.1

This leads to

H̃(ψk)/kBT = 1

2

∑
k

[
k2 + v̄

c̄R2

]
ψkψ−k

+ u0

4c̄2R4N

∑
k1

∑
k2

∑
k3

ψk1
ψk2

ψk3
ψ−k1−k2−k3

− h0√
c̄R

√
Nψk=0 . (7.5)

The parameter c̄ is merely a constant, independent of the range, and in order not to be
hampered by it in the further analysis, we absorb the various powers of it in r0 ≡ v̄/c̄,
u ≡ u0/c̄2, and h ≡ h0/

√
c̄. Now, r0 assumes the rôle of the temperature parameter.

If the range R is large, the coefficient of the ψ4 term is relatively small and hence
the critical behaviour of the system is determined by the Gaussian fixed point. Under

1Naturally, this rescaling is not compulsory and the same results will be obtained without it, pro-
vided one keeps track of the dependence of the nontrivial fixed point on c̄R2, arising from the integra-
tion of propagators over the outer part of the Brillouin zone.
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a renormalization transformation with a rescaling parameter l the Hamiltonian thus
transforms as

H̃′(ψ ′
k′ )/kBT ′ = 1

2

∑
k′

[
k′2 + r0

R2
l2
]
ψ ′

k′ψ
′
−k′

+ u

4R4N ′ l
4−d

∑
k′

1

∑
k′

2

∑
k′

3

ψ ′
k′

1
ψ ′

k′
2
ψ ′

k′
3
ψ ′

−k′
1−k′

2−k′
3

− h

R

√
N ′l1+d/2ψ ′

k′=0 . (7.6)

Here ψ ′
k′ = l−1ψk, k′ = kl, the sums run again over the full Brillouin zone, and

N ′ = Nl−d. For d < 4, the ψ4 term grows and the system moves away from the
Gaussian fixed pointµ∗

0 (see Fig. 7.1). At present, we are interested in the flow from
the neighbourhood of the Gaussian fixed point to that of the Ising fixed point. Thus
we remain close to the critical line connecting the two fixed points and the temper-
ature field parametrized by r0 remains small. The crossover to Ising-like critical be-
haviour occurs when the coefficient of the ψ4 term becomes of the same order as
that of the k2ψ2 term, which is unity, i.e., when l = l0 ≡ R4/(4−d). We shall refer
to l0 as the crossover scale. Upon approach of the Ising fixed point, a further increase
of u is then stopped by nonlinear contributions to the renormalization of theψ4 co-
efficient.

u

r0

µ0*

µ*

Figure 7.1: A qualitative picture of the renormalization trajectory describing the
crossover from the Gaussian fixed point µ∗

0 = (0, 0) to the Ising fixed point µ∗ =
(r∗

0 , u∗).
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By comparing the coefficient of the ψ4 term to that of the r0ψ
2 term, it is possi-

ble to derive a criterion that states for which temperatures the critical behaviour will
be Ising-like and for which temperatures it will be classical. This is the well-known
Ginzburg criterion [1], which can also be derived from Eq. (7.6) (see, e.g., Ref. [6,
p. 107]). One expects the Gaussian fixed point to dominate the renormalization flow
if, irrespective of l, the ψ4 coefficient is small compared to the temperature coeffi-
cient. Thus, one requires the scaled combination uR−4l4−d/(r0R−2l2)(4−d)/2 to be
small, or r(4−d)/2

0 Rdu−1 � 1 (cf. also Ref. [4, Eq. (3)]).
Since we are now in the neighbourhood of the Ising fixed point, we continue

renormalizing our Hamiltonian with nonclassical renormalization exponents yt, yh

and yi. To leading order, it will transform as follows, where b denotes the rescaling
factor of our new transformation,

H̃′′(ψ ′′
k′′ )/kBT ′′ = 1

2

∑
k′′

[
k′′2 + R2d/(4−d)(byt r̃0 + r∗

0 )
]
ψ ′′

k′′ψ
′′
−k′′

+ byi ũ + u∗

4N ′′
∑

k′′
1

∑
k′′

2

∑
k′′

3

ψ ′′
k′′

1
ψ ′′

k′′
2
ψ ′′

k′′
3
ψ ′′

−k′′
1−k′′

2 −k′′
3

− hR3d/(4−d)
√

N ′′byhψ ′′
k′′=0 . (7.7)

We have introduced the coefficients r̃0 and ũ, which denote the location of the point
(r0, u) in the new coordinates with respect to the nontrivial (Ising) fixed point µ∗

which we are now approaching (see Fig. 7.1).
The singular part of the free-energy density, fs, is after the transformation φ →

ψ denoted by f̃s,

fs(r0, u, h) = f̃s

(
r0

R2
,

u

R4
,

h

R

)
. (7.8)

Furthermore, we introduce the notation f̂s(r̃0, ũ, h) ≡ f̃s(r0, u, h). Because the total
free energy is conserved along the renormalization trajectory, the singular part of the
free-energy density changes as

f̃s

(
r0

R2
,

u

R4
,

h

R

)
= l−d f̃s

(
r0

R2
l2,

u

R4
l4−d ,

h

R
l1+d/2

)

= R−4d/(4−d) f̂s

(
r̃0R2d/(4−d), ũ, hR3d/(4−d)

)
= b−dR−4d/(4−d) f̂s

(
tR2d/(4−d)byt , ũbyi , hR3d/(4−d)byh

)
, (7.9)

where we have used the notation t ∝ [T − Tc(R)]/Tc(R) for r̃0. In Fig. 7.1, t stands
for the distance to the critical line connecting µ∗

0 and µ∗. In the second equality we
have substituted the crossover scale, l = R4/(4−d). Of course, this is only a qualitative
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measure for the location of the crossover, but the renormalization predictions for
the scaling exponents are exact. The relation (7.9), which holds for 1 < d < 4, is
the key to the scaling relations obtained on phenomenological grounds in Ref. [4].
We will first illustrate this by deriving the R dependence of the critical amplitudes of
the magnetization density m and the magnetic susceptibility χ . The magnetization
density can be calculated by taking the first derivative of the free-energy density with
respect to the magnetic scaling field h,

m = ∂ fs

∂h
(r0, u, h) = ∂ f̃s

∂h

(
r0

R2
,

u

R4
,

h

R

)

= byh−dR−d/(4−d) f̂ (1)s

(
tR2d/(4−d)byt , ũbyi , hR3d/(4−d)byh

)
, (7.10)

where f̂ (1)s denotes the first derivative of f̂s with respect to its third argument. Here,
we have omitted a contribution from the analytic part of the free energy, because h
only couples to the k = 0 (uniform) mode. To extract the dependence of m on t
and R from Eq. (7.10), we choose the rescaling factor b such that the first argument
of the derivative of f̂s is equal to 1, i.e., b = t−1/ytR−2d/[yt(4−d)], and set the irrelevant
variable ũ and the magnetic scaling field h equal to zero,

m = tβR(2dβ−d)/(4−d) f̂ (1)s (1, 0, 0) . (7.11)

This result agrees with Ref. [4, Eq. (34)]. In the same way we can calculate the mag-
netic susceptibility from f̂s by taking the second derivative with respect to h,

χ = ∂2 fs

∂h2
(r0, u, h) = ∂2 f̃s

∂h2

(
r0

R2
,

u

R4
,

h

R

)

= b2yh−dR2d/(4−d) f̂ (2)s

(
tR2d/(4−d)byt , ũbyi , hR3d/(4−d)byh

)
. (7.12)

Choosing the arguments of the second derivative of f̂s as in Eq. (7.11), we find

χ = t−γR2d(1−γ )/(4−d) f̂ (2)s (1, 0, 0) , (7.13)

in agreement with Ref. [4, Eq. (39)]. In Eqs. (7.11) and (7.13) we have used the well-
known relations between the renormalization exponents and the critical exponents
(see Table 3.17 on page 45).

The finite-size scaling behaviour of thermodynamic functions can also be de-
rived from this renormalization scenario by including a finite-size field 1/L as an
additional argument of the free-energy density in Eq. (7.9). Under the first renor-
malization transformation this scaling field will scale as l/L and under the second
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renormalization transformation as lb/L = bR4/(4−d)L−1. The finite-size scaling be-
haviour is found by choosing b such that lb/L = 1, i.e., b = LR−4/(4−d). Substituting
this in Eqs. (7.10) and (7.12), we obtain for m

m = Lyh−dR(3d−4yh)/(4−d)

× f̂ (1)s

(
tLytR−2(2yt−d)/(4−d), ũLyiR−4yi/(4−d), hLyh R(3d−4yh)/(4−d)

)
, (7.14)

and for χ ,

χ = L2yh−dR2(3d−4yh)/(4−d)

× f̂ (2)s

(
tLytR−2(2yt−d)/(4−d), ũLyiR−4yi/(4−d), hLyh R(3d−4yh)/(4−d)

)
. (7.15)

These results agree with Ref. [4], where the prefactors of the magnetization density
and the magnetic susceptibility were predicted as, respectively, L−β/νR(2β−γ )/[ν(4−d)]

and Lγ /νR(4β−2γ )/[ν(4−d)]. Furthermore, the first argument of the scaling functions
was predicted as tL1/νRK, with K = −(2α)/[ν(4 − d)] (Ref. [4, Eq. (25)]). This
is indeed equivalent with our result K = −2(2yt − d)/(4 − d). However, the
predicted range dependence of the critical amplitudes [i.e., of the prefactors in
Eqs. (7.14) and (7.15)] is only valid in the limit of infinite range. For smaller ranges,
R-dependent correction terms are present. These correction terms can be calcu-
lated as well. They do not come from the dependence of the scaling functions on
the irrelevant fields, as corrections to scaling normally do: such corrections vanish
in the thermodynamic limit. However, they come from higher-order contributions
to the renormalization of the ψ4 coefficient which were previously neglected in the
derivation of the crossover scale l0. Note that in the neighbourhood of the Gaussian
fixed point, the terms ψn with n < 2d/(d − 2) are relevant and that for d = 2 all
higher-order terms are equally relevant. However, the coefficients of these terms
are, after the rescaling φ → ψ , proportional to R−n, so the leading contribution
comes from the term wR−6ψ6. Under a spatial rescaling with a factor l = es, the
renormalization equation for this term is, to leading order,

dw′

ds
= (6 − 2d)w′ . (7.16)

The solution of this equation, w′(s) = we(6−2d)s, can be substituted into the renor-
malization equation for the ψ4 coefficient,

1

R4

du′

ds
= (4 − d)

u′

R4
+ a

w′

R6
. (7.17)

To first order in w, this yields

u′

R4
= e(4−d)s 1

R4

[
u + a

2 − d

w

R2

(
e(2−d)s − 1

)]

= l4−d 1

R4

[
u + a

2 − d

w

R2

(
l2−d − 1

)]
, (7.18)
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where u and w denote the values of u′ and w′ at l = 1, respectively. This implies
that the previously obtained crossover scale l0 = R4/(4−d) is multiplied by a factor
(1 + ãR−2) and hence all critical amplitudes will exhibit this correction. However,
the solution (7.18) is not valid for d = 2, where uR−4ψ4 and wR−6ψ6 are equally
relevant. The solution of Eq. (7.17) is then given by

u′

R4
= e2s 1

R4

(
u + a

w

R2
s
)

= l2 1

R4

(
u + a

w

R2
ln l
)

, (7.19)

which yields a (leading) correction factor [1 + R−2(ã1 + ã2 ln R)] in the crossover
scale and the critical amplitudes.

From a similar mechanism we can derive the R dependence of the so-called shift
of the critical temperature [4, Eq. (15)]. A detailed treatment of the shift of Tc can
be found in, e.g., Sec. 4.3 and Ref. [7]. It arises from the u-dependent contribution
in the renormalization equation for the coefficient of the ψ2 term,

1

R2

dr′
0

ds
= 2

r′
0

R2
+ c

u′

R4
, (7.20)

where c is some constant. Thus, the first argument on the right-hand side of the first
equation in (7.9) should be replaced by

r′
0

R2
= l2

[( r0

R2
− c̃

u

R4

)
+ c̃

u

R4
l2−d

]
= l2 1

R2

[(
r0 − c̃

u

R2

)
+ c̃

u

R2
l2−d

]
. (7.21)

The term between round brackets is proportional to the reduced temperature and
the last term is the leading shift. Substitution of the crossover scale l0 shows that this
shift in the reduced temperature is proportional to R−2d/(4−d), which indeed van-
ishes in the mean-field (R → ∞) limit. In addition, we expect corrections due to
a lower-distance cutoff in the spin–spin interaction. As follows from Eq. (B.5), this
yields an additional contribution to the ψ2 term in the Hamiltonian (7.5), propor-
tional to R−d. Thus, in this Hamiltonian v̄ is replaced by v̄(1 + v̄1R−d). This is in
agreement with Ref. [4], where a shift ∝ R−d was predicted. For d > 2 the latter
shift dominates the contribution R−2d/(4−d), but for the analysis of the Monte Carlo
data in this chapter it is inconsequential, because we only consider d = 2, which
is a special case. Namely, for d = 2 we obtain instead of Eq. (7.21) the following
solution of Eq. (7.20),

r′
0

R2
= l2

( r0

R2
+ c

u

R4
ln l
)

= l2 1

R2

(
r0 + c

u

R2
ln l
)

. (7.22)
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Thus, we find, upon substitution of the crossover scale, that the shift in the reduced
temperature has the form (p+q ln R)/R2, where the constant p comes from a multi-
plicative factor introduced by the crossover criterion. In Ref. [4], d = 2 was already
suggested as a special case, with possibly logarithmic corrections. The renormaliza-
tion argument shows that such a ln R term is indeed present.

