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Accurate numerical results are presented for the three-dimensional equivalent-neighbor model on a cubic

lattice, for 12 different interaction rangésoordination number between 18 and 25Dhese results allow the
determination of the range dependences of the critical temperature and various critical amplitudes, which are
compared to renormalization-group predictions. In addition, the analysis yields an estimate for the interaction
range at which the leading corrections to scaling vanish for the Spidel, and confirms earlier conclusions
that the leading Wegner correction must be negative for the three-dimengieaaést-neighbdising model.
By complementing these results with Monte Carlo data for systems with coordination humbers as large as
52 514, the full finite-size crossover curves between classical and Ising-like behavior are obtained as a function
of a generalized Ginzburg parameter. Also, the crossover function for the effective magnetic exponent is
determined[S1063-651X99)07305-5

PACS numbe(s): 64.60.Fr, 75.40.Cx, 75.10.Hk, 05.70.Fh

[. INTRODUCTION creasing interaction range, increasingly longer series are re-

quired to achieve a certain degree of convergence. Second, it

Over the past decades, several techniques have been @ppears that the maximum coordination numbers examined
plied to investigate how the critical behavior of systems deRY this method are not large enough to observe the

pends on the range of the interactions. Before the gener%symptotic deviations from the mean-field behay@y Al-

acceptance of the concept of universality, it was not at alt : ; . ; .

clear that the critical properties of all systems with a one—hat’ especially in three_ dimensions, no substantial progress
. toward larger coordination numbers has been pursued. This

component order parameter and ferromagnéte, attrac- s hrohably caused by the fact that other techniques are also

tive) interactions with afinite range are described by the plagued by serious difficulties upon increase of the interac-

Ising universality class. Since it was realized that most intertion range. For example, Monte Caf®lC) methods in gen-

actions in nature are not necessarily restricted to the nearestal suffer from a serious decrease in efficiency if the number

neighbors, one thus tried to determine the properties of modbsf interactions increases. Mon and Bind&l studied two-

els with a larger coordination numberAnother motivation, dimensional(2D) spin systems with a maximum coordina-

which plays a more important role in the present work, is thefion numberg= 80, compared tg=12 and 18 for quadratic

fact that in the limit of infinite interaction range one recoversand triangular lattices, respectively, in REf]. Furthermore,

the classical or mean-field model. Since the latter model caH'ey derived theR dependence of critical amplitudes from

be solved analytically, whereas no exact solution has beeﬁcal'ng considerations. However, it still proved difficult to

found for three-dimensional systems with a finite interactionreach the asymptotic regime where the predictions were ex-
y ected to hold. In a subsequent pap8r Luijten, Blote, and

rangeR, it is of interest to see how the crossover takes plac%inder confirmed the predictions of Ref3] from a
from finite to infiniteR. A natural choice for the examination renormalization-grougRG) analysis, and revealed the exis-
of this crossover is the so-called “equivalent-neighbor” tence of a logarithmi® dependence in the shift of the criti-
model, introduced by Domb and Daltph]. In this generali- cal temperature. Thanks to the advent of a dedicated MC
zation of the Ising model, each spin interacts equallyalgorithm for long-range interaction§], systems with large
strongly with all its neighbors within a certain distance, coordination numbers could be simulated without loss of ef-
whereas all remaining interactions are equal to zero. In Reficiency. Thus, in the same paper the critical properties were
[1], series expansions have been used to investigate two- amétermined for quadratic systems with coordination numbers
three-dimensional systems with interactions extending up tep to q=436. It was explicitly verified that all examined
the third shell. On a simple cubic lattice this corresponds tasystems belong to the 2D Ising universality class, and the
26 neighbors, and on a face-centered-cubic lattice even to 4zredictedR dependence of the critical amplitudes could in-
neighbors. While a general trend toward mean-field properdeed be observed, as well as the approach of the critical
ties, especially for the critical temperature, is clearly visibletemperature toward its mean-field value. It is the purpose of
from these results, several problems emerge. First, with inthe present work to extend this analysis to three-dimensional
(3D) systems. Apart from the possibility to verify the pre-
dicted range dependences in three dimensions, a precise
*Electronic address: erik.luiten@uni-mainz.de knowledge of the critical properties of spin models with an
TAddress where correspondence should be sent. extended range of interaction also serves a further purpose.

ough Ref[1] was published over 30 years ago, it appears
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That is, it allows the study of two forms of crossover in theseevant field are analyzed, and the related variation ofghe
systemsFinite-size crossoveonly pertains to finite systems coefficient in the Landau-Ginzburg-WilsathGW) Hamil-

at the critical temperature, and denotes the transition frontonian is obtained. This permits an estimation of the interac-
the classical regime, where the interaction range is at least ¢fon range for which this coefficient coincides with its fixed-
the order of(some power gfthe system size, to the nonclas- point value, and confirms that for the three-dimensional
sical (Ising) regime, where the system size is much largernearest-neighbor Ising model it does not lie between the
than the interaction rang@hermal crossoveron the other ~Gaussian fixed point and the Ising fixed point.

hand, occurs when the temperature is moved away from its The outline of this paper is as follows. In Sec. II, | briefly
critical value. The interplay between the rangeof the in-  Summarize earlier predictions for the range dependence of
teractions and the decreasing correlation lergtietermines ~ critical amplitudes, and discuss the shift of the critical tem-
the location of the crossover to classical critical behavior. IfP€rature as a function of interaction range. Section il gives
Ris small, the temperature distance to the critical temperadetails of the Monte Carlo simulations. Furthermore, the de-
ture T, must be made rather large befagf@ndR are of the ~ termination of.the critical temperatures is discussed as well
same order of magnitude. In such systems, no crossover & the analysis of the range dependence of corrections to
mean-field-like critical behavior can be seen, because ongcaling. The variation of critical amplitudes as a function of
has already left the critical region. However, for laRdt is  interaction range is ;reatgd in Sec. IV, and. finite-size cross-
very possible to observe both Ising-like and classical criticaPVer curves are obtained in Sec. V. I end with some conclud-
behavior. This dependence on bath(T—T.)/T, andRis  ing remarks in Sec. VI.

expressed by the Ginzburg criterigf6]. Both variants of

crossover were studied for 2D systems in RETs8], which [l. SUMMARY OF RENORMALIZATION-GROUP

showed that accurate information on crossover scaling func- PREDICTIONS

tions can be obtained by numerical techniques. In the light of ! )

a comparison to experimental results on the one hand and N the absence of an external field, the equivalent-
theoretical calculations of crossover scaling functions, on thgelghbor or medium-range model is defined by the Hamil-
other hand, it is extremely relevant to investigate the 3D casiPnian

as well. Here | present the results of MC simulations of

systems with interactions up to a distance/a# lattice units HIksT=—, K(ri—1)s;S;, 1)
(13th shell, which corresponds to 250 equivalent neighbors. (j)

