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Optimized energy calculation in lattice systems with long-range interactions
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We discuss an efficient approach to the calculation of the internal energy in numerical simulations of spin
systems with long-range interactions. Although, since the introduction of the Luijtel-Blgorithm, Monte
Carlo simulations of these systems no longer pose a fundamental problem, the energy calculation is still an
O(N?) problem for systems of sizN. We show how this can be reduced to @GN log N) problem, with a
break-even point that is already reached for very small systems. This allows the study of a variety of, until now
hardly accessible, physical aspects of these systems. In particular, we combine the optimized energy calcula-
tion with histogram interpolation methods to investigate the specific heat of the Ising model and the first-order
regime of the three-state Potts model with long-range interactions.

PACS numbd(s): 02.70—c, 64.60.Fr

. INTRODUCTION tional effort to O(N logN) for a system containingyl spins.
Indeed, this is a natural choice if one recognizes that the total
The numerical study of systems with long-range interac-energy is just given by &iscreté convolution, which is one
tions is notoriously difficult, due to the large number of in- of the major applications of the FFT. Remarkably, the com-
teractions that has to be taken into account. Specifically, thputational overhead entailed by the FFT turns out not to be a
number of operations to calculate the energy of a single patimiting factor: already for very small systems it is more
ticle scales as the total number of particles in the system, igfficient than a direct calculation of the energy.
contrast to the case of short-range interactions, where the The remainder of this paper is organized as follows. First,
corresponding number of operations is of order unity. Thiswe derive an expression for the energy in terms of the
implies that Monte Carlo—based methods are generally reg=ourier-transformed spin system and point out that several
stricted to very small system sizes, which are still hampere®ther observables can be obtained on the fly, at negligible
by strong finite-size effects. Some years ago, this problenadditional cost. We also give a detailed comparison of our
was resolved for the case of @)(spin systems witiferro- approach and the conventional method. Next, we illustrate
magneti¢ long-range interactions, for which a dedicatedour approach by means of several physical results for one-
cluster algorithm was developéd]. Since the efficiency of dimensional systems with long-range interactions. We end
this algorithm isindependenbf the number of interactions With a summary of our results.
per spin, speed improvements of several orders of magnitude
could be obtained compared to a conventional cluster algo- Il. ENERGY CALCULATION
rithm. This speedup pertains to the generation of independent ) i )
configurations, for which the calculation of the energy is not We Wwill now first illustrate our approach for a
required. Indeed, a variety of interesting physical resultdd=1)-dimensional system with am-component order pa-
could be obtained by means of this method; see, e.g., Ref§@meter, i.e., a generalized §)(spin chain. This system is
[2—4]. Whenever one needs to sample the internal energylescribed by the Hamiltonian
however, the improvement is much less dramatic: the major
remaining advantage is that one only has to calculate the
energy for truly independent configurations, rather than in
every Monte Carlo step. Whereas this still implies that one
can study systems that are an order of magnitude larger thamhere the spin§(x) aren-component unit vectors and is
those that can be accessed via Metropolis-type simulationgie system size. The interactial{x) is defined for allx
(cf. Ref.[5]), one is eventually limited by the fact that the e N. Under the condition that periodic boundary conditions
total computing time scales quadratically with the systemy .o oyioved, theffectivecouplingJ(x) between two spins
size. One major dlsadya_rltage of th!s |nacceSS|b|I|Fy of the;s given by the sum over all periodic copies,
energy is the fact that it is not possible to apply histogram
interpolations in order to obtain information on thermody- %
namic quantities over a large parameter spgie In this E(X)E 2 J(x+mN) (2)
paper, we point out that, for systems with periodic boundary m=—
conditions, this problem can be circumvented by calculating _
the internal energy in momentum space. Thus, one can appBnd hence has a peridd We set the self-energy(mN),
a fast Fourier transforn@=FT), reducing the total computa- which is just an additive constant in the total energy, equal to