Now, let us return to Eq. (7.4), where we omitted quartic (and higher) terms
in kR. It follows from the renormalization scenario that terms proportional to k2n

transform as k2nl2−2n under the first renormalization transformation and hence are
irrelevant for n > 1. The behaviour of these terms under the second renormaliza-
tion transformation is less simple, but again quartic and higher terms do not influ-
ence the leading terms; see, e.g., Ref. [8, Section VII.6].

Besides, it can be seen that the structure of the coefficient of the φ2 term does
not depend on the details of the spin–spin interaction. For example, replacing the
interaction (B.1) with K(r) = cR−d exp

[−(r/R)2
]

leads to precisely the same struc-
ture of the LGW Hamiltonian and hence to the same scaling relations involving R.
This is in agreement with the universality hypothesis.

In addition, the renormalization description explains why the interaction range
must be large to observe the predicted powers of R in the critical amplitudes: only
for systems with R large the renormalization trajectory starts in the neighbourhood
of the Gaussian fixed point and hence only these systems will accurately display the
corresponding R dependence. Finally, in the finite-size scaling description, the sys-
tem size must be sufficiently large in order to observe the crossover to Ising-like crit-
ical behaviour: we require that the rescaling factor b is minimal of order unity, or
L = O(R4/(4−d)).

7.3 Monte Carlo results and comparison with the theoretical
predictions

7.3.1 Definition of the model

We have carried out Monte Carlo simulations for two-dimensional Ising systems
consisting of L × L lattice sites with periodic boundary conditions and an extended
range of interaction. Each spin interacts equally with its z neighbours lying within
a distance Rm, as defined in Eqs. (7.1) and (B.1) with R replaced by Rm and d = 2.
The Monte Carlo simulations were carried out using the cluster algorithm described
in Chapter 2. Following Ref. [4] we define the effective range of interaction R as

R2 ≡
∑

j 6=i |ri − r j|2Ki j∑
j 6=i Ki j
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= 1

z

∑
j 6=i

|ri − r j|2 with |ri − r j| ≤ Rm . (7.23)

Table 7.1 lists the values of R2
m for which we have carried out simulations, as well

as the corresponding values of R2. The ratio between R2 and R2
m approaches 1/2,

as can be simply found when the sums in Eq. (7.23) are replaced by integrals. Note
that the results for R2

m = 18 and R2
m = 32 differ from those presented by Mon and

Binder, because in Ref. [4] the interactions were for these two system sizes spatially
distributed within a square, as can be seen from the number of interacting neigh-
bours and the corresponding effective ranges of interaction.

Table 7.1: The range of interaction Rm, the corresponding number of neighbours z
and the effective range of interaction R.

R2
m 2 4 6 8 10 18 32 50 72 100 140

z 8 12 20 24 36 60 100 160 224 316 436

R2 3
2

7
3

17
5

25
6 6 148

15
81
5

517
20

1007
28

4003
79

7594
109

7.3.2 Determination of the critical temperature

The critical temperatures Tc of these systems have been determined using the well-
known universal amplitude ratio QL ≡ 〈m2〉2

L/〈m4〉L. Both in the Ising and in the
mean-field limit the critical-point value of this quantity is accurately known. In the
mean-field limit, Q = QMF = 8π2/04( 1

4 ) ≈ 0.456947; see Ref. [7] and Appendix A.
In the Ising limit, Q = QI = 0.856216 (1) [9].

As was noted in Sec. 7.2 and also in Ref. [4], rather large system sizes [O(R2)] are
required to determine Tc, since Q must approach QI. For R2

m ≤ 10 we have included
linear system sizes up to L = 500 and for larger ranges we have used system sizes up
to L = 700 or even L = 800 (R2

m = 100, 140). For each run we have generated 106

Wolff clusters after equilibration of the system. The various thermodynamic quan-
tities were sampled after every tenth Wolff cluster. In Fig. 7.2, QL(Kc) for R2

m = 140
is plotted as a function of the system size. One clearly observes the crossover from
QMF (for L � R2

m) to QI (for L � R2
m).

In the Ising limit, the finite-size expansion of QL reads [see Eq. (3.14)]

QL(K ) = Q + a1(K − Kc)L
yt + a2(K − Kc)

2L2yt + · · ·
+ b1Lyi + b2Ly2 + · · · . (7.24)

K denotes the spin–spin coupling, Kc the critical coupling, and the ai and bi are
nonuniversal (range-dependent) coefficients. The term proportional to Ly2 , with
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Figure 7.2: The critical-point amplitude ratio QL(Kc) for R2
m = 140 as a function

of the system size (discrete points). For large L, QL(Kc) approaches the Ising limit
QI ≈ 0.856216 (“Ising”). For decreasing L, QL(Kc) approaches the mean-field limit
QMF ≈ 0.456947 (“MF”), until the system size becomes smaller than the range Rm

and strong finite-size effects come into play. To illustrate that the system is indeed
mean-field-like for these system sizes, we have also plotted Q for finite systems in
which all spins interact equally strong (dashed curve, cf. Fig. 2.1). The points for
R2

m = 140 indeed approach this curve for L small.

y2 = d − 2yh, comes from the field dependence of the analytic part of the free en-
ergy. In a φ4 theory this term is absent, as was stated in Sec. 7.2, but in a discrete
model it should be allowed for. The exponents yt, yh and yi, which have already
been introduced in the previous section, are, respectively, the temperature, mag-
netic and leading irrelevant exponent for the two-dimensional Ising model; yt = 1,
yh = 15

8 and yi = −2. Table 7.2 displays the results of a least-squares fit according to
Eq. (7.24), where yt, yi and y2 were kept fixed at their theoretical values. For compar-
ison we have included the estimates for Kc from Ref. [4]. Except for R2

m = 10 there
is good agreement between the respective estimates. The discrepancy for R2

m = 10
may be explained by the limited range of system sizes in Ref. [4]. Furthermore, for
R2

m = 2, which corresponds to the Ising model with nearest and next-nearest neigh-
bour interactions, an accurate transfer-matrix estimate of the critical coupling ex-
ists, Kc = 0.19019269 (5) [10]. The Monte Carlo result agrees with this value. The
results for Q are in good agreement with the expected value QI, which confirms not
only that universality is satisfied, but also that the maximum system sizes in our sim-
ulations are sufficiently large, so that crossover to Ising-like critical behaviour indeed
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Table 7.2: The amplitude ratio Q and critical coupling Kc for the various ranges of
interaction studied in this section. The numbers in parentheses denote the errors in
the last decimal places. The fourth column shows the estimates for Kc obtained with
Q fixed at its Ising value. For comparison, we also list the estimates for Kc given in
Ref. [4].

R2
m Q Kc Kc Kc [4]
2 0.8556 (5) 0.1901908 (19) 0.1901931 (11) 0.190
4 0.8557 (9) 0.1140216 (18) 0.1140225 (7) 0.11402
6 0.8553 (7) 0.0631917 (8) 0.0631926 (4)
8 0.8553 (13) 0.0510460 (10) 0.0510467 (4) 0.05106

10 0.8563 (9) 0.0324136 (5) 0.03241352 (18) 0.032463
18 0.8555 (14) 0.0185335 (3) 0.01853367 (9)
32 0.853 (3) 0.01075152 (25) 0.01075182 (7)
50 0.856 (6) 0.00657274 (26) 0.00657276 (5)
72 0.854 (4) 0.00464056 (16) 0.00464064 (4)

100 0.850 (8) 0.00325903 (15) 0.00325905 (5)
140 0.862 (17) 0.00234637 (19) 0.00234631 (2)

has taken place, as it should for an accurate determination of Kc. In fact, the error
margins on Kc can be reduced significantly by fixing Q at its Ising value in Eq. (7.24)
(see Table 7.2). Figure 7.3 illustrates the shift of 1/(zKc) ∝ Tc as a function of R−2.
Even close the mean-field limit (R−2 → 0), the deviation of 1/(zKc) from 1 appears
not truly linear. Therefore we have tried to identify the logarithmic term, which was
suggested in Ref. [4] and derived from the renormalization scenario in Sec. 7.2, by
writing the following expression for the critical coupling,

zKc = 1 + p + q ln R

R2
. (7.25)

In Fig. 7.4 we have plotted 1 ≡ (zKc − 1)R2 versus ln R. Indeed, for large values
of R the points lie approximately on a straight line, confirming the presence of the
logarithmic correction.

Since an estimate of Tc(R) for (very) large R will be required in the second part
of this chapter, we have fitted an expression of the form (7.25) to the numerical data.
It turned out to be necessary to add a higher-order correction:

Tc = T MF
c + a1

R2

[
1 + a2 ln R2]+ a3

R4
, (7.26)

where T MF
c = 1. A least-squares fit for 16 <∼ R2 <∼ 70 (32 ≤ R2

m ≤ 140) yielded a1 =
−0.267 (6), a2 = 1.14 (3) and a3 = −0.27 (3). The curve described by Eq. (7.26) is
also shown in Fig. 7.3.
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Figure 7.3: Plot of 1/(zKc) versus R−2. The dashed line denotes Eq. (7.26) fitted to
the Monte Carlo data. The inset shows 1/(zKc) over the full range of R−2 between
the Ising and the mean-field limit.
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Figure 7.4: 1 ≡ (zKc − 1)R2 versus ln R. For large R the graph strongly suggests
the presence of a logarithmic correction in the shift of the critical temperature. The
error bars do not exceed the symbol size.
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Figure 7.5: Range dependence of the amplitude of the temperature-dependent ar-
gument of the finite-size scaling function of the universal amplitude ratio Q.

Another ln R correction was suspected in Ref. [4] in the temperature-dependent
argument of the finite-size scaling functions. This argument is proportional to
R−2(2yt−d)/(4−d) = R−2α/[ν(4−d)]; see Eqs. (7.14) and (7.15). For d = 2, α = 0
implies a logarithmic divergence of the specific heat and hence one might expect a
similar logarithmic factor here. On the other hand, we have not found a mechanism
in the renormalization scenario which could explain such a factor. Therefore, we
have numerically examined the range dependence of the coefficient a1 in Eq. (7.24).
Since (K − Kc) is proportional to R−2, we must first divide a1 by R2. Figure 7.5
displays this quantity as a function of the range. For small ranges, there is a strong
dependence on R, but the coefficients seem to approach a constant value in the
large-range limit. This suggests that a logarithmic correction factor is absent.

7.3.3 Range dependence of the magnetization density

We have sampled the absolute magnetization density, 〈|m|〉, for which the range de-
pendence is given by Eq. (7.14). This quantity has been fitted to the following finite-
size expansion,

mL(K, R) = Lyh−d {d0(R)+ d1(R)[K − Kc(R)]Lyt

+ d2(R)[K − Kc(R)]
2L2yt + · · · + e1(R)L

yi + · · ·} , (7.27)

where we now have explicitly indicated the range dependence of the parameters. The
critical couplings found from this quantity agree well with those obtained from the
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Table 7.3: The exponent yh and the critical amplitude d0(R) of the magnetization
for the various ranges of interaction. The third column shows the estimates for yh

obtained with Kc fixed at the most accurate values shown in Table 7.2.