Although larger interaction ranges do not diminish the effi-
ciency of the MC algorithm, an accurate determination of thevheres= * 1, the sum runs over all spin pairs, and the spin-
critical properties for largeR is hampered by a different Spin coupling is defined a&(r)=J>0 for |r|<R, and
effect. Indeed, such a determination is only possible in thd(r)=0 for |r|>R,. I first summarize the findings of Ref.
Ising limit, which implies that thesmallestlinear system [4] for theRdependence of critical properties, as obtained by
sizes must be of the order bf,,= O(R¥“*~ ) [4], whered a RG analysis. Although at first sight this approach is not
indicates the dimensionality. Thus fdr=3 the smallest al- Vvery different from a simple scaling analysis, it offers several
lowable Systems contain of the order B'fz SpinS, and one advantages. The formulation in terms of two Competing fixed
can only hope that this relation exhibits a prefactor considPoints provides a clear insight into the crossover mechanism:
erably smaller than unity. for largeR the coefficient of thep* term in the LGW Hamil-
The results of the MC simulations are then used to detertonian is suppressed with respect to the quadratic term in this
mine the finite-size crossover functions for several quantiexpression. Thus the renormalization trajectory passes close
ties. It should be noted that for a full mapping of these func-to the Gaussian fixed point, and the critical amplitudes pick
tions very large coordination numbers are required: Up a specifilR dependence which is determined by the flow
simulations have been carried out fpup to 52514. Yet an near this fixed point. For any finit®, the system will still
independent determination of the critical temperature oflow to the neighborhood of the nontrividking) fixed point
these systems is not required, but can be obtained by excf. Fig. 1 in Ref.[4]). However, theR dependence reveals
trapolation. It suffices thus to study modekt<(40) system Some aspects of the Gaussian fixed point which are not nor-
sizes for these interaction ranges. The determination of thefally seen in Ising-like systems. For example, near this fixed
mal crossover functions will be the subject of a future papeoint the thermal exponent and the leading irrelevant ex-
[9], as it requires calculations which are actually comple-Ponenty; assume the values 2 and-4l, respectively, which
mentary to those of the present wdreesults for the suscep- coincide ford=2. Such a coincidence would lead to loga-
tibility can be found in Ref[10]). Indeed, for a determina- rithmic factors in the scaling functions, were it not that the
tion of the critical properties by finite-size scaling and for theGaussian fixed point is unstable fd=2. In contrast, ther
mapping of the finite-size crossover functions, all data musélependence of scaling functions indeed allows the observa-
lie within the finite-size regime, whereas for thermal cross-tion of such logarithms. The occurrence of these depen-
over scaling care must be taken that the data lie outside thigences is not easily found from a scaling analysis.
regime. For the magnetization density and the magnetic suscep-
Two further questions that are addressed in this papelibility x the range dependences
concern the corrections to scaling. In the first place, the range
dependence of the thermal finite-size corrections is shown to mectFR(ZAA=DI(4=d), 2
be in very good agreement with the predictions of Réf.
Second, the finite-size corrections due to the leading irrel- xoct” YR2AI=9)/(4-d) )
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have been obtained, whefeand y denote the standard Ising critical exponents. Furthermore, the finite-size scaling behavior
of these quantities was derived as

m= Lyh*dR(3d*4yh)/(4*d)f(sl)(tLYtR*2(2>’rd)/(4*d),'[:||_YiR*4yi /(4=d) hLYnR(3d—4yp)/(4=d)y (4)

x =L AR2BA=4y)(4-d)F () g R~ 22~ d/(4=d) | VR=4 /(4= ) || YnR(3d—Ayp)l(4-d)), )

Heref() denote universal scaling functiong,andy; are the ~ €xpansion in powers oR, a formulation in terms of the

thermal and leading irrelevant exponents introduced abové0ordination numbeq implies such a shift as well. At even

andyy, is the magnetic exponerfn. andh are the irrelevant h|gher order, one findgat ratlona_l dlmenS|o_naI|t|esadd|—

and magnetic scaling fields, respectively. tional InR dependences, as was first rgcognlzed by Thouless
Also the shift of the critical temperature with respect to its [2] (Th|s_ quk only came to the attention of the ay_thor after

mean-field value was calculated in Re#]. However, this the publication of Ref[4].) He has studied a modified form

treatment left several questions unanswered, which | wiIIOf the Ising model, where the system is divided into cells

consider here in some more detail. A clear understanding o"l‘"t.hln which _t_he Spin-spin interactions are constant. The
shift of the critical temperature as a function of the cell size

the nature of this shift is of particular significance for the: h lculated b f perturbation th In th
crossover scaling, since one has to calculate the critical ten}s then caicuated by means ot perturbation theory. In three
imensions, the leading-order result of Brout is recovered,

peratures for systems with large coordination numbers b?\?I | hift tional to a/ In th t-to-loadi
means of extrapolation. It was derived that under a renormaf@Mely. a Shilt proportional to @/ In the next-to-leading

ization transformation the contribution of th& term to the term a logarithmic dependence on the coordination number

guadratic term in the LGW Hamiltonian leads to a range-
dependent shift of the reduced temperatiteg T—T,)/T;.

is obtained,

Ford=2 it was found in Ref[4] that this shift has the form a In

4] TC—TQ"anl+a2—g+-~-, ®

q
Ccot+ciInR
TC_TQ"F:%JF..., (6)
R whereas fod=2 the logarithm emerges already in the lead-
ing term;

wherec, andc; are constants. This expression has also been g
confirmed numerically; see Fig. 4 in R¢#]. Interestingly, Inq

this result was recovered in R¢fl1], where, in addition, it T~ TMF=b—+. ... (9)
was found that the constant has a universal value 2/7
~ —0.6366. Indeed, this agrees with the valu®.624 (7)
obtained from an analysis of the available data fo=sB®  The latter expression is in perfect agreement with &,
=<70. (The somewhat lower value 0.609, corresponding tovhereas the logarithm in the higher-order term in @ was
the coefficients quoted in ReB], can be explained from the not found in Refs[4,15]. Since the logarithms in Eq$8)
influence of the data point &%=16.2) However, the result and(9) apparently follow from the same mechanism, and the
for general 2<d<4, a shift proportionaR‘Zd’(“‘d), clearly factor InRin Eq. (6) is specific for the two-dimensional case
contradicts the results obtained from systematic expansiorfghere all higher-order terms in the LGW Hamiltonian are
in terms of the inverse coordination numbgut see the equally relevant I conclude that there must be two different
remarks at the end of this sectjorBrout [12] obtained, to  sources for the logarithms, which happen to yield the same
leading order, a shift of the form d# 1/R%. This result was €effect ind=2. Indeed, the logarithms in Eq&3) and (9)
recovered in Ref[13] and by Dalton and Domip14]. As arise from counter terms canceling the infrared divergences
indicated in Ref[15], such an additional and actually domi- in the perturbation expansion. This appears to be intimately
nant shift can also be obtained from the RG analysis byinked to the infrared divergences occurring in massless
allowing for a(spherically symmetriclower-distance cutoff —super-renormalizable field theories at rational dimensionali-
a in the spin-spin couplind<(r). In momentum space the ties[16]. Actually, the treatment of Ref4] doesaccount for
coupling then takes the form logarithmic factors ind=3, although at much higher order.
For systems with a large interaction range, the first part of
~ 2 d di2 the renormalization trajectory passes close to the Gaussian
K(k)=c(m) Jd/Z(kR)_C(ﬁ) (k_a) Jarz(Ka), (7)  fixed point. Near this fixed point, only the* term is rel-
evant ford=3 and all terms¢" with n>6 are irrelevant.
wherec=JRY, andJ, is a Bessel function of the first kind of The marginal character of thg® term produces a logarith-
order v [cf. Eq. (A3) in Ref. [4]]. The second term in this mic range dependence in the shift of the critical temperature.
expression yields an additional contribution to the quadratitHowever, since this logarithm stems from the term quadratic
term in the LGW Hamiltonian, which is precisely theR/  in ¢° and the field¢ is rescaled by a factdR ™1, this con-
shift obtained by Brout. Furthermore, it contributes to thetribution is extremely weak. An actual calculation shows that
k-dependent part of this term, which, via the rescaling of thet leads to a shift proportional to R/R*®xIn g/cP. In addi-
field (see Ref[4]), leads to a RY"? shift. Note that, upon tion, the ¢® term will yield a correction of ordeR™8. How-
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ever, it may be added that it is generally expedted that TABLE I. The range of interactioR,,, the corresponding num-
such high composite operators have very little influence neaper of neighborsj, and the effective range of interactiéhfor the
the Ising fixed point. 13 neighbor shells examined in this work.

