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We study the crossover from Ising-like to classical critical behavior as a function of the rangeR of
interactions. The power-law dependence onR of several critical amplitudes is calculated from renormalization
theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological
scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have
tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interac-
tion. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of
R, so that the theoretical predictions could actually be observed.@S1063-651X~96!12810-5#
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I. INTRODUCTION

As is well known, the critical behavior of a physical sys-
tem strongly depends on the range of the interactions. The
longer the range, the stronger critical fluctuations will be
suppressed. In the limit of infinite range we recover classical
or mean-field-like critical behavior. For interactions with a
finite range, however, fluctuations remain very important and
essentially modify the critical behavior. As follows from the
Ginzburg criterion@1#, sufficiently close to the critical tem-
peratureTc nonclassical critical exponents apply for any fi-
nite interaction rangeR. This crucial difference between fi-
nite and infiniteR implies a crossover from one type of
critical behavior to another as a function ofR. Such cross-
over phenomena are of great interest for a wealth of critical
phenomena. They occur, e.g., in polymer mixtures~see Ref.
@2# and references therein!, as a function of the chain length,
and gas-liquid transitions, as a function of the difference be-
tween the temperature and the critical temperature. The ex-
planation of these phenomena in terms of competing fixed
points of a renormalization transformation is one of the im-
portant features of the renormalization theory~see, e.g., Ref.
@3#!.

In Ref. @4#, Mon and Binder have already studied cross-
over as a function ofR within the context of finite-size scal-
ing, motivated by the crossover in polymer mixtures. They
predicted that the critical amplitudes of scaling functions dis-
play a singular dependence onR. The various power-law
dependencies were obtained from phenomenological cross-
over scaling arguments. In this paper, we will derive this
dependence onR from a renormalization description of the
crossover from classical to nonclassical critical behavior.
The first part of the renormalization trajectory is governed by
the Gaussian fixed point, which is unstable ford,4. The
corresponding scaling relations have been derived by

Rikvold et al. @5#. Sufficiently close to criticality, the final
part of the renormalization trajectory is governed by the
Ising fixed point. The resulting relations are in complete
agreement with the predictions from Ref.@4#. In addition, we
obtain theR dependence of the leading corrections to scaling
and derive from renormalization arguments a logarithmic
factor in the shift of the critical temperature. This factor was
already conjectured in Ref.@4#.

It is interesting to note that the physical mechanism lead-
ing to the singular range dependence of scaling functions is
closely related to that leading to the violation of hyperscaling
for d.4. The latter effect is caused by a singular depen-
dence of thermodynamic quantities on the coefficientu of
thef4 term foru→0 in a Landau-Ginzburg-Wilson~LGW!
Hamiltonian. In other words,u is a so-called dangerous ir-
relevant variable~see, e.g., Ref.@6# for a more detailed dis-
cussion!. Here, as we will see, the fact that this coefficient
becomes small for large values ofR plays again an essential
role, althoughu is relevant ford,4.

Furthermore, we present Monte Carlo results for two-
dimensional Ising models with an extended range of interac-
tion. A serious problem associated with such simulations is
that the simulation time tends to increase rapidly with the
number of interacting spins. However, a large interaction
range is crucial to observe the predictedR dependencies, as
will follow from the renormalization description. The maxi-
mum range that could be accessed in Ref.@4# was too small
to verify the theoretical predictions. We overcome this limi-
tation by means of an efficient cluster Monte Carlo algorithm
@7#, in which the simulation time per spin is practically in-
dependent of the range of the interactions.

The outline of this paper is as follows. In Sec. II, we
derive theR dependence of critical amplitudes from renor-
malization theory. These results are verified by Monte Carlo
simulations, presented in Sec. III. We end with our conclu-
sion in Sec. IV. Two technical issues, namely, the Fourier
transform of a spherical distribution of interactions in a gen-
eral number of dimensions and the application of the cluster*Electronic address: erik@tntnhb3.tn.tudelft.nl
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algorithm to medium-range interactions, are addressed in
Appendixes A and B, respectively.

II. RENORMALIZATION DERIVATION OF THE
DEPENDENCE OF CRITICAL AMPLITUDES

ON THE INTERACTION RANGE

A model with long-range interactions which has attracted
much attention is that in which the spin-spin interactions
decay algebraically as a function of the distancer between
the spins,K(r )5Ar2d2s (s.0), whered is the dimension-
ality and A.0 the interaction strength~see, e.g., Refs.
@8,9,6#!. For d,4, this model displays an interesting con-
tinuous variation of critical behavior as function ofs: for
0,s<d/2 the critical behavior is classical~mean-field-like!,
for d/2,s,22hsr the critical exponents vary continuously,
and for 22hsr,s, the interactions decay fast enough to
yield short-range~Ising-like! critical behavior. Here,hsr de-
notes the exponenth in thed-dimensional model with short-
range interactions. The algebraical decay of the interactions
is responsible for the existence of an intermediate regime
between Ising-like and classical critical behavior. In this pa-
per we focus on a different way to interpolate between the
long-range~mean-field! limit and short-range models. In-
stead, we choose ferromagnetic interactions which are con-
stant within a rangeR and zero beyond this range. Thus, we
have the following Hamiltonian:

H/kBT52(
i

(
j. i

Kd~r i2r j !sisj2h0(
i
si , ~1!

where the spin-spin interactionKd(r )[cR2d for ur u<R and
the sums run over all spins in the system. This Hamiltonian
displays physical behavior that is different from the power-
law case. In particular, the intermediate regime with variable
exponents is absent, and mean-field critical behavior is re-
stricted to the infinite-range limit. We analyze the influence
of the rangeR within the context of renormalization theory,
starting from a generalized Landau-Ginzburg-Wilson Hamil-
tonian, where the@¹f(r )#2 term normally representing the
~short-range! interactions is replaced by an interaction term
with spin-spin coupling~A1!,

H~f!/kBT5E
V
dr H 2

1

2Eur2r8u<R
dr 8F cRdf~r !f~r 8!G

2h0f~r !1
1

2
vf2~r !1u0f

4~r !J . ~2!