R2
m yh yh d0(R)
2 1.8745 (7) 1.8749 (3) 0.9533 (4)
4 1.8763 (15) 1.8756 (4) 0.8706 (5)
6 1.873 (3) 1.8767 (13) 0.7937 (10)
8 1.873 (3) 1.8754 (8) 0.7523 (7)

10 1.874 (2) 1.8748 (7) 0.6783 (6)
18 1.871 (3) 1.8740 (12) 0.5816 (6)
32 1.875 (6) 1.8744 (9) 0.4929 (11)
50 1.873 (7) 1.876 (2) 0.4181 (18)
72 1.865 (5) 1.8752 (16) 0.3742 (8)

100 1.867 (9) 1.877 (2) 0.3296 (8)
140 1.895 (13) 1.879 (3) 0.2938 (13)

amplitude ratio Q and the exponent yh, listed in Table 7.3, is in good agreement
with the exact value 15/8. Furthermore, we have made a least-squares fit with Kc

fixed at the most accurate values obtained from Q. The corresponding estimates for
yh are also shown in Table 7.3. They lie even closer to 15/8, which again corrobo-
rates that all systems belong to the Ising universality class. From the critical ampli-
tudes d0(R) we can derive the leading R dependence of the magnetization. To in-
crease the accuracy, the values in Table 7.3 were determined with yh fixed at its the-
oretical value. As can be seen from the log–log plot in Fig. 7.6, the approach to the
asymptotic scaling behaviour is very slow. Therefore we have determined the scal-
ing exponent in two different ways. A straight line through the points for the three
largest ranges yielded d0(R) ∝ R−0.738(13), in agreement with the predicted exponent
−3/4 [Eq. (7.14)]. Inclusion of the correction factor [1+R−2(ã1 + ã2 ln R)], as pre-
dicted from Eq. (7.19), allowed us to include all data points in the fit and yielded
d0(R) ∝ R−0.756(5), also in good agreement with the predicted exponent. The cor-
responding curve is shown in Fig. 7.6 as well.

7.3.4 Range dependence of the susceptibility

The magnetic susceptibility can be calculated from the average square magnetiza-
tion,

χ = Ld〈m2〉 . (7.28)

We thus expect the following finite-size scaling behaviour:

χL(K, R) = s0 + L2yh−d {p0(R)+ p1(R)[K − Kc(R)]Lyt
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Figure 7.6: The critical amplitude d0(R) of the absolute magnetization density ver-
sus R2 and the renormalization prediction fitted to the data (dashed line).

+ p2(R)[K − Kc(R)]
2L2yt + · · · + q1(R)L

yi + · · ·} . (7.29)

The term s0 comes from the analytic part of the free energy. Because it tends to inter-
fere with the term proportional to q1(R), we have ignored it in the further analysis.
Again, the critical couplings obtained from a least-squares fit lie close to those in Ta-
ble 7.2 and the estimates for yh agree with the Ising value (see Table 7.4). By repeating
the fits with Kc fixed at the most accurately known values, the values for yh lie even
closer to 15/8 (third column of Table 7.4). From the parameter p0(R), plotted in
Fig. 7.7, we can extract the leading range dependence of the susceptibility. A straight
line through the amplitudes for the three largest ranges gave p0(R) ∝ R−1.46(3). For
a curve (including the first correction term) through the amplitudes it was neces-
sary to include the data for all ranges R2 ≥ 7/3 in the fit, in order to determine the
coefficient of the ln R factor. This yielded p0(R) ∝ R−1.47(2). Both exponents are in
good agreement with the predicted value 2(3d − 4yh)/(4 − d) = −3/2.

7.3.5 Spin–spin correlation function

The finite-size scaling behaviour of the spin–spin correlation function g(|r|) closely
resembles that of the magnetic susceptibility χ , as may be expected from the fact
that χ is the spatial integral of g. We also expect the range dependence of the two
quantities to be the same. We have sampled the correlation function over half the
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Table 7.4: The exponent yh and the critical amplitude p0(R) of the magnetic suscep-
tibility for the various ranges of interaction. The third column shows the estimates
for yh obtained with Kc fixed at the most accurate values shown in Table 7.2.

R2
m yh yh p0(R)
2 1.8754 (9) 1.8748 (2) 0.9743 (9)
4 1.8753 (12) 1.8752 (3) 0.8136 (7)
6 1.8740 (18) 1.8761 (10) 0.6762 (14)
8 1.873 (2) 1.8750 (6) 0.6076 (9)

10 1.874 (3) 1.8741 (6) 0.4943 (7)
18 1.874 (4) 1.8740 (11) 0.3620 (9)
32 1.868 (4) 1.873 (2) 0.2622 (9)
50 1.862 (6) 1.874 (3) 0.1914 (7)
72 1.863 (17) 1.870 (4) 0.1534 (8)

100 1.870 (6) 1.874 (4) 0.1180 (8)
140 1.86 (3) 1.870 (5) 0.0954 (9)
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Figure 7.7: The critical amplitude p0(R) of the magnetic susceptibility as a function
of R2.
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Table 7.5: The exponent yh and the critical amplitude v0(R) of the spin–spin corre-
lation function for the various ranges of interaction. The third column shows the es-
timates for yh obtained with Kc fixed at the most accurate values shown in Table 7.2.

R2
m yh yh v0(R)
2 1.8759 (8) 1.8754 (3) 0.7907 (8)
4 1.8744 (12) 1.8750 (3) 0.6609 (6)
6 1.8748 (19) 1.8765 (11) 0.5489 (12)
8 1.8746 (17) 1.8754 (6) 0.4930 (8)

10 1.875 (3) 1.8741 (7) 0.4011 (7)
18 1.874 (4) 1.8745 (10) 0.2934 (7)
32 1.873 (4) 1.8747 (18) 0.2137 (6)
50 1.864 (7) 1.876 (3) 0.1537 (8)
72 1.860 (8) 1.871 (4) 0.1238 (7)

100 1.872 (9) 1.876 (4) 0.0949 (7)
140 1.86 (3) 1.871 (3) 0.0771 (8)
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Figure 7.8: The critical amplitude v0(R) of the spin–spin correlation function ver-
sus R2.



166 C 7: C    

system size and analyzed it using the expansion

gL(K, R) = L2yh−2d {v0(R)+ v1(R)[K − Kc(R)]Lyt

+ v2(R)[K − Kc(R)]
2L2yt + · · · + w1(R)L

yi + · · ·} . (7.30)

The constant term in (7.29) is not present here (see Secs. 3.5.3 and 3.5.4). Table 7.5
shows the results for yh, both with Kc free and fixed. In the latter case, yh is in accu-
rate agreement with its theoretical value, just as for the magnetization density and
the magnetic susceptibility. Figure 7.8 shows a log–log plot of the critical ampli-
tude v0(R) as a function of the range. A fit of a straight line through the points with
R2 > 35 (i.e., R2

m ≥ 72) yielded v0(R) ∝ R−1.46(3), whereas a curve through all
points with R2 ≥ 7/3 gave v0(R) ∝ R−1.49(2). Both estimates are again in good
agreement with the predicted exponent −3/2.

7.4 Crossover scaling

In addition to the verification of the range dependences of critical amplitudes, the
Monte Carlo results of the previous section also allow a determination of the cross-
over functions for various quantities. This crossover from Ising-like to classical crit-
ical behaviour has attracted renewed attention in recent years. As mentioned in
Sec. 7.1, sufficiently close to the critical point the systems under consideration ex-
hibit critical exponents belonging to the Ising universality class. At larger distances
from the critical point, but still within the critical region, classical (mean-field-like)
critical exponents are observed. Although this appears to be a well-established pic-
ture, the precise nature of the crossover between these two universality classes is
still subject to investigation. For example, Anisimov et al. recently claimed [11]
to have observed (in several ionic solutions) an “effective” susceptibility exponent
which varied nonmonotonically from its classical value γMF = 1 to its 3D Ising value
γI ≈ 1.24 when the critical point was approached. Later, the possibility of such
behaviour within the critical domain was questioned by Bagnuls and Bervillier, see
Refs. [12, 13]. On the other hand, Fisher has argued [14] that nonmonotonical vari-
ation of effective critical exponents is not necessarily an indication of nonuniversal
behaviour. Other questions concern the size of the crossover region, which is ex-
pected to span several decades in the crossover variable [15], and the size of the tem-
perature region around Tc within which Ising-like behaviour is observed [16]. Un-
til now it has turned out to be very difficult to accurately observe the full crossover
region in numerical simulations. A major effort has been undertaken in Ref. [2]
for three-dimensional polymer mixtures, where crossover occurs as a function of
the polymer chain length. However, despite chain lengths of up to 512 monomers,
the results did not span the full crossover region. This was the original motivation
for Mon and Binder [4] to turn their attention to the two-dimensional Ising model
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with a variable range of interaction. In two dimensions one can not only access
larger interaction ranges, but also both asymptotic regimes are known exactly and
the variation of the critical exponents is considerably larger than in the crossover
from 3D Ising-like critical behaviour to classical critical behaviour. Nevertheless,
even in these two-dimensional systems the mean-field regime turned out to be only
barely reachable.

In the next section, we show that our numerical results allow a full mapping
of the finite-size crossover curves for various quantities. However, these curves de-
scribe the finite-size dependences of critical amplitudes, which have (to our knowl-
edge) not been observed experimentally. Therefore we have also carried out simu-
lations at temperatures farther from the critical temperature in order to observe the
thermal crossover of these quantities. The results of these simulations are presented
as well. The fact that in our model both the temperature distance from the critical
point and the interaction range can be varied turns out to be essential to observe the
full crossover region.

The remainder of this chapter is organized as follows. In Sec. 7.5 we start with
finite-size crossover scaling. We discuss the required system sizes and interaction
ranges and obtain the crossover curves for the absolute magnetization density, the
magnetic susceptibility, the spin–spin correlation function over half the system size
and the amplitude ratio Q. Thermal crossover scaling is treated in Sec. 7.6, where we
consider the approach of Tc both in the symmetric phase (T > Tc) and in the state
of broken symmetry (T < Tc). Again, crossover curves are obtained for the order
parameter and the susceptibility. The various aspects of these curves are discussed in
some detail. Graphs of the logarithmic derivatives of the crossover curves, which can
be associated with so-called effective critical exponents as measured in experiments,
are presented in Sec. 7.7.

7.5 Finite-size crossover scaling

7.5.1 General considerations

It has been shown by Binder and Deutsch [17] that crossover scaling can be com-
bined with finite-size scaling by including the dependence on the crossover vari-
able in the probability distribution function of the order parameter. Indeed, just
as crossover in the thermodynamic limit is described as a function of the reduced
temperature divided by the Ginzburg number, it can be described as the function
of a size-dependent crossover variable G in finite systems. In Ref. [4], this crossover
variable was derived as G = LR−4/(4−d). This also follows from the renormalization
treatment in Sec. 7.2; cf. in particular Eq. (7.6), in which one requires the coefficient
of the φ4 term to be much smaller than that of the φ2 term, uL4−d/R4 � 1. This
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again leads to the crossover parameter LR−4/(4−d), where for the moment we assume
that u is of order unity.

In Sec. 7.3, we focused our attention on the critical finite-size amplitudes in the
limit of L → ∞. Here we will examine the crossover in the corresponding data
for finite system sizes at T = Tc. Since the crossover regime is expected [14, 15] to
span several decades in the crossover variable G = L/R2, it is numerically not fea-
sible to observe both asymptotic regimes by merely varying the system size L while
keeping the range R fixed. Therefore we construct the curve by combining the re-
sults for various values of R, cf. Ref. [2]. Indeed, the Ising regime (L/R2 � 1) is
easily reachable, although the results for very small ranges do not conform well to
the leading R dependence of the critical scaling functions [4] and are thus, at first
sight, not well suited for constructing the crossover curve. The mean-field regime
(L/R2 � 1), however, poses more substantial problems. If the linear system size L
is made too small, the numerical results exhibit strong finite-size effects. Therefore
L must be at least of the order of the interaction range. More precisely, boundary
effects will occur for systems for which L ≈ Rm and the smallest possible value of
the crossover variable G is roughly equal to Rm/R2 ≈ √

2/R. Thus, large ranges
are required to reach the regime where G � 1. Although we can handle these in
an efficient way using our dedicated cluster algorithm, one problem still remains.
Namely, the finite-size crossover scaling is valid at the critical temperature. Any de-
viation from this temperature will lead to systematic errors in the analysis. Since the
(range-dependent) critical temperatures are determined in the Ising limit, i.e., from
system sizes L > R2, large interaction ranges require very large system sizes for an
accurate determination of Tc. For example, the most efficient way to obtain data for
G ≈ 0.02 is to simulate a system with L = 100 and Rm = 100 (R ≈ 70). However,
an accurate determination of Tc(R = 70) requires system sizes of at least L = 5000,
whereas our simulations were restricted to system sizes up to 1000 × 1000 lattice
sites. This problem was avoided by using expression (7.26) to calculate the critical
temperatures for these interaction ranges.

