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According to renormalization theory, Ising systems above their upper critical dimensiofakty4
have classical critical behavior and the ratio of magnetization mom@nis (m?)?/(m*) has the
universal value0.456947.... However, Monte Carlo simulations af = 5 Ising models have been
reported which yield strikingly different results, suggesting that the renormalization scenario is incorrect.
We investigate this issue by simulation of a more general model in whjch 4, and a careful analysis
of the corrections to scaling. Our results are in perfect agreement with the renormalization theory and
provide an explanation of the discrepancy mentioned.
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One of the most important contributions to the mod-Ref. [3], from basic renormalization equations and show
ern theory of critical phenomena is Wilson’s renormal-that the result agrees with the shifts observed in Refs. [4—
ization theory (see Ref. [1] for an early review). This 6]. Furthermore, we determine the Binder cumulant in
theory explains the existence of a so-callgiper critical the context of a more general Ising-like model with al-
dimensionalityd,. It predicts that systems with a dimen- gebraically decaying interactions. This model is subject
sionality d > d, exhibit classical exponents and violate to the same renormalization equations as the aforemen-
hyperscaling, whereas systems with a lower dimensiontionedd = 5 Ising model, and effectively reduces to the
ality behave nonclassically. For Ising-like systems withnearest-neighbor model when the interactions decay fast
short-range interactiong,, = 4. In recent years, a con- enough. For slow decay, the upper critical dimensionality
troversy has arisen about the value of the “renormalizediecreases below 4 and we have thus been able to investi-
coupling constant” or “Binder cumulant” [2] faod > d,.  gate the question concerning the universality of the Binder
On the one hand, a renormalization calculation for hypereumulant in the classical region by means of Monte Carlo
cubic systems with periodic boundary conditions [3] pre-simulations of low-dimensional models. This enabled us
dicts that the Binder cumulant assumes a universal valu® examine a much larger range of system sizes than in the
for d = d,. On the other hand, Monte Carlo simulations five-dimensional case. High statistical accuracies were
of the five-dimensional Ising model [4—6] yielded signifi- obtained by using a novel Monte Carlo algorithm for sys-
cantly different results. Since the renormalization theorytems with long-range interactions and we could resolve
forms the basis of our present-day understanding of phasarious corrections to scaling that are present. The results
transitions and critical phenomena, it is of fundamentaturn out to be in complete agreement with the renormal-
interest to examine any discrepancies and inconsistenciézation predictions.
with this theory. Furthermore, there exist several models We formulate our analysis in terms of the dimension-
with a lower value ofd, [5,7] where the above-mentioned less amplitude ratioQ = (m?)*/{m*), where m is the
issue may be of experimental interest as well. magnetization. This ratio is related to the fourth-order

In this Letter, we answer the question concerning theumulant introduced by Binder [2]. In Ref. [3], it is
value of the Binder cumulant. One of the key issues igredicted that in hypercubic short-range Ising-like sys-
the shift of the “critical temperature” in finite systems. tems with periodic boundary conditions aad= 4 this
We rederive this shift, which was already calculated inquantity takes at the critical temperatufge the universal
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value 8772/1“4(5) = 0.456947 ..., which is simply the term on the right hand side (RHS) can be abbreviated as
value of Q in the mean-field model [8]. In contrast, the b~ ¢f(¢',h’,u’,b/L). Ford = 4, the critical behavior is
Monte Carlo simulations in Refs. [5,6] yield the valuesdetermined by the Gaussian fixed pofnt, «™) = (0, 0).

0 =~ 0.50 and 0.489(6), respectively. In Ref. [6], this dis- However, for T = T., the free energy is singular at
crepancy is explained by a size-dependent shift of the “ef« = 0. Henceu is a dangerous irrelevant variable. The
fective critical temperatureT,(L) (defined by, e.g., the finite-size scaling properties of thermodynamic quantities

maximum in the specific heat)
Te(L) = T. — AL™7, (1)

which was obtained in Refs. [4,5] from scaling arguments
L denotes the linear system size.