As a consequence of the normalization factorR2d, the criti-
cal value of the temperature parameterc depends only
weakly onR. The first integral runs over the volumeV which
containsN particles. We adopt periodic boundary conditions.
The Fourier transform of the interaction is calculated in Ap-
pendix A. It leads to the following momentum-space repre-
sentation of the Hamiltonian:

H~fk!/kBT5
1

2(k F2cS 2p

kRD d/2Jd/2~kR!1vGfkf2k

1
u0
4N(

k1
(
k2

(
k3

fk1
fk2

fk3
f2k12k22k3

2h0AN

2
fk50 . ~3!

Jn is a Bessel function of the first kind of ordern. The wave
vectors are discrete because of the periodic boundary condi-
tions. Furthermore, we restrict the wave vectors to lie within
the first Brillouin zone, which is reminiscent of the underly-
ing lattice structure. The interaction term can be expanded in
a Taylor series containing only even terms inkR. This means
that we will be mainly concerned with the term of order
(kR)2, because higher-order terms will turn out to be irrel-
evant. The constant term in the Taylor series is absorbed in
v̄ and the coefficient of the quadratic term as a factor inc̄.
This yields a new Hamiltonian,

Ht~fk!/kBT5
1

2(k @ c̄R2k21 v̄#fkf2k

1
u0
4N(

k1
(
k2

(
k3

fk1
fk2

fk3
f2k12k22k3

2h0AN

2
fk50 . ~4!

Since we are free to choose the scale on which the fluctua-
tions of the order parameter are measured, we may rescale
f→c[Ac̄Rf. This is generally the most convenient choice
because the dominantk-dependent term becomes indepen-
dent ofR. ~Naturally, this rescaling is not compulsory and
the same results will be obtained without it, provided one
keeps track of the dependence of the nontrivial fixed point on
c̄R2, arising from the integration over propagators in the
inner part of the Brillouin zone.! This leads to

H̃~ck!/kBT5
1

2(k Fk21 v̄

c̄R2Gckc2k

1
u0

4c̄2R4N
(
k1

(
k2

(
k3

ck1
ck2

ck3
c2k12k22k3

2
h0

Ac̄R
AN

2
ck50 . ~5!

The parameterc̄ is merely a constant,independent of the
range, and in order not to be hampered by it in the future
analysis, we absorb the various powers of it inr 0[ v̄/ c̄,
u[u0 / c̄

2, andh[h0 /Ac̄. Now, r 0 assumes the role of the
temperature parameter.

If the rangeR is large, the coefficient of thec4 term is
relatively small and hence the critical behavior of the system
is determined by the Gaussian fixed point. Under a renormal-
ization transformation with a rescaling parameterl the
Hamiltonian thus transforms as
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H̃8~ck8
8 !/kBT85

1

2(k8
Fk821 r 0

R2 l
2Gck8

8 c2k8
8 1

u

4R4N8
l 42d

3(
k18

(
k28

(
k38

ck
18

8 ck
28

8 ck
38

8 c
2k

182k
282k

38
8

2
h

R
AN8

2
l 11d/2ck850

8 . ~6!

Hereck8
8 5 l21ck , k85kl , the sums run again over the full

Brillouin zone, andN85Nl2d. Ford,4, thec4 term grows
and the system moves away from the Gaussian fixed point
m0* ~see Fig. 1!. At present, we are interested in the flow
from the neighborhood of the Gaussian fixed point to that of
the Ising fixed point. Thus we remain close to the critical line
connecting the two fixed points and the temperature field
parametrized byr 0 remains small. The crossover to Ising-
like critical behavior occurs when the coefficient of thec4

term is of the same order as that of thek2c2 term, which is
unity, i.e., whenl5 l 0[R4/(42d). We shall refer tol 0 as the
crossover scale.

By comparing the coefficient of thec4 term to that of the
r 0c

2 term, it is possible to derive a criterion that states for
which temperatures the critical behavior will be Ising-like
and for which temperatures it will be classical. This is the
well-known Ginzburg criterion@1#, which can also be de-
rived from Eq.~6! ~see, e.g., Ref.@10#, p. 107!. One expects
the Gaussian fixed point to dominate the renormalization
flow if, irrespective ofl , thec4 coefficient is small compared
to the temperature coefficient. Thus, one requires the scaled
combination uR24l 42d/(r 0R

22l 2)(42d)/2 to be small, or
r 0
(42d)/2Rdu21@1 @cf. also Ref.@4#, Eq. ~3!#.
Since we are now in the neighborhood of the Ising fixed

point, we continue renormalizing our Hamiltonian withnon-
classicalrenormalization exponentsyt , yh , andyi . To lead-
ing order, it will transform as follows, whereb denotes the
rescaling factor of our new transformation:

H̃9~ck9
9 !/kBT95

1

2(k9
@k921R2d/~42d!~bytr̃ 01r 0* !#ck9

9 c2k9
9

1
byiũ1u*

4N9

3(
k19

(
k29

(
k39

ck
19

9 ck
29

9 ck
39

9 c
2k

192k
292k

39
9

2hR3d/~42d!AN9

2
byhck950

9 . ~7!

We have introduced the coefficientsr̃ 0 and ũ, which denote
the location of the point (r 0 ,u) in the new coordinates with
respect to the nontrivial~Ising! fixed pointm* which we are
now approaching~see Fig. 1!.