7.5.2 Absolute magnetization density

In the Ising regime, the absolute magnetization density scales (at criticality) asymp-
totically as 〈|m|〉 = L−1/8d0(R), where the critical amplitude d0 is a function of R,
d0 ∝ R−3/4 (see Sec. 7.3.3). In the mean-field regime 〈|m|〉 does not depend on R,
but is simply proportional to L−1/2. When plotting 〈|m|〉 as a function of G = L/R2

a data collapse is obtained if it is multiplied by a factor LxR−(2x−1). This resulting
quantity is proportional to Gx−1/8 in the Ising regime and to Gx−1/2 in the mean-
field regime. A suitable choice is x = 1/2, because this yields a quantity which is still
independent of R in the mean-field regime. Indeed, it is shown in Appendix A that



7.5. F-   169

1

2

5

10

20

0.01 0.1 1 10 100 1000

〈|m
|〉L

1/
2

L/R2

2
4
6
8

10
18
32
50
72

100
140

5000
10000

(a)

1

2

5

10

20

0.01 0.1 1 10 100 1000

〈|m
|〉L

1/
2 /C

[m
]

L/R2

Ising asymptote
MF

2
4
6
8

10
18
32
50
72

100
140

5000
10000

(b)

Figure 7.9: (a) Finite-size crossover curve for the absolute magnetization density
multiplied by the square root of the system size. (b) The same graph but now
the range-dependent corrections predicted by renormalization theory have been di-
vided out. The correction factor abbreviated by C[m] stands for the factor between
square brackets in Eq. (7.32). A perfect collapse is obtained for all system sizes and
interaction ranges. Both the exact mean-field limit (indicated by “MF”) and the
Ising asymptote with slope 3/8 are confirmed by the data. In this and all following
figures the numbers in the key refer to values for R2

m.
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in a two-dimensional system in which all spin–spin interactions are equally strong,

〈|m|〉 = 121/40(
1
2 )

0( 1
4 )

1√
L

+ O

(
1

L3/2

)
(7.31)

and 〈|m|〉√L will thus approach 121/40(1/2)/0(1/4) = 0.909890588 . . . in the limit
of G → 0. Remark that our requirement L >

√
2R unambiguously relates the limit

G → 0 to the mean-field (R → ∞) limit. In Fig. 7.9(a) we have plotted the ab-
solute magnetization density multiplied by the square root of the system size ver-
sus the crossover variable. Interaction ranges from R2

m = 2 to R2
m = 10000 were

included, where the data for R2
m = 5000 and R2

m = 10000 (spanning the range
0.02 <∼ G <∼ 0.2) have been obtained at temperatures calculated from Eq. (7.26):
Kc(Rm = √

5000) = 6.3746 (3) × 10−5 and Kc(Rm = √
10000) = 3.18491 (9) ×

10−5. The crossover curve evidently spans approximately three decades in G. In the
limit of G → 0 it gradually approaches a horizontal line. For G � 1 the picture is
not very clear. The data points for each single value of R lie on a straight line with
slope 3/8, corresponding to the Ising asymptote, but the asymptotes only coincide
for large ranges (cf. Fig. 4 in Ref. [4]). The reason for this is that, as mentioned above,
for small ranges the critical amplitudes do not conform to the leading R−3/4 depen-
dence. This can be cured by invoking the renormalization treatment of Sec. 7.2. In-
deed, the theory predicts the structure of the corrections to the leading R depen-
dence of the critical amplitude,

d0 = b0R−3/4

[
1 + 1

R2
(b1 + b2 ln R2)

]
. (7.32)

This “finite-range correction” has been derived in Sec. 7.2; see also Sec. 7.3.3. It is
illustrated graphically in Fig. 7.6, where we have plotted the result of a least-squares
fit of Eq. (7.32) to the data. The curve clearly yields an excellent description of the
critical amplitudes, even for small ranges. We have used this fit to construct a clear
crossover curve for the magnetization density on which the data for all values of R
collapse. To this end, all data are divided by the correction factor between square
brackets in Eq. (7.32). The result is shown in Fig. 7.9(b). One observes that in the
Ising regime all data perfectly collapse on a common asymptote with slope 3/8. For
G small, the data indeed approach the mean-field prediction (7.31). The fact that at
G ≈ 0.2 the data for R2

m = 5000 and R2
m = 10000 coincide with those for R2

m = 72,
100, 140 confirms that the critical temperatures for the large ranges have been es-
timated accurately. The center of the crossover region lies between G = 0.1 and
G = 1.0 which shows that the parameter u is indeed of order unity. Finally, it is par-
ticularly encouraging that no remaining finite-size effects, causing deviations from
the curve, are visible in Fig. 7.9(b), despite the fact that the correction factor was cal-
culated in the L → ∞ limit and hence does not compensate for such higher-order
finite-size effects.
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Figure 7.10: Finite-size crossover curve for the magnetic susceptibility divided by
the system size. The range-dependent correction factor C[χ] [the factor between
square brackets in Eq. (7.33)] has been divided out, as discussed in the text. Both
the mean-field limit and the Ising asymptote (slope 3/4) are confirmed by the data.

7.5.3 Magnetic susceptibility

The procedure described above for the absolute magnetization density can be ap-
plied to the magnetic susceptibility χ , which we have calculated from the average
square magnetization, χ = Ld〈m2〉. At T = Tc, the susceptibility is in the Ising
regime proportional to L7/4R−3/2, and in the mean-field regime it scales propor-
tional to L. To obtain a data collapse for χ as a function of G, one has to multiply
the finite-size data by LxR−(2x+2), where a suitable choice is given by x = −1. In the
mean-field limit, χ/L approaches

√
120(3/4)/0(1/4) = 1.17082866 . . . (see Ap-

pendix A). As shown in Sec. 7.2, the deviation from the leading range dependence
of the critical amplitude is very similar to that of the absolute magnetization density,

p0 = q0R−3/2
[

1 + 1

R2
(q1 + q2 ln R2)+ q3

R4

]
, (7.33)

where now one additional higher-order correction is required. Therefore we only
show the resulting crossover curve for the susceptibility after the data have been di-
vided by the correction factor between square brackets, see Fig. 7.10. Again, both
the mean-field asymptotic result and the Ising asymptote (slope 3/4) are clearly re-
produced, with a perfect collapse for all ranges.
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Figure 7.11: Finite-size crossover curve for the spin–spin correlation function multi-
plied by the system size. A range-dependent correction factor (abbreviated as C[g])
has been divided out, as discussed in the text. Both the mean-field limit and the Ising
asymptote (slope 3/4) are confirmed by the data.

7.5.4 Spin–spin correlation function

In our simulations we have sampled the spin–spin correlation correlation function
over half the system size, which scales both in the Ising regime and in the mean-field
regime asχ/L2. Thus, we obtain a data collapse by multiplying the finite-size data by
LxR−(2x−2), in which we have set x = 1. After correcting for the higher-order range-
dependent corrections in the critical amplitude [which have the same structure as
those in Eq. (7.33)] we obtain the graph shown in Fig. 7.11. The full crossover curve
can be mapped and shows a close resemblance to that for the susceptibility, including
the approach of the asymptotic mean-field value. In the range 0.2 <∼ L/R2 <∼ 1.0, the
data do not precisely coincide on a smooth curve. This is due to nonlinear finite-size
effects, which are for the spin–spin correlation function apparently larger than for
the absolute magnetization density or the magnetic susceptibility. We will pay more
attention to these deviations when discussing the universal amplitude ratio (see be-
low).

7.5.5 Universal amplitude ratio

The amplitude ratio QL ≡ 〈m2
L〉2/〈m4

L〉 is a size-dependent quantity, which takes a
universal value Q in the L → ∞ limit. That is, it is calculated by taking the ratio of
the square of the magnetization density and the fourth power of it in a finite geom-
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Figure 7.12: Finite-size crossover curves for the amplitude ratio Q. Figure (a) shows
the curve without any additional corrections, whereas in (b) a range-dependent
correction factor C[Q] [see Eq. (7.34)] has been divided out. For small values of
the crossover variable L/R2 the mean-field limit is reproduced and for large values
of L/R2 the Ising limit is approached. For a further discussion see the text.
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etry and subsequently taking the limit L → ∞. In the disordered phase (T > Tc),
QL approaches the Gaussian value Q = 1/3 and in the ordered phase (T < Tc) it
approaches the maximum value Q = 1. At criticality, the amplitude ratio is known
exactly in the mean-field case and to a high accuracy in the two-dimensional Ising
model, see Sec. 7.3.2. In Fig. 7.2, QL(Kc) has been plotted for a large interaction
range (R2

m = 140) as a function of the system size. Although the approach of the
Ising value is clearly visible for L large, for small system sizes Q first decreases to-
ward QMF and then starts to show strong nonlinear finite-size effects. Evidently, it is
a better approach to construct the true crossover curve for Q(Kc) by plotting finite-
size data for Q for various ranges versus the crossover variable. This is shown in
Fig. 7.12(a). Several remarks apply to this graph. In the first place, one notes that
L/R2 is indeed the appropriate crossover variable: a reasonable collapse is obtained
for all values of L and R. However, some remarkable deviations from this scaling be-
haviour are present, which are most clearly visible in the range 0.2 < L/R2 < 0.6,
but also present around L/R2 = 10. Similar effects were already observed in the
results for the spin–spin correlation function, but now the effects stand out much
more pronounced because for the amplitude ratio we have employed a linear instead
of a logarithmic vertical scale. These deviations are due to nonlinear finite-size cor-
rections, as can be seen clearly by zooming in into the deviations, see Fig. 7.13. The
data points for R2

m = 5000 and R2
m = 10000 may serve as a reference for the location

of the “true” crossover curve. One observes that for each of the ranges R2
m = 72, 100
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Figure 7.13: A detailed view of Fig. 7.12(a) showing the deviations from the cross-
over curve for very small system sizes.
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Figure 7.14: The range-dependent correction factors C[m2] = C[χ], C[m4] and
C[Q] in 〈m2〉, 〈m4〉 and Q, respectively, as determined by least-squares fits to the crit-
ical amplitudes extracted from the Monte Carlo data. The line at height 1 is drawn
for reference. One observes that C[Q] lies very close to, although not exactly at,
unity.

and 140 the deviations from this curve increase with decreasing system size, which
indeed shows that the effects are caused by finite-size corrections. For example, if the
deviations had been caused by an inaccurate determination of the critical tempera-
ture, the effects would have increased with increasing system size. Unfortunately, it
is not easy to separate these corrections from the leading crossover behaviour (ex-
cept graphically), unless the full crossover function is known (which in turn would
limit the use of a numerical determination). Of course this problem can be circum-
vented by determining the crossover curve at these values for G from systems with a
larger system size and a larger interaction range. The deviations around L/R2 = 10
are caused by the same effect, but now for systems with small R. Although the ampli-
tude ratio is more sensitive—even if one takes into account the difference in scale—
to these finite-size effects than 〈m2〉 = χ/L2 and 〈m4〉 individually (the curve for the
latter is not shown here, but its smoothness is comparable to that of the susceptibil-
ity), Q is less sensitive to corrections to the leading range dependence. Indeed, for
〈m4〉 these corrections are again of the form [1 + R−2(s1 + s2 ln R2)+ R−4s3] and Q
must thus be divided by

[1 + R−2(q1 + q2 ln R2)+ R−4q3]2

1 + R−2(s1 + s2 ln R2)+ R−4s3
. (7.34)
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The coefficients s1, s2 and s3 have been determined from a least-squares fit to the crit-
ical amplitudes of 〈m4〉 and q1, q2 and q3 come from Eq. (7.33). Figure 7.14 shows
the correction factors for 〈m2〉, 〈m4〉 and Q. Evidently, the latter factor (7.34) is much
closer to unity than the former two. Figure 7.12(b) shows QL(Kc) divided by the cor-
rection factor (7.34), which indeed exhibits only slightly less scatter than the graph
without this correction factor. In particular the deviations for the larger ranges do
not disappear.

7.6 Thermal crossover scaling

7.6.1 General considerations

The finite-size crossover scaling studied in the previous section is an intrinsic finite-
size effect which is not observable in thermodynamic systems. For this reason it is
important to study its temperature-dependent counterpart as well. This so-called
thermal crossover, which was from a phenomenological scaling point of view already
considered in Ref. [18], is of course closely related to finite-size crossover: in finite
systems crossover to mean-field-like behaviour occurs when the system size has been
decreased to the appropriate power of the interaction range (i.e., L ∼ R4/(4−d) or
L ∼ R2 for d = 2), whereas in the temperature-dependent case this crossover oc-
curs when the temperature distance to the critical point is such the correlation length
has become of the order of an appropriate power of the interaction range. More pre-
cisely, the crossover location in the latter case is determined by the Ginzburg crite-
rion, t (4−d)/2Rdu−1 ≈ 1, where u is the coefficient of the φ4 term in the LGW Hamil-
tonian. It should be kept in mind that these considerations are valid only within
the critical region, i.e., care must be exercised to keep the reduced temperature t =
[T − Tc(R)]/Tc(R) sufficiently small. When studying thermal crossover in practical
simulations one has the additional complication that sufficiently close to Tc the cor-
relation length will always be bounded by the finite system size, which is precisely
the situation one wants to avoid. So relatively large system sizes are required.