1 N N
H==3 2 2 Ix=y)Sx) Sy), @
x=1y=1
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4 [ ' ' ' ' ' ] the required CPU time per spin for the calculation of the
Conventional —=— internal energy via Eq1) and Eq.(4), respectively, and the
5 | FFI':I‘FWT e ] susceptibility. As expected, the former method scales asymp-

totically linearly withN. For the latter method, two estimates
are given, which only differ in the choice of the FFT imple-
mentation. The slower resultepen squargswvere obtained
by means of the routines of R¢B] and the faste(triangles
by means of those of Ref10]. Although these two estimates
differ by as much as a factor of 5, both of them outperform
the conventional method already fbe=10; for N= 218 the
improvement amounts to roughly four orders of magnitude.
) ] . ) ) The initial downward trend in Fig. 1 is due to overhead being
0 1 ) 3 4 5 6 distributed over an increasing number of spins. Likewise, the
log;o N “irregularities” in the FFT estimates can be attributed to
computational aspects. The slight deviations from linearity in
FIG. 1. Required CPU timéin microseconds on a Pentium-ll the conventional estimates, however, are due to statistical
400 MH2) per spinfor the calculation of the energy and the sus- inaccuracies in the timing: foN=0(10%) this method al-
ceptibility, as a function of system size, for both the conventionalready becomes prohibitively slow. Thus, we conclude that
method and two FFT-based methods. For a further discussion s@ge method presented here provides a very efficient approach
the text. to energy calculations in lattice systems with long-range in-
teractions; while there is still a weak system-size dependence
zero. Each component of the spin configurai®®) and the in the required computational effort per spin, this no longer

logyo [time (us)]
)

interactionj(x) can then be written as a Fourier sum, constitutes a bottleneck for praCticaI applications. Note that
higher-dimensional models can also be treated in this fash-
N—-1 i
1 ) on.
f(X)Z— 2 fkekax/N, (3)
JN =0

where the Fourier coefficienty are obtained from the dis- lll. APPLICATIONS

crete Fourier transform of (x). By means of the discrete A. The Ising chain
convolution theorenj7] it is then straightforward to show

. As a first example, we consider the Ising chain with alge-
that Eqg.(1) can be written as P g g

braically decaying interactiong(x)=J|x| "1~ 7. The critical

N behavior for this system is essentially classical fox®
H=—" 3,S.-S,. (4) <3 and nonclassical fof <o<1; see Ref[11]. Numerical
2 k=0 results for the thermal exponewt [12] have indicated that

) ) o _ the latter regime can be subdivided into two payts: 5 for
The essential step is now that application of the fast Fouriet < ;<0.65 andy,< for interactions that decay faster. This

transform(7,8] reduces the computational effort for the cal- jmplies that the specific heat diverges in only a part of the
culation of the N Fourier coefficients fromO(N?) to  nonclassical regime and should display a cusplike singularity
O(N logN), thus, in principle, greatly speeding up the calcu-jn the remaining part. By means of illustration, we have cal-
lation of the total energy. The sum in E€}) adds another ¢yjated the specific heat far=0.25 ande=0.90. In both
O(N) operations, but this is compensated for by the fact thagases, we expect to find a function that does not diverge at
one typically also wants to calculate the magnetic susceptie critical point, although the behavior should be qualita-
bility N™*|S}-3S(x)|?, which in the momentum-space rep- tively different. Simulations were carried out fiir= 2P, with
resentation is immediately given B$_o|>. For maximum  3<p<16, at a number of different couplings, for several
efficiency, one has to restrict the system size to powers of Zimes 1@ independent samples per system size. The full
Naturally, the calculation of the coefficienty has to be curves were determined by means of the multiple-histogram

carried out only once. method[6], where great care was taken to minimize system-
Even more can be gained if one also desires to calculatatic errors due to the histogram interpolation.
the spin-spin correlation functiong(r)=(S(0)-S(r)) Figure 2 shows the specific heatfor =0.25, as a func-

