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We study phase diagrams of a class of doped quantum dimer models on the square lattice with ground-state
wave functions whose amplitudes have the form of the Gibbs weights of a classical doped dimer model. In this
dimer model, parallel neighboring dimers have attractive interactions, whereas neighboring holes either do not
interact or have a repulsive interaction. We investigate the behavior of this system via analytic methods and by
Monte Carlo simulations. At zero doping, we confirm the existence of a Kosterlitz-Thouless transition from a
quantum critical phase to a columnar phase. At low hole densities, we find a dimer-hole liquid phase and a
columnar phase, separated by a phase boundary which is a line of critical points with varying exponents. We
demonstrate that this line ends at a multicritical point where the transition becomes first order and the system
phase separates. The first-order transition coexistence curve is shown to become unstable with respect to more
complex inhomogeneous phases in the presence of direct hole-hole interactions. We also use a variational

approach to determine the spectrum of low-lying density fluctuations in the dimer-hole fluid phase.
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I. INTRODUCTION

The behavior of doped Mott insulators is a long-standing
open and challenging problem in condensed-matter physics.
Mott insulators are the parent states of all strongly correlated
electronic systems and as such play a crucial role in our
understanding of high-T. superconductors (HTSC) and many
other systems. Their strongly correlated nature implies that
their behavior cannot be understood in terms of weakly
coupled models. Except for the very special case of one spa-
tial dimension, the physics of doped Mott insulators is cur-
rently only understood at a qualitative level. The solution of
this challenging problem remains one of the most important
directions of research in condensed-matter physics.

Quantum dimer models' (QDMs) provide a simplified,
and rather crude, description of the physics of a Mott insu-
lator. They provide a correct description of the physics of
Mott insulators in regimes in which the spin excitations have
a large spin gap. QDMs were proposed originally within the
context of the resonating-valence-bond (RVB) mechanism of
HTSC.23 These systems are of great interest as they can
yield hints on the behavior of more realistic models of quan-
tum frustration.

The main idea behind the formulation of QDMs is that, if
the spin gap is large, the spin degrees of freedom become
confined in tightly bound singlet states which, in the extreme
limit of a very large spin gap, extend only over distance
scales of the order of nearest-neighbor sites of the lattice.
Thus, in this extreme regime, the Hilbert space can be ap-
proximately identified (up to some important caveats') with
the coverings of the lattice by valence bonds or dimers.

Surprisingly, even at the level of the oversimplified pic-
ture offered by QDMs, the physics of doped Mott insulators
remains poorly understood. In this paper, we explore the
phase diagrams, and the properties of their phases, of QDMs
generalized to include interactions between dimers (or va-
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lence bonds) and between dimers and doped (charged) holes.
Basic aspects of the physics of these models are reviewed in
Ref. 4 and references therein.

Undoped QDMs have been studied more extensively, and
by now, they are relatively well understood.’>~'! On bipartite
lattices, their ground states show either long-range crystal-
line valence-bond order of different sorts or are quantum
critical,'*® while on nonbipartite lattices, their ground states
are typically disordered and are topological fluids.”

The more physically relevant doped QDMs, with a finite
density of charge carriers (holes), are much less understood,
although some properties are known.'2"'8 In QDMs, a spin-3
hole fractionalizes into a bosonic holon, an excitation that
carries charge but no spin, and a spinon, a fermionic excita-
tion that carries spin but no charge."3*!2 Holons can be re-
garded as sites that do not belong to any dimer, whereas
spinon pairs are broken dimers. This form of electron frac-
tionalization is observable in the spectrum of these systems
only in the topological disordered (spin-liquid) phases of the
undoped QDM. Otherwise, as in the case of the valence-
bond crystalline states which exhibit long-range dimer order,
spinons and holons are confined and do not exist as indepen-
dent excitations.*

In this paper, we consider several interacting QDMs on a
square lattice at finite hole doping and discuss their possible
phases and phase transitions as a function of hole density and
strength of the interactions. At any finite amount of doping,
the system will have a finite density of holes, which are
hard-core charged bosons in this description. To simplify the
problem, in this work, we do not consider the physical ef-
fects of the charge-neutral fermionic spinons which, in prin-
ciple, should also be present. Thus, at this level of approxi-
mation, all spin-carrying excitations are effectively projected
out. The remaining degrees of freedom are thus dimers
(“spin-singlet valence bonds”) and charged hard-core
bosonic holes. Already this simplified picture of a strongly
correlated system is very nontrivial.
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For a certain relation between its coupling constants,
known as the Rokhsar-Kivelson (RK) condition,! QDM
Hamiltonians, both with and without holes, can be written as
a sum of projection operators. These RK Hamiltonians are
manifestly positive definite operators. For this choice of cou-
plings, the ground-state wave function is a zero-energy state
which is known exactly. This RK wave function is a local
function of the degrees of freedom of the QDM, the local
dimer, and hole densities. The quantum-mechanical ampli-
tudes of the RK wave functions turn out to have the same
form as the Gibbs weights of a two-dimensional (2D) clas-
sical dimer problem with a finite density of holes. For the
generalized doped QDMs that we consider, the norm of the
exact ground-state wave function is equal to the partition
function of a system of interacting classical dimers at finite
hole density. This mapping to a 2D classical statistical me-
chanical system, for which there is a wealth of available
results and methods, makes this class of problems
solvable. 71117

In this work, we will investigate the behavior of doped
QDMs which satisfy the RK conditions by studying the cor-
relations encoded in their ground-state wave functions. The
phase diagrams of these systems turn out to be quite rich. As
we shall see, these simple models can describe many aspects
of the physics of interest in strongly correlated systems, in-
cluding a dimer-hole liquid phase (a Bose-Einstein conden-
sate of holes), valence-bond crystalline states, phase separa-
tion, and more general inhomogeneous phases. The undoped
version of this system was studied in detail in Ref. 14, where
a quantum phase transition was found that was argued to
belong to the Kosterlitz-Thouless (KT) universality class,
from a critical phase to a columnar state with long-range
order. In this paper, we confirm that this is indeed the case.
At finite hole density, hitherto available results are limited to
the form of the associated RK QDM Hamiltonian'”-'® and
numerical results for small systems.

In this work, we employ analytic methods
with advanced classical Monte Carlo (MC) simulations
to probe the correlations in the doped RK wave functions
and investigate the phase diagram and its phase transitions.
The methods used here can be readily generalized to the case
of nonbipartite lattices, for which a number of important re-
sults have been published.”?>?0 In Sec. II, we describe the
construction of two generalized quantum dimer RK Hamil-
tonians that we used in our study. A similar but independent
construction has been presented by Castelnovo et al.'” and
by Poilblanc et al.'® The RK wave functions of these gener-
alizations of the quantum dimer model have either a fixed
number of holes or a variable number of holes and a fixed-
hole fugacity. The ground-state wave functions of both mod-
els at their associated RK points correspond to a canonical
dimer-monomer system in the canonical and grand-canonical
ensembles, respectively. Near the end of the paper, in Sec.
VI, we introduce a third Hamiltonian, with an associated RK
wave function, to study the effects of hole interactions which
compete with phase separation at the first-order transitions
that we find for both models.

In Secs. III and IV, we study the correlations and the
phase diagram for the ground states encoded in these wave
functions by means of an analysis of the equivalent classical
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statistical system of dimers and holes for the RK Hamilto-
nians of Sec. II. In Sec. III, we summarize the results of a
mean-field theory for both noninteracting and interacting
classical dimer models at finite doping. The details of the
mean-field theory are presented in Appendix A, where we
compute the hole-hole correlation function and derive a
qualitative phase diagram as a function of hole density and
dimer interaction parameters. The main result of this simple
mean-field theory is that the phase diagram at finite hole
density contains two phases, a dimer-hole fluid and a colum-
nar dimer solid. The columnar-liquid transition is continuous
at weak coupling and turns first order at a tricritical point.
Naturally, the critical and tricritical behaviors are not cor-
rectly described by the mean-field theory, although the gen-
eral topology of the phase diagram is correct and, remark-
ably, even the location of the tricritical point is consistent
with what we find in the MC simulations of Sec. V.

In Sec. IV, we present a detailed analytic theory of the
critical behavior of interacting classical dimers. Sections
IV A and IV B focus on the field-theoretic Coulomb-gas ap-
proach for this model at zero and finite doping, respectively.
We show that, up to a critical value of a parameter, the un-
doped RK wave function describes a critical system with
continuously varying critical exponents, with a phase transi-
tion (belonging to the 2D KT universality class) to a state
with long-range columnar order. At finite hole doping, we
find a hole-dimer liquid phase (with short-range correlations)
and a stable phase with long-range columnar order. At low
hole densities, the phase boundary is a line of fixed points
with varying exponents ending at a KT-type multicritical
point where the transition becomes first order. We present a
field-theoretical treatment of this tricritical point and a theory
of the evolution of the behavior of the columnar and orien-
tational order parameters and of their susceptibilities along
the phase boundary. Past the tricritical point, the system is
found to exhibit a strong tendency to phase separation, which
we verify in our numerical simulations (Sec. V). In Sec. VI,
we consider the effects of direct hole-hole interactions near
the first-order phase boundary and discuss one of the many
inhomogeneous phases which arise in this regime instead of
phase separation.