As follows from the Ginzburg criterion, the appropriate scaling variable in two
dimensions is tR2 and one can therefore study thermal crossover effects by varying
the interaction range as well. This is essential because of the following. For small val-
ues of R, t has to be made rather large to cross over to classical critical behaviour and
it is possible that one leaves the critical region before reaching the classical regime.
On the other hand, if one only studies systems with large interaction ranges, t has
to be made very small to observe Ising-like critical behaviour. However, for such
small values of t extremely large system sizes are required to avoid finite-size effects.
Therefore we have constructed, just as in the previous section, crossover curves from
data for various ranges. We have carried out simulations for the interaction ranges
studied in Sec. 7.3 at temperatures further below Tc and also generated data for the
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Table 7.6: Some properties of the additional ranges used to span the full thermal
crossover region. R2

m = 5000 has been included for completeness; it has only been
used for the finite-size crossover scaling. The first three columns list the squared
range of interaction R2

m, the corresponding number of neighbours z and the squared
effective range of interaction R2. Furthermore the critical coupling Kc as calcu-
lated from Eq. (7.26) and the mean-field approximation for the critical coupling
KMF

c = 1/z are shown.

R2
m z R2 Kc KMF

c

500 1580 99449
395 ≈ 251.770 6.379 (2)× 10−4 6.3291139 × 10−4

1000 3148 394530
787 ≈ 501.309 3.1904 (6)× 10−4 3.1766201 × 10−4

4000 12580 1259568
629 ≈ 2002.49 7.9594 (5)× 10−5 7.9491256 × 10−5

5000 15704 9813759
3926 ≈ 2499.68 6.3746 (3)× 10−5 6.3678044 × 10−5

10000 31416 6545445
1309 ≈ 5000.34 3.18491 (9)× 10−5 3.1830914 × 10−5

interaction ranges R2
m = 500, 1000, 4000 and 10000. Table 7.6 summarizes some

properties of these systems. Simulations have been carried out down to tempera-
tures as low as T ≈ 0.5Tc. For the order parameter, crossover can only be studied in
the phase of broken symmetry, but for the susceptibility we have also considered the
symmetric (T > Tc) phase. Since in this phase no saturation effects occur, much
smaller interaction ranges suffice to span the full crossover region, as we will show
below.

7.6.2 Absolute magnetization density

As derived in Ref. [4] and Sec. 7.2 the absolute magnetization density scales, suffi-
ciently close to the critical point, as 〈|m|〉 ∝ (−t )βR(2dβ−d)/(4−d) (t < 0), which for
the two-dimensional case yields 〈|m|〉 ∝ (−t )1/8R−3/4. In the mean-field regime, on
the other hand, the magnetization density is simply proportional to (−t )1/2. When
plotted as a function of tR2, a data collapse for all ranges is now obtained if the mag-
netization density is multiplied by R. Figure 7.15(a) shows the corresponding plot.
We will discuss the various aspects of this graph in some more detail. The overall pic-
ture suggests that the data roughly follow the Ising asymptote (slope 1/8) for small
values of tR2 and then gradually approach the mean-field asymptote (slope 1/2)
for large values of tR2. Here “small” and “large” refer to the absolute value of tR2

and “slope” is generally used for the logarithmic derivative, d ln〈|m|〉/d ln |t |. For
very small values of tR2 the data start to deviate from the Ising asymptote at an L-
dependent location and approximately follow (for temperatures closer to Tc) a hori-
zontal line. Here one has entered the finite-size regime, where the correlation length
is limited by the system size. This is the case which was studied in the previous sec-
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Figure 7.15: Thermal crossover for the absolute magnetization density for various
ranges and system sizes, where the range-dependent reduced temperature t is de-
fined as [T − Tc(R)]/Tc(R). In figure (a) no additional correction terms have been
used, whereas in (b) the factor C[m] has been divided out. For an extensive discus-
sion of the various features of these graphs the reader is referred to the text.



7.6. T   179

tion. The width of this regime depends (for general d) both on the system size and
the interaction range, as can be read off from the universal scaling functions de-
rived in Sec. 7.2. Indeed, the temperature-dependent argument of these functions
is tLytR−2(2yt−d)/(4−d) (yt = 1 in the 2D Ising universality class) and the width of
the finite-size regime is thus proportional to L−ytR2(2yt−d)/(4−d) = L−1. Note that
the absence of any range dependence is not a general feature and even for the two-
dimensional Ising model only true to leading order (cf. Fig. 7.5). Higher-order terms
will entail range-dependent factors that involve (for d = 2) logarithms of R. Out-
side the finite-size regime, the data for each individual range first lie approximately
on the Ising asymptote, which has been drawn with an amplitude such that it coin-
cides with the data for R2

m = 2. For the smaller ranges the amplitudes of the asymp-
totes show a considerable range dependence, whereas for larger ranges the ampli-
tudes converge. Upon further decrease of the temperature (increase of the absolute
value of t) several types of behaviour occur: for the smallest range (R2

m = 2) the
data points still lie on the Ising asymptote. For R2

m = 4 and R2
m = 10 the data leave

the Ising asymptote at sufficiently low temperatures and then follow a nearly straight
line with a slope that lies between the Ising and the mean-field asymptote. In these
cases one has left the critical region without ever reaching the asymptotic mean-field
regime. For each range the data for all system sizes coincide, as they should outside
the finite-size regime. For R2

m = 72 and R2
m = 140 the mean-field asymptote is

approached much closer. However, if the temperature is decreased further below
the critical temperature the data points start to deviate from the asymptote again.
This effect is caused by saturation of the magnetization and can be quantitatively de-
scribed with mean-field theory, as we will show below. Turning to even larger ranges,
we see that the data now really reach the asymptote with slope 1/2 and follow it for
up to one decade in the crossover variable (for the largest range we have studied)
before saturation sets in. Also the exact amplitude

√
3 (see below) of the asymp-

tote is precisely reproduced, which shows again that the critical temperatures of the
systems with large interaction ranges have been accurately determined: a deviation
would have shifted the graph along the horizontal axis.

We will now first consider the offset of the asymptotes in the Ising regime. Al-
though this effect occurs outside the finite-size regime, we may well hope that the
so-called finite-range corrections applied in the previous section [Eq. (7.32)] can be
used here as well. Indeed, these corrections are part of the universal scaling func-
tions and although the amplitude b0 = limR→∞ limL→∞ R3/4L1/8〈|mL(Kc)|〉 is a spe-
cific limiting value, the range-dependent correction factor does not depend on this
limit. Especially the collapse obtained in Fig. 7.9(b) makes it very tempting to apply
a similar correction here. On the other hand, these corrections were calculated in
the Ising regime, which we here are gradually leaving. In Fig. 7.15(b) we show the
same data but now divided by the correction factor. Although a perfect collapse is
not obtained, the asymptotes lie much closer together than without this correction.
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Also the critical amplitude of the Ising asymptote is known exactly. Indeed, by
expanding Onsager’s expression for the spontaneous magnetization [19, 20],

m =
[

1 − 1

sinh4(2J/kBT )

]1/8

, (7.35)

around the critical point J/kBTc = 1
2 arcsinh(1) we obtain for t < 0

m = [4
√

2 arcsinh(1)(−t )+ O(t2)]1/8 ≈ 1.22240995(−t )1/8 . (7.36)

For the nearest-neighbour Ising model R = Rm = 1, so the fact that in Fig. 7.15
along the horizontal axis tR2 is used instead of t and along the vertical axis 〈|m|〉R
instead of 〈|m|〉 does not affect the amplitude of the asymptote. However, the correc-
tion factor C[m] [denoting the factor between square brackets in Eq. (7.32)] must of
course be taken into account. This correction factor describes the deviation of the
critical amplitude d0(R) from the leading scaling behaviour in terms of a power se-
ries in R−2 (with coefficients that depend on ln R) and it is not a priori clear whether
C[m] converges for R = 1. It is certainly unlikely that a single term [the term propor-
tional to b2 in (7.32) vanishes] describes the deviation very well. No exact result for
d0(R = 1) = limL→∞ mL(Kc)L1/8 is known to us, but from a modest Monte Carlo
simulation we found d0(R = 1) = 1.0092 (4). On the other hand, from Eq. (7.32)
with b0 = 1.466 (2) and b1 = −0.305 (1) we find d0(R = 1) = 1.018 (4) which
differs approximately two standard deviations from the numerical result. Recall that
b0 and b1 were obtained from a least-squares fit to the critical finite-size amplitudes
for 2 ≤ R2

m ≤ 140. Nevertheless, the relative difference lies below the one-percent
level, which cannot be distinguished in our graph. Therefore we have drawn the
Ising asymptote with amplitude [4

√
2 arcsinh(1)]1/8/(1 + b1) in Fig. 7.15(b) and

it indeed turns out to be a precise tangent to the crossover curve.
As mentioned above, also the saturation effects can be described with mean-field

theory. Namely, the magnetization follows from the well-known expression [21, 22]

m = tanh

(
Tc

T
m

)
. (7.37)

Rewriting this as m = (1 + t ) arctanh(m) and solving for m one obtains below Tc

for small t

m = √
3(−t )1/2 − 2

5

√
3(−t )3/2 − 12

175

√
3(−t )5/2 − 2

125

√
3(−t )7/2

+ 166

67375

√
3(−t )9/2 + O((−t )11/2) . (7.38)

The leading term shows the classical valueβ = 1/2 and the critical amplitude
√

3. To
describe the saturation effects in Fig. 7.15, the first three terms of this series suffice.
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Figure 7.15(b) shows for the five largest ranges (R2
m = 140, 500, 1000, 4000, 10000)

the curves

〈|m|〉R = √
3(−tR2)1/2

[
1 − 2

5R2
(−tR2)− 12

175R4
(−tR2)2

]
. (7.39)

For R2
m = 140 this expression does not precisely coincide with the numerical data,

but for the remaining values the curves accurately describe the saturation effects.
For these cases the interaction ranges are apparently large enough to suppress the
critical fluctuations to a large extent. The lowest temperatures shown in the fig-
ure are T/Tc = 0.52, 0.60, 0.60, 0.68 and 0.50 for R2

m = 140, 500, 1000, 4000
and 10000, respectively. Saturation effects become visible in Fig. 7.15 for t <∼ −0.15,
i.e., T/Tc

<∼ 0.85. According to Eq. (7.38) the magnetization deviates here approx-
imately five percent from the asymptote. Using Eq. (7.38) we can perform another
operation on the numerical data. Namely, the influence of saturation effects in the
mean-field model is described by the ratio of the full series expansion on the right-
hand side of (7.38) and its first term. As the mean-field expression constitutes an ac-
curate description of the saturation effects for R2

m ≥ 500, the factor between square
brackets in Eq. (7.39) will give an accurate description of the relative saturation ef-
fects (i.e., the ratio of the saturated magnetization and the crossover curve) down to
probably even lower interaction ranges. To illustrate this we have divided the data
for R2

m ≥ 72 by the corresponding factor. The resulting graph (Fig. 7.16)—in which
also the data points in the finite-size regime have been omitted—shows that the data
for these large ranges now nicely coincide on one curve, which is the actual crossover
curve for the order parameter.

The fact that for different interaction ranges the data (which overlap for consid-
erable intervals of tR2) coincide on one curve lends strong support to the hypoth-
esis that the crossover curve is universal. Indeed, nonuniversal effects may occur
once one has left the critical region. Then, microscopic cutoff effects are no longer
negligibly small compared to the finite correlation length ξ , which implies that the
form of the crossover curve depends on the ratio between ξ and the lattice spac-
ing a. In our simulations we have not measured the correlation length directly, but
we can still make a rough estimate from the data. Namely, at the locations marking
the boundaries of the finite-size regime for different interaction ranges and system
sizes in Fig. 7.15, the correlation length is approximately equal to the system size.
From the magnetization densities for R2

m ≥ 72 we conclude that ξ ≈ 0.5/(−t ), in-
dependent of the interaction range. The latter conclusion is in agreement with the
above-mentioned renormalization prediction that the width of the finite-size regime
is to leading order independent of the interaction range. Thus, at a fixed value of the
crossover variable tR2 the correlation lengths for different ranges have different val-
ues. However, the crossover curves coincide at fixed tR2 and hence are independent
of the ratio ξ/a.



182 C 7: C    

1

10

100

−104 −103 −102 −10 −1 −10−1 −10−2 −10−3

〈|m
|〉R

/C
[m

]

tR2

2
4

10
72

140
500

1000
4000

10000
Ising: (−t)1/8

MF: (−t)1/2

Figure 7.16: Thermal crossover for the absolute magnetization density for various
ranges and system sizes, where not only the factor C[m] has been divided out, but
also the data for R2

m ≥ 72 have been corrected for saturation effects and data points
in the finite-size regime have been omitted.