Let me now briefly return to the leading shig 24/(4~®
obtained in Ref[4]. It is instructive to note that this shift is Shell R, q R
consistent with crossover arguments first given by Riedel

and Wegnef18]. Indeed, the Ginzburg criterion states that a ; ; 12 §l
crossover from classical to nonclassical critical behavior oc- 3

curs as a function of the crossover parameter?/2RY. In s s 26 g
terms of a more general formulation, this parameter is writ- 4 4 32 3
ten ast?/g, with ¢=(4—d)/2 andg=R~ 9. The crossover 5 5 56 99
exponenip (not to be confused with the field), introduced 6 6 80 flgl
in Ref.[18], is just the exponent4d of the relevant opera- 40
tor driving the system away from the Gaussian fixed point 7 8 92 %
(i.e., theg? term in the LGW Hamiltonia)) divided by the 8 9 122 354
thermal exponeny,=2. Then, on general ground48,19, 9 10 146 474
the shift of T is predicted to scale ap/ o R‘Zd’(4‘d?. This 10 11 170 606
is another indication that the shift terms in E§) originate 85
from a different, complementary, mechanism. In addition, it 1 12 178 &
is noted that the formulation in terms of the crossover expo- 12 13 202 &0
nent ¢ can be carried even furthdsee, e.g., Ref[20]). 13 14 250 1146

Indeed, for any thermodynamic quant®ywhich is near the
Ising critical point proportional t@*, the combined depen-
dence org andt will be

Several tests have been carried out to check the imple-
PocgXe™ X/ ¢px) (100 mentation of the algorithm. FdR% =1 exact resultgfor L
=3 and 4 and accurate MC data are given in Rgfl], and
wherexg denotes thé dependence oP near the Gaussian for Rﬁ1=2 and 3 alternative MC programs were available,

fixed point. In terms ot andR, this can be written as allowing the verification of the data for various system sizes.
| have carried out very long Monte Carlo simulations {10
Poc RII—Xa) dpx1 (1)  and 16 Wolff clusters, respectivelyfor L=4 and 20 for

these ranges, at couplings clos&tgR). On the other hand,
which yields, e.g., meR2(B-12/G4-dtF  and y  if one takes into account all lattice symmetries, an explicit

o R2AA=1/(4=dt =7 recovering Eqs(2) and (3). summation over all states is feasible for=3 (22'~1.34
x 108 configuration® For this case, | have carried out simu-
Il. MONTE CARLO SIMULATIONS lations for all ranges £R2=<14. No sy;tematic deviat?ons
_ _ ) could be observed. The actual simulations were carried out
A. Simulational details for systems up td.=200 (8 000 000 spins the number of

| have carried out extensive simulations of 3D simple cu-Samples was chosen depending on the system size. As a rule
bic lattices consisting of X L X L lattice sites with periodic  Of thumb, the amplitude ratiQ (to be defined belopwhad a
boundary conditions. Each spins interacts equally withlgits relative accuracy on the permille level for the largest sys-
neighbors lying within a distanc®,, i.e., the system is tems.
described by the Hamiltoniail). For the simulations | have
used the cluster MC algorithm introduced in Rg8]. Its B. Determination of the critical temperatures
application to the present case is described in more detail in
the appendix of Ref[4]. In order to avoid lattice effects | N order to analyze the range dependence of several quan-
formulate the analysis in terms of an effective interactiontiti€S, an accurate knowledge of the critical temperature for
rangeR [3], each single vgluc_a Ry |s_reqU|red. The critical tgmperature_s
of systems with interaction ranges corresponding to the first
13 neighbor shells have been determined using the amplitude

2
J.Zi (ri=rp°Kj; ratio Q_=(m?)2/(m*)_ . For the 3D Ising universality class
RP=— and a cubic geometry with periodic boundary conditions, this
E Ki; quantity has, in the thermodynamic limit, the universal

j#i critical-point valueQ=Q,=0.6233 (4)[21]. As mentioned
in Sec. |, an accurate determination of the critical point is
> Ir—r|?2 with |r;—r|<Rp. (12)  Mainly hampered by the requirement that one must reach the
J#i Ising limit, i.e., L y,~R*. For the inner shells, the smallest
system sizes that could be used in the finite-size analysis
It is easily seen that IimﬁxR2:3R§1/5. Table | listsR,, 4,  were of the same order as in an analysis of the 3D nearest-
and R for the first 13 neighbor shells which have been ex-neighbor Ising model, i.el,=5. For the remaining shells,

amined in the present work. the smallest allowable system sizes, as determined from the

o -
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TABLE Il. The amplitude ratioQ and critical coupling<., for the various ranges of interaction studied in
this paper. The numbers in parentheses denote the errors in the last decimal places. The rBép#4 1@D
nearest-neighbor Ising modaltem from Ref[21]. The fourth column shows the estimates Kar obtained
with Q fixed at the value found in the same wotthe error margins include the uncertainty @. For
comparison, the estimates fir, given in Ref.[1] are listed as well.

RA, Q Ke Ke K. [1]
1 0.6233(4) 0.221654610) 0.22171
2 0.6238(8) 0.06442235) 0.064422Q5) 0.06450
3 0.6233(8) 0.0430381(4) 0.0430381(4) 0.0432
4 0.6224(5) 0.0343266812) 0.0343268515)