In Sec. V, we confirm our analytic predictions via exten-
sive classical MC simulations of the generalized RK wave
functions. For the study of the line of critical points at low
doping, we employ the canonical generalized geometric clus-
ter algorithm (GGCA), whereas the first-order transition is
studied via grand-canonical Metropolis-type simulations.
The GGCA algorithm enables us to study relatively large
systems, up to 400X400, for a range of dopings, 0<x
=0.06, and to investigate the finite-size scaling behavior.
The accessible range of system sizes should be compared to
what can be reached for full quantum models, away from the
RK condition, where available methods, such as exact diago-
nalization and Green’s function Monte Carlo, allow the study
of only very small systems with few holes.'>!8

In the undoped case, we confirm the existence of a
Kosterlitz-Thouless transition from a line of critical points to
an ordered columnar state, as found in the work of Alet et
al.'"»1® We study the scaling behavior of the columnar and
orientational order parameters and of their susceptibilities.
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We also use a mapping of the orientational order parameter
of the interacting classical dimer model to the staggered po-
larization operator obtained by Baxter for the six-vertex
model?’ to fit our MC data and find an accurate estimate of
the KT transition coupling in the undoped case.

At low doping, we study the transition from the dimer-
hole fluid phase to the columnar state. We confirm that the
scaling dimension of the columnar order-parameter operator
is equal to 1/8, as predicted by our analytic results of Sec.
IV B. We also present a typical set of data that demonstrates
how the scaling dimension of the orientational order-
parameter varies, again in agreement with the analytic results
of Sec. IV B, and use these results to locate numerically the
phase boundary. We then turn to the behavior at larger dop-
ing and stronger couplings where the transition becomes first
order. We study this regime using grand-canonical Metropo-
lis Monte Carlo simulations. We confirm the first-order na-
ture of the phase transition by means of a careful analysis of
the finite-size scaling behavior of the order parameters across
the phase boundary and of their susceptibilities. We use these
results to locate the phase boundary in the first-order regime
as well. In Sec. VI, we use MC simulations to study the
effects of a direct hole-hole repulsion which suppresses the
effects of phase separation, leading instead to a complex
phase diagram of inhomogeneous phases, of which we only
study its most commensurate case.

In Sec. VII, we study the elementary quantum excitations
of the doped QDMs satisfying the RK condition using the
single-mode approximation. We only present the main results
and have relegated the details to Appendix B. We find that in
the dimer-hole liquid phase, hole and dimer density fluctua-
tions have quadratic dispersions E(k)~ k*. Thus, this phase
should be characterized as a Bose-Einstein condensate of
bosonic charged particles (holes), but not really a superfluid,
for reasons similar to those of Rokhsar and Kivelson.! We
summarize our overall conclusions in Sec. VIII.

While this paper was being completed (and refereed), a
number of independent studies of aspects of this problem
have been published.'®'® Our results agree with those in
these references wherever they overlap, as noted throughout
this paper.

II. QUANTUM HAMILTONIANS FOR INTERACTING
DIMERS AT FINITE HOLE DENSITY

The Hamiltonian of the quantum dimer model (QDM) can
be written in the Rokhsar-Kivelson (RK) form' as the sum of
a set of mutually noncommuting projection operators Q,,

H=2 0, (2.1)

{r}

where {p} denotes the set of all plaquettes of the square
lattice. Each projection operator O, acts on the states of the
dimers and holes of a plaquette p (or set of plaquettes sur-
rounding p). In the simplest case,' each 0, acts only on the
states labeled by the dimer occupation numbers of the links
of the plaquette p. In this case, the ground state is described
by the short-range RVB wave function?
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FIG. 1. (Color online) Illustration to clarify the construction of
the Hamiltonian (2.3). The central dimer pair is present in all con-
figurations C; and C;, whereas the four surrounding dimers may or
may not be present. The index i enumerates the 2* possible arrange-
ments of the surrounding dimers. The configuration C’ differs from
the corresponding C by a single flip resonance of the central dimer
pair.

IRVB) = > ),
i

(2.2)

where {C} is the set of (fully packed) dimer coverings of the
2D square lattice and {|C)} is a complete set of orthonormal
states. If one regards the dimers as spin-singlet states (with
the spins residing on the lattice sites), each configuration
represents a set of spin singlets or valence bonds.>? The
dimer representation ignores the overcompleteness of the
valence-bond singlet states.! This problem can be made para-
metrically small using a number of schemes, including large
N approximations®® and decorated generalizations of the
spin-1/2 Hamiltonians.?’

It is possible and straightforward to generalize the QDM
construction so as to include other types of interactions and
coverings. In Ref. 11, it was shown how to extend this struc-
ture to smoothly interpolate between the square and the tri-
angular lattices. It was also shown there that the same ideas
can be used to construct a quantum generalization of the
two-dimensional classical Baxter (or eight-vertex) model. In
all of these cases, the RK form of this generalized quantum
dimer model has an exact ground-state wave function whose
amplitudes are equal to the statistical (Gibbs) weights of an
associated two-dimensional classical statistical mechanical
system on the same lattice. Thus, if the classical problem
happens to be a classical critical system, the associated wave
function now describes a 2D problem at a quantum critical
point. In Ref. 11, such quantum critical points were dubbed
“conformal quantum critical points” since the long-distance
structure of their ground-state wave functions exhibits 2D
conformal invariance. Here, we are interested in a different
generalization of the QDM in which we consider dimer cov-
erings (although not necessarily fully packed) of the square
lattice. We will also consider 2D Hamiltonians whose wave
functions correspond to classical interacting 2D dimer prob-
lems with local weights. Similar but independent construc-
tions have also been proposed.!”-18-30

Trying to be as physical and local as possible, we keep the
quantum-resonance terms as simple as before (single
plaquette moves), but the potential terms (which again have
a central plaquette’) now have fine-tuned couplings that de-
pend on the nearby plaquettes. Explicitly, we have (cf. Fig.

1)
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Hy=12,[=|CXC] |- [CIXC | + whaFe|c)c

R Ci_R C,.’

+w (2.3)

where Rc and Rcr denote the number of pairs of present
dimers formed in conﬁguratlons C; and C/, respectively.
The Hamiltonian of Eq. (2.3) is des1gned in such a way
that it annihilates any superposition of dimer-configuration
states which have amplitudes that are of the form whp, where
w is the parameter appearing in the Hamiltonian and N, is
the number of pairs of neighboring dimers in the
configuration.!! In this sense, the Hamiltonian is a sum of
projection operators, and consequently, there is a unique
ground state for each topological sector which must be com-
posed of the superposition of these especially weighted con-
figurations. The ground-state wave function |G), the state
annihilated by all the projection operators, for this system is

)= > whlc) (2.4)
— w , .
’Z( )¢
where Z(w?), the normalization of this state,
Z(w?) = 2 wlel, (2.5)

{cr

has the form of the partition function of classically interact-
ing dimers with a coupling u=-2Inw between parallel
neighboring dimers. In the following, we will assume an
attractive coupling, #<<0 or w>1. The case u>0 was stud-
ied for the fully packed case in Ref. 17.

There are two different ways in which we can add doping
to our system while still being able to determine the ground
state. If we add the following fine-tuned hole-related terms to
the initial Hamiltonian (2.3),

D

H(tlaorinical = —thole Z { |:
-l

<ijk>

(.

(2.6)
then the resulting ground state becomes
Gy= =3 wilenley). @)
h \r’Z(Wz) {CNI} h

where the number of holes N, is now fixed at a specified
value. The norm of this wave function, Z(w?), is the canoni-
cal partition function for the set of dimer coverings with a
fixed number of holes.

On the other hand, if we add the following terms, which
do not conserve the number of holes in the system, to the
Hamiltonian (2.3),

Hhole

grand —canonical —
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Eholc Z {

s {0
IS PRI

(2.8)
then the ground state of the system becomes
1
|G) = —2 whlCINC ) (2.9)
VZ(W,2%) o)
with
Z(w2,2%) = 2, wHlCl2Nilel, (2.10)

¢

Equation (2.8) includes a natural, short-range repulsion be-
tween neighboring holes and an off-diagonal term which rep-
resents creation-annihilation of dimers. Furthermore, there is
a dimer fugacity term, as in every perturbative derivation of
a quantum dimer model." We note that Eq. (2.10) has the
same form as a grand-partition function for dimer coverings
of the square lattice. This partition function now depends not
only on the interaction u defined below [Eq. (2.5)], but also
on the hole chemical potential u/|u|=2In z.

Since the canonical and grand-canonical ensembles be-
come equivalent in the thermodynamic limit, the two
ground-state wave functions (2.7) and (2.9) must correspond
to the same ground-state physics. Furthermore, it is clear that
for w=1, the models are located at the usual RK point of the
quantum dimer model on the square lattice. For a system
with periodic boundary conditions, each configuration C con-
tains only an even number of holes, with half of the holes on
either sublattice.