The singular part of the free energy density,f s , is after
the transformationf→c denoted byf̃ s ,

f s~r 0 ,u,h!5 f̃ sS r 0R2 ,
u

R4 ,
h

RD . ~8!

Furthermore, we introduce the quantityf̂ s( r̃ 0 ,ũ,h)
[ f̃ s(r 0 ,u,h). Because the total free energy is conserved
along the renormalization trajectory, the singular part of the
free energy density changes as

f̃ sS r 0R2 ,
u

R4 ,
h

RD
5 l2df̃ sS r 0R2 l

2,
u

R4 l
42d,

h

R
l 11d/2D

5R24d/~42d! f̂ s~ r̃ 0R
2d/~42d!,ũ,hR3d/~42d!!

5b2dR24d/~42d! f̂ s~ tR
2d/~42d!byt,ũbyi,hR3d/~42d!byh!,

~9!

where we have used the notationt[@T2Tc(R)#/Tc(R) for
r̃ 0. In Fig. 1, t stands for the distance to the critical line
connectingm0* andm* . In the second equality we have sub-
stituted the crossover scale,l5R4/(42d). Of course, this is
only a qualitativemeasure for the location of the crossover,
but the renormalization predictions for the scaling exponents
are exact. The relation~9!, which holds for 1,d,4, is the
key to the scaling relations obtained on phenomenological
grounds in Ref.@4#. We will first illustrate this by deriving
theR dependence of the critical amplitudes of the magneti-
zation densitym and the magnetic susceptibilityx. The mag-
netization density can be calculated by taking the first deriva-
tive of the free energy density with respect to the magnetic
scaling fieldh,

m5
] f s
]h

~r 0 ,u,h!

5
] f̃ s
]h S r 0R2 ,

u

R4 ,
h

RD
5byh2dR2d/~42d!

3 f̂ s
~1!~ tR2d/~42d!byt,ũbyi,hR3d/~42d!byh!, ~10!

FIG. 1. Qualitative picture of the renormalization trajectory de-
scribing the crossover from the Gaussian fixed pointm0*5(0,0) to
the Ising fixed pointm*5(r 0* ,u* ).
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where f̂ s
(1) denotes the first derivative off̂ s with respect to

its third argument. Here we have neglected any nonlinear
relation between the magnetic scaling fieldh and the physi-
cal magnetic field. Furthermore, we have omitted a contribu-
tion from the analytic part of the free energy, becauseh only
couples to thek50 ~uniform! mode. To extract the depen-
dence ofm on t andR from Eq. ~10!, we choose the rescal-
ing factorb such that the first argument of the derivative of
f̂ s is equal to 1, i.e.,b5t21/ytR22d/[yt(42d)] , and set the ir-
relevant variableũ and the magnetic scaling fieldh equal to
zero,

m5tbR~2db2d!/~42d! f̂ s
~1!~1,0,0!. ~11!

This result agrees with Ref.@4#, Eq. ~34!. In the same way
we can calculate the magnetic susceptibility fromf̂ s by tak-
ing the second derivative with respect toh,

x5
]2f s
]h2

~r 0 ,u,h!

5
]2 f̃ s
]h2 S r 0R2 ,

u

R4 ,
h

RD
5b2yh2dR2d/~42d! f̂ s

~2!~ tR2d/~42d!byt,ũbyi,hR3d/~42d!byh!.
~12!

Choosing the arguments of the second derivative off̂ s as in
Eq. ~11!, we find

x5t2gR2d~12g!/~42d! f̂ s
~2!~1,0,0!, ~13!

in agreement with Ref.@4#, Eq. ~39!. In Eqs.~11! and ~13!
we have used the well-known relations between the renor-
malization exponents and the critical exponents~see, e.g.,
Table 18 in Ref.@11#!.

The finite-size scaling behavior of thermodynamic func-
tions can also be derived from this renormalization scenario
by including a finite-size field 1/L as an additional argument
of the free energy density in Eq.~9!. Under the first renor-
malization transformation this scaling field will scale asl /L
and under the second renormalization transformation as
lb/L5bR4/(42d)L21. The finite-size scaling behavior is
found by choosing b such that lb/L51, i.e.,
b5LR24/(42d). Substituting this into Eqs.~10! and~12!, we
obtain form

m5Lyh2dR~3d24yh!/~42d! f̂ s
~1!~ tLytR22~2yt2d!/~42d!,ũLyiR24yi /~42d!,hLyhR~3d24yh!/~42d!!, ~14!

and forx,

x5L2yh2dR2~3d24yh!/~42d! f̂ s
~2!~ tLytR22~2yt2d!/~42d!,ũLyiR24yi /~42d!,hLyhR~3d24yh!/~42d!!. ~15!

These results agree with Ref.@4#, where the prefactors of the
magnetization density and the magnetic susceptibility were
predicted as, respectively,L2b/nR(2b2g)/[n(42d)] and
Lg/nR(4b22g)/[n(42d)] . Furthermore, the first argument of the
scaling functions was predicted astL1/nRK, with
K52(2a)/@n(42d)# @Ref. @4#, Eq. ~25!#. This is indeed
equivalent with our resultK522(2yt2d)/(42d). How-
ever, the predicted range dependence of the critical ampli-
tudes@i.e., of the prefactors in Eqs.~14! and ~15!# is only
valid in the limit of infinite range. For smaller ranges,
R-dependent correction terms are present. These correction
terms can be calculated as well. They donot come from the
dependence of the scaling functions on the irrelevant fields,
as corrections to scaling normally do: these corrections van-
ish in the thermodynamic limit. However, they come from
higher-order contributions to the renormalization of thec4

coefficient which were previously neglected in the derivation
of the crossover scalel 0. Note that in the neighborhood of
the Gaussian fixed point, the termscn with n,2d/(d22)
are relevant and that ford52 all higher-order terms are
equally relevant. However, the coefficients of these terms
are, after the rescalingf→c, proportional toR2n, so the
leading contribution comes from the termwR26c6. Under a
spatial rescaling with a factorl5es, the renormalization
equation for this term is, to leading order,

dw8

ds
5~622d!w8. ~16!