= N‘12)’2':‘§S(x)-8(x+r). The discrete correlation theorem tion of the reduced coupling=J/(kgT). It displays several
[7] states that the Fourier transforgp of g(r) is equal to ~ close similarities to the specific heat of the mean-field model,
N-25.S_,, so thatg, is obtained byN multiplications  including the buildup of a jump discontinuity at the critical
rather than anothe®(N?) operations in the real-space rep- Point, the crossing of the finite-size curves in a single point
resentation. at K. (up to corrections to scalingand (not visible on this

All the above estimates are Only measures for the Comscale an excess peak in the curves for finite SyStemS, i.e.,
plexity of the algorithm, which become valid for sufficiently Mn_:CmadN)#limy i limy_.C(K,N) [12]. As shown
large N. It remains to be seen whether the FFT-based apin Ref.[2], the location of the specific-heat maximum shifts
proach is actually faster for the range of system sizes that caas a function of system size, according to
be accessed in present-day Monte Carlo simulations, which . .
for lattice models go up td~10°—1CF. Figure 1 compares Kmas=Keta LVt +a,L Pt +b Lo 14+.... (5
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1.8 possible coexisting ordered phases. §er2 the Ising model
1.6+ is recovered; fog>2 the ferromagnetic Potts model defines
L4l a genuine universality class distinct from the Ising and the
) more general Qf) universality class. The Potts model is of
12+ particular theoretical interest, because the phase transition it
1.0t describes may be of first or second order depending amnd
© os | the spatial dimensioul, even in the absence of symmetry-

) breaking fields. For nearest-neighbor interactionsdi?2

0.6 r many properties of the Potts model are exactly knddhA4.

04 | In particular, if the model is in the first-order regime anis

oa L sufficiently large, the asymptotic finite-size properties of the

nearest-neighbor ferromagnetic Potts model have been estab-
lished in a rigorous fashiofil5]. For long-range interactions,
however, much less is known and currently available nu-
merical data are limited to rather small systgims We dem-

FIG. 2. Specific heat of the Ising chain with interactions decay-onstrate in the following that also for the Potts model the
ing asr % for system sizes € N<65536. One observes the cluster algorithm introduced in Refl] can be combined
appearance of a mean-field-like discontinuity at the critical cou-with the FFT, allowing the numerical treatment of much
pling. The inset shows the peak height as a function of system siz¢arger systems.

Again, we concentrate on the case of algebraically decay-
wherey; =3 and the coefficients; ,b; are nonuniversal. A jng interactions)(x)=|x| =~ . The Hamiltonian of the fer-
fit to this expression yieldedyf=0.51(6) and K.  romagnetic Potts chain with periodic boundary conditions
=0.11475), in good agreement witiK.=0.114142(2) can then be written in the same form as EL, where the
[13]. The inset shows the peak height as a function of systerpotts spinsS(x) are unit vectors that mark the corners of a
size, strongly suggesting that the maximum is indeed finite ifhypentetrahedron ig— 1 dimensions. For the present case

0.0 —c > 1 1 1 1 1
000 005 010 015 020 025 030 035 040
K

the thermodynamic limit. g=3 we employ the complex notation
The caseo=0.90, shown in Fig. 3, clearly exhibits a ) )
distinctly different behavior. The specific heat is now non- S(x)—S(x) e {12773 e}, (6)

zero in the thermodynamic limit, on either side of the critical

point, and indeed displays the expected cusplike singularityi.€., S(x) - S(y) = Rg S(x)S(y)* ], where the asterisk denotes
The inset confirms that the maximum is convergent Nor the complex conjugate. The spin representation of the Potts
—o. Sinceyy, is still sufficiently close ta}, i.e., the absolute model given by Eq(1) is equivalent to the standard Kro-
value of the exponent is sufficiently small, the location of necker representation, but it has the advantage that the con-
the maximum cannot be distinguished from the critical pointfigurational energy is directly accessible by means of the
unlike the caser=1, where it is expected to occur at a FFT. According to mean-field theory the ferromagnetic Potts

couplingK<K_. model should always show a first-order phase transition for
g>2. For our case ofl=1 and algebraically decaying inter-
B. The three-state Potts chain actions, one therefore expects the mean-field prediction to be