In order to examine this issue we will first outline
the theoretical framework for scaling abodg. As was
shown by Brézin [9], conventional finite-size scaling
breaks down fod = d,. This is an example of Fisher’s
mechanism ofdangerous irrelevant variabletsee, e.g.,

Refs. [10,11]). To examine the consequences of thisrhe substitutions’
y

mechanism for the finite-size scaling behavior, we briefl
review the renormalization transformation for Ising-like
models. Near criticality, one can represent the Hamil
tonian for these models by one of the Landau-Ginzburg
Wilson type,

H ($)/ksT
fv ddx{%(Vq'J)z — h¢ + %ro(/)z + uqb4}. 2

h is the magnetic fieldr, is a temperaturelike parameter,
and the term proportional ta keeps ¢ finite when
ro = 0. Under a spatial rescaling with a factor= ¢’
the renormalization equations are, to first ordergjrand
u, given in differential form by (see, e.g., Ref. [12])

dr()

- = +

0~ yir + au, (32)
du

o i (3b)

in which y, andy; are the renormalization exponents of
the temperature field and the irrelevant field respec-
tively, and « is a constant depending on the dimension
ality d. Upon integration, these equations vyield, to first
order inu,

ro(b) = b''[(ro — @u) + aub’ ], (4a)

u'(b) = b’u, (4b)

can be obtained by renormalizing the system to size 1, i.e.,
settinghb = L. The number of degrees of freedom then
reduces to 1 and the free energy to

/.
X exp{h’g{) - %r(')(L)d)z - u’(L)¢4]
(6)

F@ 0 1) = In do

& /u''* leads to
f' n ' 1) = fih), )

with 7 = ¢//u’"/> and h = ' /u’"/*. Upon renormaliza-
tion, the analytic parg of the transformation also con-
tributes to the singular dependence of the free energy on
t; see, e.g., Ref. [12]. We absorb this contribution in the
function f. Settingb = L and combining Egs. (5) and
(7) yields

)

<t, h,u, —

f 3

h

ul/4

af v 1 _ _
L_df<L)r }i/zm[t + @uly ], Lyl >
)
Ford = 4,y, =2,y, =1+ d/2,andy; = 4 — d. The
first argument on the RHS is the scaled temperature

. 1 _
P= Ld/zﬁ(t + aul*™ ).

(9)

Interpreting the termauL?>~? as a shift in the effective

critical temperature for a finite system, we recover the
result of Ref. [3].

Let us now use the above derivation to examine the shift
and rounding of critical singularities in finite systems. Ob-
servables can be calculated from the free energy by differ-
entiating with respect to a suitable parameter. Ignoring the
analytic part of the free energy, we can express the ther-

where @ is a constant. This shows that the reducedmodynamic quantities in terms ainiversalfunctions of

temperaturer = (T — T.)/T. is proportional tory —

au. Correspondingly, the free energy densjtyscales
as
f(t, hyu,1/L)

= b f (B[t + aub” ], b7 h, b u,b/L) + g, (5)

where we have included a finite-size field ! and g
denotes the analytic part of the transformation. The firs
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the two arguments that appear in the RHS of Eq. (8). For
example, the specific heat can be written as the product of
a power of the rescaling factor andumiversalfunction of

the scaled fields. Let the maximum of this function occur
at7 = c¢ (¢ a constant). Then, the specific heat maximum
occurs at a temperature which differs, in leading orders of
L, from the critical temperature by

t At = eJuL™?* — auLl*>“. (10)
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The leadingL dependence of Eq. (10) agrees witha major obstacle. The results presented in Refs. [4,5]
Eqg. (1). However, on the basis of Eq. (1) it is arguedwere based od = L = 7 and therefore the results were
in Refs. [4—6] that the term between brackets in Eq. (9by no means conclusive. Reference [6] used the range
could be replaced by + aL~%/2, wherea is a nonuni- 5 = L = 17. Given these limited ranges of system sizes,
versal constant. If this argument were correct, it wouldit seems uncertain whether all important corrections have
have serious consequences for the renormalization scbeen resolved. Thus the Monte Carlo evidence against
nario: There must be a contribution of a new type be+the renormalization result of Ref. [3] is not compelling.
tween the square brackets in Eq. (4a), proportional to Here we follow a different approach to test the renormal-
b~4/2. There is no renormalization mechanism known toization predictions. In Ref. [7], Fisher, Ma, and Nickel
us which would yield such a term. Furthermore, in lead-investigated the renormalization behavior @fn) mod-

ing orders ofL Eq. (9) must be replaced by els with ferromagnetic long-range interactions decaying as
. r~@*7) (¢ > 0). The Fourier transform of the Landau-
F=L2—@t + aL %) o« LYt + a, (11)  Ginzburg-Wilson Hamiltonian is quite similar to that of
Ju Eqg. (2); only the term proportional t&’ is replaced by a

and in general critical-point values of finite-size scaling!€'™M Proportional ta”. Thus the renormalization equa-
functions become dependent an They are no longer tions have the same form as for short-range interactions;
universal. We illustrate this for the ratio. Since the ©nly the exponents and the coefficiemtin Eq. (3) as-

magnetization moments can be expressed in derivatived!Me different values. Fdb < o = d/2 (d = 4), the

of the free energy with respect to the magnetic field, thé>aussian fixed point is stable and the critical exponents
renormalization theory predicts have fixed, classical values (and hence hyperscaling is vio-