The solution of this equation,w8(s)5we(622d)s, can be sub-
stituted in the renormalization equation for thec4 coeffi-
cient,

1

R4

du8

ds
5~42d!

u8

R4 1a
w8

R6 . ~17!

To first order inw, this yields

u8

R4 5e~42d!s
1

R4 Fu1
a

22d

w

R2 ~e~22d!s21!G
5 l 42d

1

R4 Fu1
a

22d

w

R2 ~ l 22d21!G , ~18!

where u and w denote the values ofu8 and w8 at l51,
respectively. This implies that the previously obtained cross-
over scalel 05R4/(42d) is multiplied by a factor (11ãR22)
and hence all critical amplitudes will exhibit this correction.
However, the solution~18! is not valid for d52, where
uR24c4 andwR26c6 are equally relevant. The solution of
Eq. ~17! is then given by

u8

R4 5e2s
1

R4 S u1a
w

R2 sD5 l 2
1

R4 S u1a
w

R2 lnl D , ~19!
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which yields a ~leading! correction factor @11R22(ã1
1ã2lnR)# in the crossover scale and the critical amplitudes.

From a similar mechanism we can derive theR depen-
dence of the so-called shift of the critical temperature@@4#,
Eq. ~15!#. A detailed treatment of the shift ofTc can be
found in, e.g., Refs.@12,6#. It arises from theu-dependent
contribution in the renormalization equation for thec2 term,

1

R2

dr08

ds
52

r 08

R2 1c
u8

R4 . ~20!

Thus, the first argument on the right-hand side of the first
equation in~9! should be replaced by

r 08

R2 5 l 2F S r 0R2 2 c̃
u0
R4D1 c̃

u0
R4 l

22dG
5 l 2

1

R2 F S r 02 c̃
u0
R2D1 c̃

u0
R2 l

22dG . ~21!

The term between round brackets is proportional to the re-
duced temperature and the last term is the leading shift. Sub-
stitution of the crossover scalel 0 shows that this shift in the
reduced temperature is proportional toR22d/(42d), which in-
deed vanishes in the mean-field (R→`) limit. Remarkably,
this disagrees with Ref.@4#, where a shift}R2d was pre-
dicted. Unfortunately, it is not possible to settle this issue at
present by means of Monte Carlo data, because only results
for d52 are available, which is a special case. Namely, for
d52 we obtain instead of Eq.~21! the following solution of
Eq. ~20!:

r 08

R2 5 l 2S r 0R2 1c
u0
R4 lnl D5 l 2

1

R2 S r 01c
u0
R2 lnl D . ~22!

Thus, we find, upon substitution of the crossover scale, that
the shift in the reduced temperature has the form
(p1qlnR)/R2, where the constantp comes from a multipli-
cative factor introduced by the crossover criterion. In Ref.
@4#, d52 was already suggested as a special case, with pos-
sibly logarithmic corrections. The renormalization argument
shows that such a lnR term is indeed present.

Now, let us return to Eq.~4!, where we omitted quartic
~and higher! terms inkR. It follows from the renormalization
scenario that terms proportional tok2n transform as
k2nl 222n under the first renormalization transformation and
hence are irrelevant forn.1. The behavior of these terms
under the second renormalization transformation is less
simple, but again quartic and higher terms do not influence
the leading terms; see, e.g., Ref.@13#, Sec. VII.6.

Besides, it can be seen that the structure of the interaction
term does not depend on the details of the spin-spin interac-
tion. E.g., replacing the interaction term~A1! with
K(r )5cR2dexp@2(r/R)2# leads to precisely the same struc-
ture of the LGW Hamiltonian and hence to the same scaling
relations involvingR. This is in agreement with the univer-
sality hypothesis.

Furthermore, the renormalization description explains
why the interaction rangeR must be large to observe the
predicted powers ofR in the critical amplitudes: only for
systems withR large the renormalization trajectory starts in
the neighborhood of the Gaussian fixed point and hence only
these systems will accurately display the correspondingR

dependence. Finally, in the finite-size scaling description, the
system size must be sufficiently large in order to observe the
crossover to Ising-like critical behavior: we require that the
rescaling factor b is minimal of order unity, or
L5O(R4/(42d)).

III. MONTE CARLO RESULTS AND COMPARISON
WITH THE THEORETICAL PREDICTIONS

A. Definition of the model

We have carried out Monte Carlo simulations for two-
dimensional Ising systems consisting ofL3L lattice sites
with periodic boundary conditions and an extended range of
interaction. Each spin interacts equally with itsz neighbors
lying within a distanceRm , as defined in Eqs.~1! and ~A1!
with R replaced byRm andd52. The Monte Carlo simula-
tions were carried out using a special cluster algorithm for
long-range interactions@7#. Its application to the interactions
defined above is described in Appendix B. Following Ref.
@4# we define the effective range of interactionR as

R2[
( jÞ i~r i2r j !

2Ki j

( jÞ iKi j
~23!

5
1

z(jÞ i
ur i2r j u2 with ur i2r j u<Rm .

~24!