_ ) . correct for sufficiently small values>0 of the decay expo-
The ferromagnetic Potts model provides a particular génpent of the interaction, i.e., there should be a critical vatye
eralization of the Ising model with respect to the numipef  separating first- and second-order behavior. Mean-field

theory provides an important guideline for the interpretation

18 18 — of our Monte Carlo data, so we briefly summarize the basic
161 =14} Lttt mean-field predictions. Following Ref14], we introduce
14 §° 10 b . the probabilityp,(x) that lattice sitex is occupied by the
12t § 06 . Potts statec, 1< «k=<(, and we define a homogeneous scalar
02 fr order parametes indicating a broken symmetry with respect
o OT 5 to Potts statec=1:
0.8 1
1+(g—1)s
061 pl(X)Emlz%,
041 )
0.0 . . : - : p(X)=m,=——, 2=k=q.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 q

K
For a given value ofs the mean-field free-energy density

FIG. 3. Specific heat of the Ising chain with interactions decay-f,,(s) (in units ofkgT) is then obtained as
ing asr ~1 for system sizes & N<65536. With increasingy, a
cusplike singularity appears. The vertical line indicates the critical f _(s)=—K(1+ o) +{[1+(gq—1)s]in[1+(q—1)s]
coupling. The inset shows the peak height as a function of system
size. +(q—1)(1-9s)In(1-s)}/q, (8
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whereK=J/(kgT) denotes the reduced coupling af(d) is 3.0
the Riemann zeta function. Note that the replacemntént

o000

X N =2 °
—(q—1)g 'K transforms Eq(8) from the spin representa- K&i N2
tion into the Kronecker representation. The transition point 23T Ty v Vs
K=K}, from the disordered phase=0 to the ordered £ N2
=1) phas&s:s}vlF follows from standard mean-field argu- ol
ments[14]: s~
B
~ 1.67
(q—1)? q—2 =
K l1+0)=——In(g—1), PR — 9 1.5}
According to Egs.(7) and (9) the distribution function 1.0}

P(m,) for a finite system displays three maxima near the
transition temperatur&),=J/(kgK},z): one atm, = 1/q for
the disordered phase, onerai=(q—1)/q for the ordered 0.5 : : : : ' : ' :
(x=1) phase, and one at,=1[q(q— 1)] for the ordered 0.9296 0.9298 0.93(;0/T’ 0.9302 0.9304
phases with respect to the remaining Potts staies2). ME
Note that all ordered phases appear with equal probability in - £iG. 4. Ratiow, /W, of the weights of the ordered and the
the course of the simulation. For<0.4 and in our case of gisordered phases as a function of temperature for the system sizes
gq=3 these three peaks iR(m,) are indeed located very N=2!1 (¢), 212(+), 213 (O), and 2* (x). The temperature is
close to their mean-field positions. Fer=0.6 the peaks are measured in units of the mean-field transition temperafije.
still clearly separated, but they occur at positions shifted withStatistical errorgone standard deviation, not showare smaller
respect to the mean-field predictions and 8= 0.7 the than the symbol sizes. The horizontal line marks the value of
peaks start to overlap strongly and can only be identified foiWV,/Wjy at the intersection of the three largest systdsee main
very large systemésee below. text).

