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Medium-range interactions and crossover to classical critical behavior
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We study the crossover from Ising-like to classical critical behavior as a function of the Rngfe
interactions. The power-law dependencePof several critical amplitudes is calculated from renormalization
theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological
scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have
tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interac-
tion. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of
R, so that the theoretical predictions could actually be obsef&1D63-651X96)12810-3

PACS numbe(s): 64.60.Ak, 05.70.Jk, 64.60.Fr, 75.10.Hk

I. INTRODUCTION Rikvold et al. [5]. Sufficiently close to criticality, the final
part of the renormalization trajectory is governed by the
As is well known, the critical behavior of a physical sys- Ising fixed point. The resulting relations are in complete
tem strongly depends on the range of the interactions. Thagreement with the predictions from Rpf]. In addition, we
longer the range, the stronger critical fluctuations will beobtain theR dependence of the leading corrections to scaling
suppressed. In the limit of infinite range we recover classicaind derive from renormalization arguments a logarithmic
or mean-field-like critical behavior. For interactions with a factor in the shift of the critical temperature. This factor was
finite range, however, fluctuations remain very important andalready conjectured in Reff4].
essentially modify the critical behavior. As follows from the It is interesting to note that the physical mechanism lead-
Ginzburg criterion[1], sufficiently close to the critical tem- ing to the singular range dependence of scaling functions is
peratureT,. nonclassical critical exponents apply for any fi- closely related to that leading to the violation of hyperscaling
nite interaction rang&. This crucial difference between fi- for d>4. The latter effect is caused by a singular depen-
nite and infiniteR implies a crossover from one type of dence of thermodynamic quantities on the coefficientf
critical behavior to another as a function Bf Such cross- the ¢* term foru—0 in a Landau-Ginzburg-WilsofLGW)
over phenomena are of great interest for a wealth of criticaHamiltonian. In other wordsy is a so-called dangerous ir-
phenomena. They occur, e.g., in polymer mixtui@se Ref. relevant variablgsee, e.g., Ref6] for a more detailed dis-
[2] and references thergiras a function of the chain length, cussion. Here, as we will see, the fact that this coefficient
and gas-liquid transitions, as a function of the difference bebecomes small for large values Rfplays again an essential
tween the temperature and the critical temperature. The exole, althoughu is relevant ford<4.
planation of these phenomena in terms of competing fixed Furthermore, we present Monte Carlo results for two-
points of a renormalization transformation is one of the im-dimensional Ising models with an extended range of interac-
portant features of the renormalization the¢sge, e.g., Ref. tion. A serious problem associated with such simulations is
[3]). that the simulation time tends to increase rapidly with the
In Ref. [4], Mon and Binder have already studied cross-number of interacting spins. However, a large interaction
over as a function oR within the context of finite-size scal- range is crucial to observe the predictedlependencies, as
ing, motivated by the crossover in polymer mixtures. Theywill follow from the renormalization description. The maxi-
predicted that the critical amplitudes of scaling functions dis-mum range that could be accessed in Réf.was too small
play a singular dependence ¢h The various power-law to verify the theoretical predictions. We overcome this limi-
dependencies were obtained from phenomenological crosgtion by means of an efficient cluster Monte Carlo algorithm
over scaling arguments. In this paper, we will derive this[7], in which the simulation time per spin is practically in-
dependence oR from a renormalization description of the dependent of the range of the interactions.
crossover from classical to nonclassical critical behavior. The outline of this paper is as follows. In Sec. Il, we
The first part of the renormalization trajectory is governed byderive theR dependence of critical amplitudes from renor-
the Gaussian fixed point, which is unstable tb4. The  malization theory. These results are verified by Monte Carlo
corresponding scaling relations have been derived bgimulations, presented in Sec. Ill. We end with our conclu-
sion in Sec. IV. Two technical issues, namely, the Fourier
transform of a spherical distribution of interactions in a gen-
*Electronic address: erik@tntnhb3.tn.tudelft.nl eral number of dimensions and the application of the cluster
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algorithm to medium-range interactions, are addressed in 1 2.7\ 92
Appendixes A and B, respectively. H( ) keT= 5; —Clyr| JukR+videdk
Uog
Il. RENORMALIZATION DERIVATION OF THE + m; ; ; i, P, Pry® K~k —kg
DEPENDENCE OF CRITICAL AMPLITUDES o2 s
ON THE INTERACTION RANGE N
. . . . —hg $r=0 ©)
A model with long-range interactions which has attracted

much attention is that in which the spin-spin interactions

decay algebraically as a function of the distanceetween J, is a Bessel function of the first kind of order The wave

the spinsK(r)=Ar~977 (¢>0), whered is the dimension-  Vvectors are discrete because of the periodic boundary condi-
ality and A>0 the interaction strengtlisee, e.g., Refs. tions. Furthermore, we restrict the wave vectors to lie within
[8,9,6]). For d<4, this model displays an interesting con- the first Brillouin zone, which is reminiscent of the underly-
tinuous variation of critical behavior as function of for  ing lattice structure. The interaction term can be expanded in
0< o<d/2 the critical behavior is classicahean-field-like, @ Taylor series containing only even termsiR. This means
ford/2<o<2— nsrthe critical exponents Vary Cont|nuous|y that we will be ma.|n|y concerned with the term of order
and for 2- 74<o, the interactions decay fast enough to (kR)2, because higher-order terms will turn out to be irrel-
yield short-rangelsing-like) critical behavior. Herez de- ~ €vant. The constant term in the Taylor series is absorbed in
notes the exponem |n thed d|mens|onal mode| Wlth Short_ v and the CoeffICIent Of the quadratIC term as a faCtOC n
range interactions. The algebraical decay of the interaction§his yields a new Hamiltonian,

is responsible for the existence of an intermediate regime 1

between Ising-like and classical critical behavior. In this pa- _ P22 T

per we focusgon a different way to interpolate between I[ihe Tl i) TkeT= ; [CRK"Hv]did«

long-range (mean-field limit and short-range models. In-
stead, we choose ferromagnetic interactions which are con-
stant within a rang® and zero beyond this range. Thus, we
have the following Hamiltonian:

Ug
+ —
4Nk21 kEz k23 ¢k1¢k2¢k3¢7k17k27k3

N
_ho\/;(ﬁk—o- @

Since we are free to choose the scale on which the fluctua-
tions of the order parameter are measured, we may rescale
¢— y=+CR¢. This is generally the most convenient choice
where the spin-spin interactidfy(r)=cR 9 for [r|[<R and  because the dominahktdependent term becomes indepen-
the sums run over all spins in the system. This Hamiltoniardent of R. (Naturally, this rescaling is not compulsory and
displays physical behavior that is different from the power-the same results will be obtained without it, provided one
law case. In particular, the intermediate regime with variablekeeps track of the dependence of the nontrivial fixed point on
exponents is absent, and mean-field critical behavior is reeR?, arising from the integration over propagators in the
stricted to the infinite-range limit. We analyze the influenceinner part of the Brillouin zong¢.This leads to

of the rangeR within the context of renormalization theory,

starting from a generalized Landau-Ginzburg-Wilson Hamil-

tonian, where théV ¢(r)]? term normally representing the H() ke T= —2
(short-rangg interactions is replaced by an interaction term

with spin-spin couplingAl),

H/kBT:_E 2 Kd(ri_rj)SiSj_hoz S;, (1)
T j>i i

k2+ — | -«

Ug
+ = ke — Ko
4EZR4Nk21 kEz kES Vi, Ui, Ui —k —ky—kq

1
H<¢>/kBT=fdr ——f dr'| = $(1) (1) he [N
v 2Ji-ri=r - [R "R k=0 (5
C

The parametec is merely a constanindependent of the
range and in order not to be hampered by it in the future
analysis, we absorb the various powers of itrigev/c,

As a consequence of the normalization fad®r®, the criti- ~ u=uy/c?, andh=h,/\c. Now, r, assumes the role of the
cal value of the temperature parameterdepends only temperature parameter.

weakly onR. The first integral runs over the volunvewhich If the rangeR is large, the coefficient of thg* term is
containsN particles. We adopt periodic boundary conditions.relatively small and hence the critical behavior of the system
The Fourier transform of the interaction is calculated in Ap-is determined by the Gaussian fixed point. Under a renormal-
pendix A. It leads to the following momentum-space repre-ization transformation with a rescaling parameterthe
sentation of the Hamiltonian: Hamiltonian thus transforms as

1
—ho¢<r>+§v¢2<r>+uo¢4(r>}. @
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We have introduced the coefficients andu, which denote
the location of the pointr@,u) in the new coordinates with
respect to the nontriviglsing) fixed pointu* which we are
now approachingsee Fig. 1

The singular part of the free energy density, is after
FIG. 1. Qualitative picture of the renormalization trajectory de- the transformationp— ¢ denoted byAf'S,

+

scribing the crossover from the Gaussian fixed pgifit=(0,0) to o uh
the Ising fixed pointu* = (r§ ,u*). fo(rg,u,h)= (RZ’ R‘“ﬁ)' (8)
Furthermore, we introduce the quantity {(7o,U,h)
~ ’ 1 ro ’ f u _ _~ .
H'(l//k/)/kBT':—E k'2+_2|2}¢k,¢ kr+T|4 d =fy(rg,u,h). Because the total free energy is conserved
247 R 4R°N along the renormalization trajectory, the singular part of the

free energy density changes as

XZEZ%%% k’ k’ k’

Kk ~[rg u h

L S(E'E'ﬁ

h /N’

__ 1+di2
R 2| l’bk’ o (6) =|7d? r_0|2 i|4fd E|l+d/2
S\RZ"'R* 'R

Here ¢, =171y, k' =KI, the sums run again over the full =R V@ Df (T R2VE-D [ hREVA- D)
Brillouin zone, andN’=NI"9. Ford<4, they* term grows _ —p-IR-4d/(4-d)f (tR29/(4= Doy T, hREY/ (4= pyiy
and the system moves away from the Gaussian fixed point s ' ' '
ui (see Fig. 1L At present, we are interested in the flow C)

from the neighborhood of the Gaussian fixed point to that of
the Ising fixed point. Thus we remain close to the critical linew where we have used the notatia[ T~ To(R) I/ Tc(R) for