We remark that the fact that the exact ground-state wave
function is a sum (as opposed to a product) of the ground
states of sectors labeled by the number of holes on the lattice
is due to the resonance term that we have used to represent
the motion of holes. In particular, we have assumed that a
dimer can break into two holes which themselves repel each
other. In the limit of very strong hole-hole repulsions, in
strong-coupling perturbation theory, it is straightforward to
recover a fixed-hole-density sector with a single-hole reso-
nance move involving three sites in any direction; the cou-
pling strength in Eq. (2.6) then becomes #,. ~ z*7poe» and
thus, in the limit z—0, it reduces to an effective hopping
amplitude for the holes.

III. MEAN-FIELD RESULTS

To examine the physics described by the ground-state
wave functions obtained in the previous section, we start
with a discussion of a mean-field theory of the phase dia-
gram. We use the standard approach of regarding the prob-
ability densities, obtained by squaring the wave function, as
the Gibbs weights of a classical two-dimensional system and
focus on the interacting dimer model on the square lattice at
finite hole density. Although mean-field theory is insufficient
to describe two-dimensional critical systems, it is a useful
tool to obtain qualitative features of the phase diagram as
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well as the behavior deep in the phases, away from critical-
ity.

The details of this theory are presented in Appendix A.
We begin by constructing a Grassmann representation of the
partition function for an interacting dimer model using the
standard methods introduced by Samuel.?'*? The resulting
theory involves Grassmann (anticommuting) variables resid-
ing on the sites of the square lattice. The action of the Grass-
mann integral is nontrivial and is parametrized by the hole
fugacity z and a coupling between dimers V=z(e“—1),
where u=-21nw.

Since the action of the resulting Grassmann path integral
is not quadratic in the Grassmann variables, it cannot be
reduced to the computation of a determinant. Thus, we use a
standard mean-field approach which, in this case, involves
the introduction of two Hubbard-Stratonovich (bosonic)
fields ¢; and y;;, defined on the sites and links of the square
lattice, respectively. Upon integrating out the Grassmann
variables, one obtains an effective theory for the fields ¢; and
Xi; which, as usual, is solved within a saddle-point expan-
sion. The dimer m, and hole n densities, as well as the co-
lumnar order parameter m, can be expressed straightfor-
wardly in terms of the fields ¢; and x;;. From this effective
theory, one can compute an effective potential I' and the
configurations of the observables of interest, n, m, and m, as
functions of z and V, and determine the phase diagram.

As a function of hole density (or hole fugacity) and u, we
find that the phase diagram has two phases (shown qualita-
tively in Fig. 2), namely, a dimer-hole liquid phase and a
hole-poor phase with long-range columnar order. The nature
of the transitions between these phases is incorrectly de-
scribed by the mean-field theory, particularly at zero doping
and near the tricritical point. The correct behavior is the sub-
ject of a detailed analysis in the subsequent sections. Never-
theless, the mean-field phase diagram correctly predicts that
at low hole densities and moderate values of u, the transition
between the dimer-hole liquid and the columnar solid phase
is continuous; that for large u, the transition is first order; and
that there is a tricritical point at

u,=2.733, z,=0.075. (3.1)

Remarkably, the Monte Carlo simulations presented in Sec.
V yield a tricritical point at a location quite consistent with
these values.

Another correct prediction of the mean-field theory is the
behavior of the connected hole density correlation function
deep in the dimer-hole liquid phase. This prediction, also
discussed in detail in Appendix A, fits surprisingly well the
Monte Carlo simulations of Krauth and Moessner,”? per-
formed for a system of classical noninteracting (z=0) dimers
at finite hole density. The mean-field result is consistent with
the simulations for a quite broad region of densities even
quite close to the fully packed limit z— 0 where, naturally, a
wrong correlation-length exponent is predicted.

IV. PHASE DIAGRAM AND CORRELATIONS FOR
INTERACTING DIMERS AND HOLES

We now turn to a more precise analysis of the phase tran-
sitions of the interacting classical dimer models as a function
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FIG. 2. Qualitative phase diagrams for the interacting doped
dimer model. (a) Phase diagram as a function of the fugacity z for
the holes and u=-In w, the dimer interaction coupling constant. The
line of continuously varying exponents for low fugacity evolves to
a line of first-order transitions. (b) Phase diagram in terms of the
hole density p;, and the coupling constant u. Here, the line of first-
order transitions opens up into a two-phase coexistence region.

of hole density on interaction parameter u. Here, we take
advantage of a wealth of information and methods from two-
dimensional systems, exact solutions and conformal field
theory, to analyze the behavior in detail and extract conclu-
sions that will be quite useful for the analysis of the wave
functions. We begin with a discussion of the undoped case
and then discuss the physics at finite hole density.

A. Interacting dimers at zero hole density

It is a well known fact that both classical and quantum
two-dimensional dimer models can be represented in terms
of height models. For the classical case, this mapping is well
known.!'!3335 The mapping for the quantum case has also
been discussed extensively.*%!1:123637 In both cases, the
mapping relates each dimer configuration to a configuration
of a set of integer-valued (height) variables (), which re-
side on the sites of the dual lattice, a square lattice in the case
of interest here. Thus, this mapping amounts to a duality
transformation.

An alternative picture follows from realizing that dimer
configurations can be mapped onto the degenerate ground-
state configurations of fully frustrated Ising models.*3-% In
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our case, the corresponding spin model is the fully frustrated
Ising model on the square lattice (FFSI) at zero temperature.
In the Ising model picture, each dimer is dual to an unsatis-
fied bond of the fully frustrated Ising model and classical
dimer interactions correspond to second neighbor interac-
tions in the square lattice FFSL.3° It is easy to see that holes
correspond to unfrustrated plaquettes in the FFSI. In this
work, we use primarily the language of the height represen-
tation.

To map the square-lattice classical dimer model onto a
height model, we follow the prescription given in Ref. 11.
One first assigns a height variable to each plaquette. In going
around a vertex on the even sublattice clockwise, the height
changes by +3 if a dimer is present on the link between the
plaquettes and by —1 if no dimer is present on that link. On
the odd sublattice, the heights change by —3 and +1, respec-
tively. The dimer constraint that one lattice site belongs to
one and only one dimer implies (for the square lattice) that,
for the fully packed case, there are four possible configura-
tions of dimers for each lattice site. In the dual height model,
this is reproduced by the period 4 property h=h+4 of the
allowed height configurations. It is easy to see that for the
allowed configuration, the average values that the height
variables can take at a given site of the direct lattice (a ver-
tex) are £3/2 and +1/2. On the other hand, a uniform shift
of all the heights by one unit, #— h+1, leads to an equiva-
lent state. This mapping works strictly speaking only for the
fully packed case. Holes are sites that do not belong to any
dimer and thus represent violations of the full packing rule.
They play the role of topological defects (“vortices”) in the
(dual) height representation.

The exact solution of the noninteracting fully packed
dimer model on the square (and other) lattice has been
known for a long time.*? In particular, the long-distance be-
haviors of the dimer density correlation functions and the
hole density correlation functions are known explicitly.*04!
These correlation functions obey power-law behaviors and
show that this is a critical system. Here, we will use the
standard approach to map the exact long-distance behavior
of two-dimensional critical systems to the behavior of the
simplest critical system, the Gaussian or free boson model.!
This approach is consistent for the free dimer model on an
even lattice with periodic boundary conditions since its cen-
tral charge (or conformal anomaly) is also c¢=1.

We will use as reference states (“ideal states” in the ter-
minology of Kondev and Henley*?) the four columnar states
of the dimer coverings, which have the largest number of
flippable plaquettes, and use them to define an effective field
theory for this problem.” We will assign a uniform value to
the coarse-grained height field 2=0,1,2,3 to each reference
(columnar) state. Let n,(7) and ny()7) represent the coarse-
grained dimer densities of the horizontal link with endpoints
at the pairs of lattice sites 7 and 7+¢, and vertical links with
endpoints 7 and r+e,, respectively. Here, ¢, and e, are two
lattice unit vectors along the x and y directions, respectively,
with a lattice spacing of 1.

We can now define the columnar local order parameter as
the two-component vector,

OX(X,)’) = ”x(X,)’) - nx(-x + 17)’)7
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O,(x,y) =ny(x,y) = ny(x,y + 1), (4.1)

which clearly corresponds to the (7,0) and (0, ) Fourier
components of the dimer densities. This two-component or-
der parameter takes four distinct values for each one of the
columnar states and changes sign under shifts by one lattice
spacing in either direction. It also transforms as a vector
under 90° rotations. Thus, it is the order parameter for co-
lumnar order.

1. Effective field theory: The noninteracting case

The fluctuations of the free field 4(r) are described by a
continuum Gaussian (free boson) model. We will find it sim-
pler to work with the rescaled height field ¢=7h. For this
field, the periodicity condition h— h+4 becomes ¢— ¢
+2a. (For the rescaled field, the ideal states are ¢
=0,7/2,7,37/2.) Thus, the allowed operators are 27 peri-
odic functions of ¢ and are either derivatives of ¢ or the
exponential (or charge) operators exp(xi¢), exp(£2i¢),
exp(3i¢), and exp(x4ig), which are 27 periodic functions of

¢

The action S for the rescaled field is

S= f dzxg(Vd))z. (4.2)
For the free dimer model, the stiffness is K =$ (see below).