Although the algorithm introduced in Réfl] is by far the
most efficient one for the simulation of spin systems withsystems are large enough, i.e., the peaks in the energy distri-
long-range interactions, it is not able to deal with first-orderbution are well separated, the raild, /W of the weight of
phase transitions beyond a certain system size. The reasontie ordered phasé/, and the weight of the disordered phase
that like the Metropolis algorithm the Wolff cluster algo- Wy provides a far more convenient indicator of the transition
rithm encounters an activation barrier between states withemperature, because the associated finite-size corrections
and without long-range order, which is set by the energy-decay exponentiallywith N [15,17]. Our result for long-
density gap between the disordered and the ordered phasenge interactions is shown in Fig. 4. The transition tempera-
For a given size of the gap the tunneling time between disture is marked by the intersection bf, /Wy as a function of
ordered and ordered phases, and therefore the required satemperature for the three largest systems. Rer2!! the
pling time, increases exponentially with the system size s@eaks in the energy distribution are not well separated so that
that the attainable system sidis severely limited. This W,/W, is not well defined in this case. Fo=21? the
tunneling problem can be solved by employing the well-curves meet atV,/Wy=1.67(2) as shown by the solid line.
established ideas of multicanonical samplfi§]; however, For 0=0.2 we find a corresponding intersectionVal /W,

the generalization of the cluster algoritit to an efficient =1.252). For nearest-neighbor interactions =2 and
multicanonical algorithm is beyond the scope of the presensufficiently largeq the valuew, /Wy=q is expected to indi-
paper. cate the transition temperatures,17]. Surprisingly, we find

The data we present in the following have been obtaineé much smaller value here, which appears to increaseawith
from histograms of the energy taken at several temperaturefrom Ref.[15] one furthermore expects the curves display-
The data are again conveniently analyzed by the optimizethg the energy density for different system sizes as a function
multiple-histogram methodi6]. For the valuesr=0.2 and of temperature to exhibit an intersection close to the transi-
o=0.4 the Potts chain undergoes a strong first-order phaséon temperature, where the deviations are predicted to be
transition[5] which limits the chain length tdl=2in the  exponentially small ifN. In Fig. 5 this situation is shown for
former case and tdl=2'*in the latter case. We reinvesti- long-range interactions witlr=0.4. A corresponding result
gate chains frorN=21° spins to the respective maximum has been obtained fer=0.2. The energy densities intersect
chain length by taking a few times 4thdependent samples near the transition temperature found in Fig. 4, where the
for each system size and temperature, where a comparisahifts between mutual intersections seem to be compatible
with the finite-size theory of Borgst al.[15] turns out to be  with exponentially small finite-size effects. Still too few data
very instructive. We restrict the detailed presentation to there available for a quantitative analysis of these shifts, but
caseo=0.4; the data forr=0.2 are qualitatively very simi- finite-size effects of the order N/ can be ruled out. The
lar. Near the transition temperature the energy distributiorfourth-order energy cumulani, defined by
function P(E) displays two peaks characterizing the ordered
and the disordered phase, respectidy]. In Ref.[5] the U,=(H*I(H?)? (10
temperature of equal peak height is taken as an estimate for
the transition temperature on the finite system, where thé shown in Fig. 6 for different system sizes as a function of
leading finite-size corrections are of the or@(1/N). If the = temperature, wher@{ is the Hamiltonian given by Eq1).
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FIG. 7. Energy density for=0.2, N=2 (¢) and for o
=0.4, N=21%(+) as functions of the scaling variablg( 8)N in
comparison with Eq(11) for g—ges(o=0.2)=1.25 (solid line)
andq— Qes(0=0.4)=1.67(dashed ling Error bars on the numeri-

measured in units of the mean-field transition temperafijze. -
L o cal data(one standard deviatiprare shown only when they exceed
Statistical errorgone standard deviatigre shown only when they : . L ;
the symbol sizes. The inverse temperat@re 1/(kgT) is given in

exceed the symbol sizes. Within the statistical error the curves foerits of 1/kaT',)
the three largest systems intersect at the same temperature as B MF/-
W, /Wy in Fig. 4.

