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The 1:1 equisized hard-sphere electrolyte or restricted primitive model has been simulated via grand-
canonical fine-discretization Monte Carlo. Newly devised unbiased finite-size extrapolation methods
using loci in the temperature-density or �T , r� plane of isothermal r22k vs pressure inflections, of Q �
�m2�2��m4� maxima, and of canonical and CV criticality, yield estimates of �Tc , rc� to 6�0.04, 3�%.
Extrapolated exponents and Q ratio are �g, n, Qc� � �1.24�3�, 0.63�3�; 0.624�2��, which support Ising
�n � 1� behavior with �1.239, 0.6303; 0.6236�, but exclude classical, XY �n � 2�, self-avoiding walk
�n � 0�, and n � 1 criticality with potentials w�r� . F�r4.9 when r ! `.
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Since the experiments of Singh and Pitzer in 1988 [1,2],
an outstanding experimental and theoretical question has
been: What is the universality class of Coulombic criti-
cality? Early experimental data for electrolytes exhibiting
phase separation driven by long-range ionic forces sug-
gested classical or van der Waals (vdW) critical behavior,
with exponents b �

1
2 , g � 1, n �

1
2 , etc. [1,2]: But

the general theoretical consensus has been that asymp-
totic Ising-type criticality, with b 	 0.326, g 	 1.239,
n 	 0.630, etc., should be expected [1,3,4]. Naively, one
may argue that the exponential Debye screening of the
direct ionic forces results in effective short-range attrac-
tions that can cause separation into two neutral phases:
ion rich and ion poor [1–5]; the order parameter, namely,
the ion density or concentration difference, is a scalar;
so Ising-type behavior is indicated. Field-theoretic ap-
proaches support this picture [6].

However, the theoretical arguments are by no means
rigorous and have not, so far, been tested by precise cal-
culations for appropriate models. To do that is the aim
of the research reported here. We have studied a finely
discretized version [7] of the simplest continuum model
(considered by Debye and Hückel in 1923 [1,2], three
years before Ising’s work), namely, the restricted primi-
tive model (RPM), consisting of N � N1 1 N2 equisized
hard spheres of diameter a, precisely half carrying a charge
1q0 and half 2q0, in a medium (representing a solvent)
of dielectric constant D. At a separation r $ a, like (un-
like) ions interact through the potential 6q2

0�Dr; thus ap-
propriate reduced density, r � N�V for volume V , and
temperature variables are

r� � ra3, T� � kBTDa�q2
0, t � �T 2 Tc��Tc .

(1)

Except at low densities and high temperatures, when the
inverse Debye length kDa � �4pr��T��1�2 is small, the
RPM is intractable analytically or via series expansions
[1,3,8]. However, it has been much studied by Monte
Carlo (MC) simulations [1,9–11], which have recently ap-
0031-9007�02�88(18)�185701(4)$20.00
proached the consensus T�
c 	 0.049, r�

c � 0.060 0.085.
However, these values have been derived by assuming
Ising-type criticality: on that basis Bruce-Wilding extrapo-
lation procedures have been employed [9,10] (which, even
then, neglect potentially important, asymmetric “pressure-
mixing” terms [12]). It must be stressed that implementing
appropriate finite-size extrapolation methods constitutes
the heart of the computational task since a grand-canonical
(GC) system confined in a simulation “box” of dimensions
L 3 L 3 L (with, say, periodic boundary conditions [13])
cannot exhibit a sharp critical point; a finite canonical sys-
tem may become critical but can display only classical or
vdW behavior [14].

Thus, while previous RPM simulations [9,10] demon-
strate consistency with Ising (or n � 1) behavior, no other
universality classes are ruled out: see also [11,14,15].
Putative “nearby” candidates are XY or n � 2 systems
(with g 	 1.316, n 	 0.670), self-avoiding walks
(SAWs, n � 0: with g 	 1.159, n 	 0.588) [14,16]
and long-range, 1�rd1s scalar systems (with d � 3,
s , 2 2 h) [15,17]. On the other hand, in a preparatory
GCMC study, OFP [14(b)], of the hard-core square-well
(HCSW) fluid— for which Ising criticality has long been
anticipated —new, unbiased, finite-size extrapolation tech-
niques enabled the n � 2 and 0 classes to be convincingly
excluded.