By matching the exact correlation functions of the free
dimer model on the square lattice, one readily finds the fol-
lowing operator identification of the coarse-grained dimer
densities in terms of free field operators:’

11 1 :
——=—(= 1" —[(=1)%e?+cec. 4.
ne= 27T( ) r?y¢+2[( ye'?+ccl], (4.3)
n —1=L(— 49+ l[(—1)>'ie"¢+cc] (4.4)
Y4 2m 2 T

In Ref. 9, it was shown that this is an operator identity for the
free dimer model on the square lattice in the sense that the
asymptotic long-distance behaviors of the dimer density cor-
relation functions computed with this Gaussian model are the
same as the exact long-distance correlation functions for the
free dimer problem on the square lattice*®*! provided the
stiffness K= ﬁ. Notice that, with this identification, when the
field ¢ takes each of the values 0,7/2,,37/2 (the ideal
states), the density operators take four distinct values which
reflect the broken symmetries of the four columnar states.
From the operator identification of Eq. (4.4), the columnar

order parameter is, up to a normalization constant,
O,=cos ¢, O, =sin ¢. (4.5)

Due to the effects of dimer-dimer interactions, the form of
this effective action is

K
S= f dzxa(Vg/))2 + perturbations. (4.6)

The effect of the interactions is a finite renormalization of the
stiffness K away from its free dimer value, K :ﬁ.
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TABLE I. Scaling dimensions of the order parameters (charge)
and hole (vortex) operators at the free dimer point, K =$, and at
the KT point, K =%‘

Columnar  Rotational Hole  Hole pair
019 020 040  Opy 0o
K=t 1 4 16 ! 1
dar
2 1 1
il A N 2 2 8
T

We saw above that, due to the dimer constraints, the al-
lowed charge operators are O,(r)=exp(in¢(r)). We also saw
that the columnar order parameter is proportional to the op-
erator %(01(?)+0_1)(7):cos ¢(r) and carries the unit of
charge n=1. One can also define vortex or magnetic
operators,'” and example of which is the hole. A vortex op-
erator causes the field ¢ to wind by 27rm, where m is the
vorticity (or magnetic charge). One can similarly define a
general composite operator O, ,,(F) with n units of (electric)
charge and m units of vorticity (or magnetic charge). Its scal-
ing dimensions A(n,m) are'

2

A, (K)= T K.
’ 47K

4.7)

We can now use these results to identify a few operators
of interest and give their scaling dimensions. These results
are summarized in Table L.

(1) The columnar order parameter is the elementary
charge operator O, ( and has no vorticity. On the (columnar)
ideal states 0, 7/2, m, and 3m/2, this operator takes the
values 1, i, —1, and —i, respectively. Its scaling dimension is
A 1,0(K)=ﬁ<- At the free dimer point, K =#, its scaling di-
mension is Al,o(ﬁ)=1- This is consistent with the exact
results*®#! that the density correlation function falls off as
1/7?. The operator identification of Eq. (4.4) is based on
these facts.’

(2) The operator O., g=exp(+2i¢) takes the values 1, -1,
1, and —1 on each of the ideal columnar states. It is clearly
the order parameter for symmetry breaking by 90° rotations:
it is the order parameter for orientational symmetry.

(3) The operator with the highest allowed electric charge
is O,y g=exp(x4i). Its scaling dimension is A, o(K)= ;LK. At
the free dimer point, it has dimension A4,0($)= 16, and it is
a strongly irrelevant operator. This operator arises naturally
due to the fact that the microscopic heights /i take integer
values, and hence height configurations which differ by a
uniform integer shift are physically equivalent. This operator
does not break any physical symmetry of the dimer model.

(4) The hole operator is represented by the fundamental
vortex operator Qg ;. A vortex with unit positive magnetic
charge corresponds to a hole on one sublattice, and a vortex
with unit negative magnetic charge to a hole on the other
sublattice. The scaling dimension of the vortex (hole) opera-
tor is Ag(K)=mK. At the free dimer value, the scaling di-

. . 1 1 . . .
mension of the hole operator is A 1(E)=Z’ which is consis-
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tent with the exact rgsult that the hole-hole correlation
function decays as 1/Vr at large distances.*

(5) The operator which describes a pair of holes on nearby
sites of the same sublattice is represented by the operators
0y > Which carry two units of magnetic charge (vorticity).
This operator creates (or destroys) a diagonal dimer connect-
ing nearby points on the same sublattice.’> In the
(2+1)-dimensional quantum dimer model, this operator is
useful to describe the possible pairing of holes. This operator
has dimension Aj,(K)=47K. Its scaling dimension at the
free dimer point is Ao,z(ﬁ)zl and is relevant for K< %T As
noted in Refs. 11 and 25, this operator maps the square lat-
tice into a deformed triangular lattice. The irrelevancy of this
operator for K> # implies that this line of fixed points also
exists for a deformed triangular lattice, as discussed recently
in Ref. 26.

(6) The free dimer problem is a free fermion system,
which can be solved by Pfaffian methods.?>3!4% This is ac-
tually a theory with two free real (Majorana) fermions or,
equivalently, one free complex (Dirac) fermion, at its (mass-
less) fixed point, whose central charge is also c=1. The ap-
propriate fermion operator is a composite operator of the
order and disorder operators'>* which, in this case, is Oy, ;.
At the free dimer point, the fermion operator has scaling
dimension A1/2,1(ﬁ)=% and (conformal) spin nm:% (as it
should for a free fermion). At particular values of K, it is also
possible to define parafermion operators***> operators which
obey fractional statistics. For instance, at the KT point, K
=72_7 (see below), the operator O ;4 has dimension 41_1 and spin
}1, and it is a semion. In fact, and not surprisingly, a fermionic
approach? can be used to map this critical line onto an Eu-
clidean version of the Luttinger-Thirring model. The coarse-
grained height model description we sue here corresponds to
the bosonization approach of the fermionic version of this
problem.

2. Effective field theory: Interactions and phase transition

We now turn to the effects of dimer-dimer interactions.
We recall that we are considering only interactions of a pair
of dimers in a plaquette. The interaction energy is

Him == ME [nx(;)nx(;"' g)) + ny(;)nx(;"' 5x)] (48)

We wish to find the corresponding operator in terms of the
coarse-grained (rescaled) height field ¢. This can be done by
using the operator product expansion (OPE) of the coarse-
grained form of the dimer density operators, Eq. (4.4), in
terms of the field ¢. We will also need the standard OPE of
the (normal ordered) charge operators?!4647

cos(n(x))::cos(n(y)): =

%:005(2}1 P(x)):

1
——[1 - 2y =y[2(V)2: + -+ ],
e AR SRR
(4.9)
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:sin(ng(x))::sin(nd(y)): =
- %:cos(Zmb(x)):

1

2l—2 —y[2(V): + -],
+(M2|x—y|2)”[ nle=yPi(Ve)+ -]

(4.10)

where u is a short-distance cutoff and the ellipses represent
the contributions of irrelevant operators. Using these results,
we find that the net effect of the interactions is to renormal-
ize the stiffness K upward,

=L+%<l+i)u+(9(u2), (4.11)

i)
where we have denoted u >0 for attractive interactions. This
expression for the renormalization of K is only accurate to
linear order in the dimer-dimer interaction. Higher order
renormalizations (in u) would result if the effects of irrel-
evant operators are also taken into account. The relation be-
tween K and the microscopic model is nonuniversal and can
only be determined either from an exact solution or from a
numerical simulation. One can determine the function K(u)
from the Monte Carlo simulations we present elsewhere in
this paper. What is important is that these nonuniversal ef-
fects affect only the relation between the coefficients of the
effective theory and not the form of the effective theory it-
self. Thus, the effective action of the field theory for the
interacting classical dimer model at zero hole density has the
form

S:szx[g(w)%gcos(w) . (4.12)
where we have included the effects of the charge 4 perturba-
tion, cos(4¢)=cos(27h), which biases the coarse-grained
height field to take integer values.

For an anisotropic dimer-dimer interaction, which arises
form a term which weights differently the interactions be-
tween parallel horizontal dimers from those of parallel verti-
cal dimers, we would have also found a cos(2¢) operator in
addition to an anisotropy for the stiffness. Thus, an aniso-
tropy in the dimer-dimer interaction is a relevant perturbation
which couples to the orientational order parameter cos(2¢).