Finally, we make some observations concerning the size of the crossover region.
It is clear that it takes at least between two and three decades in the crossover vari-
able to cross over from Ising-like to classical critical behaviour. Thus, unless one
studies systems with a rather large interaction range, one has to go to such a large
temperature distance from Tc in order to sufficiently decrease the correlation length
compared to the interaction range that one has already left the critical region before
observing classical critical behaviour! We note that the center of the crossover re-
gion lies in the neighbourhood of |tR2| = 1, which is consistent with a value for u
of order unity.

7.6.3 Magnetic susceptibility

Unlike the order parameter, the magnetic susceptibility displays crossover upon ap-
proaching the critical point either from below or from above. We will discuss these
two situations separately. In the ordered phase, T ≤ Tc, the magnetic susceptibility
is given by the so-called connected susceptibility,

χ̃ = Ld 〈m2〉 − 〈|m|〉2

kBT
. (7.40)

In the two-dimensional Ising model with interaction range R this quantity will, close
to the critical point, diverge as (−t )−7/4R−3/2. Further below Tc it will cross over to
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Figure 7.17: Critical amplitude for the connected susceptibility χ̃ = Ld(〈m2〉 −
〈|m|〉2)/kBT as extracted from the thermodynamic limit of L−7/4χ̃L(Kc). The dashed
curve indicates the renormalization prediction fitted to the numerical data. Also the
critical amplitude of the scaled susceptibility kBTcχ̃ is shown, which for small ranges
deviates considerably stronger from the asymptotic behaviour.

classical critical behaviour, where χ̃ ∝ (−t )−1. In a graph showing results for vari-
ous ranges as a function of the crossover variable tR2 a data collapse is obtained for
χ̃/R2. However, just as for previous crossover curves, the data for small R will dis-
play an offset because of corrections to the leading R−3/2 dependence. To determine
these deviations we first study the critical amplitude of the connected susceptibil-
ity, which was not considered in Sec. 7.3; see Fig. 7.17. The statistical uncertainty
of this amplitude is notably larger than for 〈|m|〉 and 〈m2〉 (cf., e.g., Fig. 7.6), but
one can still observe that the asymptotic regime is reached. In this figure we have
also plotted the critical amplitude of the so-called scaled susceptibility kBT χ̃ which
was studied in, e.g., Ref. [4]. Evidently, the latter amplitude shows a much stronger
deviation from the leading range dependence, due to the fact that also Tc(R) devi-
ates from T MF

c (Fig. 7.3). Thus, although both amplitudes have the same asymptotic
behaviour for large interaction ranges, it is much more difficult to extract this be-
haviour from medium-range results for kBT χ̃ than from the corresponding results
for χ̃ . This may partially explain the difficulties experienced in Ref. [4]. The devi-
ations have been fitted to a correction factor of the form [1 + R−2(v1 + v2 ln R2)],
which we abbreviate as C[χ̃].

In Fig. 7.18(a) we show the connected susceptibility, appropriately scaled with R
and divided by the correction factor C[χ̃], as a function of the crossover variable.
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Figure 7.18: Thermal crossover for the connected susceptibility χ̃ for various ranges
and system sizes. A finite-range correction factor C[χ̃] has been divided out. Fig-
ure (b) has also been corrected for saturation effects for R2

m ≥ 72 and data points in
the finite-size regime have been omitted. For a discussion see the text.
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Just as for the magnetization density, deviations from the crossover curve are present
even after the finite-range corrections have been applied. These effects are either
caused by finite-size effects (close to Tc) or by systems that leave the critical region.
In the latter case, saturation effects start to come into play. The finite-size effects
are clearly recognizable in the rightmost part of the graph, where the curves start to
follow horizontal lines. Once the temperature has been sufficiently decreased, the
graphs start following an asymptote with slope −7/4, on which the data for various
ranges quite accurately collapse. The amplitude of this asymptote is simply related to
the exactly known amplitude A− = 0.025537 . . . [23, 24] of the reduced susceptibil-
ity χ0. This reduced susceptibility is defined as χ0 ≡ kBT χ̃/µ2, where µ denotes
the magnetic moment of a spin. Also in our calculations this magnetic moment
has implicitly been divided out. However, we should keep in mind that we have ex-
pressed all temperatures in terms of the mean-field critical temperature, i.e., we have
taken Tc = 1/(zKc), where z denotes the coordination number. For the nearest-
neighbour model this yields an additional factor 4 and we thus expect a critical am-
plitude 2 arcsinh(1)A−. In addition we have to take into account the finite-range
correction factor which has been divided out. The question whether this factor is
applicable for R = 1 has already been discussed in Sec. 7.6.2 [below Eq. (7.36)]. In
this case, the difference between the deviation from the leading scaling behaviour as
predicted by C[χ̃] and the numerical result is approximately 3%, whereas the small-
est differences that can be discerned on the logarithmic scale of Fig. 7.18(a) are of the
order of 5%. The asymptote with the above-mentioned amplitude divided by C[χ̃]
indeed lies tangential to the crossover curve, confirming our data. As the temper-
ature is further decreased, the data for systems with small interaction ranges start
to follow a line with a slope that lies between that of the Ising and the mean-field
asymptotes. This effect is caused by the fact that these systems have left the critical
region. For sufficiently large interaction ranges, however, the different curves co-
incide and have a slope that gradually decreases (in the absolute sense). Although
the crossover curve at first varies more rapidly than for the absolute magnetization
density, it subsequently only slowly approaches the classical regime and the overall
size of the crossover region is again between two and three decades. Remarkably, the
slope of the crossover curve passes even through the mean-field value −1 before set-
tling at this value for sufficiently low temperatures. In other words, the logarithmic
derivative of the connected susceptibility appears to change nonmonotonically from
its asymptotic Ising value −7/4 to its classical value −1.

The saturation effects can—just as for the magnetization density—for large
ranges be described with mean-field theory. In a mean-field model the magnetic
susceptibility is given by

χ = 1 − m2

t + m2
. (7.41)
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Using Eq. (7.38) we find for T < Tc

χ = 1

−2t
− 9

10
+ 18

175
(−t )+ 18

175
(−t )2 + 6714

67375
(−t )3 + O((−t )4) , (7.42)

which exhibits the classical value for the susceptibility exponent, γMF = 1 and
the critical amplitude 1

2 . Figure 7.18(a) shows the asymptote with this amplitude
and one can observe that the crossover curve approaches this asymptote from be-
low around tR2 = −1. Also the mean-field curves (7.42) are shown for R2

m = 140,
500, 1000, 4000 and 10000 and they accurately describe the numerical data. Thus,
we have used the ratio between the series expansion (7.42) and the asymptotic be-
haviour 1/(−2t ) to remove the saturation effects in Fig. 7.18(a). The resulting graph
is shown in Fig. 7.18(b), in which also the data points in the finite-size regime have
been omitted in order to obtain a clear crossover curve. The nonmonotonical vari-
ation of the slope of this curve is clearly visible.

In the disordered (symmetric) phase, we encounter a different situation. The
susceptibility is now given by χ ′ ≡ Ld〈m2〉/kBT . This is identical to the expres-
sion we have used for the finite-size crossover scaling, except that the temperature-
dependent factor has been omitted in Sec. 7.5.3. Figure 7.19 shows the critical finite-
size amplitudes of both χ ′ and χ = Ld〈m2〉 as a function of the interaction range.
We have fitted an expression of the form (7.33) to the data for R2

m ≥ 2. This expres-
sion describes the data well, except for the data point at R2

m = 1, where the deviation
is approximately 10%. Just as for the connected susceptibility, the finite-range cor-
rections to the critical amplitude of χ ′ are much smaller than for χ . In fact, they
are so small that they can be completely omitted in the thermal crossover scaling,
as illustrated in Fig. 7.20. This graph shows χ ′/R2 as a function of the crossover
variable tR2 for various interaction ranges and system sizes. Outside the finite-size
regime, the data follow the Ising asymptote with slope −7/4. The exactly known
amplitude 2 arcsinh(1)A+, where A+ = 0.96258 . . . [23, 24], of this asymptote is
accurately reproduced by the numerical data. For larger temperatures, the curves
gradually approach an asymptote with the mean-field slope −1. However, some care
has to be exercised when interpreting this behaviour. Above Tc, no saturation of the
order parameter occurs and the system smoothly passes over to regular (noncriti-
cal) behaviour. In this high-temperature region the susceptibility decreases propor-
tional to 1/T . For small interaction ranges it is this behaviour that one observes in
the graph. Only for larger interaction ranges one actually observes classical critical
behaviour. The latter systems indeed reproduce the mean-field critical amplitude,
which is equal to 1 [as follows from Eq. (7.41) with m = 0]. Note that, due to the
absence of saturation effects, interaction ranges up to R2

m = 1000 are amply suffi-
cient to observe the full crossover region.
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7.7 Effective exponents

In several papers (see, e.g., Refs. [11, 14]) the slopes of the crossover functions are
described by so-called effective exponents. These exponents can be defined as βeff ≡
d ln〈m〉/d ln |t | = t d ln〈m〉/dt and γeff ≡ −d lnχ/d ln |t | = −t d lnχ/dt . In fact,
this concept is familiar from the analysis of experimental data since a long time [25],
but only a limited amount of theoretical work has addressed these issues. Of course,
these exponents change from their Ising values to the classical values in the crossover
region. However, the precise variation in the crossover region is unclarified and par-
tially subject to debate. Although these exponents can be read off from the form of
the crossover curves presented in the previous section, we consider it worthwhile to
present separate graphs displaying βeff, γ−

eff
and γ+

eff
, where the superscripts denote

the cases t < 0 and t > 0, respectively. The additional advantage of these exponents
is that they follow from data obtained for the same range and hence are not affected
by any range-dependent correction factors.

As the graph in Fig. 7.9(b) is particularly smooth, it is tempting to consider its
derivative as well. As derived in Sec. 7.2, 〈|m|〉√L ∝ (L/R2)yh−3/2. This relation
also holds in the mean-field regime, provided that one replaces the magnetic ex-
ponent yh by its starred counterpart y∗

h ≡ 3d/4 = 3/2. The asterisk indicates
that the exponent is modified due to the dangerous-irrelevant-variable mechanism,
as explained in Chapter 4. Thus, while we can rewrite the above-mentioned rela-
tion in the Ising regime in terms of conventional critical exponents as 〈|m|〉√L ∝
(L/R2)−β/ν+1/2, this is not possible in the mean-field regime, since νMF is not af-
fected by the dangerous-irrelevant-variable mechanism. As an alternative we em-
ploy the specific-heat exponentα; 〈|m|〉√L ∝ (L/R2)−2β/(2−α)+1/2. The fact that the
latter relation holds in the mean-field regime while the former does not is a direct
manifestation of the violation of hyperscaling. Thus, we define [2β/(2 − α)]eff ≡
1
2 − d ln(〈|m|〉√L)/d ln(L/R2). This quantity is shown as a function of L/R2 in
Fig. 7.21. Although the size of the error bars is considerable, the crossover from the
Ising value 1/8 (for large values of L/R2) to the classical value 1/2 (for small values
of L/R2) is clearly visible.

Turning to thermal crossover, we display in Figs. 7.22, 7.23 and 7.24 the expo-
nents βeff, γ−

eff
and γ+

eff
as defined above. The effective magnetization exponent βeff

increases monotonically from its Ising value 1/8 to the classical value 1/2. In par-
ticular do the data for different interaction ranges roughly fall onto the same curve,
which supports the hypothesis that the crossover curve is universal. However, one
observes that for systems with relatively small interaction ranges the effective expo-
nent does not follow this curve. This effect, caused by saturation of the order pa-
rameter, can clearly lead to misleading results in experiments! In Fig. 7.23 the non-
monotonical variation of γ−

eff
between 7/4 and 1 is clearly visible. This may be con-

sidered as a manifestation of what Fisher [14] calls an “underswing”. The occurrence
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Figure 7.21: The effective exponent [2β/(2 − α)]eff as obtained from the finite-size
crossover curve for 〈|m|〉√L.

of such a nonmonotonical crossover has been predicted by various renormalization
calculations for the crossover from Ising to XY and Heisenberg critical behaviour
above Tc, see, e.g., Refs. [26–28] and references therein. Furthermore, an exponent
γeff = 0.88 (3) has been measured in the symmetric phase in micellar solutions [29].
Fisher [14] has suggested that an effective susceptibility exponent that takes a value
γeff < 1 in the crossover region might be a general feature of crossover from 3D
Ising to classical critical behaviour and noted that concrete calculations yielding such
an effective exponent would be valuable. In Ref. [14], a first-order ε-expansion is
quoted for the exponent crossover function,

γeff = 1 + (γI − γMF)E(ln[|t/G|]) , (7.43)

where G is the crossover temperature or Ginzburg number and

E(ln y) = 1/(1 + yε/2) . (7.44)

In our case, the ratio t/G is directly proportional to the crossover variable tR2. To
describe the experimental results from Ref. [29], Fisher used the following extension
of Eq. (7.44),

E(ln y) = (1 + pyε/2)/[1 + (p + 1)yε/2 + q yε] . (7.45)

Even though one may not expect such an expansion to converge for d = 2, we have
drawn expression (7.43) in Fig. 7.23, where we have taken the function E(ln y) from
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Figure 7.22: The effective magnetization exponent βeff describing the logarithmic
derivative of the crossover function for the magnetization density.