5 0.6216(14) 0.018929097) 0.018929154)
6 0.621(3) 0.0130710%7) 0.0130711%3)
8 0.617(4) 0.011302028) 0.011302133)
9 0.608(10) 0.0084469112) 0.008447034)
10 0.614(11) 0.007027989) 0.007027984)
11 0.61(2) 0.0060166114) 0.006016635)
12 0.624(11) 0.005741077) 0.0057411Q4)
13 0.618(8) 0.005046663) 0.005046662)
14 0.600(14) 0.004064194) 0.004064222)

quality of the least-squares fits, followed the restrictlon

former describes the numerical data very well. Deviations for

=R* rather closely. Only for the outermost shells could thisrelatively smallq are not disturbing, since the RG predic-
criterion be slightly relaxed. Thus, the accuracy of the fittions are only valid in the limit of large interaction ranges
results decreases considerably with increasing interactioand the smally data may also exhibit some lattice effects.
range, because the finite-size data cover a much smaller Of particular interest is also the range dependence of the
range of system sizes, and all the accurate results for smatbefficientb, in Eq. (13), because this coefficient is propor-
system sizes have to be excluded from the analysis. Thional to (u—u*)/u*, whereu is the coefficient of thap*
least-squares fits were made using the finite-size expansiagarm in the LGW Hamiltonian and* is its fixed-point value
for Q given in Ref.[21], [22]. As such,b; yields information on thdR dependence of
the size and sign of the corrections to scaling that appear in
the Wegner expansiof23]. This expansion describes the
(13) singular corrections to the asymptotic temperature depen-
dence of thermodynamic quantities close to the critical point.
For example, ifu/u* >1 the leading coefficient in the ex-
pling, and thea, andb; are nonuniversairange-dependent pansion for the su;cg_ptibility will haye a negative siglj, and
hence the susceptibility exponeptwill approach the Ising

coefficients. The exponentgs andy; are the thermal and :
leading irrelevant exponents, respectively. They are approxi\-,’alue fromabove cf. alsq Ref[24]. On the ofcher harjd, If'
lies between the Gaussian and the Ising fixed point, i.e., 0

mately given byy,=1.587 (2) andy;=—-0.82 (6)[21],
where the latter exponent was kept fixed in all analyses.

Qu(K) = Q-+ a5 (K~ KLY+ ap(K—K) 2Lt -

+byLYi+b,L%it ...,

whereK denotes the spin-spin coupling, the critical cou-

Table Il shows my resulting estimates fQrandK. In the 0 )
first place, one notes that all systems belong, within the sta- 43 | Nﬁ‘g‘;ﬂ‘gg}c‘gﬁ ™ _
tistical accuracy, to the 3D Ising universality class. The criti- 40 I Linear dependence -
cal couplings for the first three shells are in agreement with £ 35 r P
the old series-expansion results of Domb and Dalton. In or- 2 30 | -
der to improve the accuracy of the results, | have repeated allg 5 | -
analyses withQ fixed. - 20 |

The results of the finite-size analyses permit some addi—g 156
tional tests of the scaling predictions of Reff3,4]. Indeed, E
the range dependence of the thermal coefficeenin Eq. 10
(13) should take the same form as the first argument of the 5

universal scaling function§4) and (5). Upon expansion of 0
such a scaling function one finds a temperature-dependen
argument of the form atLYtR 2@t /4=~ _7[(K
—K)/KJLNMR 2= d/(4=d) " \where a is a constant that
does not depend ofR. Thus a;=—aR™ 2@t d/(“-d/K

0 50 100 150 200 250 300
Coordination number ¢

FIG. 1. The leading thermal coefficient in the finite-size expan-
sion for the amplitude rati®, as a function of coordination num-
~R™ 2@ /(4= dRd_ R2652_ 90884 Figure 1 shows, asa  ber. The dashed curve shows the RG predictiaid in the large-
function of the coordination number Both a curve~q®8 g limit) of Ref. [4]. In order to appreciate the quality of this pre-
and a reference line with slope 1 are shown; evidently theliction, a linearq dependence is shown as well.
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10 . . TABLE Ill. The leading correction amplitudes appearing in the
] Wegner expansion for the magnetizatioh<(T., a,), the mag-

> -—E;"‘P""@ netic susceptibility T>T., a,) and the squared correlation length
< a % (T>T., az), for three different lattice structures. The results for
1k / . 5 an were taken from Ref(29], and the results foa, andag from
e = Ref.[28]. The (slight) nonmonotonicity as a function of coordina-
= T tion number in the latter two quantities, already noted in R2d],

is probably not significant, and also appears to depend on the

0.1 E adopted choice for the susceptibility exponerthe present results
correspond toy=1.237). The results fom,, correspond to the
somewhat too high valug=0.3305, which can probably account
for the difference with the resubi,,~—0.203 (for the sc latticg
0.01 : : obtained in Ref[38].

MC e~
o Asymptotic prediction -

2

R” sc (Q=6) bce @=8) fcc (q=12)

FIG. 2. Range dependence of the leading irrelevant field, cf. the,, —0.256 —0.240 -0.234
second argument on the right-hand side of E4). Note that the a, ~0.108 ~0.119 ~0.114
result forR=1 is not shown, because it has the opposite sign. The, , —0.363 —0.217 —0.222
dashed line represents the asymptotic expresjorR™4i/(4=9, ¢
as discussed in the text.

The ratioK,/K,,, was set to 0.4, which in hindsight proved
<u/u*<1, the sign of the first Wegner correction will be to be somewhat too strong for fully suppressing the leading
positive andy will approach the Ising value from below. In corrections to scaling. A newer estimate yield&g,/K
order to extract thdk dependence ofil from the coefficient —q.25 (2) as an optimal choicE26]. Further studies of
b;, the RG scenario of Ref4] has to be reconsidered. It can these systems were presented in Ref], where the cou-
be shown that in the largR-limit u=u,/R*. Becausel,  pling constant ratio was systematically varied in order to
will exhibit a remaining, wealR dependence for smaR, I eliminate the leading finite-size corrections. This lead to an
write it asug(R). The first part of the RG transformation is estimate ofK 5,/K,,,~0.27. Both estimates turn out to be in
just a scale transformation in the neighborhood of the Gaussgjuite good agreement with my prediction fgeneralinter-
ian fixed point, which cancels the factorRf/in u. The *  action profiles. Indeed, as follows from Ed2), an effective
coefficient can now be written asio(R)=u*+[uo(R) interaction rang&k?=1.56 can be obtained by, e.g., nearest-
—u*], which close to the Ising fixed point scales @  neighbor and next-nearest-neighbor interactions with
—uy=U*+[Up(R) —u* JLYIR™ /4= [4]. Thus the coef- K,,/K,,=0.64 or by nearest and third-neighbor interactions
ficient b, in Eq. (4) is equal toc[U(R)—l]R*‘Wi’(“*d), with K3,/K,,=0.29. This also explains the finding of Ref.
whereu(R)=uy(R)/u*, andc is a nonuniversal proportion- [21] thatK ,, had to be chosen much larger th&g, to reach

ality constant. For larg&, u(R) should go to a finite con- the same effect.

stant, and henceb, is expected to be proportional to In this context it is of interest to review some series-
v A - A " . expansion results for the leading correction amplitudes for
R™#i/(4=9) in this limit. Just as for most other quantities, it b g P

