Dielectric Modulation of Ion Transport near Interfaces

Hanne S. Antila1 and Erik Luijten2,*

1Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, USA
2Departments of Materials Science & Engineering, Engineering Sciences & Applied Mathematics, and Physics & Astronomy, Northwestern University, Evanston, Illinois 60208, USA

(Received 29 November 2017; published 27 March 2018)

Ion mobility and ionic conductance in nanodevices are known to deviate from bulk behavior, a phenomenon often attributed to surface effects. We demonstrate that dielectric mismatch between the electrolyte and the surface can qualitatively alter ionic transport in a counterintuitive manner. Instead of following the polarization-induced modulation of the concentration profile, mobility is enhanced or reduced by changes in the ionic atmosphere near the interface and affected by a polarization force parallel to the surface. In addition to revealing this mechanism, we explore the effect of salt concentration and electrostatic coupling.

DOI: 10.1103/PhysRevLett.120.135501

Understanding ion mobility and ionic conductance is of fundamental importance in fields ranging from biology to energy conversion, describing phenomena as diverse as ion channels \cite{1} and fuel cells \cite{2}. The foundation for this understanding was laid more than a century ago by Kohlrausch \cite{3–5}, who observed that the molar conductivity Λ_m of electrolytes decreases with increasing salt concentration c, $\Lambda_m = \Lambda_0 - \Lambda \sqrt{c}$. Debye and Hückel \cite{6,7}, and Onsager \cite{8,9} connected this concentration dependence to the counterion atmosphere surrounding moving ions. This atmosphere, which has a size related to the concentration via the Debye length $\lambda_D \propto 1/\sqrt{c}$, exerts two types of forces on the central ion, the electrophoretic force, and the relaxation force. The electrophoretic force arises from the modification of the viscous drag on the central ion by solvent molecules that are pulled in the opposite direction by the counterions. The relaxation force is a consequence of the asymmetry of the ionic atmosphere under a driving field. The atmosphere around a moving ion is continuously being rebuilt—a process that takes finite time and causes the center of mass of the atmosphere to lag behind the central ion. Because of this asymmetry, the ion cloud exerts a Coulombic force on the central ion, slowing down its motion.

The original derivation of Debye, Hückel, and Onsager relies on various simplifications. Subsequent conductance theories \cite{10,11} more accurately take into account nonidealities, such as ion association, as well as the coupling between relaxation and electrophoretic effects, notably the modification of the latter by the asymmetry of the ionic atmosphere. These corrections result in higher-order terms in the concentration and extend the validity of the theory to a wider concentration range. Nevertheless, the effect of concentration on molar conductivity remains qualitatively unchanged, namely that ion mobility decreases as concentration increases.

Under nanoscale confinement, ion mobilities \cite{12} and conductances \cite{13} are known to deviate from bulklike behavior. Moreover, such devices also exhibit other special transport properties, e.g., ion selectivity \cite{14,15} and rectification \cite{15}. These deviations from bulk behavior are often attributed to surface effects and to the high surface-to-volume ratio characteristic of nanodevices. For example, net positive surface charge will attract excess negative ions into a nanopore. At low concentrations, this will enhance the conductance compared to the bulk \cite{13}. Conversely, surface charge has been predicted to increase water viscosity and thereby decrease ion mobility near the surface \cite{16}, where the specific ion mobility depends on the sign of the surface charge \cite{17} and on ionic characteristics.

Yet another effect concerns the permittivity. Materials used in synthetic nanoscale devices range from dielectric to metallic, so that the surface polarization induced at the fluid-solid interface may influence ion transport. In addition to dielectric exclusion \cite{18} of ions from nanopores, the dielectric properties of a pore have been predicted to enhance ion selectivity \cite{19}. Intriguingly, recent calculations \cite{20} have raised the possibility that the permittivity of the pore surface can be used to tune ionic rectification in conical nanopores. Thus, along with surface charge and pore size, permittivity potentially provides an additional parameter for achieving a high degree of control over ion movement. Nevertheless, to the best of our knowledge, hitherto all studies of the effect of surface polarization on ionic conductivity have concentrated on the distribution, number, or type of ions in the pore \cite{20–23}, whereas their mobility, an essential factor in the overall ionic conductivity, has been assumed to be independent of the dielectric properties of the nanodevice surface.