Anecting the two fixed points and the temperature fi IJO In Fig. 1,t stands for the distance to the critical line
connecting the two fixed points a € temperature ne connectinguy andu*. In the second equality we have sub-
parametrized by, remains small. The crossover to Ising-

like critical behan hen th fficient of té stituted the crossover scale= R¥(*~9_ Of course, this is
Ike crifical behavior occurs when tne coze cient of T only aqualitative measure for the location of the crossover,
term is of the same order as that of tkfay® term, which is

e L palldd) but the renormalization predictions for the scaling exponents
unity, i.e., whenl =1,=R - We shall refer tdo as the  4re exact. The relatiof®), which holds for kd<4, is the
crossover scale key to the scaling relations obtained on phenomenological
By comparing the coefficient of thg* term to that of the  grounds in Ref[4]. We will first illustrate this by deriving
roy® term, it is possible to derive a criterion that states forthe R dependence of the critical amplitudes of the magneti-
which temperatures the critical behavior will be Ising-like zation densityn and the magnetic susceptibiligy The mag-
and for which temperatures it will be classical. This is thenetization density can be calculated by taking the first deriva-
well-known Ginzburg criterior{1], which can also be de- tive of the free energy density with respect to the magnetic
rived from Eq.(6) (see, e.g., Ref10], p. 107. One expects scaling fieldh,
the Gaussian fixed point to dominate the renormalization
flow if, irrespective ofl, the 4* coefficient is small compared
to the temperature coefficient. Thus, one requires the scaled
combination uR #1*~9/(r,R™212)# 92 to be small, or

s
- é,_h(rO!u! )

r{92Rdy~1>1 [cf. also Ref[4], Eq. (3)]. - %(r_g 14 E)
Since we are now in the neighborhood of the Ising fixed dh |RT'RV'R
point, we continue renormalizing our Hamiltonian witbn- —pYn—dR-d/(4=d)
classicalrenormalization exponents, y,,, andy; . To lead- R
ing order, it will transform as follows, where denotes the X fD(tR24(4=DpYt TibYi, hRPY(4=Dpyn) - (10)

rescaling factor of our new transformation:
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Wherefgl) denotes the first derivative dfs with respect to Choosing the arguments of the second derivativé;as in

its third argument. Here we have neglected any nonlineaEq. (11), we find

relation between the magnetic scaling fildind the physi-

cal magnetic field. Furthermore, we have omitted a contribu-

tion from the analytic part of the free energy, becalsmly .

couples to the&k=0 (uniform) mode. To extract the depen- x=t" R MIE-0§2(1,0,0, (13

dence ofm ont andR from Eq. (10), we choose the rescal-

ing factorb such that the first argument of the derivative of

fis equal to 1, i.e.p=t WR™2/(4-d] and set the ir-

relevant variabl@l and the magnetic scaling fieldequal to  in agreement with Refi4], Eq. (39). In Egs.(11) and (13)

zero, we have used the well-known relations between the renor-
m:tBR(Zd,B—d)/(A—d)%(Sl)(1'0’0_ (11) malization exponents and the critical expone(gse, e.g.,

. ] Table 18 in Ref[11]).
This result agrees with Refd], Eq. (34). In the same way The finite-size scaling behavior of thermodynamic func-
we can calculate the magnetic susceptibility frogrby tak-  tions can also be derived from this renormalization scenario

ing the second derivative with respecttp by including a finite-size field 1/ as an additional argument
9*f of the free energy density in E49). Under the first renor-
X= (Thf(ro*u’h) malization transformation this scaling field will scalel&s
e u h and under the second renormalization transformation as
= _25(_‘;,_4, _) Ib/L=bR¥4=9L~1 The finite-size scaling behavior is
dh*\RT'R"'R found by choosing b such that Ib/L=1, i.e,

= pn dR24/(4- 0§ () ({R20/(4-d)py: T KRBV~ Dpyny . b=LR~#(4~9)_ Sybstituting this into Eq410) and (12), we
(12) obtain form

m= LyhfdR(3df4yh)/(4fd)f(sl)(tLy[R*2(2y1*d)/(4*d),'ﬁLyiR*4yi /(4*d),hLth(3d*4yh)/(4*d)), (14
and for y,
X= LZYh*dR2(3d*4Yh)/(4*d)f(sz)(tLth*2(2yrd)/(4*d),’a|_>’i R™4i/(4=d) h|LynR(3d—4yp)/(4=d)) (15)
|
These results agree with Ré#], where the prefactors of the dw’
magnetization density and the magnetic susceptibility were gs —(6-2dw’. (16)

predicted as, respectively,L  #"RCA=N/»(4=d]  gnd
LY*R4E=20/»(4=d] Fyrthermore, the first argument of the
scaling functions was predicted asL”R*, with

The solution of this equationy’ (s) =we®~29s can be sub-
stituted in the renormalization equation for tigé coeffi-

K= (2a)/[v(4—d)] [Ref. [4], Eq. (25]. This is indeed , S
equivalent with our resuliC=—2(2y,—d)/(4—d). How- id_u: LW
. o , 7 (4—d)zz+tags. (17
ever, the predicted range dependence of the critical ampli- R* ds R R
tudes[i.e., of the prefactors in Eqs14) and (15)] is only  To first order inw, this yields
valid in the limit of infinite range. For smaller ranges, u’ 1 a w
R-dependent correction terms are present. These correction E:e(“‘d)sﬁ uts—5 ﬁz(e(z‘d)s— 1)}
terms can be calculated as well. Theymat come from the
dependence of the scaling functions on the irrelevant fields, W

as corrections to scaling normally do: these corrections van- = |4_d@ Ut 54 @Uz_d— 1), (18

ish in the thermodynamic limit. However, they come from
higher-order contributions to the renormalization of ¢  whereu and w denote the values of’ andw’ at =1,
coefficient which were previously neglected in the derivationrespectively. This implies that the previously obtained cross-
of the crossover scallgy. Note that in the neighborhood of over scald ,=R**~9 is multiplied by a factor (2R ?)