B} . lated). The upper critical dimensionality is thiis = 2o
0.(T) = Q(GL") + ;L " + ---.  (12) In Fig. 1, the regions of classical and nonclassical behav-
ior are shown as a function of and . Introducing a
Here Q is a universal function; stands for the argument parameters = 20 — d, we note that the classical expo-
between brackets in Eqg. (9), and we have introduced theents apply fore < 0, just as in the short-range case,
exponentsy” =y, — y,-/*2 and y;,k =y, — yi/4. The wheree =4 — d. Inthe limito | 0, each spin interacts
additional term ¢;L¢®» = ¢,L~/? arises from the equally with every other spin, so that we can identify this
analytic part of the free energy. Now suppose thatcase with the mean-field model. Thus there is an analogy
Eq. (11) is correct instead of Eq. (9). Then the argumenbetween the (short-range) Ising model with= d < o

of O is nonuniversal at the critical point and sogs=  and the long-range model with< ¢ = d/2. If the am-
lim;,—. Q;(T,). The value calculated in Ref. [3] is then plitude ratioQ has a nonuniversal value, we may there-
just the particular value af for the mean-field model. fore expect that this manifests itself in the long-range case

Can we reconcile the renormalization scenario with theas well.
Monte Carlo results obtained until now? The evidence In general, the study of models with long-range inter-
for an effective critical temperature as in Eq. (1) is basedactions is notoriously difficult, due to the large number
upon the locations of the maxima in the susceptibilityof interactions that have to be taken into account. How-
and the specific heat, and those of the inflection points of
the absolute magnetization and the renormalized coupling

constantg; = —3 + 1/Q;. However, we have seen 6 7

above that Eq. (9) is fully compatible with a deviation

At = L74? [see Eq. (10)]. Therefore, the observed 3 - , , *
shifts do not provide evidence for the term proportional _ Classical behavior

to a in Eq. (11), and we look for a different source of = 4 1

the discrepancy between the renormalization and Monte g

Carlo results forQ. Equation (8) shows that there are 2 ° 7 ° ¢ °¢ ° © © 2

several corrections to scaling which may well account g

for this. When Eg. (12) is expande;j L', the term 527 ©° ©° o ©

proportional toa yields a termg,L>~4/2. Furthermore, _ )
when we include a nonlinear contribution inin (3), - ooes Nonclassical behavior
factorsu in Eq. (8) are replaced by(1 + yulL') and we 0 o R . '

find an additional termy;L* 4. Higher powers of these 02 04 06 08 1 12 14 16 18 2

corrections may also be taken into account in the analysis, T 7 decay parameters

as well as the termg;L~%/? in (12). However, the . o .
. . . FIG. 1. Dimensionality vs decay parameter for various

determination of these corrections would require accuratg, qels. Short-range models are describedcby= 2. The