Here, we address this knowledge gap and demonstrate that the mobility of ions near a surface indeed can be controlled by tuning the dielectric mismatch between the
wall and the solvent. We relate the origins of this effect to modifications the surface polarization induces in the counterion atmosphere and in the related relaxation force. Molecular dynamics (MD) simulations permit a microscopic view of ion mobility and counterion clouds as a function of ion distance to the interface. To include fluctuation and correlation effects all ions are treated explicitly, whereas both the solvent and the surface are modeled as dielectric continua. The use of a coarse-grained model allows us to incorporate dielectric effects into the simulations, and to track the movement of ions for long enough times (10^9 simulation steps, corresponding to more than 5 ms) to allow reliable extraction of the mobility and corresponding forces.

We adopt the restricted primitive model [24], modeling ions as monovalent (q = ±e), purely repulsive shifted-truncated Lennard-Jones spheres of mass m and diameter σ, which we choose as our unit of length. For hydrated ions, σ is approximately 0.7 nm. We employ a parallel-plate geometry of width and length Lx = Ly = 15σ, periodically replicated in both dimensions. The top and bottom surfaces are separated by Lz = 15σ. The upper surface has the same dielectric constant as the solvent, ε1, whereas the lower surface has dielectric permittivity ε2. This geometry makes it possible to account for the effects of the complex surface polarization patterns via image charges [25]. To accommodate the image charges, the height of the actual simulation cell is doubled, and all electrostatic interactions are computed via 3D PPPM with accuracy 10^-5, and a slab correction accompanied by 60σ-thick vacuum layer. We use the dielectric mismatch Δ = (ε1 − ε2)/(ε1 + ε2) to describe the magnitude and sign of the image charge: Δ = 1 for a low-permittivity surface that results in repulsive surface polarization, Δ = 0 for an interface with no dielectric mismatch, and Δ = −1 for a high-permittivity surface with attractive surface polarization. We use a time step of 0.01τ, where τ = \sqrt{mσ^2/ε_{LJ}}; ε_{LJ} = k_BT/1.2 is the Lennard-Jones coupling constant, T denotes the absolute temperature, and k_B is Boltzmann’s constant. Following the convention in polyelectrolyte simulations [26], we employ an enhanced Bjerrum length l_B = 3σ. Whereas this enhances the electrostatic effects, we will demonstrate that our findings hold at lower coupling strength as well. Unless stated otherwise, the salt concentration is c = 0.02σ^-3 (corresponding to 0.1M).

The simulation setup and the forces affecting the movement of ions are depicted in Fig. 1(a). Ions are driven by an external field \(E = 0.4k_BT/(e\sigma)\) in the x direction. This field strength lies within the linear response regime, and is counteracted by the relaxation force, frictional forces, and the collision force. The friction force (viscous drag) exerted by the solvent on individual ions is captured by a Langevin thermostat, applied in the system with damping constant γ = mr^-1 [27]. The short-range drag arising from interacting hydration shells of ions that pass each other is represented by Lennard-Jones collisions between ions. Since our simulations do not incorporate hydrodynamics, the ions do not experience a long-range electrophoretic force. However, as this force has the same functional dependence on salt concentration as the explicitly included relaxation force [9], this does not qualitatively affect Kohlrausch’s law. Moreover, as we will discuss below, our findings regarding the role of surface permittivity are equally unaffected. The ion mobility \(μ = ⟨v⟩/(E\sigma)\) is determined by the balance of these force components, and obtained by averaging the instantaneous velocity \(⟨v⟩\) of ions.

To establish a reference system, we first explore ion mobilities [Fig. 1(b)] and the underlying salt concentration profiles [Fig. 1(c)] in a channel without dielectric mismatch. As expected, the ion mobility decreases as concentration increases, in qualitative agreement with Kohlrausch’s law. However, the profiles are not uniform, displaying an increase in the ion mobilities near the surfaces for all concentrations (we examined c ≤ 0.1σ^-3). Indeed, this mobility increase reflects the important role of the counter-ion atmosphere in ion conductivity. The presence of the wall perturbs the ion cloud and leads to a decrease both in the electrostatic relaxation force and in ion-ion collisions [Fig. 1(d)], which in turn increases the mobility near the interface. Even though this can readily be produced in a simple MD simulation, we are unaware of prior previous reports on this effect.