the Gaussian fixed point, the terngd with n<2d/(d—2)  and hence all critical amplitudes will exhibit this correction.
are relevant and that fod=2 all higher-order terms are However, the solution18) is not valid for d=2, where
equally relevant. However, the coefficients of these termsiR™%y* andwR™®y° are equally relevant. The solution of
are, after the rescalingg— , proportional toR™", so the EQq. (17) is then given by

leading contribution comes from the temrR ™ 64®. Under a ,

spatial rescaling with a factor=e® the renormalization u e2s i
equation for this term is, to leading order, R* R*

w , 1 w
u+a¥s ==z u+a¥InI , (19

R
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which vyields a (leading correction factor[1+R %(a; TABLE I. The range of interactioR,,, the corresponding num-
+7a,InR)] in the crossover scale and the critical amplitudes.ber of neighbors, and effective range of interactidr.

From a similar mechanism we can derive tRedepen-
dence of the so-called shift of the critical temperatijdg, R2, z R
Eqg. (15)]. A detailed treatment of the shift of . can be

3

found in, e.g., Refs[12,6]. It arises from theu-dependent 2 8 3
contribution in the renormalization equation for ti#é term, 4 12 3
17

1 dr} 2r(’) u’ 20 6 20 235

R2 ds R2 CR4 ( ) 8 24 5

. . . . 10 36 6

Thus, the first argument on the right-hand side of the first 148
equation in(9) should be replaced by 18 60 15
. . u u 32 100 &

R—%:IZ (R—Z—ER—Z +’6R—2|2d} 50 160 s
72 224 1007
1 ~Up) —u 100 316 400

=12=|| ro—C5z|+C=z1%79]. 21 75
R ( 0 CRZ) ‘R? @y 140 436 7534

The term between round brackets is proportional to the re=
duced temperature and the last term is the leading shift. Sub- ) ) o ) ) o
stitution of the crossover scalg shows that this shift in the dependence. Finally, in the finite-size scaling description, the
reduced temperature is proportionalRo 24~ which in- system size must be sufficiently large in order to observe the
deed vanishes in the mean-fielR- ) limit Rémarkably crossover to Ising-like critical behavior: we require that the
this disagrees with Ref4], where a shift<R~9 was pre- refcalln4g/(4j‘?)ctor b is minimal of order unity, or
dicted. Unfortunately, it is not possible to settle this issue at=O(R )-

present by means of Monte Carlo data, because only results

for d=2 are available, which is a special case. Namely, for Ill. MONTE CARLO RESULTS AND COMPARISON

d=2 we obtain instead of Eq21) the following solution of WITH THE THEORETICAL PREDICTIONS

Eq. (20) A. Definition of the model
ro o To Ug o 1 Ug We have carried out Monte Carlo simulations for two-
r =g teranl | =1"gz| Totcgznl]. (22 gimensional Ising systems consisting bi L lattice sites

with periodic boundary conditions and an extended range of
Thus, we find, upon substitution of the crossover scale, thahteraction. Each spin interacts equally with #sieighbors
the shift in the reduced temperature has the formlying within a distanceR,,, as defined in Eqq1) and (Al)
(p+qInR)/R2, where the constar comes from a multipli-  with R replaced byR,,, andd=2. The Monte Carlo simula-
cative factor introduced by the crossover criterion. In Reftions were carried out using a special cluster algorithm for
[4], d=2 was already suggested as a special case, with pofang-range interactions’]. Its application to the interactions
sibly logarithmic corrections. The renormalization argumentdefined above is described in Appendix B. Following Ref.

shows that such a Rterm is indeed present. [4] we define the effective range of interactiBnas

Now, let us return to Eq(4), where we omitted quartic S Li(ri—r)2K;;
(and higherterms inkR. It follows from the renormalization R?= % (23
scenario that terms proportional t&®" transform as 1 17174
k2"2~2" ynder the first renormalization transformation and ==> |ri—rj|? with [r;—rj|<Rp.
hence are irrelevant fon>1. The behavior of these terms Zj#i (24

under the second renormalization transformation is less
simple, but again quartic and higher terms do not influencaable I lists the values dR?, for which we have carried out
the leading terms; see, e.g., REf3], Sec. VII.6. simulations, as well as the corresponding valueRdfThe
Besides, it can be seen that the structure of the interactioptio betweerR? and Rﬁq approaches 1/2, as can be simply
term does not depend on the details of the spin-spin interagound when the sums in E@23) are replaced by integrals.
tion. E.g. replacing the interaction terniAl) with note that the results fdR%= 18 andR? =32 cannot be com-
K(r)=cR™%ex{ —(r/R)’] leads to precisely the same Struc- hareq to those presented by Mon and Binder, because in Ref,
ture of the LGW Hamiltonian and hence to the same scalingy4] the interactions were for these two system sizes spatially
relations involvingR. This is in agreement with the univer- gistributed within asquare as can be seen from the number

sality hypothesis. o o ~ of interacting neighbors and the corresponding effective
Furthermore, the renormalization description explainsanges of interaction.

why the interaction rang® must be large to observe the
predicted powers oR in the critical amplitudes: only for

systems withR large the renormalization trajectory starts in
the neighborhood of the Gaussian fixed point and hence only The critical temperature$, of these systems have been
these systems will accurately display the correspond@ng determined using the well-known universal amplitude ratio

B. Determination of the critical temperature
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Ising limit

1000

FIG. 2. The critical-point amplitude ratiQ, (K.) for Rzm: 140
as function of the system siz&iscrete points For largelL,
Q. (K,) approaches the Ising lim@®,~0.856 216(dotted ling. For

decreasing L, Q. (Ky)

approaches

the

mean-field limit

4631

of the system size. One clearly observes the crossover from
Qu (for L<R2) to Q, (for L>R2).