e . ) . the magnetization, the susceptibility, and the correlation
is difficult to accurately determinb, f_or large interaction _length on simple cubi¢sd, body-centered-cubitbcd, and
ranges, becaus_e the small system sizes have to b_e 0m'ttgiﬂe—centered—cubidcc) lattices. Liu and Fishef22] con-
from the analysis. Neverthgless,_the results _shown in Fig. luded that the leading correction amplitudesraegativefor
appear to belvell compatible with the predictRadepen- the sc and bcc lattices, and gave various arguments that this
dence, withc[u(=) —1]~—0.14 (the latter estimate relies 3150 holds for the fcc lattice. Furthermore, they argued that
on the assumption that the asymptotic limit has actually beefhese amplitudes should vanish monotonically with coordi-
reached for the largest ranges shown in the figudafortu-  nation number§=6, 8, and 12, respectivélyThis is indeed
nately, no estimate foug(R) for either R=1 (nearest- confirmed by the fact that the data in Fig.nnotonically
nEighbor ISing mOdQlor any otheR is known to the author, approach the predicted asymptdﬂ(dependence, apart from
so that the overall constaet[which would have permitted statistical scatter. However, from the fact that for the sc lat-
the calculation oflig(R) from by(R)] cannot be determined tice with q=18 (R?=$) the finite-size corrections have al-
(cf. also Ref[25)). _ . _ ready changed sign, it would be expected that the correction
On the other hand, an estimate of the interaction rang@mplitudes for the fcc lattice are close to zero. In contrast,
whereu(R)=1 does not depend ar) and so it can be pre- both the results of George and R¢BB] and Liu and Fisher
dicted with a reasonable accuracy that this condition is ful{29] (see Table I} exhibit a relatively weak variation with
filled at R>~1.56. The interest of this point lies in the fact coordination number. On the basis of these results one would
that the leading corrections to scaling should vanish theregertainly expect the leading corrections to vanish at much
which in principle allows a much more accurate determinahigher coordination numbers. Thus | conclude that, apart
tion of critical properties from numerical simulations. This from the dependence ap(or R), the value ofu has a rather
approach was used for the first time in Rg21], where, strong dependence on the lattice structure as well. For com-
among others, a spifi-model with nearest-neighbor cou- pleteness, it may be remarked that the analyses of the Monte
pling K, and third-neighbor coupling, was simulated. Carlo data for the magnetization density and the susceptibil-



PRE 59 CRITICAL PROPERTIES OF THE THREE- ... 5003
ity have revealed the same monotoRalependence of the 1.07
leading correction amplitude as that of the quankifydis- 106 | MC =
: Dalton and Domb —
cussed above. Thouless -
105 Fit -

Phenomenological -

Jleat
IV. RANGE DEPENDENCE AT CRITICALITY & 03
A. Critical temperature oo |
The estimates for the critical coupling as given in Table Il o1 |

can in principle be used to verify the predictions for the shift 1ol =
of the critical temperature. Because lattice effects are still 1.00 . . . .
relatively strong for the interaction ranges studied here, the 0.00 0.05 010 013 0.20 0.25
coordination numbeg, appearing in, e.g., E¢8), cannot be R

used directly. It is expected that these lattice effects disap- rig. 3. Numerical results for the inverse critical temperature,
pear when theeffectiveinteraction rangeR is used instead.

: T ! normalized by the mean-field critical temperature, as a function of
Thus the predicted shift is rewritten as

the inverse squared interaction range, together with the series-
expansion results of Dalton and Dorib4] and Thoules$2]. The
dashed and dotted lines indicate the results of the least-squares fits
discussed in Sec. IV A, where the dotted line is the phenomenologi-
cal description in which lattice effects have been ignored.

_ Cop C; CrtczInR
T, 1EqKC:1+%+—+—+---,

RS RS (14

where | have used the inverse critical temperature to conform B. Magnetization density

to the earlier literature. Unfortunately, it turns out that even In the Monte Carlo simulations, | have sampled the abso-
in terms of R the numerical data exhibit remarkably strong lute magnetization density|m|). The dependence of this
scatter forRﬁ]s 10, making it impossible to obtain a sensible quantity on both. andR is given by Eq.(4), from which the

fit for the smaller interaction ranges. On the other hand, fofollowing finite-size expansion can be derived,

an> 10, Eq.(14) describes the data very well. Because of
the small variation of the IR term over the fit range, it was
not possible to discern the coefficiemtsandcs. Thus | have
omitted c, altogether, which implies that this coefficient is
absorbed into an effective value @f. The resulting fit
yielded the values;=0.498 (2), c,=—5.7 (7), andc,
=7.1 (9). Clearly, the last two estimates suffer from the For each single value &, | have fitted the numerical data to
fact that(for the available values @®) the last two terms in  this expression. The critical couplings obtained from this
Eq. (14) lie quite close. Thus it cannot be excluded that theanalysis are in agreement with those shown in Table Il. The
h|gh values OfCl and Cg are part|a||y Caused by a mutua' Corresponding estimates f% are listed in Table IV. The
cancellation, and that apart from the quoted statistical error§light tendency of the estimates to decrease with increasing
there is a considerable systematic error. Nevertheless, as wif: as well as the increasing uncertainties, can be explained

mL(K,R)=L"%do(R) + dy(RI[K — K(R) JL"+ da(R)
X[K=K(R)J2LPt+ - +e (R)LYi+---}.
(15

be seen below, the accuracy of the resulting expression is

sufficient to obtain rather precise estimates for systems with TABLE IV. The magnetic exponeny,, and the critical ampli-

larger interaction ranges. In fact, if the results Rﬁ;=9 and

tude do(R) of the absolute magnetization density as a function of

10 are also included in the least-squares fit, and the lattic®teraction range. The estimates fy in the third column have

effects are simply ignored, an essentially phenomenologic
interpolation formula is obtained, which for larger ranges
turns out to agree very well with the first fit.

fjeen obtained with fixed at their best values given in Table I,
whereas the critical amplitudes have been obtained yyjtfixed at
its 3D Ising value.

In Refs.[14,2], series-expansion estimates are given forRz

the coefficients, andcg in Eq. (14). In terms of an expan- _™ Yh Yh do(R)

sion in g, Dalton and Domb found the value 4.46 for the 2 2.479(2) 2.479(1) 0.9674(5)
leading coefficient(confusingly, in later work[1,30] the 3 2.479(2) 2.481(1) 0.8933(6)
value 3.5 was quotedand for the prefactor of the logarithm 4 2.475(5) 2.479(1) 0.8424(4)
Thouless obtained-2000/2% —74.1. To compare these 5 2.477(4) 2.480(1) 0.7269(5)
values tocy and c3, | write q+1~%7R3~27(2)%R3 6 2.476(6) 2.483(2) 0.6716(7)
~9.01R3. This yieldsc,=0.495 andc;= — 2.74. In view of 8 2.472(7) 2.484(3) 0.6415(9)
the various approximations that have been made, the agree- 9 2.46(2) 2.480(3) 0.5895(10)
ment for ¢y is truly remarkable. Because of the above- 10 2.47(2) 2.478(3) 0.5622(10)
mentioned cancellation effects and because of the omission 11 2.47(2) 2.471(5) 0.5395(14)
of ¢, in the fit, a sensible comparison fog is not possible. 12 2.53(4) 2.485(6) 0.5335(20)
However, we note that Thouless also found a relatively high 13 2.47(2) 2.480(5) 0.5128(16)
value forcs. Figure 3 shows the various predictions for the 14 2.463(15) 2.475(4) 0.4845(17)

shift of the inverse critical temperature.
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L0 = . . . . TABLE V. The magnetic exponenyt, and the critical amplitude

0.9 Tl Monte Carlo —e— po(R) of the magnetic susceptibility as a function of interaction

Predicted asymptote -~ range. The estimates fgy, in the third column have been obtained

0.8 RG expression — . with K, fixed at their best values given in Table Il, whereas the

critical amplitudes have been obtained wjthfixed at its 3D Ising
< 07 | value. The data point de2m= 1 is taken from Ref[21].
= 06 1 R Yh Yh Po(R)
05 ] 1 1.5580(15)
- 2 2.479(2) 2.479(1) 1.1620(7)