Present approach.—We have now applied the methods
of OFP to the RPM [11(b), (c)]; however, the extreme
asymmetry of the critical region in the model (see Fig. 1)
has demanded further developments. By extending finite-
size scaling theory [18] and previous applications of the
Binder parameter or fourth-moment ratio [17–19]

QL�T ; r� � �m2�2��m4� with m � r 2 �r� (2)

[20] to systems lacking symmetry, we have assembled evi-
dence, outlined below, that excludes not only classical
criticality in the RPM but also the XY and SAW univer-
sality classes and �d � 3� long-range Ising criticality with
s & 1.9.
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FIG. 1. Approximate coexistence curve of the RPM in the
�T , r� plane: open circles and fitted line. The estimated criti-
cal point is shown as an uncertainty bar. The dashed curves
are loci of CV �T � maxima at fixed r for L� � L�a � 8, 10,
and 12. The loci labeled k � 1, q , and Q are explained in
the text. The inset shows the canonical critical points T0

c �L�,
r0

c �L� (squares), and corresponding GC mean densities ry
c �L�

(crosses) for L� � 9 12, the CV �L� extrema T2
c �L�, r2

c �L�, for
L� � 7 10 and 12 (solid circles), and the

p
r diameter, r

�
1�2�T �,

defined in the text (open squares).

Our work [11(b)] employs multihistogram reweighting
[21] and a �z � 5�-level fine-discretization formulation
(with a fine-lattice spacing a�z [7]). Since z , `,
nonuniversal parameters, such as T �

c , will deviate slightly
from their continuum limit �z ! `� [7,22]; but, at this
level, there are no serious grounds for contemplating
changes in universality class. For the critical parameters
we find T�

c � 0.05069�2� and r�
c � 0.0790�25�: the

confidence limits in parentheses refer, here and below, to
the last decimal place quoted [23]. The inset in Fig. 1
shows how these values are approached (i) by the canon-
ical values T 0

c �L�, r0
c�L�, and ry

c �L� (� �r�T 0
c �L�,m0

c�L�
[20]) derived from the isothermal density histograms [see
OFP(2.18)–(2.23), Figs. 1, 3], (ii) by T2

c �L� and r2
c �L�,

from the isochoric maxima of CV �T ; r; L� [see Fig. 1
and OFP Sec. III, Fig. 7], and (iii) by the

p
r diameter,

r1�2�T �, defined below.
Exponents g and n.—Before justifying the precision of

our �Tc, rc� estimates, we consider their implications. The
solid curves in Fig. 2 portray the effective susceptibility
exponent g

1
eff�T ; L� on the critical isochore above Tc, as

derived from xNN � V �m2� � kBTr2KT : see OFP(3.7).
Within statistical precision the data are independent of the
�Tc, rc� uncertainties.

Also presented in Fig. 2 are the modified estimators
g̃

1
eff�T � [defined as in OFP(3.7) but with t replacing

t0] evaluated on the “theta locus,” rq �T� � rc�q 1

�1 2 q � �Tc�T��. This relation approximates an effective
symmetry locus (OFP) above Tc, derived from the behavior
of the isothermal inflection loci rk�T ; L�, on which x�k� �
185701-2
FIG. 2. Effective susceptibility exponent g
1
eff�T � for r � rc

(solid curves) and g̃
1
eff�T � on the theta locus (dashed curves; see

text), for sizes L� � 7 12 and 15. Values for vdW and for n �
0, 1, and 2 are marked on the g axis. By construction geff for
any finite system must approach and pass through 0 when t ! 0;
but for clarity these smooth and featureless finite-size limited
sections of the plots (for t , 0.07, etc.) have been omitted.

xNN�T , r; L��rk is maximal [see OFP(2.26)–(2.32)].
The k � 1 loci are shown in Fig. 1 for L� � L�a �
6, 8, 10, 12; the selected value q � 0.20 corresponds
roughly to k 	 0.60 (which may be identified with an
optimal value: see OFP and [18]). However, the variation
of the k loci when L increases is significantly more com-
plicated in the RPM than in the HCSW fluid [11(c),24].

Extrapolation of the effective susceptibility exponents in
Fig. 2 and those on the k � 0 locus, etc. [11(c)], to t �
0 indicates g � 1.24�3�, upholding Ising-type behavior
while both XY and SAW values are implausible.

To determine the exponent n we have examined the
peak positions, Tj�L�, of various properties, Yj�T ; L�, on
the critical isochore. Finite-size scaling theory [18] yields
DTj�L� � Tj�L� 2 Tc 
 L21�n: Figure 3 demonstrates
the estimation of 1�n (unbiased except for the imposed
Tc estimate) from the ratios DTj�L1��DTj�L2� for vari-
ous j [see [11(c)] ], using an established approach [see
OPF(7)–(13), Fig. 1; OFP(3.1) [14(a)] ]. The data indicate
n � 0.63�3�, excluding classical but supportive of Ising
�n � 1� criticality, while n � 2 and 0 seem less probable.

Estimation of T�
c .—Consider, now, QL�T; r� in

(2), when L ! `. In any single-phase region of the
�T , r� plane QL !