In the Ising limit, the finite-size expansion €J, reads
(see, e.g., Refl11))

QL(K)=Q+ay(K—Kg)LYi+a,(K—Kg)ZL
4ot byLYit bVt (25)

K denotes the spin-spin coupling the critical coupling,
and thea; andb; are nonuniversalrange-dependentoeffi-
cients. The term proportional thY2, with y,=d—2y,,
comes from the field dependence of the analytic part of the
free energy. In ap* theory this term is absent, as was stated
in Sec. Il, but in a discrete model it should be allowed for.
The exponentsy;, y,, andy;, which have already been
introduced in the previous section, are, respectively, the tem-
perature, magnetic, and leading irrelevant exponent for the
two-dimensional Ising modely,=1, y,=%, andy;=—2.
Table Il displays the results of a least-squares fit according to

Q ye~0.456 947 (dotted ling, until the system size becomes EU-(25), wherey,,y;, andy, were kept fixed at their theo-
smaller than the rangR,, and strong finite-size effects come into 'e€tical values. For comparison we have included the esti-
play. To illustrate that the system is indeed mean-field-like for thesénates fork . from Ref.[4]. Except forR? =10 there is good

system sizes, we have also plot@dor finite systems in which all
spins interact equally strondgdashed curve The points for
R,Zn: 140 indeed approach this curve.

Q.=(m?2/{m*_. Both in the Ising and in the mean-field
limit the critical-point value of this quantity is accurately

known. In the

mean-field

limit, Q=Que=872/

[T'(3)]%~0.456 947; see Ref§12] and[7], Appendix A. In

the Ising limit, Q= Q,=0.856 216(1)[14].

As was noted in Sec. Il and also in R4, rather large
system size§O(R?)] are required to determin€&,, since
Q must approact, . For ans 10 we have included linear
system sizes up tt =500 and for larger ranges we have K. In fact, the error margins oK. can be reduced signifi-

used system sizes up td.=700 or

even L=800

(Rﬁ1=100,140). For each run we have generate® \MoIff
clusters after equilibration of the system. The various therR 2. Even close the mean-field limiR >—0), the devia-

modynamic quantities were sampled after every tenth Wolftion of 1/(zK.) from 1 seems not truly linear. Therefore we
cluster. In Fig. 2Q, (K.) for Rﬁqz 140 is plotted as function have tried to identify the logarithmic term, which was sug-

agreement between the respective estimates. The discrepancy
for R§1= 10 may be explained by the limited range of system
sizes in Ref[4]. Furthermore, foR§1= 2, which corresponds

to the Ising model with nearest and next-nearest neighbor
interactions, an accurate transfer-matrix estimate of the criti-
cal coupling existsK.=0.190 192 69(5)[15]. The Monte
Carlo result agrees with this value. The results@are in
good agreement with the expected va@ie which confirms

not only that universality is satisfied, but also that the maxi-
mum system sizes in our simulations are sufficiently large,
so that crossover to Ising-like critical behavior indeed has
taken place, as it should for an accurate determination of

cantly by fixingQ at its Ising value in Eq(25) (see Table ).
Figure 3 illustrates the shift in 14(.)>=T . as function of

TABLE Il. The amplitude ratidQ and critical coupling<,, for the various ranges of interaction studied in
this paper. The numbers in parentheses denote the errors in the last decimal places. The fourth column shows
the estimates foK, obtained withQ fixed at its Ising value. For comparison, we also list the estimates for
K. given in Ref.[4].

R2 Q Ke K. K. (Ref.[4])

2 0.85565) 0.190190819) 0.190193111) 0.190

4 0.85579) 0.114021618) 0.114022%7) 0.11402

6 0.85537) 0.06319179) 0.06319264)

8 0.8553(13) 0.051046010) 0.05104674) 0.05106
10 0.85639) 0.03241365) 0.0324135p18) 0.032463
18 0.855%14) 0.018533%3) 0.0185336()

32 0.8533) 0.010751525) 0.010751827)
50 0.8566) 0.0065727426) 0.00657276b)
72 0.8544) 0.0046405616) 0.004640644)
100 0.8508) 0.0032590815) 0.00325908)
140 0.86217) 0.0023463719) 0.0023463(2)
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FIG. 3. Plot of 1/¢K.) versusR™2. The dashed line denotes the
extrapolation to the mean-field limit. The inset showsKJf) over
the full range ofR™2 between the Ising and the mean-field limit.

FIG. 5. Range dependence of the amplitude of the temperature-
dependent argument of the finite-size scaling function of the uni-
versal amplitude rati®.

gested in Ref[4] and derived from the renormalization sce- tor, Therefore, we have numerically examined the range de-
nario in Sec. I, by writing the following expression for the pendence of the coefficieay in Eq. (25). Since K —K,) is
critical coupling, proportional toR™2, we must first dividea, by R?. Figure 5
displays this quantity as function of the range. For small
ranges, there is a strong dependenceRprbut the coeffi-
cients seem to approach a constant value in the large-range
limit. This suggests that a logarithmic correction factor is
absent.

p+glnR
V4 Kc: 1+ —Rz— (26)
In Fig. 4 we have plotted\=(zK.— 1)R? versus IIR. In-
deed, for large values d® the points lie approximately on a
straight line, confirming the presence of the logarithmic cor-
rection.