3 2.481(6) 2.484(3) 0.9865(32)
04 : - 4 2.478(6) 2.484(2) 0.8752(12)
1.5 2 3 4 6 8 10 5 2.481(8) 2.481(3) 0.6518(18)
R 6 2.478(13) 2.478(12 0.5534(35)
FIG. 4. Range dependence of the critical finite-size amplitude of 8 2.484(14) 2.480(2) 0.5105(16)
the magnetization density, together with the predicted asymptotic 9 2.46(3) 2.476(9) 0.4343(12)
range dependenddashed lingand a fit of all the data points to the 10 2.46(2) 2.474(4) 0.3951(15)
renormalization-group predictiofulotted curve: 11 2.46(2) 2.47(1) 0.3653(16)
12 2.48(2) 2.481(6) 0.3564(24)
from the requirement that the smallest system size included ;3 2.46(2) 2.484(5) 0.3297(16)
in the analysis must increase witaWhen the analyses were 14 2.45(4) 2.477(6) 0.2943(23)

repeated with the critical couplings fixed at the best values in
Table Il, the agreement of the estimatesygi(also shown in
Table IV) with the 3D Ising valug/,=2.4815 (15)]21]was  where the additive constasy originates from the analytic
even better. Thus, this confirms the expectation that all thesgart of the free energy. In the further analysis, this constant
systems belong to the Ising universality class. The criticahas been set to zero, because it tends to interfere with the
amplitudesdy(R) can be used to extract the leading rangeleading irrelevant terng,(R)LYi. Just as for the absolute
dependence of the magnetization density. In order to maximagnetization density, | list estimates for the magnetic expo-
mize the accuracy in these amplitudes, the results shown iRenty,, (Table V). Although, as expected, the uncertainty
Table IV were obtained with the exponentsandy; fixed at  increases wittR, one observes that all estimates agree with
their Ising valuegbut the critical coupling; was included the Ising value. Also the critical couplings agree with those
as a free parameterA fit of do(R) to the formdy(R)  obtained from the fourth-order amplitude ratio afidn|).

=dR* for the largest three values oR yielded x=  Thus | have repeated all analyses with fixed; the corre-
—0.87 (5), somewhat(although not significantly smaller  sponding results foy, are shown in Table V as well. Fi-
than the predicted value x=(3d—4y.)/(4—d)=  nally, | have fixed the magnetic exponentyat=2.4815(but

—0.926 (6). This shows that the asymptotic regime, whereincludedK as a free parametein order to obtain accurate
higher-order corrections can be neglected, has not yet beesstimates fopy(R) (Table V). Fitting a straight lingpR™* to
reached. In general, the corrections are power of [4]: the last three values yielded a slopel.73 (9), which is
consistent with the prediction- 1.852[Eq. (5)]. A fit for-
mula with one additional correction termR™*(1+bR™?),
allowed the inclusion of several more data points and yielded
x=-—1.92 (11). Both fits and the numerical data are shown
Expression(16) with one correction term allowed me to ob- in Fig. 5.

tain a very acceptable fity/Npoe~0.6) for all data points

W|th 2$Rﬁ1$14 and y|e|dedx=0923 (5), |n exce"ent D. Connected suscep’“b”ny

agreement with the RG prediction of Rd#]. Figure 4
shows the MC results faly(R) together with the asymptotic
range dependence and the full fit to the renormalization ex-
pression.

Al A
do(R)=dR* 1+§+§+”' (16)

In principle, theconnectedsusceptibility, given by

~_ o) = (m)?

kBT ’ (18)

C. Susceptibility can be treated in the same way as the absolute magnetization

At criticality, the magnetic susceptibility is directly pro- density and the susceptibility. The main drawback of this
portional to the average square magnetization. Thus, | havguantity, being the difference of two fluctuating quantities, is
fitted the Monte Carlo data, for each interaction range sepahat its statistical accuracy is relatively poor. Nevertheless,

rately, to an expression of the form the magnetic exponents extracted from the numerical data
3 oy —d y for the individual interaction ranges are consistent with the
XL(K,R) =50+ L2 Hpo(R) +py (R)[K —K(R) JL Ising value, and the finite-size amplitudes can be used to
+Po(R[K—K (R LY+ - - . determine the range dependence of the connected suscepti-

bility. As shown in Ref[8], knowledge of this dependence is
+qu(R)LYi+- -1, (17)  very useful to determine the thermal crossover curve for the
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LS = . . . . scribing the crossover from a finite mean-field-like system to

~ Monte Carlo +=— a finite Ising-like system af=T.. A detailed description of
Predicted asympiote - this phenomenon was given in Ré8]. Qualitatively this

P crossover can simply be understood from the observation
that systems with a linear size of the order of the interaction
range are essentially mean-field-like systems, which are
05 h S ] turned into systems with a short-range interaction if the sys-
T tem size grows beyond the interaction range. RG consider-

‘E\E\ ations have shown that the crossover is ruled by a general-
03t =] ized Ginzburg paramet&@=LR™¥(*~9 5o that the mean-
field regime corresponds t6<1 and the Ising regime to
G>1. The expression fo& was also obtained in Ref31].
15 2 3 4 6 8 10 It is numerically not feasible to observe the entire crossover

2 regime in a system with fixeR by merely varying the sys-

FIG. 5. Range dependence of the critical finite-size amplitude o em size, since it spans severa| decades in the para@eter

) - . : “Thus | construct the crossover curve by combining the re-
the magnetic susceptibility, together with the predicted asymptotlcSuItS for various interaction ranaes. iust as has been done for
range dependendgashed lingand a fit of the data points to the ges, |

O I the two-dimensional case in Ref8] and for the three-
lization- dictiofdotted ; X . . .
renormalization-group predictiootted curve dimensional thermal crossover in REE0]. Since it turns out
. , ) ~ that forL <20 the curves are affected by nonlinear finite-size
susceptibility (which for T<T, is represented by) from  gffects, the smallest value of the crossover parameter that can
data for differenR, because it makes it possible to divide out he reached with the interaction ranges studied in Secs. Il

the subleading range dependence of this curve. Rather thapg |v is 20/(9.168)~0.24. The true mean-field regime,
giving the full details of the analysis, | restrict myself to Fig. however, is only reached famuch smaller G=0(10"%).
6, which shows the critical amplitudes together with the RGrys | have carried out simulations for systems with effec-
prediction fitted to it. Instead of, the so-called scaled sus- tive interaction ranges up t8?=323.81 Rﬁq:540), corre-
ceptibility kg Ty is often considered. It has been noted for thesponding to coordination numbers as large ggs52 514.
two-dimensional cas¢8] that the latter quantity exhibits Evidently, the Monte Carlo algorithm introduced in RES]
considerably stronger deviations from the asymptotic rangeomes to its full glory here: The simulation of three-
dependence, which are caused by the shift of the criticaflimensional systems with so many interactions present
temperature. Figure 6 confirms that this also holds for thavould not have been feasible with either a Metropolis-type
three-dimensional case. algorithm or a conventional cluster-building algorithm. The
actual crossover curves shown below are obtained from a
combination of the data for 2R2 <14, with system sizes
betweenL =20 and 200, and additional data for 20 different
A. General considerations interaction ranges ¥8R2=540. For the latter systems, the
As stated in Sec. |, the critical properties of the Critical coupling was determined using the extrapolation for-
equivalent-neighbor models obtained in Sec. IV can now béhula discussed in Sec. IVA, and subsequently 3|mglat|ons
used to find the finite-size crossover scaling functions dewere carried out for 28 L <40 at each single value 61;,.
An additional complication is formed by the regint&