Eq. (7.45), set ε = 2 and adjusted p and q such that the curve constituted a rea-
sonable description of the data. Clearly, no conclusions should be drawn from this
curve, especially because Eq. (7.45) has been proposed for the symmetric phase. In
addition, for d = 2 the exponent ε/2 is a very poor approximation for the expo-
nent θ ≡ −yi/yt = 2, which is actually expected to appear in the function E(ln y).
As follows from Fig. 7.24, the behaviour above Tc is completely different. Here we
have used expression (7.43) with Eq. (7.44) to describe the data. Except for a shift
along the horizontal axis (a proportionality constant in the Ginzburg number), no
adjustable parameter is present and it is surprising how well the data agree with the
theoretical prediction. It would be interesting to calculate the amplitude of the first
Wegner correction as a function of R. However, even with the present techniques
this would, for the large values of R, require prohibitively large system sizes (to avoid
finite-size effects) and thus has not been attempted.

Sometimes experiments have yielded effective exponents in disagreement with
the known [3] universality classes, but still satisfying the scaling relations, such as
γeff + 2βeff = 2 − αeff. Here αeff denotes the effective exponent of the specific heat,
which in our case is expected to be always (close to) zero, as both the classical and the
2D Ising value of α are equal to zero. This is also confirmed by the close resemblance
between Figs. 7.21 and 7.22. Thus, it is interesting to note that this scaling relation
is strongly violated in the present case: from Figs. 7.22 and 7.23 we can estimate that
γeff + 2βeff reaches a minimum of approximately 1.4 at tR2 ≈ −1.
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7.8 Conclusions

In this chapter, we have derived the dependence of scaling functions on the range of
interactions from renormalization-group arguments. The results agree with the pre-
dictions of Mon and Binder and yield in addition the corrections to the leading scal-
ing behaviour, including the previously conjectured logarithmic factor in the shift of
the critical temperature of two-dimensional systems.

We have also carried out Monte Carlo simulations for systems in which the range
of the interactions was large enough to verify the theoretical predictions. It was con-
firmed with high precision that all examined systems belong to the 2D Ising univer-
sality class. Besides the range dependence of critical amplitudes, we also observed
the predicted range dependence of the corrections to scaling.

Furthermore, we have presented numerical results for scaling functions describ-
ing the crossover from Ising-like to classical critical behaviour in two-dimensional
systems. While the general concepts describing this crossover have been developed
many years ago, only a limited amount of progress has been made for a long time.
Here, it is demonstrated, for the first time, that one can obtain accurate quantitative
information on crossover scaling from computer simulations. The full crossover re-
gion was covered both for finite-size crossover and thermal crossover above and be-
low Tc. A data collapse has been obtained for all system sizes and interaction ranges,
which supports the hypothesis that these crossover functions are universal. Devia-
tions from this curve are present but can be understood from finite-size and satura-
tion effects. The results are in agreement with the previously derived renormaliza-
tion scenario for these systems.

Working in two dimensions offers the advantage that the exponents and the crit-
ical amplitudes are known exactly. More importantly, critical fluctuations are very
large in two dimensions, which leads to critical behaviour that strongly differs from
classical behaviour and hence to a clearly visible crossover between the two uni-
versality classes. We have shown that the magnetization density is described by a
smooth crossover curve. The effective exponent, defined as the logarithmic deriva-
tive of this curve, increases monotonically from the Ising value to the classical value
over two or three decades in the reduced temperature. On the other hand, the effec-
tive exponent for the susceptibility has a logarithmic derivative which varies mono-
tonically above the Curie temperature and nonmonotonically below it. The occur-
rence of nonmonotonic behaviour in the symmetric phase has been inferred from
renormalization-group calculations in three dimensions and found long-standing
interest. An extension of the present study to d = 3 is therefore highly desirable.
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Appendix A

Some exact calculations for the
mean-field model

On several occasions in this thesis, finite-size properties of the mean-field model are
used as a simple illustration or as a check on various numerical results. Since the
calculations of these properties are all based on the same approach we have collected
them in this appendix.

The Hamiltonian describing the mean-field model is given by Eq. (2.22). The
interaction between each pair of spins is identical and normalized by the number of
spins (N) in the system. If the number of down spins is denoted by r, the partition
function can be written as

Z =
r=N∑
r=0

c(r) , (A.1)

with

c(r) = N!

r!(N − r)!
exp

[
1

2
K
(N − 2r)2 − N

N

]
, (A.2)

where we have used Eq. (2.23). The average magnetization per spin is given by m =
(N − 2r)/N . Replacing the sum in Eq. (A.1) by an integral (which introduces an
error of order 1/N) and changing the integration variable from r to m we find

Z = N

2

∫ +1

−1
dm c̃(m)[1 + O(1/N )] , (A.3)

with

c̃(m) = N![
1
2 N(1 − m)

]
!
[

1
2 N(1 + m)

]
!

exp

[
1

2
K(Nm2 − 1)

]
. (A.4)
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The factor N/2 in Eq. (A.3) appears due to the change of variables. Likewise, we can
write expressions for the average square magnetization density and the average of
the fourth power of the magnetization density,

〈m2〉 = N

2Z

∫ +1

−1
dm m2c̃(m)[1 + O(1/N )] , (A.5)

〈m4〉 = N

2Z

∫ +1

−1
dm m4c̃(m)[1 + O(1/N )] . (A.6)

To find the behaviour of these quantities for large N , we can expand ln[c̃(m)] using
Stirling’s formula, which yields

ln[c̃(m)] = − 1

2
[N(1 − m)+ 1] ln

[
1

2
N(1 − m)

]

− 1

2
[N(1 + m)+ 1] ln

[
1

2
N(1 + m)

]

+ 1

2
Nm2 + f + O(1/N ) , (A.7)

where f contains all terms not depending on m and we have set K = 1, because we
want to evaluate all quantities at criticality. Upon expansion in m we find ( f̂ is a new
constant equal to f plus additional terms not depending on m)

ln[c̃(m)] = − 1

12
Nm4 − 1

30
Nm6 − 1

56
Nm8

+ 1

2
m2 + 1

4
m4 + 1

6
m6 + f̂ + · · · . (A.8)

Substituting this for c̃(m) in Eq. (A.3) and expanding the exponentials yields

Z = N

2
e f̂
∫ +∞

−∞
dm e− 1

12 Nm4
(

1 − 1

30
Nm6 + 1

2
m2

)
[1 + O(1/N )] , (A.9)

where we have also extended the integration boundaries to ±∞, which introduces an
error which decays exponentially with N . Indeed, the relative error can be expressed
in terms of the incomplete Gamma function,∫ ∞

1
dm e− 1

12 Nm4 = 1

4

(
12

N

)1/4 ∫ ∞

N/12
dx x−3/4e−x

= 1

4

(
12

N

)1/4

0

(
1

4
,

N

12

)

= 3

N
e−N/12

∞∑
n=0

[
(−1)n

0(n + 3
4 )

0( 3
4 )

(
12

N

)n
]

, (A.10)
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where in the last line we have used the asymptotic representation of 0(α, N ), see
Ref. [1, (8.357)].

For the evaluation of Eq. (A.9) and similar expansions of Eqs. (A.5) and (A.6)
we use

Ik =
∫ +∞

−∞
dm mk exp

(
− 1

12
Nm4

)
=
(

12

N

) k+1
4 1

2
0

(
k + 1

4

)
. (A.11)

Thus, each factor m in the integrand yields an extra factor N−1/4 in the result and
terms of the form Nmk+4 are of the same order as terms of the form mk. Therefore
we retain only the terms up to order m2 and Nm6 in Eq. (A.8).

After some elementary calculations we find the following expression for the av-
erage square magnetization density

〈m2〉 = √
12
0( 3

4 )

0( 1
4 )

1

N1/2
− 12

5

[
0( 3

4 )

0( 1
4 )

]2
1

N
+ O

(
1

N3/2

)
, (A.12)

i.e., the susceptibility diverges as
√

N, and for the fourth power of the magnetization
density we find

〈m4〉 = 12
0( 5

4 )

0( 1
4 )

1

N
− 123/2

5

0( 3
4 )

0( 1
4 )

1

N3/2
+ O

(
1

N2

)

= 3

N
− 123/2

5

0( 3
4 )

0( 1
4 )

1

N3/2
+ O

(
1

N2

)
. (A.13)

The dimensionless ratio Q = 〈m2〉2/〈m4〉 is given by

Q = 4

[
0( 3

4 )

0( 1
4 )

]2

+ 16

5

√
3

[
0( 3

4 )

0( 1
4 )

]3
1√
N

+ O

(
1

N

)

≈ 0.456947 + 0.214002
1√
N

+ O

(
1

N

)
. (A.14)

For the absolute magnetization density (studied in Chapter 7), the calculation
proceeds in precisely the same fashion, except that mk in Eq. (A.11) is replaced by
|m|k. This yields

〈|m|〉 = 121/40(
1
2 )

0( 1
4 )

1

N1/4
− 123/4

50( 1
4 )

[
0( 1

2 )0(
3
4 )

0( 1
4 )

− 1

2

]
1

N3/4

+ O

(
1

N5/4

)
. (A.15)
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Finally, the specific heat per spin (see Chapter 6) can be easily calculated from

C

kB
= K2

[
1

Z

∂2Z

∂K2
−
(

1

Z

∂Z

∂K

)2
]

, (A.16)

which, to leading order, reduces to

C

kB
= 1

4
NK2 (〈m4〉 − 〈m2〉2) = 1

4
NK2〈m4〉(1 − Q) . (A.17)

Using Eqs. (A.13) and (A.14) we find at K = 1 in the thermodynamic limit C/kB =
0.407290 . . . .
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Appendix B

Fourier transform of a spherically
shaped interaction profile

We define the following isotropic spin–spin interaction Kd (the subscript d denotes
the dimensionality):

Kd(r) ≡
{

cR−d if |r| ≤ R
0 if |r| > R

, (B.1)

We have normalized the interaction strength, to make the integrated interaction (the
energy) independent of the range. In a lattice model, one has to introduce a lower-
distance cutoff as well, see below. In Chapter 7 we study the Landau–Ginzburg–
Wilson Hamiltonian for this spin–spin interaction in the momentum-space repre-
sentation. For this reason, we calculate in this appendix the Fourier transform of
this interaction for a general number of dimensions. For d = 1 the calculation is
trivial:

K̃1(k) = c

R

∫ +R

−R
dx eikx = 2c

kR
sin(kR) . (B.2)

For d = 2 and d = 3 one obtains Bessel functions. Using the equality J1/2(x) =√
2/(πx) sin(x), the results for d = 1, 2, 3 can be summarized as

K̃d(k) = c

(
2π

kR

)d/2

Jd/2(kR) , (B.3)

where Jν is a Bessel function of the first kind of order ν. This suggests that this equal-
ity is valid for general d, which can indeed be shown by induction. If we assign the
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x coordinate to the (d + 1)th spatial dimension and use the notation k2
d = ∑d

j=1 k2
j ,

we may write

K̃d+1(k) = c

Rd+1

×
∫ +R

−R
dx cos(kxx)

(
2π

kd

)d/2

(R2 − x2)d/4Jd/2

(
kd

√
R2 − x2

)

= 2c

Rd+1

(
2π

kd

)d/2 ∫ R

0
dp cos

(
kx

√
R2 − p2

)
p(d+2)/2√
R2 − p2

Jd/2(kd p)

= c

(
2π

kR

)(d+1)/2

J(d+1)/2(kR) , (B.4)

where we have used a Hankel transform of general order; see, e.g., Ref. [1, p. 40,
Eq. (48)].