Another IR correction was suspected in R@#] in the We have sampled the absolute magnetization density,
temperature-dependent argument of the finite-size scalinm|), for which the range dependence is given by 8.
functions.  This  argument is  proportional  to This quantity has been fitted to the following finite-size ex-
R 2@ d/(4-d) = g=24/[v(4-d)]. see Eqs(14) and(15). For  pansion,
d=2, =0 implies a logarithmic divergence of the specific
heat and hence one might expect a similar logarithmic factor
here. On the other hand, we have not found a mechanism in
the renormalization scenario which could explain such a fac-

C. Range dependence of the magnetization density

my(K,R)=LY""%dg(R)+d;(R)[K—K(R) L
+dy(R)[K—K(R)JPLYt+ - -

+ey(R)LYi+- -}, (27)
2 " T r :
where we now have explicitly indicated the range depen-
18 ¢ il dence of the parameters. The critical couplings found from
16 - i this quantity agree well with those obtained from the ampli-
o tude ratioQ and the exponenyy,, listed in Table lll, is in
14 ¢ g good agreement with the exact value 15/8. Furthermore, we
412 have made a least-squares fit wii fixed at the most ac-
curate values obtained fro@. The corresponding estimates
1t for y,, are also shown in Table Ill. They lie even closer to
o0s | " 15/8, which again corroborates that all systems belong to the
' ' ’ Ising universality class. From the critical amplitudgg R)
06 we can derive the leadinB dependence of the magnetiza-
04 ' ‘ , . tion. To increase the accuracy, the values in Table Ill were
"o 05 1 15 2 25 determined withy, fixed at its theoretical value. As can be

FIG. 4. A=(zK,—1)R? versus lIlR. For largeR the graph

In(R)

seen from the log-log plot in Fig. 6, the approach to the
asymptotic scaling behavior is very slow. Therefore we have
determined the scaling exponent in two different ways. A

strongly suggests the presence of a logarithmic correction in th§_traight line through the F_JOintS for the th.ree largest ranges
shift of the critical temperature. The error bars do not exceed thyielded do(R) <R~ %738(13) in agreement with the predicted

symbol size.

exponent—3/4 [Eqg. (14)]. Inclusion of the correction factor
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TABLE lll. The exponenty, and the critical amplitude of the

column shows the estimates fgf, obtained withK, fixed at the
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most accurate values shown in Table Il.
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TABLE IV. The exponenty,, and the critical amplitude of the
magnetizatiordy(R) for the various ranges of interaction. The third magnetic susceptibilitpy(R) for the various ranges of interaction.
The third column shows the estimates §grobtained withK . fixed
at the most accurate values shown in Table II.

R?, Yh Yh do(R) R?, Yh Yh Po(R)
2 1.874%7) 1.87493) 0.95334) 2 1.87549) 1.87482) 0.97439)
4 1.876315) 1.87564) 0.87085) 4 1.875312) 1.87523) 0.81347)
6 1.8733) 1.876713) 0.793710) 6 1.874Q@18) 1.876110) 0.676214)
8 1.8733) 1.87548) 0.75237) 8 1.8732) 1.8750@6) 0.60789)
10 1.8742) 1.87487) 0.67836) 10 1.8743) 1.87416) 0.49437)
18 1.8713) 1.874412) 0.58166) 18 1.8744) 1.874G11) 0.36249)
32 1.87%6) 1.87449) 0.492911) 32 1.8684) 1.8732) 0.26229)
50 1.8737) 1.8762) 0.418118) 50 1.8626) 1.8743) 0.19147)
72 1.86%5) 1.875216) 0.37428) 72 1.86317) 1.87Q4) 0.15348)
100 1.8679) 1.87712) 0.3298) 100 1.8706) 1.8744) 0.118@8)
140 1.89513) 1.8793) 0.293813) 140 1.863) 1.8705) 0.09549)

[1+R?(@;+3,InR)], as predicted from Eq19), allowed  critical couplings obtained from a least-squares fit lie close to
us to includeall data points in the fit and yieldedy(R)  those in Table Il and the estimates fgragree with the Ising
«R™07%66) also in good agreement with the predicted ex-value (see Table IV. By repeating the fits witlK . fixed at
ponent. the most accurately known values, the valuesyjplie even
closer to 15/8third column of Table IVY. From the param-
eterpo(R), plotted in Fig. 7, we can extract the leading range

The magnetic susceptibility can be calculated from thedependence of the susceptibility. A straight line through the
largest ranges gapg(R)

g amplitudes for the three
average square magnetization, - ; . . \
ge sq 9 «R™146C) For a curve(including the first correction term

through the amplitudes it was necessary to include the data
for all rangesR?=7/3 in the fit, in order to determine the
coefficient of the IR factor. This yieldedp,(R)<R™147(?),

Both exponents are in good agreement with the predicted
value 2(31—4y,)/(4—d)=-3/2.

