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Inverse Roughening Transition in the Staggered Body-Centered
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The F model and inverse F' model in a staggered electric field are examined by using transfer
matrices and finite-size scaling. It is shown that such a field induces a Kosterlitz-Thouless transition
in the inverse F' model, corresponding to an “inverse” roughening transition in the body-centered
solid-on-solid representation: a crystal facet appears above a certain temperature. It disappears
again in the limit of infinite temperature. We find the location of this phase transition as a function
of staggered field and for a specific choice of this field we estimate the facet size as a function of

temperature.

PACS numbers: 68.35.Bs, 68.35.Rh, 64.60.Cn, 64.60.Fr

A well-known class of two-dimensional lattice models
is formed by the six-vertex or ice-type models [1]. By
assigning different energies to the six vertices which oc-
cur in these models (see Fig. 1), both ferroelectric and
antiferroelectric systems can be modeled. If the vertex
weights are chosen uniformly throughout the lattice these
models can be solved exactly and shown to exhibit phase
transitions of various kinds [2-5]. By assigning height dif-
ferences to the vertices, one obtains body-centered solid-
on-solid (BCSOS) models, a class of solid-on-solid surface
models [6], which can be used to study crystal surfaces.
A well-known six-vertex model is the F' model [7], which
has been solved exactly by Lieb [2] (this solution was
generalized by others [3,4]) and which displays a phase
transition of Kosterlitz-Thouless nature at a certain tem-
perature Tg, with kgTr = e/In2, where e is the vertex
energy introduced in Fig. 1. In the BCSOS model this
phase transition corresponds to a roughening transition.
This transition takes place because the occurrence of ver-
tices 1 to 4, and thus of height differences between next-
nearest neighbors, increases.

The ground state of the F' model is antiferroelectric,
consisting of a checkerboard pattern of vertices 5 and
6. The twofold degeneracy of this ground state can be
removed by a staggered electric field, i.e., a field which
alternates in direction on neighboring arrows and thus
discerns the two sublattices in the model. This field
forces the F' model above Tgr from an algebraic phase
into an ordered state [8]. Unfortunately, it is not pos-
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FIG. 1. The six possible vertices and their energies. The
+ and F signs refer to the two sublattices. For the F' model
e is positive, whereas e is negative in the I F' model.
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sible to solve the model in the presence of such a field,
except for T = 2Tg [9], so that the behavior of the F
model in a staggered field is not well known. The im-
portance of this unsolved problem was emphasized by,
e.g., Lieb and Wu [1] and Baxter [5]. In the BCSOS rep-
resentation [6] a staggering of the vertex weights in the
six-vertex models may be realized by covering the two
interpenetrating simple cubic sublattices of a bcc lattice
by two kinds of particles, each occupying all the sites of
one of the two sublattices. A staggered field leaves the
next-nearest-neighbor interactions on the two sublattices
the same, but introduces different chemical potentials for
the two types of particles. It becomes energetically more
favorable for the crystal to have one type of particle in
its topmost layer than the other type.

In this Letter, we find the phase diagram of the stag-
gered F model and inverted F model (IF model), for
which the coupling constant e is negative, by using the
transfer-matrix technique and finite-size scaling. We
show that the staggered field is relevant in the I F model
for temperatures above a certain temperature T}. Below
this temperature, the staggered field is irrelevant. Thus,
at temperatures below T4 an infinitesimal staggered field
does not induce a transition to the ordered phase. How-
ever, a Kosterlitz-Thouless transition to the ordered state
does occur at a temperature-dependent finite threshold
value of the staggered field. In the BCSOS representa-
tion this corresponds to a crystal surface on which a facet
appears for T above a staggered-field-dependent roughen-
ing temperature. When T approaches infinity this facet
disappears again.

In order to find critical exponents and to examine the
phase diagram we use a renormalization-group mapping
of the BCSOS model onto the Gaussian model [10] and
proceed in a way similar to that described in Ref. [11].
Since the amplitude of the height-height correlation func-
tion, G(r) = ((h, — ho)?), is kept invariant under renor-
malization, the amplitude of this correlation function of
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the BCSOS model in the rough phase can be identified
with that of the Gaussian model [12]. For the (I)F model
without staggered field the asymptotic behavior of the
former is given by [13]

2d?
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G(r) marccosA n

T (T > TR) ) (1)
where d is the height difference between two nearest
neighbors and A is equal to 1 — %exp(2ﬂe). For the
Gaussian model on the other hand, one finds (see, e.g.,
Ref. [11] for details)

G(r) ~ % Inr. 2)

The parameter R denotes the Gaussian temperature. It
is determined by requiring that the model renormalizes
to the same fixed point as the BCSOS model. Thus we
equate the amplitudes in the right-hand sides of Egs. (1)
and (2):