Table I lists the values ofRm
2 for which we have carried out

simulations, as well as the corresponding values ofR2. The
ratio betweenR2 andRm

2 approaches 1/2, as can be simply
found when the sums in Eq.~23! are replaced by integrals.
Note that the results forRm

2 518 andRm
2 532 cannot be com-

pared to those presented by Mon and Binder, because in Ref.
@4# the interactions were for these two system sizes spatially
distributed within asquare, as can be seen from the number
of interacting neighbors and the corresponding effective
ranges of interaction.

B. Determination of the critical temperature

The critical temperaturesTc of these systems have been
determined using the well-known universal amplitude ratio

TABLE I. The range of interactionRm , the corresponding num-
ber of neighborsz, and effective range of interactionR.

Rm
2 z R2

2 8 3
2

4 12 7
3

6 20 17
5

8 24 25
6

10 36 6

18 60 148
15

32 100 81
5

50 160 517
20

72 224 1007
28

100 316 4003
79

140 436 7594
109
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QL[^m2&L
2/^m4&L . Both in the Ising and in the mean-field

limit the critical-point value of this quantity is accurately
known. In the mean-field limit, Q5QMF58p2/
@G( 14)]

4'0.456 947; see Refs.@12# and@7#, Appendix A. In
the Ising limit,Q5QI50.856 216(1)@14#.

As was noted in Sec. II and also in Ref.@4#, rather large
system sizes@O(R2)# are required to determineTc , since
Q must approachQI . For Rm

2<10 we have included linear
system sizes up toL5500 and for larger ranges we have
used system sizes up toL5700 or even L5800
(Rm

2 5100,140). For each run we have generated 106 Wolff
clusters after equilibration of the system. The various ther-
modynamic quantities were sampled after every tenth Wolff
cluster. In Fig. 2,QL(Kc) for Rm

2 5140 is plotted as function

of the system size. One clearly observes the crossover from
QMF ~for L!Rm

2 ) to QI ~for L@Rm
2 ).

In the Ising limit, the finite-size expansion ofQL reads
~see, e.g., Ref.@11#!

QL~K !5Q1a1~K2Kc!L
yt1a2~K2Kc!

2L2yt

1•••1b1L
yi1b2L

y21•••. ~25!

K denotes the spin-spin coupling,Kc the critical coupling,
and theai andbi are nonuniversal~range-dependent! coeffi-
cients. The term proportional toLy2, with y25d22yh ,
comes from the field dependence of the analytic part of the
free energy. In af4 theory this term is absent, as was stated
in Sec. II, but in a discrete model it should be allowed for.
The exponentsyt , yh , and yi , which have already been
introduced in the previous section, are, respectively, the tem-
perature, magnetic, and leading irrelevant exponent for the
two-dimensional Ising model;yt51, yh5

15
8 , and yi522.

Table II displays the results of a least-squares fit according to
Eq. ~25!, whereyt , yi , andy2 were kept fixed at their theo-
retical values. For comparison we have included the esti-
mates forKc from Ref.@4#. Except forRm

2 510 there is good
agreement between the respective estimates. The discrepancy
for Rm

2 510 may be explained by the limited range of system
sizes in Ref.@4#. Furthermore, forRm

2 52, which corresponds
to the Ising model with nearest and next-nearest neighbor
interactions, an accurate transfer-matrix estimate of the criti-
cal coupling exists,Kc50.190 192 69(5)@15#. The Monte
Carlo result agrees with this value. The results forQ are in
good agreement with the expected valueQI , which confirms
not only that universality is satisfied, but also that the maxi-
mum system sizes in our simulations are sufficiently large,
so that crossover to Ising-like critical behavior indeed has
taken place, as it should for an accurate determination of
Kc . In fact, the error margins onKc can be reduced signifi-
cantly by fixingQ at its Ising value in Eq.~25! ~see Table II!.
Figure 3 illustrates the shift in 1/(zKc)}T c as function of
R22. Even close the mean-field limit (R22→0), the devia-
tion of 1/(zKc) from 1 seems not truly linear. Therefore we
have tried to identify the logarithmic term, which was sug-

FIG. 2. The critical-point amplitude ratioQL(Kc) for Rm
2 5140

as function of the system size~discrete points!. For large L,
QL(Kc) approaches the Ising limitQI'0.856 216~dotted line!. For
decreasing L, QL(Kc) approaches the mean-field limit
Q MF'0.456 947 ~dotted line!, until the system size becomes
smaller than the rangeRm and strong finite-size effects come into
play. To illustrate that the system is indeed mean-field-like for these
system sizes, we have also plottedQ for finite systems in which all
spins interact equally strong~dashed curve!. The points for
Rm
2 5140 indeed approach this curve.

TABLE II. The amplitude ratioQ and critical couplingKc for the various ranges of interaction studied in
this paper. The numbers in parentheses denote the errors in the last decimal places. The fourth column shows
the estimates forKc obtained withQ fixed at its Ising value. For comparison, we also list the estimates for
Kc given in Ref.@4#.

Rm
2 Q Kc Kc Kc ~Ref. @4#!

2 0.8556~5! 0.1901908~19! 0.1901931~11! 0.190
4 0.8557~9! 0.1140216~18! 0.1140225~7! 0.11402
6 0.8553~7! 0.0631917~8! 0.0631926~4!

8 0.8553~13! 0.0510460~10! 0.0510467~4! 0.05106
10 0.8563~9! 0.0324136~5! 0.03241352~18! 0.032463
18 0.8555~14! 0.0185335~3! 0.01853367~9!

32 0.853~3! 0.01075152~25! 0.01075182~7!

50 0.856~6! 0.00657274~26! 0.00657276~5!

72 0.854~4! 0.00464056~16! 0.00464064~4!