In Table I, we see that as the attractive interactions grow,
there will be a critical value of the interaction u# at which the
stiffness K(uc.)zq%. At this point, the cos(4¢) operator has
scaling dimension A, =2, where it becomes marginal. For
u>u, [K>K(u,)], this operator becomes relevant. We also
see that at K(u,)= %, the columnar order parameter cos ¢ has
scaling dimension of 1/8 and it is the most relevant operator
in this problem. Thus, this is a phase transition from a criti-
cal phase, for K< 7—27, without long-range order but with
power-law correlations, to a phase with long-range columnar
order, for K> 7—27 , in which the columnar order parameter has
a nonvanishing expectation value. This is a standard
Kosterlitz-Thouless (KT) transition*®-* which is naturally
described by the sine-Gordon field theory®'=* whose (Eu-
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clidean) action is given in Eq. (4.12). The only difference
between this problem and the standard KT transition, e.g.,
the classical 2D XY model, is that the phase with a finite-
correlation length is ordered: it is a columnar state with a
fourfold degenerate nonuniform state, whereas the finite-
correlation-length phase of the XY model (and of its dual
surface roughening model) has a nondegenerate translation
invariant state. In spite of these global differences, this phase
transition is in the KT universality class. Thus, the well
known behavior of the correlation functions at the KT tran-
sition applies to this case as well.!*10-18 [n Sec. V, we verify
this behavior by a detailed Monte Carlo study of the colum-
nar and orientational order parameters and of their associated
susceptibilities for the interacting dimer model.

B. Interacting dimers at finite hole density

We now consider the dimer model at finite hole density,
away from the full packing condition. The classical partition
function for this problem is given in Eq. (2.10), where the
weights (fugacities) z and w are related to the coupling con-
stant ¥ and the chemical potential w as described earlier.
Recall that the 2D classical partition function Z(w,z) is the
norm of the ground-state wave function |G), of Eq. (2.4), of
the 2D doped quantum dimer model. In terms of a sum over
configurations of electric charges n and magnetic charges
(vortices) m, the partition function Z(w,z) is equivalent to
that of a generalized (neutral) Coulomb gas (GCG) of elec-
tric and magnetic charges in two dimensions,>>-°

N? a
Zwz) = 2 exp| ——=> n(Aln|F - F|n(7)
- 47K,
{n(F),m(R)} rr

+ WKE m(ﬁ)ln|§ - 13’|m(13’)] exp[E In wn(7)?

R.R’

+ 2 In zm(R)? - i2 Nu(PHm(R)O( - 13)} .

R R
(4.13)

where prime denotes that the sum is restricted to neutral
configurations with vanishing total charge and vanishing to-

tal vorticity, i.e., E;n(?)=2,§m(13)=0. Here, @(F—IS) is the
angle between a vortex at R, as seen from a charge at r

measured with respect to the (arbitrary) x axis. It is the
Cauchy-Riemann dual of the logarithm,

G(F-7)=—n|F =7, (4.14)
o7 - 7'):-tan-1(y‘y,), (4.15)
X=X
-VG(F-7F)=2mw8(r-F"), (4.16)

9,G = €,,0,0. (4.17)

As usual, the logarithmic interaction is regularized so that it
vanishes for 7=7". The short-distance behavior of the inter-
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actions is absorbed in the fugacities z and w.

For the case we are discussing here, the GCG of interest
has N=4, and Eq. (4.13) is just the Coulomb-gas form of the
partition function of the 7, model and for the related 2D
Ashkin-Teller model. This is a well understood
system?'22302 and in our case, it corresponds to the grand-
partition function for the doped interacting dimer model on
the square lattice at low hole densities.

In the limit of low fugacities, z<<1 and w<< 1, the GCG is
equivalent to a (generalized) sine-Gordon field theory in
two-dimensional Euclidean space-time, whose (Euclidean)
Lagrangian is given by?!>?

1 , 22 N 2w S~
Lr=5(0,4)" - cos \/_Ir(d) 7 cos@mVK ).
(4.18)

Here, ¢ is the dual field defined by

€0, b =1d,p. (4.19)

In Eq. (4.18), we can see by inspection that the operators
cos( d)) and cos(ZTr\'K @) can be identified, respectively,
with the operators 2(0,\,0+0_NO) and 2(001+00 1) dis-
cussed above.

We will use this effective field theory to study the transi-
tion between the liquid and the ordered phases of the inter-
acting dimer model. At z=w=0, this is the KT transition
discussed above. For general N, both operators have the scal-
ing dimension if ==27T\"K i.e., the theory is self-dual,
which happens for K =5-. For N=4, K —— both operators
have scaling dimension of 2 and both are margmal This is
the only case we will discuss here. (A detailed discussion of
the more general case of N>4 was given by Lecheminant et
al.??)

For N=4, the Euclidean Lagrangian becomes??

( M(p) p cos(\'8ﬂ'¢) Z COS(\’SﬂTd))

(4.20)

It turns out that this a problem which can be solved
exactly.?>?> The most direct way of doing this is to perform
an analytic continuation from 2D Euclidean space to
(1+1)-dimensional Minkowski space-time, i.e., to think of
this problem as a (1+1)-dimensional quantum field theory.
The Hamiltonian density of  the equivalent
(1+1)-dimensional field theory is

He S0 50,00 -

~Llodrs (a PEpAC: :W)

G _2W) sin(VEﬂﬁL)Sin(\"’gT‘ﬁL)’

2 cos( V8 7T¢) 7z cos( V8 7T¢)

cos(y 81T¢L)cos( V8 7T¢L)

[\)

+2

(4.21)

where we have used the fact that Il, the canonical momen-
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tum conjugate to the field ¢, is simply related to the dual
field ¢,
oLy -
= b " op=- 0.,
and obey equal-time canonical commutation relations
[p(x).I1(y)]=idx - y). (4.23)
In Eq. (4.21), we used the decomposition of the field ¢ and

the dual field ¢ into the right and left moving fields ¢y and
¢L7

(4.22)

b=+ dr = dL— ¢r,
~ 1 -
h=3O+ D, de=y(-d,  (429)
whose propagators are
(B0 === Inz ),
(DD =~ =), (429

where we have used the complex coordinates (not to be con-
fused with the coupling constants) z=7+ix=i(t+x) and Z
=7—ix=i(t—x), in imaginary and real time, respectively.

It is easy to see?*?>>7 that the following dimension 1 chi-
ral operators,

1
27T

i 2
L= V/;r‘?zﬁi’b Jp= o ie T,

_i | -
S= Gotbe iy (420)

27T

with J7 g=J7 p£iJj  are the generators of an su(2); Kac-
Moody algebra given by the OPE,?>7

1) .
Ti@4 ) = 8772(Zai we " "sﬂlzbc_ /L)
Ja(— b=\ _ 5ab €abe C [ —
R Z)JR(W) - Sﬁz(Z—W)z 8172(Z W)JR(W)’
(4.27)

where a,b,c=x,y,z and €, is the Levi-Civita tensor. We
also note for future use the following operator identifications
(still for K=2/1):

ei\‘%qs = 04>

el\%;{; = 00,1 )
Jp~ BT = O 41125
II_:’ ~ ei\‘f@d’L =

Oz21112- (4.28)
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The Hamiltonian of Eq. (4.21) can be written in terms of

these generators and has the Sugawara form:>’

2 - - . - -
H:%(]L-JL+JR~JR)—8W2(Z+W)J{J)1;—872(Z_W)J}LJ;Q~

(4.29)

Thus, one recovers the old result?*3! that at the KT transi-
tion, the system has an effective (dynamical) SU(2) symme-
try.

Given the existence of an su(2), symmetry, one expects to
find, in addition to the “spin 17 (vector) representation [the
su(2) currents], operators associated with the spin-1/2 repre-
sentation of su(2),. In the Wess-Zumino-Witten (WZW) ver-
sion of this theory,’’-8 there is an operator with this property,
the field g(z,7z) of the WZW model. This is a 2 X 2 matrix-
valued field with scaling dimension of 1/2. In our theory, we
also have an operator with scaling dimension of 1/2, the
operator O, o~ exp(iv27¢) which we saw was related to the
order parameter for broken rotational symmetry; see Table 1.
Thus, the operators of the spin-1/2 (spinor) representation of
su(2), are identified with the operators

e 2T _ (0—2,0 00,—1/2)
27 050 Ogin/

(4.30)

e—zy‘2'n’¢

g(z,2) ~ (

61\9277(;5

Following the approach of Refs. 20 and 22, we will per-
form a global SU(2) rotation by /2 about the y axis which
maps J; g—J7 g Jpr—=J1 g, and Jj g—J} g, after which
the Hamiltonian becomes

27, - - - -
H:?(JL~JL+JR-JR)—8#(z+w)1§1§—8ﬂ2(z—w)J{J§.

(4.31)

Once again, one can introduce a new Bose field, which we

will call @, and its dual ® to use the representation of the
su(2); current algebra of the form of Eq. (4.26). Using that
0. 0;=—id,®; and J-DPp=id Pp, we can rewrite the Hamil-
tonian as

H= H() + Hpert’
1 2 1 )2
Ho=5(00) + 2 (0,0) ~ dm(z + W), L0, Py,

2(z-w)
2

Hoper =— sin(\87®, )sin(\8m®y).  (4.32)

Thus, along the phase boundary line z=w, the term H ey is
absent and we see that the effective Hamiltonian 7, involves
only marginal operators.?0-2%30:52

Similarly, the operators in the spin-1/2 representation

transform as an su(2) spinor under a 77/2 rotation about the y
axis in su(2);, leading to the identifications

,32—~
0_59— Og1p=e"""",
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00— = 0g_jp=—e""",

Og_1p— = Oyg=—e"*™

s

—i\27d
9

Op1p——0,9=—¢ (4.33)

where the operators on the right hand side of Eq. (4.33) are

vertex operators written in terms of the new bosons ® and d.
Notice that this is a duality transformation.