_ 4rd?
" arccos[1 — 1 exp(20e))

(Be <In2). ®3)

This result agrees with those obtained in Refs. [14-16],
where the F' model and the Gaussian model were related
in a different way. We assume that the Gaussian and
the BCSOS models indeed belong to the domain of at-
traction of the same fixed point, so that both models
share the same set of critical exponents. In the Gaussian
model, the exponents are associated with two classes of
operators: the spin-wave operators and the vortex op-
erators. They can be exactly calculated if the temper-
ature R is known. Thus, the critical exponents for the
BCSOS model can now be determined from those for the
Gaussian model. In the first place we need the scaling di-
mensions [10] X}’ of the spin-wave operators [11], which
correspond to periodic potentials acting on the height
variables,

R
where p is the period of the potential. The discreteness of
the lattice corresponds to p = d. A staggered field corre-
sponds to p = 2d, because subsequent layers energetically
are not equivalent anymore, so the vertical period is in-
creased to 2d. The spin-wave operator is relevant if its
dimension is smaller than 2, therefore the staggered field
is relevant if R < 16d%. From Eq. (3) we derive that
Be 2 —0.2674 (i.e., kgTh ~ —e/0.2674). This means
that for all (e greater than this threshold value, even an
arbitrarily small staggered field forces the system into an
ordered state. A rough phase at nonzero values for the
staggered field may only be found for negative values of
the vertex energy e, i.e., in the IF model. Acéording to
renormalization-group arguments [12] such a rough phase
will undergo a Kosterlitz-Thouless transition to the or-

dered state when the most relevant spin wave becomes
marginal, i.e., X3} = 2.

Other scaling dimensions of interest are those of the
vortex operators [11],
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associated with vortices of strength ¢q. In the BCSOS
model, a vortex-antivortex pair of this strength corre-
sponds to a step of height gq.

Thus, in zero staggered field the scaling dimensions
follow from the Gaussian model. For nonzero staggered
field, we use the transfer-matrix technique as described
in Ref. [17]. This method yields the free energy and cor-
relation lengths for N x oo lattices. To obtain from these
the scaling dimensions introduced above one has to ap-
ply finite-size scaling. According to the theory of phe-
nomenological renormalization, a correlation length &y
of a finite system with linear lattice size N behaves at a
critical point as €y ~ N. A Kosterlitz-Thouless transi-
tion forms the boundary of a critical phase, so that one
finds this behavior for a range of temperatures. Thus, if
we plot N/&n as a function of temperature for various
system sizes, the graphs will converge as a function of
system size for temperatures below the transition point.
In conjunction to spin-wave and vortex operators one can
define spin-wave and vortex correlation lengths, respec-
tively, which can be obtained from the eigenvalues of the
transfer matrix of the staggered IF model. This transfer
matrix decomposes into IV + 1 diagonal blocks, because
each row of vertical arrows can only couple to another
row that has an equal number of arrows pointing upwards
(see, e.g., Ref. [5]). Both types of correlation lengths are
connected to the eigenvalues of the transfer matrix by a
relation of the form

W =¢/In % : (6)

where A; is the largest eigenvalue of the transfer matrix
(located in the central block of the transfer matrix, with
N/2 arrows pointing upwards) and the choice of the other
eigenvalue )\, is determined by the correlation function
associated with §,(\',°). For the correlation length associ-
ated with the ¢ = 2d vortex exponent (5), we set A\ = As,
the largest eigenvalue of the subcentral block (N/2 + 1
arrows pointing upwards) of the transfer matrix. In the
following, £n will refer to this specific correlation length.
The geometrical factor ( = 2 accounts for the fact that
the transfer matrix adds two rows to the system at once.
We have calculated and plotted N/én as a function of
Bs for several system sizes. For fixed Be 2 —0.2 these
graphs diverge for all 8s > 0. However, for smaller (i.e.,
more negative) fe, there exists a range of (sufficiently
small) Gs where N/€y displays convergent behavior as a
function of N. This is shown in Fig. 2. These results are
in agreement with our calculation for the threshold value
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FIG. 2. The scaled inverse correlation lengths for
Be = —0.4, as a function of (s.

of (Be below which the staggered field is irrelevant and
confirm our expectation that the staggered field induces
a Kosterlitz-Thouless transition below T%. It is difficult
to find the precise location of this transition from the
graphs. Therefore we use the prediction that X3!, be-
comes marginal. This implies that the amplitude of the
height-height correlation function is constant all along
the line of Kosterlitz-Thouless transitions [18-20]. So
X5 is constant along this curve as well, being equal to
%, the value it has for 8s = 0 at Be =~ —0.2674. The re-
quirement of covariance under conformal transformations
leads to [21]