D. Range dependence of the susceptibility

x=L%m?). (28)
We thus expect the following finite-size scaling behavior:
XL(K,R) =80+ L™ U pg(R) + p1(R)[K—K(R) LY
+P2(RIK—K(RPLH -

+qu(RILYi+- -} (29 E. Spin-spin correlation function
The finite-size scaling behavior of the spin-spin correla-

The terms, comes from the analytic part of the free energy.tion function g(r) closely resembles that of the magnetic

Because it tends to interfere with the term proportional tosusceptibilityy, as may be expected from the fact thats

g:(R), we have ignored it in the further analysis. Again, thethe spatial integral ofy. We also expect the range depen-

1 T T T T —— . . ; :
* ~ 1r +
AN Magnetization  + * Susceptibility ~ +
™ Slope —3/8 - . Slope -3/4 -
* 0.5 +
~ 051 ¥ ] ~ -
g g
< e S .
.. 0.2 >
03 ] “
-«\
0.1 ‘
0’2 J. 1 1 1 1 1 1 1 1 1 1 1 i 1 1 N
152 3 5 10 20 30 50 152 3 5 10 20 30 50
R %

FIG. 6. The critical amplitudely(R) of the magnetization den-
sity versusR?.

FIG. 7. The critical amplitudg@,(R) of the magnetic suscetibil-
ity versusR?.
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TABLE V. The exponenty,, and the critical amplitude of the IV. CONCLUSION
spin-spin correlation functiony(R) for the various ranges of inter- . ) .
action. The third column shows the estimatesyfgrobtained with In _th's paper, we have Qerlved_the dependence OT scf';tllng
K. fixed at the most accurate values shown in Table II. functions on the range of interactions from renormalization-
group arguments. The results agree with the predictions of
R, Vi Vi vo(R) Mon and Binder and yield in addition the corrections to the
leading scaling behavior, including the previously conjec-
2 1.87598) 1.87543) 0.940%9) tured logarithmic factor in the shift of the critical tempera-
4 1.874412) 1.875@3) 0.78606) ture of two-dimensional systems.
6 1.874819) 1.876511) 0.652815) We have also carried out accurate Monte Carlo simula-
8 1.874617) 1.87546) 0.58629) tions for systems in which the range of the interactions was
10 1.87%3) 1.87417) 0.477Q@9) large enough to verify the theoretical predictions. It was con-
18 1.8744) 1.8745%10) 0.34899) firmed with high precision that all examined systems belong
32 1.8734) 1.874718) 0.25416) to the 2D Ising universality class. Besides the range depen-
50 1.8647) 1.87@3) 0.18279) dence of critical amplitudes, we also observed the predicted
72 1.86@8) 1.8714) 0.14739) range dependence of the corrections to scaling.
100 1.8729) 1.8764) 0.11289)
140 1.863) 1.8713) 0.09159) APPENDIX A: FOURIER TRANSFORM OF A

SPHERICALLY SHAPED INTERACTION PROFILE

We define the following isotropic spin-spin interaction

dence of the two quantities to be the same. We have sampleig (the subscriptl denotes the dimensionaljty

the correlation function over half the system size and ana-'¢
lyzed it using the expansion cRd if |r|<R

gL(K,R)=L&n"240y(R) +v4(R)[K—K(R) Lt Kd(r)E[O if [r|>R.

+02(RI[K = K(R) L+ - - We have normalized the interaction strength, to make the
Fwy(R)LYi+ -} in'Fegrated interactiorﬁenergy indepen_dent of the range. Ir_1
(30) this appendix, we calculate the Fourier transform of this in-
teraction for a general number of dimensions. Berl the
calculation is trivial:

(A1)

The constant term i29) is not present herésee, e.g., Ref.
[11]). Table V shows the results fg,, both withK. free - C(+R . 2¢

and fixed. In the latter casg, is in accurate agreement with Ky(k)= ﬁf dXékX:ﬁSir\(kR)- (A2)
its theoretical value, just as for the magnetization density and R

the magnetic susceptibility. Figure 8 shows a log-log plot of
the critical amplitude o(R) as function of the range. A fit of

a straight line through the points wittR?>>35 (i.e.,
R2=72) yieldedvo(R) <R 1*%() whereas a curve through

Ford=2 andd=3 one obtains Bessel functions. Using the
equality J4,x(x) = y2/(mx)sinx), the results fod=1,2,3 can
be summarized as

all points with R?>7/3 gavevo(R)*R™14%2) Both esti- _ di2
mates are again in good agreement with the predicted expo- Kd(k):c(ﬁ> Jan(kR), (A3)
nent —3/2.
where J, is a Bessel function of the first kind of order
. ; ; — . This suggests that this equality is valid for geneatalvhich
5 b | can indeed be shown by induction. If we assign xheoor-
Correlation function ~ + dinate to the §+ 1)th spatial dimension and use the notation
Slope =3/ - k3=39_.k? we may write
1E . 1 i=1%
M _ c (4R di2
£ 05t ; Kgr1(K) = marr f dxcos(kxx)(k—) (R?—x?2)d/4
® T R d
02 * | X Jgra(KgVRZ—X?)
T 2¢c (27|92 (R
I \‘q\\\ | = STl o f dpcoskx RZ_pZ)
0.1 - R kd 0
52 3 s 0 20 30 50 plar2)P
' R X\/ﬁ—z—z_de/Z(kdp)

. . ) . . 2.\ (d+1)/2
FIG. 8. The critical amplitude o(R) of the spin-spin correlation _
function versusR?. P o) pin-sp = C(ﬁ) Jia+1)2(KR), (A4)
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where we have used a Hankel transform of general ordeprovisionally activated. The probability that, during the first

see, e.g., Ref16], p. 40, Eq.(48). step,k—1 bonds are left inactive and that th¢h bond is
provisionally activated is equal to