![Figure 1](image-url)
The situation becomes more complex when surface polarization is taken into account. Figure 2(a) shows the expected buildup of ions near an attractive, high-permittivity surface ($\Delta = -1$) and depletion near a low-permittivity material ($\Delta = 1$, Fig. 2(a)]. Based on Kohlrausch’s law, and our observations in Figs. 1(b) and 1(c), the mobilities should consequently decrease near a surface with $\Delta = -1$ and increase near a surface with $\Delta = 1$. Surprisingly, we observe the opposite. Figure 2(b) shows that near a high-permittivity surface the interfacial mobility is enhanced compared to a system without dielectric mismatch ($\Delta = 0$), whereas a surface with low dielectric constant decreases the mobility.

We hypothesize that this remarkable behavior results from changes in the ionic atmosphere. Indeed, in bulk electrolytes such changes are known to affect ion mobilities. For example, in the Wien effect [28–30] electrolyte mobility increases in high fields because the fast movement of the ions prevents the formation of the counterion cloud. Similarly, the Debye-Falkenhagen effect [31,32] describes how in high-frequency ac fields the fast, continuous switching of the direction of the ion movement suppresses the asymmetry of the ionic atmosphere, so that the relaxation force vanishes.

Accordingly, we examine the effect of surface polarization on counterion atmospheres surrounding ions in the interfacial region. Figure 2(c) depicts the shape and net charge density of the ionic cloud in the absence of surface polarization. It confirms the distortion of the cloud in the direction of motion, with its center of mass located behind the central ion. Attractive polarization ($\Delta = -1$, Fig. 2) weakens the overall counterion cloud and simultaneously suppresses its asymmetry. This in turn diminishes the relaxation force, resulting in the speed-up observed in Fig. 2(b). The inset illustrates the underlying mechanism, which is phrased most concisely in term of the image charges that represent the induced surface polarization patterns. Counterions in the cloud are repelled by the image of the central ion. This weakens the ion-ion interactions and thereby not only diminishes the net charge of the ionic cloud, but also makes it more symmetric, since the range of the ionic atmosphere is connected to the relaxation time needed to rebuild it.

Conversely, repulsive surface polarization [$\Delta = 1$, Fig. 2(e)] enhances both the intensity and asymmetry of the ionic atmosphere. This leads to an increase in the relaxation force, and to a slow-down of ions close to the interface, supporting the mobility profile observed in Fig. 2(b). The interaction between ions and their own images is now repulsive, whereas the secondary interaction between an ion and the image of its countercharge is attractive. This leads to enhanced ion-ion attraction and to the elevated net charge density around an ion residing near a low-dielectric surface.

The modulation of ion-ion interactions by polarizable surfaces [33] and the consequent changes in ionic atmosphere [18,34] near interfaces have been predicted before. Experimental support for the weakening of ion-ion interactions near a high-permittivity material is provided by the observation of enhanced dissociation of a weak electrolyte, leading to more free charge carriers and an increase in conductivity [35]. However, to the best of our knowledge, the modulation of ion mobilities by polarizable interfaces through changes in the ionic atmosphere has not been reported before.

An important advantage offered by particle-based modeling is that it permits examination of the individual contributions to the forces exerted on ions near the interface. Figure 3(a) presents the total (i.e., arising from ionic as well as induced charges) Coulombic force on ions as a function of distance to the channel wall. As predicted, for attractive polarization the magnitude of the relaxation force decreases near the wall, whereas for repulsive polarization the magnitude of this force increases compared to the case without dielectric mismatch.

Any asymmetry in the ionic atmosphere will be reflected in the surface polarization charge. Thus, an interesting secondary effect arises, as this surface polarization will also contribute to the relaxation force. This contribution, which we denote the surface polarization force (SPF), acts on ions near the wall and can be isolated in the simulations. Because of the asymmetry of the ion cloud, the SPF has a nonzero component parallel to the surface. Figure 3(b) shows that for $\Delta = -1$ the SPF diminishes the total relaxation force,
whereas for $\Delta = 1$ it provides an enhancement. The reason for this is clarified by the schematics in Figs. 3(d) and 3(e). For $\Delta = -1$ [Fig. 3(d)] the image cloud carries a charge opposite to that of the ionic atmosphere, thus causing a SPF in the direction of ion movement. For $\Delta = 1$ [Fig. 3(e)] the ion cloud and its image carry the same charge, so that the SPF opposes the ionic motion. We observe that the SPF contribution to the total relaxation force is considerably smaller for attractive surface polarization than for the repulsive case, reflecting the weaker and less asymmetric cloud in the first system. Thus, the effect of surface polarization on the relaxation force, and consequently on the ion mobility, is twofold. First, it modifies the ion atmosphere and second, it exerts a surface polarization force. Both of these effects diminish the relaxation force when $\Delta = -1$ and enhance it when $\Delta = 1$.