If we add a spherically symmetric lower-distance cutoff a, Eq. (B.3) is generalized
to

K̃d(k) = c

(
2π

kR

)d/2

Jd/2(kR) − c
( a

R

)d
(

2π

ka

)d/2

Jd/2(ka) . (B.5)

The second term yields an additional range dependence in the shift of the critical
temperature, see Chapter 7.
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Summary
Interaction Range, Universality

and the Upper Critical Dimension

Close to their critical point, greatly different physical systems exhibit a strong sim-
ilarity. Various macroscopic properties turn out to be independent of microscopic
details, but are solely determined by a small number of global parameters, such as
the dimensionality of the system and the symmetry and range of the interactions be-
tween the particles. This fascinating phenomenon, universality, is explained by the
renormalization-group theory, which was developed in the early seventies by Ken-
neth G. Wilson (Nobel Prize in Physics 1982). In the last 25 years, the universal
properties of a variety of critical systems have been calculated. Many of these predic-
tions have been verified by computer simulations, especially for so-called spin mod-
els. However, the rôle of one parameter has until now largely evaded such a verifi-
cation: the interaction range. This is caused by the fact that the required computa-
tional effort rapidly increases with increasing interaction range. Taking into account
the small number of parameters that determines the universal properties, we view
this as an important hiatus.

In this thesis, a simulation method for spin models is introduced, which has an
efficiency that does not depend on the range of the interactions. Using this method,
we treat several unsolved problems. Both the renormalization-group theory and
computer simulations play an important rôle in our research. The relations between
the various problems are outlined in the first chapter.

Chapter two is devoted to the new Monte Carlo method for spin models with
long-range interactions. This method is a Wolff cluster algorithm and hence the au-
tocorrelation time increases only very weakly as a function of the system size. We
formulate the cluster formation process in such a way that only integrated spin–spin
couplings have to be considered, which makes the total simulation time per spin in-
dependent of the range of the interactions. As an example, the algorithm is applied
to a mean-field model. We also indicate how it can be generalized to O(n) models.

In Chapter three, we first restrict ourselves to three models with short-range
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interactions. These systems are supposed to belong to the universality class of the
three-dimensional Ising model. By carrying out large-scale simulations for each of
the models, we demonstrate that this is indeed the case. However, the corrections
to scaling differ considerably for the three models. This property is used for a more
accurate determination of the critical exponents and the fourth-order amplitude ra-
tio.

Ising models with algebraically decaying ferromagnetic interactions are treated
in Chapters four and five. These models are the generic example of systems for
which the critical behaviour strongly depends on the range of the interactions (in
this case on the decay parameter of the interactions). There are three different
regimes: for very slowly decaying interactions the critical behaviour is essentially
classical or mean-field-like. For somewhat faster decaying interactions, the critical
behaviour belongs to an intermediate regime and for even faster decaying interac-
tions the models exhibit short-range critical behaviour. No agreement exists on the
boundaries of these regimes, nor on the nature of the critical behaviour in the inter-
mediate regime. In Chapter four, we consider the classical regime for spin models
in one, two and three dimensions. Various renormalization-group predictions are
confirmed and we obtain accurate estimates for the critical temperatures. For two-
and three-dimensional systems these are presumably the first results, whereas for
one-dimensional systems various earlier approximation methods can be tested. The
remaining two regimes are treated in Chapter five. We give a detailed treatment of
the renormalization scenario for the crossover from the intermediate regime to the
short-range regime. The numerical results yield accurate estimates for the critical
exponents and temperatures and allow us to determine the location of the crossover.
Furthermore, these results seem to have surprising implications for the ε-expansion
for universal scaling functions.

The above-mentioned boundary between classical and nonclassical critical be-
haviour also exists in models with short-range interactions: the three-dimensional
Ising model, which was examined in Chapter three, exhibits nonclassical critical be-
haviour, whereas the critical behaviour of models in more than four dimensions is
classical. For this reason, the fourth dimension is called the upper critical dimen-
sion. The critical behaviour of the four-dimensional model itself is essentially clas-
sical, but according to the renormalization-group theory, at criticality logarithmic
factors appear in the functions describing the thermodynamic properties. This is
due to the appearance of a marginal operator. Because of these specific predictions,
the four-dimensional model is very well suited to test the correctness of the theory.
So, Chapter six is devoted to Ising models in four and five dimensions. The precise
form of the logarithmic factors, which are difficult to observe, is determined with
considerable precision and proves to be in good agreement with the theoretical pre-
dictions. Furthermore, we accurately confirm the classical nature of the critical be-
haviour of the five-dimensional Ising model.
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Finally, we consider in Chapter seven the crossover from Ising-like to mean-
field-like critical behaviour for interactions with an increasing range. This time,
however, we choose the spin–spin coupling to be constant with a certain range and
zero beyond this range. Thus, for any finite range the systems belong to the Ising uni-
versality class. We calculate the dependence of the thermodynamic properties on the
interaction range, using renormalization-group theory, and check these predictions
with numerical calculations for two-dimensional systems. In a system with a finite
interaction range this crossover can also be induced by increasing the temperature
distance to the critical point. This effect has been observed in various experimen-
tal systems, but since the temperature difference with the critical temperature may
not become too large, it has not yet been possible to determine the precise nature
of the crossover. Now, we have succeeded in doing so by varying not only the tem-
perature, but also the interaction range in our model. This allowed us to answer a
number of open questions. For example, there has been a lot of speculation whether
so-called “effective critical exponents” can vary nonmonotonically in the crossover
region. For the first time, we have shown in a theoretical model that this is indeed
possible.
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Samenvatting
Dracht van de Wisselwerkingen, Universaliteit

en de Hogere Kritieke Dimensie

Fysische systemen van zeer uiteenlopende aard vertonen nabij hun kritieke punt
sterke overeenkomsten. Verscheidene eigenschappen blijken namelijk niet afhan-
kelijk te zijn van microscopische details, maar slechts te worden bepaald door een
klein aantal globale parameters, waaronder de dimensionaliteit van het systeem en
de symmetrie en dracht van de wisselwerking tussen de deeltjes. Dit fascinerende
verschijnsel, universaliteit genaamd, wordt verklaard door de renormalisatiegroep-
theorie, aan het begin van de jaren zeventig ontwikkeld door de Amerikaan Ken-
neth G. Wilson (Nobelprijs Natuurkunde 1982). In de laatste 25 jaar zijn met behulp
van deze theorie de universele eigenschappen van een scala aan kritieke systemen be-
rekend. Vele van deze voorspellingen zijn met computerberekeningen geverifieerd,
met name voor zogeheten spinmodellen. De invloed van één parameter heeft zich
echter goeddeels aan deze verificatie onttrokken: de dracht van de wisselwerking.
De reden hiervoor is dat de hoeveelheid rekenwerk zeer sterk toeneemt wanneer de
reikwijdte van de wisselwerkingen groter wordt. Gezien het kleine aantal factoren
dat de universele eigenschappen bepaalt mag dit een belangrijke lacune worden ge-
noemd.

In dit proefschrift wordt een numerieke berekeningsmethode voor spinmodel-
len geı̈ntroduceerd, waarin langedrachtswisselwerkingen niet tot verlies aan effi-
ciëntie leiden. Met deze methode worden vervolgens diverse tot nu toe onopgeloste
problemen behandeld. Zowel de renormalisatiegroeptheorie als computerbereke-
ningen spelen hierbij een belangrijke rol. In het eerste hoofdstuk wordt de onder-
linge samenhang tussen deze problemen geschetst.

Hoofdstuk twee is gewijd aan de nieuwe Monte Carlo-methode voor systemen
met langedrachtswisselwerkingen. Dit is een Wolff-clusteralgoritme, zodat de auto-
correlatietijd niet of slechts zwak toeneemt als functie van de systeemgrootte. Wij
formuleren de vorming van clusters zodanig, dat slechts geı̈ntegreerde spin–spin
koppelingen beschouwd hoeven te worden, waardoor de totale simulatietijd per spin
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onafhankelijk wordt van de dracht van de interacties. De werking van dit algoritme
wordt geı̈llustreerd aan de hand van een moleculair-veld model. Tevens wordt aan-
geduid hoe de methode kan worden gegeneraliseerd tot algemene O(n)-modellen.

In hoofdstuk drie beperken we ons dan eerst tot een drietal modellen met korte-
drachtswisselwerkingen. Deze systemen worden verondersteld te behoren tot de
universaliteitsklasse van het driedimensionale Ising-model. Aan de hand van groot-
schalige simulaties van de drie modellen wordt aangetoond dat dit inderdaad het
geval is. De grootte van de correcties op het leidende schalingsgedrag blijkt echter
per model te verschillen. We gebruiken dit gegeven voor een nauwkeuriger bepaling
van de kritieke exponenten en de universele vierde-orde amplituderatio.

Ising-modellen met algebraı̈sch afvallende ferromagnetische interacties zijn het
onderwerp van de hoofdstukken vier en vijf. Deze modellen zijn het generieke voor-
beeld van systemen waarvan het kritieke gedrag een sterke afhankelijkheid van de
dracht van de interactie (in dit geval de macht waarmee de interacties afvallen) ver-
toont. Er kunnen drie regimes worden onderscheiden: voor een zeer langzaam af-
vallende machtwet is het gedrag in essentie “klassiek”, dat wil zeggen zoals in een
moleculair-veld model. Iets sneller afvallende interacties behoren tot een overgangs-
regime en nog sneller afvallende interacties komen overeen met kortedrachtswissel-
werkingen. De precieze begrenzingen van deze regimes zijn een onderwerp van dis-
cussie, evenals de aard van het kritieke gedrag in het overgangsregime. In hoofdstuk
vier beperken we ons tot het klassieke regime voor spinmodellen in één, twee en drie
dimensies. Verscheidene voorspellingen van de renormalisatiegroeptheorie worden
bevestigd en de kritieke temperaturen worden zeer nauwkeurig bepaald. Voor twee-
en driedimensionale systemen zijn dit vermoedelijk de eerste resultaten, terwijl voor
ééndimensionale systemen diverse eerdere benaderingsmethoden op hun merites
kunnen worden beoordeeld. In hoofdstuk vijf komen de overige twee regimes aan
bod. Het renormalisatiescenario voor de overgang van het tussenregime naar het
kortedrachtsregime wordt in detail behandeld. De numerieke resultaten verschaf-
fen nauwkeurige schattingen van de kritieke exponenten en temperaturen en ma-
ken het mogelijk om de locatie van de overgang te bepalen. Bovendien werpen deze
resultaten een verrassend licht op de ε-expansie voor universele schalingsfuncties.

De bovengenoemde scheiding tussen klassiek en niet-klassiek kritiek gedrag be-
staat ook in modellen met kortedrachtswisselwerkingen: het in hoofdstuk drie on-
derzochte driedimensionale Ising-model vertoont niet-klassiek gedrag, terwijl mo-
dellen in meer dan vier dimensies zich klassiek gedragen. Om deze reden wordt de
vierde dimensie de hogere kritieke dimensie genoemd. Het kritieke gedrag van het
vierdimensionale model zelf is in essentie klassiek, maar volgens de renormalisatie-
groeptheorie verschijnen er op het kritieke punt, als gevolg van een marginale ope-
rator, logaritmische factoren in de functies die de thermodynamische eigenschap-
pen beschrijven. Deze specifieke voorspellingen maken het vierdimensionale Ising-
model bijzonder geschikt om de juistheid van de theorie te toetsen. Hoofdstuk zes
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is daarom geheel gewijd aan het Ising-model in vier en vijf dimensies. De precieze
vorm van de logaritmische factoren, die in het algemeen moeilijk waarneembaar
zijn, wordt zeer nauwkeurig bepaald en blijkt in goede overeenstemming te zijn met
de theoretische voorspellingen. Daarnaast bevestigen wij met grote precisie het klas-
sieke karakter van het kritieke gedrag van het vijfdimensionale Ising-model.

Tot slot beschouwen we ook in hoofdstuk zeven de overgang van Ising-achtig
naar moleculair-veld kritiek gedrag voor interacties met een toenemende reikwijdte.
Nu hebben de spin–spin koppelingen echter een blokvorm, zodat voor elke eindige
dracht de systemen tot de Ising-universaliteitsklasse behoren. Met behulp van re-
normalisatiegroeptheorie berekenen we hoe de thermodynamische eigenschappen
afhangen van de dracht. We verifiëren dit vervolgens met numerieke berekenin-
gen voor tweedimensionale systemen. Voor eindige dracht kan deze overgang echter
eveneens worden geı̈nduceerd door het temperatuurverschil met de kritieke tempe-
ratuur te vergroten. Dit effect is in diverse experimentele systemen waargenomen,
maar omdat het temperatuurverschil tegelijkertijd niet al te groot mag worden kon
de precieze aard van het gedrag tot nu toe niet bepaald worden. Door in simula-
ties niet alleen de temperatuur, maar ook de dracht van de interacties te variëren,
kunnen wij deze overgang wél volledig berekenen. Hierdoor konden diverse open
vragen beantwoord worden. Zo wordt er sinds lange tijd gespeculeerd over de vraag
of het mogelijk is dat zogenaamde “effectieve kritieke exponenten” niet-monotoon
variëren bij deze overgang. Voor de eerste maal is nu in een theoretisch model aan-
getoond dat dit inderdaad het geval is.
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