APPENDIX B: MONTE CARLO ALGORITHM FOR SPIN P(k)=(1-p)* p. (B2)
SYSTEMS WITH MEDIUM-RANGE INTERACTIONS

The cluster algorithm we have used for the present Montd he cumulative bond probabilit¢(k) is defined as
Carlo simulations has essentially been described in [Réf.
However, that description is rather concise; here, we present K
a somewhat more elaborate discussion of the mathematical Ck)= 21 P(n). (B3)
backgrounds, and we outline how the algorithm is applied to "
medium-range models of the type studied in this paper. ) . )
The description is given in terms of the Wolff cluster The intervalk—1 to the next bond to be provisionally acti-

algorithm[17], but the principle applies only to the cluster Vated is obtained by drawing a random number
formation process. Thus, it is also applicable in the(€[0,). If this random number lies betwee(k—1) and

Swendsen-Wang cagé8]. For simplicity, we describe the C”(k)’ kt'_ 1t b(;)nlcti; are sdk_ilpped ant(:] t':?;].bond is groviTiorg ¢
way a cluster of spins is built in the case that there are onl y activated. 11 1S readily seen that this procedure leads 1o
£ . . recisely the required probabilities given in E§2). But the
erromagnetic interactions.

. number of operation r spin in the cluster is only of order
For each spin in the cluster, we have to run a task de umber of operations per sp the cluster is only of orde

) . . . : pR2 : near criticality, this quantity is approximately equal to
scribed below. During this task, new spins may be include Eln'hus the work involved in the decision concerning the
in the cluster. For this reason, it is convenient to use aac ’

“stack” memory containing the addresses of the spins for tual bond activation is also of order unity.
) y containing P! We check independently whether the resulting probability
which the task remains to be done.

The task for a spis: read from the stack is the followin of activating the first bond at a distankds equal to that in
: PIB; . . : N9 the conventional approach. Consider a cluster spin,sgay
A loop is executed over all neighbosg interacting with

. s with a chain of neighbors denoted, . . . ,s;, of whichm
s; . In each step of this loop, the bond connecting sitaad ; . ke :
'is “activated” with a probability spins are antiparallel te; andl =k—m spins are parallel to

S, among whichs, . In the conventional Wolff cluster algo-
rithm, the probability thas, is thefirst spin to be added to

the cluster is, provided thay=s,, given b
P(si -Sj): 5sisjpv (B1) p =S¢, g y

1"(1-p)'tp=(1-p)'*p. (B4)
wherep=1-exp(—2K), in whichK is the coupling between ) _ -
s, ands; . The simulation process would conventionally in- On the other hand, if we use the cumulative bond probability
clude a test whethes; ands; are parallel, and if so, the (B3), this probability is calculated as follows. Either the
production of a uniformly distributed pseudorandom numberkth spin is selected directljif the first random number lies
r. If r<p, the bond is activateds; is added to the cluster, betweenC(k—1) andC(k)] or one of them antiparallel
and its addres$ is stored in the stack memory. Since this SPins is selected, s&, which is of course not added to the
loop runs over all neighbors interacting wih, i.e., over all ~ cluster. In the latter case, another random number is drawn
sites within a distanc®,,, the process becomes very time @nd & new spin is selected. Again, this may bektiespin,
consuming when the rang®, of the interactions becomes ©Or one of the remaining antiparallel spins betwesnand
large, just as in the case of Metropolis simulations. sx. Now, let us show that the sum of these probabilities of

However, the cluster formation process can be formulate@dding sy as the first spin to the cluster is equal (®4).
in a more efficient way. Part of the work involved in the Denote the number of selected, “intermediate,” antiparallel
activation of the bonds between and its neighbors; can ~ spins byi. There are {) possibilities of selecting interme-
be done in a way that does not depend on the signs of thdiate spins. The probability of selectisgafter each of these
spins. Thus, as a first step, the bonds connectes| re  sequences of spins ip'(1—p)™ '(1—p)'*p. The total
“provisionally activated” with a probabilityp, independent probability is the sum over all numbers of intermediate spins
of their relative sign. Typically, only a small humber of

bonds will be provisionally activated for each entryn the m
stack memory(i.e., each spin in the clusterThen, in the > ( . )pi(1—p)m“(l—p)"lp:(l—p)'—lp, (B5)
second step, the provisionally active bonds, say between =o |

sitesi andj, are actually activated & =s;, i.e., with prob-

ability ésisj. During the second step, the bonds that were lefiyhich is indeed equal t¢B4).

inactive in the first step can be ignored. As shown in Ref. [7], Cj(k)=1—exp(—2ﬁ:j+1K)
Since the first step does not depend on the signs of thel—exp(—[k—j]K). By inverting this relation, the bond dis-

spins, and the probabilitp is typically quite small, we in- tancek can be calculated fror@;(k), i.e., from the random

troduce(following Ref. [7]) a cumulative bond probability number. This approach is highly efficient; compared to con-

This quantity determines which bond is thextbond to be ventional(Metropolig algorithms the gain is typically a fac-
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torO(R%Lz). Finally we remark that efficient variants of this tween Spingi and §j is done afterwards with a probability

technique.can be applied to I'ong—ran@é'n) modgls with [1—exp(—2Ks 5 ))/p if (gi.gj)>o (where z defines the
n>1. Again, bonds are provisionally activated with a prob-spin-flip direction of the cluster-formation stepnd other-
ability p=1-—exp(—2K); actual activation of a bond be- wise with probability 0.
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