V. FINITE-SIZE CROSSOVER

030 — . . : : : >1. Whereas this part of the crossover curve can easily be
T Scaled susceptibility —=— _reacheq by simulating large system sizes with very small
- Susceptibility —=— interaction ranges, higher-order range dependences prevent
020 Predicted asymptote - 1 the direct use of these data for the construction of crossover
€Xpression . .
curves. It was recognized in RgB] that these are the same
~ corrections that are responsible for the deviations from the
% asymptotic range dependence in Figs. 4, 5, and 6, so that this
0.10 | effect can be removed by dividing the magnetization density
by the factor in brackets in Eq16) and the other quantities
by the corresponding counterparts of this factor.
}\g
0.05 . . s s L™ B. Magnetization density
1.5 2 3 4 6 8 10

As follows from Eq.(4), the magnetization densitym|)
at criticality is proportional td.Yn~ 2 in the Ising regime. The

FIG. 6. Range dependence of the critical finite-size amplitudeorg‘if?cmr depends on the interaction range and scales as
ro(R) of the connectedsusceptibility, together with the predicted R "= On the other hand|m|) is independent oR in the
asymptotic range dependence and a fit of the data points to tH@ean-field regime and just scales Bis <L =% If the
renormalization-group prediction. Also, the frequently-usedled  Crossover behavior can indeed be described in terms of a
susceptibility is shown, which clearly exhibits stronger deviationssingle variableG=L/R*, a data collapse should be obtained
from the asymptotic range dependence. for (|m[)L¥“. In the mean-field regime, this quantity is inde-
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FIG. 7. Finite-size crossover curve for the absolute magnetiza- FIG. 8. The crossover behavior of the effective magnetic expo-

tion density(|m|) multiplied by an appropriate power of the system nent as a function of the finite-size crossover parameter.
size. For very small interaction rangégghtmost data poinis o ) .
higher-order range dependences have been divided out, as indicatigite systems have been carried out at the critical tempera-
by the correction facto€[m] (for a more extensive discussion of ture of a system with that particular interaction range in the
this topic, the reader is referred to the texthe crossover curve thermodynamic limit.
spans at least four decades in the parametgf and systems with As a side remark, | note that a much more sensitive de-
a coordination number up p=52514 had to be employed to fully scription of the crossover can be formulated in terms of so-
reach the mean-field limit. The perfect collapse of all interactioncalled “effective exponents.” Originally introduced by Kou-
ranges and system sizes confirms the validity of the crossover derel and Fisher{32], these have found widespread use in
scription in terms of a single parameter. The dashed lines denote thexperimental analysésee, e.g., Ref24]) and more recently
exact mean-field limitMF) and the Ising asymptote with slopg  also in the analysis of numerical results; cf. R§¥s8,10,25.
—9/4. Although these effective exponents are usually defined in
terms of the logarithmic derivative with respect to the re-
pendent ofG, and in the Ising regime it scales @~ %4 ~ duced temperature, an effective magnetic exponent can be

The resulting curve for this quantity is shown in Fig. 7. It is introduced as

immediately clear that the data lie on a perfectly smooth

curve, confirming that the crossover is indeed ruled by the o 9 din((Im[)L¥%
generalized Ginzburg paramet@r The correction parameter h = Z+W

C[m]=1+A,;R? refers to the higher-order range depen-

dences which have been divided out, in order to make th? ) . eff .

; n the mean-field regimey, doesnot approach the classical
data for smalR collapse on the samgsing) asymptote. For value ve— 1+ d/2 b%t t?{eh corres onzipn valugt —3d/4
large interaction ranges this correction factor rapidly ap- Yh y P g valug, '

proaches unity. In the graph I have included a line with SIOpeThis directly related to the violation of hyperscaling in the

yn—9/4=0.2315, indicating the dependence @nin the mean-field regime, and can be explained from the dangerous-
Ising regime. Whereas no exact result exists for the finitellr€levant-variable mechanisf83-39. This is clearly illus-

size amplitude of this asymptote, it is possible to calculate itéralted gl)? 4Figa 8th wlhe_zre a Ismo§t28i1ngt)e_rp]9latic(>jn between the
counterpart in the mean-field regime, where it is found that/&'ue and the Ising value <. IS found.

(20

(8]
C. Susceptibility
1 - .
rl= In a very similar way, the crossover function for the mag-
(|m|)yL34= 1214 +ol = (19 netic susceptibilityy at criticality can be obtained. Since it is
1 312 proportional to the average square magnetization density, it

is independent oR in the mean-field regime. In the Ising
regime, it scales at?¥h 3R?(®~%n) so that the quantity
xL ¥ can be represented as a function of the paran@ter
Thus (|m|)L3* should approach 0.90989. . in thelimit Indeed, upon application of the range-dependent correction
G—0. One indeed observes that the leftmost data points iffctor C[x], which has the same form as the factor between
the graph lie already very close to this limit. Together with Prackets in Eq(16), a perfect data collapse is obtained; see
the collapse of all numerical data onto a single curve, thigig- 9. The total crossover curve spans approximately four
also indicates that the simulations for systems with largglecades i, just as for the magnetization density. The exact
interaction ranges indeed have been carried out at the correctean-field result expected here & ~32— \J12I'(3)/T'(%)
temperatures; i.e., the extrapolation form{Eg. (14)] has =1.1708® ..., which is indeed well reproduced for the
yielded sufficiently accurate estimates for the critical tem-data in the regim& — 0. No nonlinear finite-size effects can
peratures for 1& Rﬁqs540. For the sake of clarity, it is be observed, suggesting that these (@m the scale of the
stressed that for each single valuethe simulations of the graph negligibly small forL=20.
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FIG. 9. Finite-size crossover curve for the magnetic susceptibil- FIG. 10. Finite-size crossover curve for the amplitude rgtidt
ity multiplied by an appropriate power of the system size. For verysmoothly interpolates between the mean-field linitR*<1) and
small interaction range@ightmost data poinjs higher-order range  the Ising limit (L/R*>1).
dependences have been divided out, as indicated by the correction

factor C[ x]. Just as in Fig. 7, systems with a coordination number | . . . .
up toq=52514 had to be employed to reach the mean-field limitSiS of these critical properties has yielded a coherent picture

fully. The perfect collapse of all interaction ranges and system size8f their dependence on the interaction rafyerhe shift of
confirms the validity of the crossover description in terms of athe critical temperature as a function of interaction range, to

single parameter. The dashed lines denote the exact mean-field limithich various mechanisms appear to contribute, has been

(MF) and the Ising asymptote with slopg/;2- 9/2. determined and compared to theoretical predictions. | have
shown that the range dependence of the critical finite-size
D. Fourth-order amplitude ratio amplitudes of the magnetization density and the magnetic