100 0.850~8! 0.00325903~15! 0.00325905~5!

140 0.862~17! 0.00234637~19! 0.00234631~2!
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gested in Ref.@4# and derived from the renormalization sce-
nario in Sec. II, by writing the following expression for the
critical coupling,

zKc511
p1qlnR

R2 . ~26!

In Fig. 4 we have plottedD[(zKc21)R2 versus lnR. In-
deed, for large values ofR the points lie approximately on a
straight line, confirming the presence of the logarithmic cor-
rection.

Another lnR correction was suspected in Ref.@4# in the
temperature-dependent argument of the finite-size scaling
functions. This argument is proportional to
R22(2yt2d)/(42d)5R22a/[n(42d)] ; see Eqs.~14! and~15!. For
d52, a50 implies a logarithmic divergence of the specific
heat and hence one might expect a similar logarithmic factor
here. On the other hand, we have not found a mechanism in
the renormalization scenario which could explain such a fac-

tor. Therefore, we have numerically examined the range de-
pendence of the coefficienta1 in Eq. ~25!. Since (K2Kc) is
proportional toR22, we must first dividea1 by R

2. Figure 5
displays this quantity as function of the range. For small
ranges, there is a strong dependence onR, but the coeffi-
cients seem to approach a constant value in the large-range
limit. This suggests that a logarithmic correction factor is
absent.

C. Range dependence of the magnetization density

We have sampled the absolute magnetization density,
^umu&, for which the range dependence is given by Eq.~14!.
This quantity has been fitted to the following finite-size ex-
pansion,

mL~K,R!5Lyh2d$d0~R!1d1~R!@K2Kc~R!#Lyt

1d2~R!@K2Kc~R!#2L2yt1•••

1e1~R!Lyi1•••%, ~27!

where we now have explicitly indicated the range depen-
dence of the parameters. The critical couplings found from
this quantity agree well with those obtained from the ampli-
tude ratioQ and the exponentyh , listed in Table III, is in
good agreement with the exact value 15/8. Furthermore, we
have made a least-squares fit withKc fixed at the most ac-
curate values obtained fromQ. The corresponding estimates
for yh are also shown in Table III. They lie even closer to
15/8, which again corroborates that all systems belong to the
Ising universality class. From the critical amplitudesd0(R)
we can derive the leadingR dependence of the magnetiza-
tion. To increase the accuracy, the values in Table III were
determined withyh fixed at its theoretical value. As can be
seen from the log-log plot in Fig. 6, the approach to the
asymptotic scaling behavior is very slow. Therefore we have
determined the scaling exponent in two different ways. A
straight line through the points for the three largest ranges
yieldedd0(R)}R

20.738(13), in agreement with the predicted
exponent23/4 @Eq. ~14!#. Inclusion of the correction factor

FIG. 3. Plot of 1/(zKc) versusR
22. The dashed line denotes the

extrapolation to the mean-field limit. The inset shows 1/(zKc) over
the full range ofR22 between the Ising and the mean-field limit.

FIG. 4. D[(zKc21)R2 versus lnR. For largeR the graph
strongly suggests the presence of a logarithmic correction in the
shift of the critical temperature. The error bars do not exceed the
symbol size.

FIG. 5. Range dependence of the amplitude of the temperature-
dependent argument of the finite-size scaling function of the uni-
versal amplitude ratioQ.
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@11R22(ã11ã2lnR)#, as predicted from Eq.~19!, allowed
us to includeall data points in the fit and yieldedd0(R)
}R20.756(5), also in good agreement with the predicted ex-
ponent.

D. Range dependence of the susceptibility

The magnetic susceptibility can be calculated from the
average square magnetization,

x5Ld^m2&. ~28!

We thus expect the following finite-size scaling behavior:

xL~K,R!5s01L2yh2d$p0~R!1p1~R!@K2Kc~R!#Lyt

1p2~R!@K2Kc~R!#2L2yt1•••

1q1~R!Lyi1•••%. ~29!

The terms0 comes from the analytic part of the free energy.
Because it tends to interfere with the term proportional to
q1(R), we have ignored it in the further analysis. Again, the

critical couplings obtained from a least-squares fit lie close to
those in Table II and the estimates foryh agree with the Ising
value ~see Table IV!. By repeating the fits withKc fixed at
the most accurately known values, the values foryh lie even
closer to 15/8~third column of Table IV!. From the param-
eterp0(R), plotted in Fig. 7, we can extract the leading range
dependence of the susceptibility. A straight line through the
amplitudes for the three largest ranges gavep0(R)
}R21.46(3). For a curve~including the first correction term!
through the amplitudes it was necessary to include the data
for all rangesR2>7/3 in the fit, in order to determine the
coefficient of the lnR factor. This yieldedp0(R)}R

21.47(2).
Both exponents are in good agreement with the predicted
value 2(3d24yh)/(42d)523/2.

E. Spin-spin correlation function

The finite-size scaling behavior of the spin-spin correla-
tion function g(r ) closely resembles that of the magnetic
susceptibilityx, as may be expected from the fact thatx is
the spatial integral ofg. We also expect the range depen-

FIG. 6. The critical amplituded0(R) of the magnetization den-
sity versusR2.

FIG. 7. The critical amplitudep0(R) of the magnetic suscetibil-
ity versusR2.

TABLE III. The exponentyh and the critical amplitude of the
magnetizationd0(R) for the various ranges of interaction. The third
column shows the estimates foryh obtained withKc fixed at the
most accurate values shown in Table II.

Rm
2 yh yh d0(R)

2 1.8745~7! 1.8749~3! 0.9533~4!

4 1.8763~15! 1.8756~4! 0.8706~5!