Lastly, the distance dependence of the collision force opposing the ion movement [Fig. 3(c)] reflects the concentration profile, increasing as more particles reside near the wall. However, as this force has a weaker dependence on dielectric mismatch, the response of the relaxation force dominates, giving rise to the counterintuitive behavior of the mobility in Figs. 2(a) and 2(b).

The observations presented here depend on the global electrolyte concentration and on the strength of the electrostatic coupling [expressed in terms of the Bjerrum length $l_B \propto (T\epsilon_0)^{-1}$], as those parameters affect both bulk ion mobility and the screening of the surface polarization. In Fig. 4 we explore these dependencies. As a baseline we employ the system without dielectric mismatch [Fig. 4(a)], which confirms that the mobility decreases with increasing concentration and increases with decreasing l_B, as expected [9–11]. Figures 4(b) and 4(c) show the absolute deviations compared to this reference system for attractive and repulsive surface polarization. We note that the effects of positive and negative dielectric mismatch on ion mobility differ in magnitude. To emulate an experimental setup, the mobility in Fig. 4 is determined as an average across the entire channel. Thus, the suppressed electrolyte concentration near low-permittivity surfaces [Fig. 4(c)] diminishes the influence of reduced ion mobility on the observed average mobility.

As the Bjerrum length is lowered, the region of significant mobility change is reduced to lower concentrations. The lowest concentration studied here is $0.02\sigma^{-3}$, corresponding to $0.1M$, i.e., comparable to physiological salt concentrations. If concentrations are reduced further, the effect of surface polarization is enhanced.

Our simulations lack a description of hydrodynamics beyond the Langevin thermostat, and the long-range electrophoretic force is therefore absent in our simulations [36]. However, this force is affected by changes in the ionic atmosphere in the same manner as the relaxation force, since the magnitude of both forces is directly related to the amount and distribution of charge within the ion cloud [9]. Thus, inclusion of this force should only enhance the phenomena reported here. The use of an implicit solvent prevents us from observing effects related to the molecular nature of the solvent. The hydration characteristics of ions can affect their mobility by modulating the ion distribution near an interface [17]. We also do not capture the effects of confinement on the solvent structure, such as the formation of oriented hydration layers at the channel edges and consequent slowdown of ions [17] due to hindered water motion in these layers. Moreover, such a layer would modify the dielectric jump at the interface [37]. Yet, the presence of a hydration layer should not qualitatively affect the observed differences between attractive and repulsive surface polarization.

Ion mobility and conductance in nanodevices are a delicate balance of several contributions [23], which along with the magnitude of the effect and the nanometer scale of the devices may complicate experimental verification of the dielectric modulation of ion mobilities. This, however, does
not mean that this effect is of limited practical importance: it is amplified at low concentration, permittivity, and temperature, and by high surface-to-volume ratio.

In conclusion, we have demonstrated that the mobility of ions near interfaces can be regulated via the dielectric mismatch between the solution and the wall material. Surface polarization affects the mobility through two mechanisms, both working in the same direction, that increase the mobility near a high-permittivity surface and decrease it near a surface with low dielectric constant. First, surface polarization affects ion-ion interactions and consequently the shape and intensity of the ionic atmosphere responsible for the relaxation force. Second, due to the asymmetry of the counterion atmosphere, a surface polarization force parallel to the interface emerges. We anticipate that these findings can be exploited to understand and control ionic flux on the nanoscale.

We thank Jiaxing Yuan for the PPPM implementation of image charges. This work was supported by the National Institutes of Health through Grant No. 1R01 EB018358-01A1. We acknowledge computational resources from the Quest high-performance computing facility at Northwestern University.

'luijten@northwestern.edu

[27] Using $\sigma = 0.7 \text{ nm one obtains } E \sim 10^7 \text{ V/m}, whereas equating the ion mass to the mass of hydrated sodium (131.4 g/mol) yields $\tau \sim 5.6 \text{ ps}$. The damping constant in our simulations is about 2 orders of magnitude smaller than would be representative for the viscosity of water. This allows a faster exploration of the system configurations.