However, there is an operator in this theory, namely,
0. o, which does not have su(2); quantum numbers. As a
result, it will have a quite different behavior along the phase
boundary. In contrast, all the other operators in this theory
carry su(2), quantum numbers. [ As remarked in Ref. 20, this
is not truly an su(2), theory, although it contains it, but rather
connected with a 7, orbifold as well.] It is straightforward to
check that the operators O,y do not have an OPE with the
operators which do transform under su(2), (or, rather, that
the OPE involves only irrelevant operators). Since the mar-
ginal operator which deforms the su(2); theory along the
phase boundary does transform under su(2),, the operator
0. o will not mix (in the sense of its OPE) with the marginal
operator either. We will see that this implies that the dimen-
sion of this operator remains equal to 1/4 along the entire
line, a result that is also well known (see, for instance, Ref.
59.) In contrast, the operators of the spin-1/2 representation,
Eq. (4.30), do transform under su(2);, a fact which is gener-
ated by their OPEs with the su(2), generators,’’ and we will
now see that their scaling dimensions do change along the
phase boundary line. In Sec. V, we present evidence from
Monte Carlo simulations in support of both statements.

We can now use this approach to solve this problem ex-
actly along the phase boundary. Formally, the Hamiltonian
H, of Eq. (4.32) is equivalent to a spinless Luttinger model
with attractive backscattering interactions.®® As in the case of
the Luttinger model, the problem is solved by means of a
Bogoliubov transformation of the right and left moving
bosons. This procedure breaks the su(2); symmetry explic-
itly. We introduce a new bose field y and its dual field . The
left and right moving components of these fields, x; and yx,
are linearly related to the left and right moving fields ®; and

®p by
1 1 1/ 1
XL== \’/I_<+_/— D, + - ?—\ﬂ; Dy,
2 VK 2 VK

{1 1 — 1
XRz—(—,_—\/I—('>CI)L+E<\"K+ _—)CI)R, (434)

2\Vk VK

where « is given by
14+2m(z+w)
K=\|————.
1-27m(z+w)
The inverse transformation of Eq. (4.34), which relates ®;
and @, to x; and yg, has the same form and it is obtained

simply by replacing « by 1/«.
The Hamiltonian H, in terms of the new fields becomes

(4.35)
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v ~
Ho= 10007+ (0071, (4.36)
where the “dimensionless velocity” v is
v=\1-47(z+w)?, (4.37)

which can be absorbed in a suitable rescaling of the x coor-
dinate, x— x\v. Notice that the parameter k plays the same
role as the stiffness K defined above, which governed the
change of the scaling dimensions at zero doping. Similarly, «
governs the change of the scaling dimensions along the z
=w phase boundary of the systems at finite hole density.
Here too, the relationship between this stiffness « and the
microscopic interactions is nonuniversal, and the validity of
Eqgs. (4.35) and (4.37) is restricted to the weak-coupling re-
gime in which this continuum theory holds. Notice that,
since z=0 and w=0, we will always have = 1. This fact
will play an important role below.

We can now use these results to determine the scaling
dimension of the perturbation H . along the phase bound-
ary. It is straightforward to write the perturbation H in
terms of the new field y and its dual Y:

2(z—w)
2

Hoper = — sin(V87d, )sin(y8 D)

= (z —zw) {cos(\r’%(,\/) - cos( 1/ S—W)?)} .

(4.38)

C. Critical behavior along the phase boundary
1. Correlation-length exponent

From Eq. (4.38), we find that the operator which perturbs
the line of fixed points along the phase boundary at finite
density, Hperp, involves two operators whose scaling dimen-
sions are 2x>2 and %<2, respectively, since k> 1. Thus,
this operator becomes more relevant along the phase bound-
ary, away from the KT point, which in this language has «
=1. In fact, if we neglect the effects of the irrelevant operator
(which is a safe thing to do only away from the KT point
since its only important effect is a finite renormalization of
k), we see that the effective theory in the vicinity of the
phase boundary is a sine-Gordon theory for the dual field Y.
Since the scaling dimension of the relevant operator is 2/ k, it
follows that, away from the KT point, the correlation length
& diverges as the phase boundary is approached as

1 K
E~ =™ v=—r

2 SETPaE (4.39)

Thus, the correlation-length exponent decreases (from infin-
ity) along the phase boundary away from the KT point. It is
apparent from the form of the perturbation that away from
the KT point, there is simple scaling, up to contributions of
strictly irrelevant operators. On the other hand, as k— 1, the
relevant operator becomes marginally relevant and the irrel-
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evant operator becomes marginally irrelevant. Thus, as «
— 1, we should expect logarithmic corrections to scaling and
a complex crossover near k=1.

2. Columnar order parameter and its susceptibility

On the other hand, we noted above that the dimension of
the columnar order parameter operator %(01,0+0_1’0) re-
mains fixed at the KT value of A;(=1/8. Hence, for this
operator, we find 7, y=1/4. On the other hand, from scaling,
we know that the susceptibility exponent obeys the scaling
relation vy, o=(2—-7)v, where v is given by Eq. (4.39).
Hence,

Tk

Y1,0=

8(x_ 1) (4.40)

is the susceptibility exponent of the columnar order param-
eter, which also increases along the phase boundary, even
though 7, o/v=7/4 along the whole phase boundary (pro-
vided the transition remains continuous).

3. The orientational order parameter and its susceptibility

We can use the operator identifications to look at the be-
havior of the orientational order parameter which we saw
above is the operator O, of the original version of the
theory. We also saw that this operator is a component of the
spin-1/2 representation of su(2),. We also found how it
transforms. In particular, we have

FiN2m/ kY

012’0 — +e (441)

Along the phase boundary, the scaling dimension of this op-
erator is

1 1
Apg=—<—, 4.42
2079k T2 (4.42)
which it is always relevant, and
1
772’(): . (443)
K

Using once again the scaling relation 7y, 0=(2—1,0)v, we
find that the susceptibility exponent for the orientational or-
der parameter is

2k—1

= m, (4.44)

72,0
which also decreases along the phase boundary away from
the KT point.

D. Tricritical point, first-order transition, and phase
separation

Let us now discuss how this critical line turns into a first-
order transition at a multicritical point. In Secs. V and V D,
we use Monte Carlo simulations to show that this is indeed
what happens. In Sec. IV B, we used mean-field methods
which indicated that the transition eventually should become
first order. For this to work, we should be able to predict the
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existence of a tricritical point along the phase boundary at
which the transition becomes first order. It turns out that this
is the case and that the first-order transition is triggered by an
effective attractive interaction between holes on the same
sublattice, leading to phase separation.

To see how this happens, we need to discuss the effects of
irrelevant operators along the phase boundary. As we stated
above, their most important effect is a finite and nonuniversal
renormalization of x away from the value given in Eq.
(4.35). We have also focused on the role of the operators O,
and O ; as they are both marginal at the KT transition. How-
ever, we also saw that one combination of these two opera-
tors remains marginal along the phase boundary and its cou-
pling constant determines the value of «, through Eq. (4.35).
On the other hand, the other combination is the sum of a
relevant operator, cos(y(8/k)x) with scaling dimension of
2/, and of an irrelevant operator, cos(V8ky) with scaling
dimension of 2«. The dimension of the irrelevant operator
increases along the phase boundary (thus becoming more
irrelevant), while the dimension of the relevant operator de-
creases as « increases (thus becoming more relevant.)

One possible scenario for a first-order transition is found
by noting that as k— o, the dimension of the relevant opera-
tor vanishes, and the “thermal eigenvalue” 1y, ;/v— 2. Thus,
at this point, naturally, provided this limit is accessible, the
line of fixed points reaches a discontinuity fixed point®' and
the transition becomes first order. However, at this point, the
theory becomes pathological (as k— o0, v —0) and one may
suspect that other physical effects, contained in irrelevant
operators, may intervene before this happens.

We have so far neglected other operators which are even
more irrelevant at the KT transition. For example, the opera-
tors Og and Oj, have dimension of 8 at the KT point.
Recall that the operator O, represents pairs of holes on the
same sublattice. Both of these operators are present in any
lattice problem (such as the interacting dimer model) and
play no significant role at the KT transition (beyond a non-
universal but otherwise trivial shift of the critical coupling),
and for this reason, they were (correctly) neglected. How-
ever, along the phase boundary, the scaling dimensions of
these operators change. Using the OPE, it is easy to see that
along the phase boundary, both operators contain the opera-
tors (among others which are less important) Oy,
~cos(2(87/ k)X) with scaling dimension of 8/« and Og
~cos(2y8mky) with scaling dimension of 8«. Even though
they are not explicitly present in our starting theory, these
operators will be generated under renormalization, and close
enough to the KT point, k=1, they both are and remain
irrelevant.

However, although « also changes in a nonuniversal man-
ner, the dependence of the dimensions with « does not, as it
follows from the structure of the theory. Thus, provided the
dependence between « and the microscopic couplings allows
it, it may be possible to reach a point along the phase bound-
ary at which x=4. This will happen at a critical value of the
coupling constant # and a critical value of the hole density p
[or, equivalently, at a critical value of the hole fugacity z (cf.
Fig. 2)].