6 1.873~3! 1.8767~13! 0.7937~10!
8 1.873~3! 1.8754~8! 0.7523~7!

10 1.874~2! 1.8748~7! 0.6783~6!

18 1.871~3! 1.8740~12! 0.5816~6!

32 1.875~6! 1.8744~9! 0.4929~11!
50 1.873~7! 1.876~2! 0.4181~18!
72 1.865~5! 1.8752~16! 0.3742~8!

100 1.867~9! 1.877~2! 0.3296~8!

140 1.895~13! 1.879~3! 0.2938~13!

TABLE IV. The exponentyh and the critical amplitude of the
magnetic susceptibilityp0(R) for the various ranges of interaction.
The third column shows the estimates foryh obtained withKc fixed
at the most accurate values shown in Table II.

Rm
2 yh yh p0(R)

2 1.8754~9! 1.8748~2! 0.9743~9!

4 1.8753~12! 1.8752~3! 0.8136~7!

6 1.8740~18! 1.8761~10! 0.6762~14!
8 1.873~2! 1.8750~6! 0.6076~9!

10 1.874~3! 1.8741~6! 0.4943~7!

18 1.874~4! 1.8740~11! 0.3620~9!

32 1.868~4! 1.873~2! 0.2622~9!

50 1.862~6! 1.874~3! 0.1914~7!

72 1.863~17! 1.870~4! 0.1534~8!

100 1.870~6! 1.874~4! 0.1180~8!

140 1.86~3! 1.870~5! 0.0954~9!
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dence of the two quantities to be the same. We have sampled
the correlation function over half the system size and ana-
lyzed it using the expansion

gL~K,R!5L2yh22d$v0~R!1v1~R!@K2Kc~R!#Lyt

1v2~R!@K2Kc~R!#2L2yt1•••

1w1~R!Lyi1•••%.
(30)

The constant term in~29! is not present here~see, e.g., Ref.
@11#!. Table V shows the results foryh , both withKc free
and fixed. In the latter case,yh is in accurate agreement with
its theoretical value, just as for the magnetization density and
the magnetic susceptibility. Figure 8 shows a log-log plot of
the critical amplitudev0(R) as function of the range. A fit of
a straight line through the points withR2.35 ~i.e.,
Rm
2>72) yieldedv0(R)}R

21.46(3), whereas a curve through
all points with R2.7/3 gavev0(R)}R

21.49(2). Both esti-
mates are again in good agreement with the predicted expo-
nent23/2.

IV. CONCLUSION

In this paper, we have derived the dependence of scaling
functions on the range of interactions from renormalization-
group arguments. The results agree with the predictions of
Mon and Binder and yield in addition the corrections to the
leading scaling behavior, including the previously conjec-
tured logarithmic factor in the shift of the critical tempera-
ture of two-dimensional systems.

We have also carried out accurate Monte Carlo simula-
tions for systems in which the range of the interactions was
large enough to verify the theoretical predictions. It was con-
firmed with high precision that all examined systems belong
to the 2D Ising universality class. Besides the range depen-
dence of critical amplitudes, we also observed the predicted
range dependence of the corrections to scaling.

APPENDIX A: FOURIER TRANSFORM OF A
SPHERICALLY SHAPED INTERACTION PROFILE

We define the following isotropic spin-spin interaction
Kd ~the subscriptd denotes the dimensionality!:

Kd~r ![H cR2d if ur u<R

0 if ur u.R.
~A1!

We have normalized the interaction strength, to make the
integrated interaction~energy! independent of the range. In
this appendix, we calculate the Fourier transform of this in-
teraction for a general number of dimensions. Ford51 the
calculation is trivial:

K̃1~k!5
c

RE2R

1R

dxeikx5
2c

kR
sin~kR!. ~A2!

For d52 andd53 one obtains Bessel functions. Using the
equalityJ1/2(x)5A2/(px)sin(x), the results ford51,2,3 can
be summarized as

K̃d~k!5cS 2p

kRD d/2Jd/2~kR!, ~A3!

whereJn is a Bessel function of the first kind of ordern.
This suggests that this equality is valid for generald, which
can indeed be shown by induction. If we assign thex coor-
dinate to the (d11)th spatial dimension and use the notation
kd
25( j51

d kj
2 we may write

K̃d11~k!5
c

Rd11E
2R

1R

dxcos~kxx!S 2p

kd
D d/2~R22x2!d/4

3Jd/2~kdAR22x2!

5
2c

Rd11 S 2p

kd
D d/2E

0

R

dpcos~kxAR22p2!

3
p~d12!/2

AR22p2
Jd/2~kdp!

5cS 2p

kRD ~d11!/2

J~d11!/2~kR!, ~A4!FIG. 8. The critical amplitudev0(R) of the spin-spin correlation
function versusR2.

TABLE V. The exponentyh and the critical amplitude of the
spin-spin correlation functionv0(R) for the various ranges of inter-
action. The third column shows the estimates foryh obtained with
Kc fixed at the most accurate values shown in Table II.

Rm
2 yh yh v0(R)

2 1.8759~8! 1.8754~3! 0.9405~9!

4 1.8744~12! 1.8750~3! 0.7860~6!

6 1.8748~19! 1.8765~11! 0.6528~15!
8 1.8746~17! 1.8754~6! 0.5862~9!

10 1.875~3! 1.8741~7! 0.4770~9!

18 1.874~4! 1.8745~10! 0.3489~9!

32 1.873~4! 1.8747~18! 0.2541~6!

50 1.864~7! 1.876~3! 0.1827~9!

72 1.860~8! 1.871~4! 0.1473~9!

100 1.872~9! 1.876~4! 0.1128~9!