FIG. 5. EnergyE/(JN) per spin in units of the coupling con-
stant J as a function of temperature for the system si2és
=211 (0), 212 (+), 213 (O), and 2* (X). The temperature is

neighbor interactions, but the present amount of data is too
) N limited to give reliable quantitative evidence for this behav-
These cumulants should also intersect at the transition temgy.
perature in the limitN—c. The data displayed in Fig. 6  For nearest-neighbor interactions and periodic boundary

show the expected tendency, but the finite-size correctiongonditions the energy density asymptotically obeys the scal-
are much larger than those for the weight ratio or the energyhg |aw [cf. Eq. (1) of Ref.[15]]

density (see Figs. 4 and 5, respectivelfFor c=0.2 a cor-

responding result has been found. The systematic shift of the Eq+E, Eq—E, Eq—E, Ing
intersections olJ, for different system sizes is compatible E(B,L)= 5 T 5 tanl‘{ > (B—BIN+ 5 }
with a 1N behavior as anticipated in Rdfl5] for nearest- (11)

170 y y y y y y y y where 8= 1/(kgT) is the inverse temperature afy is the
transition point. It is instructive to compare the scaling form
given by Eq.(11) with the data displayed in Fig. 5. The

1.60 | energies of the disordered phdsgand the ordered phagg
can be read off from the positions of the two maxima of the
energy distribution function. It turns out that the data in Fig.

150 | 5 and their counterpart far=0.2 are in fact consistent with

o Eq. (11) within the error barsprovidedthe number of states
4ok g on the right-hand side of Eq11) is replaced by theffec-

’ tive value qeﬁ(a:0.4)EW0/Wd|B:Bt:1.67 measured in
Fig. 4 at the transition temperature or its countergpi{ o

130 } =0.2)=1.25, respectively. The quantitative comparison of
our data foro=0.2, N=2'3 and 0=0.4, N=2% with Eq.
(11) is shown in Fig. 7. Within the statistical errors, the

1.20 . L . : . : . : agreement is excellent except for larger values of the scaling

0.9296 0.9298 0.9300 0.9302 0.9304

variable (8— B;)N. These deviations are due to the fact that
Eqg. (11) holds asymptotically only for sufficiently large sys-
FIG. 6. Fourth-order energy cumuladt, as a function of tem- tems. For finite syste_ms additional finite-size corrections en-
perature for the system sizés=2%1 (0 ), 212 (+), 213 (), and (€ through the residuaN dependence ok, E,, and
214 (x). The temperature is measured in units of the mean-fieldlefi(@), Which appear as parameters in Ef1). Figure 7
transition temperatur@®,. . Statistical errorfone standard devia- demonstrates that the finite-size effects in the three-state
tion) are shown only when they exceed the symbol sizes. ThéOtts chain with periodic boundary conditions and long-
curves do not have a common intersection within the displayedange interactions can be interpreted in terms of the Borgs-
temperature range indicating much larger finite-size effects than ifotecky theory[15] for the nearest-neighbor Potts model in
Figs. 4 and 5. higher dimensions for an effective number of staigg o).

T/Tye
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FIG. 8. Energy distribution functio®(E) for ¢=0.7, T/T};
=0.8095, and system sizds=2 (¢ ) andN=27(+). The typi-
cal double-peak structure remains invisible f8,2'® spins but
sharpens iN is increased at fixed.

The physical meaning dfe«( o), however, remains unclear.
The proof of Eq.(11) also requires the assumption tlopis
sufficiently large[15], so q=3 may not be sufficient for a
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for a given value ofo is essentially a matter of attainable
system sizdsee Fig. 8 soo.>0.7 is the only safe conclu-
sion here.