At this critical value of «, the scaling dimension of the
operators O,, becomes equal to 2, and together with the
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strictly marginal operator O, there are now two marginal
operators at this point. Thus, the system is at a tricritical
point at this value of the parameters.®? Past this point, O,
becomes marginally relevant along the phase boundary. In
this regime, the effective field theory at the phase boundary
is a sine-Gordon theory for the field y with the marginally
relevant operator O ,. Since the sine-Gordon theory in this
regime is massive, it has a finite-correlation length, and since
O, is marginally relevant, the correlation length along the
phase boundary, which has now become a coexistence curve,
has an essential singularity as a function of the distance to
the tricritical point, i.e., a KT-like transition. Thus, the tran-
sition becomes first order along the phase boundary past the
tricritical point with a correlation length that scales like §
~ ¢onstVs wwhere s is the distance to the tricritical point mea-
sured along the coexistence curve. In contrast, the correlation
length across the phase boundary (below the tricritical point)
exhibits conventional power-law scaling. Closely related sce-
narios for the existence of such tricritical points have been
suggested in other systems, such as the extended Hubbard
model in one dimension,®® the two-dimensional classical
Ashkin-Teller model,®*% and the dilute four-state Potts
model,®® which is a statistical system with very similar phase
diagram.

What happens as the tricritical point is reached can be
understood more physically by noting that at that point, the
operator Oy ,, which measures the probability amplitude for
a pair of holes (on the same sublattice), becomes relevant.
The relevance of O, indicates that holes on the same sub-
lattice now have a strong effective attractive interaction and
have a strong tendency to pairing and consequently phase
separate. The effective field theory description given above
corresponds to the grand-canonical picture, since the cou-
pling constants are simple functions of the hole fugacity. On
the other hand, in the canonical description, i.e., at fixed-hole
density p, the coexistence curve opens up into a two-phase
region: there is phase separation between hole-poor regions
with local columnar dimer order and hole-rich regions. The
jump in the hole and dimer densities (as well as in the order
parameters) across the first-order transition is governed by
the correlation length at the coexistence curve. Thus, close to
the tricritical point, the jump in the densities (i.e., the width
in density of the two-phase region) has the scaling form
Ap~ &2 and therefore vanishes with an essential singularity
as the tricritical point is approached. Similar scaling behavior
applies to the discontinuity of the columnar and orientational
order parameters across the two-phase region.

In the subsequent sections, we will give further evidence
for the nature of the phase transitions in this system, includ-
ing the first-order transition, using Monte Carlo simulations
in the canonical and grand-canonical ensembles.

V. MONTE CARLO SIMULATIONS

We now employ Monte Carlo simulations to map out the
phase diagram of the doped quantum dimer models at their
generalized RK points. This approach is complementary to
the analytic approach of Secs. III, IV A, and IV B and of
Appendix A. We first introduce (Sec. V A) a canonical
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Monte Carlo algorithm for interacting dimers. In Sec. V B,
we apply this method to the case of the interacting fully
packed classical dimer model on the square lattice, a system
that has been studied recently in some detail,'*!¢-1® and
study its phase transition. In Secs. V C and V D, we consider
the case of the doped dimer model at low doping and map
out the critical line, verifying the theoretical scenario dis-
cussed in Sec. IV B. In Sec. V D, we combine the cluster
algorithm with conventional grand-canonical moves that per-
mit us to determine the first-order transition line as a func-
tion of dimer fugacity z,; and interaction strength u. We also
estimate the location of the multicritical point discussed in
Appendix A and Sec. IV B using data from both canonical
and grand-canonical simulations.

A. Algorithm for classical interacting dimers

At high dimer coverage (low doping), conventional
Monte Carlo algorithms become very inefficient. On the
other hand, in Ref. 23, it was demonstrated that a geometric
cluster algorithm (GCA) can work efficiently for dimers that
only have a repulsive hard-core interaction. We briefly sum-
marize this algorithm here. The overlap of two hard-core
dimer configurations generates a transition graph. This graph
consists of disjoint subgraphs of dimers alternating between
the two configurations. In the presence of holes, there are
two possible types of graphs: an open graph, which always
terminates on a hole, or a closed loop. Any Monte Carlo
move corresponds to a transition graph of the initial and final
configurations. In the geometric cluster algorithm, the two
subgraphs are related by a global lattice symmetry. The al-
gorithm obtains long transition graphs with minimal over-
head: moves are never rejected, and each dimer encountered
during the construction of the graph participates in the move.
The construction proceeds as follows.2 First, a “seed” dimer
and a symmetry axis are chosen at random. The seed dimer is
reflected with respect to the symmetry axis, and if it overlaps
with other dimers, these are reflected as well. This proceeds
in an iterative fashion until there are no more dimer overlaps
or, equivalently, when an open or closed graph has been
formed. On the square lattice, the algorithm is ergodic if we
allow both diagonal and horizontal-vertical axes passing
through sites of the lattice. The first choice allows changing
the numbers of horizontal and vertical dimers, whereas the
second one permits moving through the different winding
number sectors. Transition graphs generated by the algorithm
are symmetric with respect to the symmetry axis and cross it
at most twice.

We now extend this approach to dimers with additional
interactions by exploiting the generalized geometric cluster
algorithm proposed by Liu and Luijten.>*%” Now, in a single
cluster move, multiple transition graphs and/or open graphs
are formed simultaneously while retaining the rejection-free
character of the algorithm. This is achieved by also reflecting
dimers that do not overlap, with a probability that depends
on the dimer-dimer coupling. When a dimer i, located at F?ld
is reflected to a new position r;°", there are two classes of
dimers that interact with dimer i: (a) dimers which interact
with it before it is reflected and (b) dimers which interact
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with i after it is reflected. Dimers j, located at positions 7,
that belong to any of the two classes are included in the
cluster (i.e., will be reflected with respect to the symmetry
axis) with a probability

(5.1)

where QU= V(|7 -r]) - V(|- 7]) and V(r) represents
the interaction between two dimers at a separation r. Thus,
the cluster addition probability for dimer j depends solely on
the energy difference corresponding to a change in relative
position of 7 and j. In the limit of a pure hard-core repulsion,
this generalized geometric cluster algorithm reduces to the
original GCA.

The GGCA applies only to simulations in the canonical
ensemble. To perform Monte Carlo simulations in the grand-
canonical ensemble, we alternate the cluster moves with con-
ventional grand-canonical Metropolis moves, consisting of
insertion and deletion attempts of single dimers.

pij=max[1 - e~ ikt 0],

B. Zero doping: Kosterlitz-Thouless transition to a columnar
valence-bond crystal

According to the theoretical study of Sec. IV A and also
from the results of Refs. 14, 16, and 17, we expect to find a
Kosterlitz-Thouless transition at zero doping as a function of
the dimer interaction. To detect and locate this transition, we
exploit the fact that there is an ordered phase in the large-u
region and define columnar and orientational order param-
eters,

C(r)= E [n,(r) = n(r +e)], (5.2)
i=x,y
R(r) = n(r)n(r +e,) —n,(r)n(r+e,), (5.3)

where n,(r) denotes the dimer density at r. (C(r)) is nonva-
nishing only in a columnar-ordered phase, providing a signa-
ture of translational symmetry breaking (with a fourfold de-
generacy), whereas (R(r)) measures the breaking of
invariance under 7r/2 rotations. In terms of the most relevant
operators of the effective theory of Sec. IV A, using OPE, we
make the following identifications:

1
C~ 5(01,0"‘ 0_1p), (5.4)

1
R~ 5(02,0 +0_50). (5.5)

Having a proper correspondence between the effective
theory described in Sec. IV A and the microscopic order pa-
rameters (5.3), we may verify our predictions. Since the con-
ventional fourth-moment ratio (directly related to the Binder
cumulant®®) of the order parameter generally does not show a
well-defined crossing at a KT transition, we instead use a
scaling function of the form of the spontaneous staggered
polarization of the six-vertex model,?” which maps on the
same vertex operator as R in the Coulomb-gas representation
and is in the same universality class. Keeping only the most
relevant terms, this function has the form
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FIG. 3. (Color online) The orientational order parameter R in the
undoped case: it vanishes for u <u, and has an essential singularity
at u.. The curves represent Monte Carlo data for different lattice
sizes, interpolated via multiple histogram reweighting. Inset: data
collapse, with a least-squares fit to the exact scaling function for the
staggered polarization operator of the six-vertex model (5.6) related
to R by a universality mapping as discussed in the text.

(R(u)) = (a ,, + ---)e[‘“’\“‘_“c*d\“‘_”ﬁ“']. (5.6)

Vu—u,

From a careful nonlinear least-squares fit to the numerical
data outside the finite-size regime (cf. Fig. 3), we obtain u,
=1.508+0.003.