140 1.86~3! 1.871~3! 0.0915~9!
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where we have used a Hankel transform of general order;
see, e.g., Ref.@16#, p. 40, Eq.~48!.

APPENDIX B: MONTE CARLO ALGORITHM FOR SPIN
SYSTEMS WITH MEDIUM-RANGE INTERACTIONS

The cluster algorithm we have used for the present Monte
Carlo simulations has essentially been described in Ref.@7#.
However, that description is rather concise; here, we present
a somewhat more elaborate discussion of the mathematical
backgrounds, and we outline how the algorithm is applied to
medium-range models of the type studied in this paper.

The description is given in terms of the Wolff cluster
algorithm @17#, but the principle applies only to the cluster
formation process. Thus, it is also applicable in the
Swendsen-Wang case@18#. For simplicity, we describe the
way a cluster of spins is built in the case that there are only
ferromagnetic interactions.

For each spin in the cluster, we have to run a task de-
scribed below. During this task, new spins may be included
in the cluster. For this reason, it is convenient to use a
‘‘stack’’ memory containing the addresses of the spins for
which the task remains to be done.

The task for a spinsi read from the stack is the following.
A loop is executed over all neighborssj interacting with
si . In each step of this loop, the bond connecting sitesi and
j is ‘‘activated’’ with a probability

p~si ,sj !5dsisjp, ~B1!

wherep[12exp(22K), in whichK is the coupling between
si andsj . The simulation process would conventionally in-
clude a test whethersi and sj are parallel, and if so, the
production of a uniformly distributed pseudorandom number
r . If r,p, the bond is activated,sj is added to the cluster,
and its addressj is stored in the stack memory. Since this
loop runs over all neighbors interacting withsi , i.e., over all
sites within a distanceRm , the process becomes very time
consuming when the rangeRm of the interactions becomes
large, just as in the case of Metropolis simulations.

However, the cluster formation process can be formulated
in a more efficient way. Part of the work involved in the
activation of the bonds betweensi and its neighborssj can
be done in a way that does not depend on the signs of the
spins. Thus, as a first step, the bonds connected tosi are
‘‘provisionally activated’’ with a probabilityp, independent
of their relative sign. Typically, only a small number of
bonds will be provisionally activated for each entryi in the
stack memory~i.e., each spin in the cluster!. Then, in the
second step, the provisionally active bonds, say between
sitesi and j , are actually activated ifsi5sj , i.e., with prob-
ability dsisj . During the second step, the bonds that were left
inactive in the first step can be ignored.

Since the first step does not depend on the signs of the
spins, and the probabilityp is typically quite small, we in-
troduce~following Ref. @7#! a cumulative bond probability.
This quantity determines which bond is thenextbond to be

provisionally activated. The probability that, during the first
step,k21 bonds are left inactive and that thekth bond is
provisionally activated is equal to

P~k!5~12p!k21p. ~B2!

The cumulative bond probabilityC(k) is defined as

C~k![ (
n51

k

P~n!. ~B3!

The intervalk21 to the next bond to be provisionally acti-
vated is obtained by drawing a random numberr
(P@0,1&). If this random number lies betweenC(k21) and
C(k), k21 bonds are skipped and thekth bond is provision-
ally activated. It is readily seen that this procedure leads to
precisely the required probabilities given in Eq.~B2!. But the
number of operations per spin in the cluster is only of order
pRm

2 ; near criticality, this quantity is approximately equal to
1. Thus, the work involved in the decision concerning the
actual bond activation is also of order unity.

We check independently whether the resulting probability
of activating the first bond at a distancek is equal to that in
the conventional approach. Consider a cluster spin, says0,
with a chain of neighbors denoteds1 , . . . ,sk , of whichm
spins are antiparallel tos0 and l5k2m spins are parallel to
s0, among whichsk . In the conventional Wolff cluster algo-
rithm, the probability thatsk is thefirst spin to be added to
the cluster is, provided thats05sk , given by

1m~12p! l21p5~12p! l21p. ~B4!

On the other hand, if we use the cumulative bond probability
~B3!, this probability is calculated as follows. Either the
kth spin is selected directly@if the first random number lies
betweenC(k21) andC(k)# or one of them antiparallel
spins is selected, saysa , which is of course not added to the
cluster. In the latter case, another random number is drawn
and a new spin is selected. Again, this may be thekth spin,
or one of the remaining antiparallel spins betweensa and
sk . Now, let us show that the sum of these probabilities of
adding sk as the first spin to the cluster is equal to~B4!.
Denote the number of selected, ‘‘intermediate,’’ antiparallel
spins byi . There are (i

m) possibilities of selectingi interme-
diate spins. The probability of selectingsk after each of these
sequences of spins ispi(12p)m2 i(12p) l21p. The total
probability is the sum over all numbers of intermediate spins

(
i50

m Smi D pi~12p!m2 i~12p! l21p5~12p! l21p, ~B5!

which is indeed equal to~B4!.
As shown in Ref. @7#, Cj (k)512exp(2(n5j11

k K)
512exp(2@k2j#K). By inverting this relation, the bond dis-
tancek can be calculated fromCj (k), i.e., from the random
number. This approach is highly efficient; compared to con-
ventional~Metropolis! algorithms the gain is typically a fac-
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torO(Rm
d L2). Finally we remark that efficient variants of this

technique can be applied to long-rangeO(n) models with
n.1. Again, bonds are provisionally activated with a prob-
ability p[12exp(22K); actual activation of a bond be-

tween spinssW i and sW j is done afterwards with a probability
@12exp(22Ksi,zsj,z)#/p if ( sW i•sW j ).0 ~where z defines the
spin-flip direction of the cluster-formation step! and other-
wise with probability 0.
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