Rather than reproducing crossover curves for the Consusceptibility conform very We.|| to the theoret?ce}lly expected
nected susceptibility or the spin-spin correlation function,Pe€havior. Also, renormalization-group predictions for the
which are very similar to those presented in Secs. VB andariation of the finite-size corrections with interaction range
V C, | prefer to pay some attention to the crossover of théhave been confirmed, and an estimate has been obtained for
amplitude ratioQ. This quantity, which is just a disguised the effective interaction range at which the leading finite-size
form of the fourth-order cumulant introduced by Bindla6], ~ corrections should vanish. The numerical results support the
attains trivial limiting values on either side of the critical expectation that theb* coefficient in the Landau-Ginzburg-
temperature, but takes a nontrivial universal value at criticalWilson Hamiltonian varies monotonically with interaction
ity. Its Ising limit Q,=0.6233 (4) has already played an range(or coordination numbey and scales for large ranges
important role in Sec. 11l B, where this parameter was used tas 1R*. Further Monte Carlo results for systems with very
determine the location of the critical point. The critical value large coordination numbers could be obtained by means of
in the mean-field Ilimit is known exactly,Qye an efficient simulation scheme. These results enabled the
=0.4569468 ... [37,5]. Indeed, the full crossover from mapping of the full finite-size crossover curves for several
Qur to Q, as a function ofL/R?* can be observed, as illus- quantities, including the magnetic susceptibility and the
trated in Fig. 10. No correction term has been applied herefourth-order amplitude ratio. All these curves can be de-
because it may be expected that the correction terms fascribed by a single crossover parametéR*, and interpo-
(m?)? and(m*) cancel each other to a large extent, cf. Fig. 8late smoothly between mean-field and Ising-like behavior.
in Ref. [8]. The less smooth appearance of the crossoveflso, the finite-size crossover function for the effective mag-
curve compared to that for the magnetization density and thaetic exponeny,, has been obtained.
susceptibility can mainly be attributed to several other ef- A very interesting and experimentally most relevant ex-
fects. Apart from the much larger scale of the graph, it turndension of the work presented here is the casehefmal
out that nonlinear finite-size effects are considerably strongetrossover, for which some first results have appeared in Ref.
for Q than for other quantities. Further deviations are causeflL0]. A more extensive analysis of this case will be presented
by imperfections in the estimates fat, for large R, which  elsewherd9].
on this scale become visible for the larger system sizes.

VI. CONCLUSIONS ACKNOWLEDGMENTS

In this paper, | have presented a detailed determination of It is a pleasure to acknowledge stimulating discussions
the critical properties of the three-dimensional equivalentwith Kurt Binder and Henk Blte. | wish to thank Andrea
neighbor model, which is a generalization of the spitsing  Pelissetto for illuminating correspondence, and John Rehr
model, on a cubic lattice. Monte Carlo simulations have beeifior sending me the series-expansion results of ] and
carried out for systems with up to 13 neighbor shells, correfor permission to publish them. | thank the HLRZidt for
sponding to 250 equivalent neighbors. All systems have beeaccess to a Cray-T3E on which the computations have been
shown to belong to the 3D Ising universality class. An analy-performed.



5008 ERIK LUIJTEN PRE 59

[1] C. Domb and N. W. Dalton, Proc. Phys. Soc. Lon@&® 859 Enrico Fermi Summer School, Varenna, Italy, edited by M. S.
(1966. Green(Academic, New York, 1971

[2] D. J. Thouless, Phys. Re¢81, 954 (1969. [20] J. Cardy,Scaling and Renormalization in Statistical Physics

[3] K. K. Mon and K. Binder, Phys. Rev. B8, 2498(1993. (Cambridge University Press, Cambridge, 1996

[4] E. Luijten, H. W. J. Blte, and K. Binder, Phys. Rev. &4,  [21] H. W. J. Bldte, E. Luijten, and J. R. Heringa, J. Phys.28,
4626 (1996. 6289(1995.

[5] E. Luijten and H. W. J. Blte, Int. J. Mod. Phys. @G, 359 [22] A. J. Liu and M. E. Fisher, J. Stat. Phys8, 431 (1990.
(1995. [23] F. J. Wegner, Phys. Rev. § 4529(1972.

[6] V. L. Ginzburg, Fiz. Tverd. TeldLeningrad 2, 2031 (1960 [24] M. A. Anisimov, A. A. Povodyrev, V. D. Kulikov, and J. V.

; [ESOL‘"__PhySHS\‘,’\'/idJStBEI‘_@' 182(14&1950(]{ ove. Rev. Leg Sengers, Phys. Rev. Let5, 3146(1995.
(7] E. Luijten, H. W. J. Blde, and K. Binder, Phys. Rev. Lef, [25] M. A. Anisimov, E. Luijten, V. A. Agayan, J. V. Sengers, and

561 (1997). . .
[8] E. Luijten, H. W. J. Blge, and K. Binder, Phys. Rev. &6, K. Binder, e-print cond-mat/9810252.
6540(1997. [26] H. W. J. Blae (private communication

[9] E. Luijten and K. Bindefunpublishedl [27] M. Hasenbusch, K. Pinn, and S. Vinti, e-print hep-lat/9806012.

[10] E. Luijten and K. Binder, Phys. Rev. B8, R4060(1998. [28] M. J. George and J. J. Refunpublished,
[11] S. Caracciolo, M. S. Causo, A. Pelissetto, P. Rossi, and E[Zg] A.J. Liu and M. E. Fisher, Physica 256 35 (1989.

Vicari, e-print hep-lat/9809101. [30] C. Domb, inPhase Transitions and Critical Phenomerea-
[12] R. Brout, Phys. Rev118 1009(1960. ited by C. Domb and M. S. Greg\cademic, London, 1974
[13] V. G. Vaks, A. I. Larkin, and S. A. Pikin, Zh. i&p. Teor. Fiz. Vol. 3.

51, 361(1966 [Sov. Phys. JETR4, 240 (1967)]. [31] K. Binder and H.-P. Deutsch, Europhys. Let8, 667 (1992.
[14] N. W. Dalton and C. Domb, Proc. Phys. Soc. Lond@#873  [32] J. S. Kouvel and M. E. Fisher, Phys. R&&6 A1626(1964.

(1966. [33] M. E. Fisher, inProceedings of the Summer School on Critical
[15] E. Luijten, Interaction Range, Universality and the Upper Phenomena, Stellenbosch, South Africa, 198fited by F. J.

Critical Dimension (Delft University Press, Delft, 1997 W. Hahne(Springer, Berlin, 1988

Chap. 7. [34] K. Binder, M. Nauenberg, V. Privman, and A. P. Young, Phys.
[16] K. Symanzik, Lett. Nuovo Ciment8, 771(1973. Rev. B31, 1498(1985.

[17] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phase Tran-  [35] E. Luijten and H. W. J. Blte, Phys. Rev. Lett76, 1557

sitions and Critical Phenomenadited by C. Domb and M. S. (1996; 76, 3664E) (1996.

Green(Academic, London, 1976 Vol. 6. [36] K. Binder, Z. Phys. B43, 119(1981)).

[18] E. Riedel and F. Wegner, Z. Phy225 195(1969. [37] E. Brezin and J. Zinn-Justin, Nucl. Phys. 757, 867 (1985.

[19] M. E. Fisher, inCritical PhenomenaProceedings of the 51st [38] A. L. Talapov and H. W. J. Bl@, J. Phys. A9, 5727(1996.