IV. CONCLUSIONS

The combination of the recently developed cluster algo-
rithm [1] for systems with long-range interactions with the
fast Fourier transform for the calculation of the configura-
tional energy leads to a Monte Carlo algorithm with a very
high efficiency. In particular, the FFT allows one to extend
the attainable system sizes by two orders of magnitude in
comparison with other approachésd. Ref. [5]). Histogram
interpolation methods then allow the investigation of thermo-
dynamic properties of these systems with unprecedented
resolution. By construction the algorithm can only deal with
first-order phase transitions up to a limited system size. In
order to avoid this limitation the algorithm must be general-
ized to include multicanonical sampling. Here, we have dem-
onstrated the potential of the algorithm for the Ising chain
and the three-state Potts chain with algebraically decaying
interactions. For completeness, it is mentioned that for sys-
tem sizes that are not integer powers of two a considerable
gain can also be obtained by performing the discrete Fourier
transform via, e.g., a prime-factor algorithm.

For the Ising chain we have investigated the finite-size

guantitative comparison. On the other hand, numerical invessehavior of the specific heat in the classical regime dor
tigations have shown that thg=5 nearest-neighbor Potts =0.25 and in the nonclassical regime for=0.9. In the

model ind=2 [17] and theq=3 nearest-neighbor Potts

model in d=3 [18] follow the theory of Ref.[15] very
closely despite the small values @f Further analytical and
numerical studies are required to settle this question.

former case the specific-heat behavior is essentially mean-
field-like, i.e., the expected discontinuity in the specific heat
at the critical temperature in the thermodynamic limit builds
up as the system size is increased. On the other hand, the

We close our discussion of the three-state Potts chain witbhoice 0=0.9 is expected to yield a negative specific-heat

a brief summary of our results far=0.6, 0.7, and 0.75,
which have been studied with reduced statistics® (ib@e-
pendent samples for each system size and temperaiure
valuec=0.6 is still located in the first-order reginig], but
in order to obtain a well-defined weight ratd, /W, system

exponent, i.e., a cusp singularity should appear with increas-
ing system size. Our numerical data confirm this behavior as
well and clearly show the different shapes of the specific-
heat curves in the two cases.

The three-state Potts chain is expected to show a first-

sizes of N=26 Potts spins are required, although theorder phase transition far<o., where our results indicate
maxima in the energy distribution are well separated alreadyhat ¢.>0.7. Foro=0.2 ando=0.4, for which theq=3

for N=214 We have performed simulations fid= 2% up to

Potts chain displays a strong first-order phase transition, our

N=2"at four to six temperatures for each system size. Eveqata confirm the Borgs-Koteckgcenario of the first-order
for N=217 the finite-size corrections are too large to identify transition in Potts models with nearest-neighbor interactions
an intersection of the energy densities as accurately as dig? higher dimensions, provided the numberof states is
played in Fig. 5. Data acquisition fa>2'" is strongly replaced by the effective number of statesgeq(o)
hampered by the energy gap so that we refrain from discuss= WO/Wd|B:Bt<q’ which also enters the finite-size scaling

ing our data folo= 0.6 in any more detail. In contrast to Ref. form of the energy density near the transition temperature.
[5] the valueoc=0.7 of the decay exponent can undoubtedlyFor o=0.6 the same behavior can be confirmed only on a
be identified as a member of the first-order regime. For syssemiquantitative level, because much larger systems must be
tem sizesN=2'° the energy distribution function displays investigated in order to obtain sufficient resolution. The
the typical double-peak structure, which becomes sharper agechanism that leads to the reduction of the effective num-

the system size is increased at fixed temperature. We illusser of states and the physical interpretatiomgf( o) are not
trate this in Fig. 8, where the data f&(E) are shown at known.

T/T},-=0.8095, which is close to the transition point. The
same analysis has been repeated der0.75 and system
sizes up toN= 29 spins. AlthoughP(E) also develops a
plateau similar to the one displayed in Fig. 8 foe=2%° no We gratefully acknowledge helpful discussions with T.
double-peak structure could be resolved uplte2°so that  Neuhaus and W. Janke, and stimulating comments by K.
o=0.75 may already belong to the second-order regime oBinder. M.K. also gratefully acknowledges financial support
the three-state Potts chain with long-range interactionshrough the Heisenberg program of the Deutsche Fors-
However, the detection of a double-peak structuré (i) chungsgemeinschatt.
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