data for a large range of system sizesand the high gpen circles indicate the models investigated in this article, and
dimensionality of thed = 5 Ising model presents here the black circle marks that of Refs. [4-6].
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ever, a novel Monte Carlo algorithm [8] of the Wolff also included higher powers gL/, which become im-
cluster type [13] is available that suppresses critical slowportant especially whed is close tad/2. In fact, omitting
ing down and, in spite of the fact that each spin interactshese corrections yielded estimatesdbclose to those ob-
with every other spin, consumes a time per spin indepentained in Refs. [5,6], although the residuals strongly indi-
dent of the system size. Thus we could simulate modelsated the presence of additional corrections. This confirms
with algebraically decaying interactions in one, two, andthe assumption that the discrepancy betweendhe 5
three dimensions and obtain accuracies that were not feddonte Carlo results and the renormalization calculation is
sible up until now (cf. Ref. [14], and references therein).caused by corrections to scaling. Furthermore, the coef-
For d = 1, the interaction was taken exactlyr ~“*?),  ficient @ in Eq. (9) is very small in all cases, in accor-
whereas ford = 2 and 3, the interaction was slightly dance with the fact that this correction term could not be
modified with irrelevant contributions decaying as higherresolved in Ref. [6]. An extensive analysis of the data will
powers ofr~! [8]. To account for the periodic bound- be presented elsewhere. We have fixed all exponents at the
ary conditions, the actual spin-spin couplings are equal ttheoretical values, in order to minimize the uncertainty in
the sum over all periodic images. We have studied linea@. The results presented in Table | show that the agree-
system size$0 = L = 150000ford = 1,4 = L =240  ment between the renormalization predictiondband the
for d =2, and4 = L = 64 for d = 3, generating be- Monte Carlo data is excellent.
tween 10® and 4 X 10® Wolff clusters per simulation. It could, for the purpose of comparison, be of some
The ranges of system sizes are larger than in Refs. [4—6igterest to make a correspondence between systems
and more intermediate values bfare available. These with short-range interactions id > 4 dimensions and
facts, as well as the high statistical accuracy of the Monte/’-dimensional systems with long-range interactions
Carlo results, allowed us to resolve the leading finite-sizelecaying as-~@*?). Such a correspondence is possible
corrections in the), . by expressing the various finite-size scaling relations in
The finite-size scaling analysis was based on the Taylorerms of the number of particle8 instead of the linear
expansion of the renormalization prediction f@y near system sizelL. Then the dependence of the thermal and

criticality: magnetic exponents on the dimensionality is absorbed in
0L(T) = Q + pul” + po®L?" + pa?L¥ + ... the parameten = L? (or Ld')_and the renormalization
deov* . predictions for both models differ only in the (modified)
+ LT A L (13)  irrelevant exponents,(d — d)/d and (2o — d')/d’,

The coefficienty,; andg; are nonuniversal and the renor- respectively. For both models, these exponents vary be-
malization exponents arg = o, y, = (d + ¢)/2, and tween0 and —1 in the classical range, and the matching
yi = 20 — d. The corresponding values’ = d/2 and  condition appears a§ = %. Hence, we may compare
yff = 3d /4 coincide with those in the short-range case. Inthe d = 5 (short-range) Ising model with the = %d’
addition to the corrections to scaling in Eq. (13) we havelong-range model, i.eq = 0.4, 0.8, and1.2 for d' = 1,

2, and 3, respectively. In this sense the present work

TABLE I. The ratio @ and critical couplingk, for systems approaches the nonclassical regime even closer than
with long-range interactions in one, two, and three dimensionsRRefs. [4—6].

for several values of the parameterin the rangel < o =< _ Finally, we remark that models with long-range interac-
d/2. The numbers between parentheses represent the errorstigns provide an effective way to explore scaling proper-
the last decimal places. ties above the upper critical dimensionality. For example,

d o 0 K. the approach adopted in this Letter may be generalized
1 01 0.4584(14) 0.047618(2) to pIana_r, Heisenberg, andstate PoFts models, including
1 0.2 0.4573(28) 0.092234(5) percolation problems. Far < 2, d, is reduced by a fac-
1 0.25 0.4564(22) 0.114137(6)  tor o /2 in the case of long-range interactions.
1 0.3 0.4590(45) 0.136106(9)
1 0.4 0.4569(34) 0.181150(10)
2 0.2 0.4573(10) 0.028533(3)
2 0.4 0.4565(17) 0.051824(4) _ .
2 0.6 04546(52) 0071358(8) *Electl’onllc address: erlk@tntnhbs.tn.tUdelft.n'
2 0.8 0.4570(55) 0.088089(7) % E (;; ‘GV"SOZ” ?D”hd J. gf??ult:lg’?i’gé%emc’ 75 (1974).
. Binder, Z. Phys. ' .
3 22 8:322;%1(23 gzgiggggiggg 3] gé;zggigsfmd J. Zinn-Justin, Nucl. PhyB257 [FS14]
g 82 832238;; 88228328; [4] K. Binder, M. Nauenberg, V. Privman, and A.P. Young,
3 1.0 0.4580(25) 0.050517(3) Phys. Rev. B31, 1498 (1985).
3 1.2 0.4556(26) 0.055678(2)  [o] K. Binder, Z. Phys. B61, 13 (1985).
3 1.4 0.460(9) 0.059669(3) [6] Ch. Rickwardt, P. Nielaba, and K. Binder, Ann. Phys.

(Leipzig) 3, 483 (1994).
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