1
3 , indicative of Gaussian fluctua-

tions about �r�; conversely, within a two-phase region,
r2�T� , r , r1�T�, one finds QL ! 1 on the diameter,
r�T � � 1

2 �r2 1 r1� for T , Tc, while, more generally,

1 $ Q`�T ; r� � 1 2 4y2��1 1 6y2 1 y4� .
1
2 , (3)

where jyj � 2jr 2 r�T�j��r1 2 r2� , 1. Finally, at
criticality, QL�Tc; rc� approaches a universal value Qc

which, for cubic boxes with periodic boundary conditions,
is Qc � 0.4569 · · · for classical (vdW) [19(b)] or `-range
185701-2



VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002
FIG. 3. Estimation of the correlation exponent n from the de-
viations Tj�L� 2 Tc for various properties Yj�T� on the critical
isochore: see text and [11(c)]. Values for n � 0, 1, 2, i.e., SAW,
Ising, and XY , and classical (vdW) criticality are indicated.

systems [19(c)] but Qc�n � 1� � 0.6236�2� for Ising
[19(d),(e)] and Qc�n � 2� � 0.8045�1� for XY [19(f)]
systems, while Qc�n � 0� � 0 [19(b)]. For long-range,
1�r31s systems, Qc�s� and also g�s� increase al-
most linearly from vdW to Ising values in the interval
3
2 # s # �g�n�n�1 	 1.966 with Qc�s � 1.9� 	 0.600
and g�s � 1.9� 	 1.205 [17(b)].

The result (3) leads us to propose Q-loci, rQ�T ; L�, on
which QL�T ; r� is maximal at fixed T . For T , Tc these
loci are observed to approach the diameter r�T� when L
increases. (For T & Tc, but not above Tc, the Q-loci also
follow the k � 0 loci quite closely.)

Figure 4 displays QL�T ; r� on the Q-loci rQ�T ; L�, for
L� � 7 12. As often seen in plots for symmetric systems
[19], inflection points and successive intersections, TQ�L�,
almost coincide. Scaling yields QL�Tc; rc� 
 L2u�n

and jTc 2 TQ�L�j 
 L2w with w � �1 1 u��n, where
u �� vn� is the leading correction-to-scaling exponent;

FIG. 4. Plots of QL�T ; r� on the Q-loci, rQ�T ; L�, providing
estimates for Tc and Qc . Classical, XY , and Ising values of Q
are shown. The inset enlarges the intersection region.
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for classical and Ising criticality one has �u�n, w� �
�1, 3�, 	 �0.82, 2.41�, respectively [16]. With this guid-
ance, the large-scale inset in Fig. 4 leads to our estimate
T �

c 	 0.05069�2� but also yields Qc 	 0.624�2�: this is
surprisingly close to the Ising value [25] and far from
the vdW, XY , and SAW values —an unexpected bonus.
Likewise, 1�r31s effective potentials with s # 1.9 are
excluded.

Estimation of rc.—Finally, we examine r
c
0 �L� and

r
c
Q�L�, i.e., the �k � 0� and Q-loci intersections with

the estimated critical isotherm, T � Tc. According to
scaling, the deviations, Dr

c
0 and Dr

c
Q , decay as L2c with

c � �1 2 a��n [18], so we may suppose 1.2 , c # 2
[16]. Figure 5 displays the deviations vs L2c for
c � 1.2, 1.4, 1.7, and 2 with “l0 shifts” [OPF(19), Fig. 2;
OFP(3.1)] chosen to provide linear plots. From these and
further plots [11(c)] we conclude r�

c � 0.0790�25�.
In further support of our rc estimate, we mention first

that when the coexistence curve, r6�T�, is plotted vsp
r�— as is reasonable since all powers rj�2 for inte-

gral j appear in virial expansions for the RPM [8]—it
becomes markedly more symmetrical [resembling �r, T �
plots for the HCSW and other simple fluids]. Then, the

corresponding diameter,
q

�r�
1�2�T �� �

1
2 �

p
r�

2 1
p

r�
1

�,
is only mildly curved and naive extrapolations to Tc yield
r�

c � 0.078�4�.
In conclusion.— By implementing recently tested [14]

and newly devised extrapolation techniques for nonsym-
metric critical systems, our extensive grand-canonical
Monte Carlo simulations for the RPM have provided,
in toto, convincing evidence to exclude classical, XY
�n � 2�, or SAW �n � 0� critical behavior as well as
long-range (effective) Ising interactions decaying more
slowly than 1�r4.90. Rather, the estimates for the expo-
nents n and g, and for the critical fourth-moment ratio,

FIG. 5. Estimation of r�
c from plots of �k � 0� and Q-locus

values at Tc (open and solid squares) vs A��L� 1 l0�c for vari-
ous values of c and optimal shifts l0. The scale parameter A
has been invoked merely for graphical clarity. Note c , 1.6 re-
quires smaller shifts tending to exclude vdW criticality �c � 2�.
185701-3
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Qc, point to standard, short-range Ising-type criticality.
Studies underway [11(c)] should provide further confir-
mation and additional quantitative results, such as the
scale, R0, of the equivalent single-component short-range
attractions generated by the RPM near criticality.
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