. N
where X is the scaling dimension associated with the
same correlation function as &y, thus X = X3j. For
a range of values for s and N = 4,...,18 the values
of Be were calculated for which N/§y = m/4. These
values serve as finite-size estimates of the Kosterlitz-
Thouless transition and were extrapolated to infinite sys-
tems using logarithmic and 1/N? corrections [11]. Fig-
ure 3 shows the resulting phase diagram. The exactly
solved (I)F model corresponds to the vertical axis, where
a phase transition occurs between two different ordered
phases. For e/kpT > In 2 this transition is discontinuous,
whereas it is continuous for —0.2674 < e/kgT < In2.
The curve indicates the Kosterlitz-Thouless transition
induced by the staggered field. Its location is in good
agreement with the points where the scaled inverse cor-
relation lengths start to diverge (cf. Fig. 2). The area
below the Kosterlitz-Thouless curve can be interpreted
as a critical fan [22]. Note that for large |s| this curve
rapidly approaches e = —|s| + const. This is because for
large |s| vertices 1 through 4 compete with only one of
the vertices 5 and 6 (depending on the sublattice); the
remaining vertex is absent due to its high energy.
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FIG. 3. The phase diagram of the F model and the IF
model in a staggered field. The curve denotes the Koster-
litz-Thouless transitions. The area below this curve, including
the curve itself, and the vertical axis up to Se = In 2 describe
rough phases; the remaining area describes smooth ones.

From the phase diagram we can draw a remarkable
conclusion. Suppose that the energy e is set to some
negative value and the ratio e/s is fixed such that it has
an absolute value greater than 1. Increasing the tem-
perature from zero to infinity, we approach the origin of
the phase diagram along a straight line which intersects
the curve of phase transitions at some finite temperature
Txr. This means that we start in a rough (disordered)
phase at T' = 0 and enter a smooth (ordered) phase at
TxTt. We propose calling this an inverse roughening tran-
sition, as in the BCSOS representation this transition
corresponds to the appearance of a facet on a crystal
surface at temperatures above TxT. The diameter of this
facet, relative to the system width, is proportional to the
step free energy,

A
Fuep(N) ~In 3=, 8)
2

where A; and )\, have the same meaning as before. In
Fig. 4 this quantity is plotted along the line fe = —1.18s
for 0 < Bs < 3.0 for several values of N. Since this line
is always in, or close to, a critical phase we use an iter-
ated power-law extrapolation [11] for N — oo (contin-
uous line). The result is small in comparison with the
finite-size results and therefore relatively inaccurate: the
error at the maximum of the extrapolated curve is about
10%. From the correspondence between the step free
energy as function of direct (i.e., nonstaggered) electric
fields and the crystal form [23] it can be shown, using
scaling arguments, that the step free energy (facet size)
is proportional to (8s)'/(2~X22). Since X%, = 2 at the
origin of the phase diagram, we see that the facet size is
proportional to (3s)? for T — oo, in qualitative agree-
ment with Fig. 4.



VOLUME 73, NUMBER 3

PHYSICAL REVIEW LETTERS

18 JULY 1994

0.25 T T T T

zZzZ
etr ey
HANOODH

z2Z2Z
wonn

Step free energy/kT

0 i

0 0.5 1 1.5 2 25
skT

FIG. 4. The step free energy, which is proportional to
the crystal facet size, as a function of (s, along the line
Be = —1.10s.

Inverse roughening is another example of entropically
driven ordering [24]. At high enough temperatures the
vertices 5 and 6 arrange themselves into a connected net-
work with as many patches of vertices 1 through 4 as
possible. The freedom of choosing the arrangement of
horizontal and vertical arrows in each of these patches
independently increases the entropy over that of config-
urations in which vertices 1 through 4 percolate. The
entropy gain outweighs the energy cost of the vertices 5
and 6.

May inverse roughening transitions be expected for real
crystals? For a binary crystal of the type described above
[25] a realistic description will usually require not only a
staggered field, but also a staggering of the weights of
the vertices 1 through 4 [8,26,27]. However, also in that
case the lattice period in the vertical direction is dou-
bled, so for weak staggering one expects facet roughen-
ing to occur for Be < —0.2674, just as in the case studied
here. Hence one should generally expect inverse rough-
ening transitions in crystals with a staggered BCSOS
structure, strong nearest-neighbor attraction and repul-
sion between next-nearest neighbors. Ionic crystals are
obvious candidates for satisfying these requirements, for
example, CsCl is known to have a structure of just the
type we are looking for.

Finally we want to observe that in the BCSOS repre-
sentation one can easily introduce fields with a vertical
period larger than 2, which, e.g., could be realized phys-
ically for a period of 3 by making an ABCABC ... type
stacking of layers. In this case the inverse roughening
transition for weak staggering can be obtained again by

solving (3) for R = 4p? (with p = 3,4,...), yielding a
sequence of increasingly lower inverse roughening tem-
peratures.
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