For completeness, we also investigate the behavior of the
fourth-order amplitude ratios Q,,=(M?)*/{M)* with M=C,
R. The behavior of Q, shown in Fig. 4, is similar to what is
expected for the XY model, namely, a collapse of all curves
in the critical low-u phase and no well-defined crossing of
curves for different system sizes. In contrast, Q (Fig. 5) is
found to exhibit such strong finite-size effects in the critical
phase that its behavior almost resembles that of a regular
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FIG. 4. (Color online) Fourth-order amplitude ratio of the co-
lumnar order parameter C in the undoped case. The curves for all
system sizes essentially coincide for the entire critical phase (u
<uc), as expected for a KT transition.
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FIG. 5. (Color online) Fourth-order amplitude ratio of the ori-
entational order parameter R in the undoped case. In contrast to the
amplitude ratio of the columnar order parameter C (Fig. 4), this
quantity exhibits a strong finite-size dependence, leading to an ef-
fective crossing point that can be used to locate the transition point.

continuous phase transition. This anomalous behavior ex-
plains why the crossing point of the curves for different sys-
tem sizes could be exploited to obtain an accurate estimate of
the critical coupling.'#!¢ In the figures presented in this sec-
tion, the multiple histogram reweighting method®® has been
used to interpolate all data obtained at different values for the
coupling parameter. This allows us to accurately locate
crossing points and extrema in the curves.

Alet et al.'"»'® and Poilblanc et al.'® used transfer-matrix
calculations and Monte Carlo simulations to study the criti-
cal behavior of the undoped system for u>0 (attractive
dimer interactions), whereas Castelnovo et al.'” used
transfer-matrix methods to study primarily the u <0 (“repul-
sive”) regime. In addition, in Ref. 16, the doped interacting
dimer model was also briefly studied for low doping by
means of numerical transfer-matrix techniques. All these re-
sults are consistent and complementary to those presented in
the following section.

C. Low doping: Line of fixed points

We now proceed to the low-doping regime. We perform
simulations in the canonical ensemble for couplings near
the critical region and for hole densities p,
=0.004,0.01,0.02,0.04,0.06. Figure 6 shows, for p,=0.06,
the susceptibilities of the columnar and orientational order
parameters, C and R, followed by the corresponding fourth-
order amplitude ratios in Fig. 7.

According to the predictions of Sec. IV B, we expect that
the columnar order parameter C, which maps onto the O g
effective operator in the scaling limit, will retain its scaling
dimension of 1/8 along the critical line that emerges from
the KT transition point for low hole doping and which con-
stitutes the phase boundary between the dimer-hole liquid
and the columnar solid phases. This constant value of the
scaling dimension of C is the most salient signature of this
critical line: The scaling dimensions of all the other operators
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FIG. 6. (Color online) Classical susceptibilities of (a) the colum-
nar order parameter C and (b) the orientational order parameter R
for p,=0.06. The magnitude and position of the maxima for differ-
ent lattice sizes L can be used to extract the critical exponents y and
v.

change continuously along the phase boundary.

To test this prediction, we extract the anomalous dimen-
sions 7. and 7, (which are equal to twice their scaling di-
mension) by means of finite-size scaling. The maximum of
the susceptibility scales as ™~ L>7+---. Subleading scal-
ing contributions are omitted in the fitting expression since
the results for sufficiently large lattice sizes satisfy simple
scaling (cf. Figs. 8 and 9).

The correlation-length exponent v can be extracted from
the slope of the fourth-order amplitude ratios of both order
parameters at the critical point. Here, instead, we obtain it
from the scaling behavior of the location of susceptibility
maximum, which scales as MXmax:I/tC+COHStXL_]/ Voo [cf.
Figs. 8(b) and 9(b)]. The critical coupling u,, in turn, is ob-
tained from the crossing points of the fourth-order amplitude
ratio (Fig. 7).

By repeating this procedure for different hole densities,
we find 7. and 7, as well as v as a function of p,. We note
that for the undoped case, the (logarithmic) finite-size cor-
rections are so strong that the anomalous exponents are very
difficult to determine. By including subleading corrections to
the susceptibility expressions at the KT transition, we find
strong indications that 7-=1/4 and 7z=1, satisfying the es-
tablished theoretical description of this KT transition. The
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FIG. 7. (Color online) Fourth-order amplitude ratios of (a) the
columnar order parameter C and (b) the orientational order param-
eter R for p,=0.06. The clear crossings of the curves for different
system sizes indicate a regular continuous phase transition.

density dependence of the exponents is shown in Fig. 10(a).
Clearly, they behave very differently: For the columnar pa-
rameter C, its anomalous dimension remains unchanged and
equal to 1/4, while for R, it decreases monotonically from 1
to 1/4 where the transition is expected to become first order,
according to the scenario presented in Sec. IV B. The results
from our Monte Carlo simulations are thus consistent with
the predictions we made in our theoretical analysis.

The evolution of the correlation-length exponent along
the phase boundary is shown in Fig. 10(b). This exponent
behaves qualitatively as predicted for finite doping, i.e., it
exhibits a monotonically decreasing behavior along the line
of fixed points. A direct quantitative comparison to the field-
theoretical prediction is not possible, since the simulations
are performed in the canonical ensemble. Even though the
dimer density could be mapped to a dimer fugacity, the field
theory assumes a fixed-hole fugacity. In addition, the evolu-
tion of the exponent in Fig. 10(b) is slower than predicted
because in the simulations, we do not approach the phase
boundary perpendicularly in the simulations, which leads to
an effective exponent v that is smaller than the one computed
from the scaling dimension of the relevant operator in the
field theory.

In Fig. 11, we summarize our results for the location of
the phase boundary between the dimer-hole liquid phase and
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FIG. 8. (Color online) Finite-size scaling analysis of the suscep-
tibility of the columnar order parameter C for p,=0.06. (a) Scaling
of the height of the maximum as a function of system size L. (b)
Scaling of the position of the maximum. The critical value u, is
obtained from the crossing of the fourth-order cumulants (cf. Fig.
7). The same power-law behavior of the susceptibility maximum is
found for all hole densities p;, <0.06.

the columnar solid phase for hole densities p,=<0.06. The
behavior of the critical line for p,— 0 is consistent with its
expected scaling behavior p;, &2(p,=0), which is based on
simple dimensional analysis, with the only length scale of
the problem being the correlation length of the undoped
problem.

D. High doping: First-order transition and phase separation

Beyond the multicritical point predicted in Secs. III and
IV B (see also Appendix A), we expect a first-order transi-
tion line in the z,, phase diagram, where z, denotes the
dimer fugacity. This line separates the crystalline from the
liquid phase. According to our scenario, an entropic attrac-
tion between holes on the same sublattice becomes marginal
and leads naturally to phase separation between a hole-rich
liquid phase and a hole-poor columnar crystalline phase.
Since the multicritical point is characterized by a marginally
relevant operator, complicated crossover will be observed in
the first-order transition region in the vicinity of this point.®
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FIG. 9. (Color online) Finite-size scaling analysis of the suscep-
tibility of the orientational order parameter R for p,=0.06. (a) Scal-
ing of the height of the maximum as a function of system size L. (b)
Scaling of the position of the maximum. The critical value u, is
obtained from the crossing of the fourth-order cumulants (cf. Fig.
7). Unlike the results for the columnar order parameter (Fig. 8), the
power-law behavior of the susceptibility maximum is now depen-
dent on the hole density, consistent with an anomalous scaling ex-
ponent that varies along the phase boundary.

In addition, close to the multicritical point, the first-order
transition will be very weak, with a discontinuity that van-
ishes with an essential singularity as a function of the dis-
tance to the multicritical point along the phase coexistence
curve. At this transition, all observables, such as the latent
heat, should vanish in a similar way, making the numerical
study of the transition close to the multicritical point particu-
larly difficult.

To confirm the existence of the discontinuous transition,
we perform grand-canonical Monte Carlo simulations with
single-dimer insertions and deletions (alternated with canoni-
cal geometrical cluster moves to accelerate the relaxation of
the configurations), for couplings ©=3.0,3.5,4.0,5.0,6.0, as
a function of the dimer fugacity z,. Figure 12(a) shows the
dimer density as a function of dimer chemical potential ;.
Although with increasing system size a jump in the dimer
density develops, it does not become very pronounced. How-
ever, consideration of the heat capacity Cy [Fig. 12(b)] con-
firms the presence of a single phase transition at fixed cou-
pling constant u, as Cy exhibits a peak at a chemical
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FIG. 10. (Color online) (a) Evolution of the anomalous dimen-
sions 7¢ (lower curve) and 7 (upper curve) for the columnar and
orientational order parameters, respectively, along the critical line
for hole densities 0.004=<p;,<0.06. The transition will become
first-order when the two curves cross. (b) The inverse correlation-
length exponent 1/v as a function of doping along the critical line
for hole densities 0.004 < p;, <0.06. Up to small systematic devia-
tions discussed in the text, the observed trend agrees with the scal-
ing predictions.

potential that matches the location of the jump in p,; We
emphasize that this classical heat capacity is not the heat
capacity of the (2+1)-dimensional QDM. Indeed, C, does
not have any physical meaning in terms of the ground-state
wave function that we are considering, because the ground-
state energy cannot be changed through variation of the pa-
rameters u or uy Another confirmation of the phase transi-
tion is obtained from the susceptibilities of the orientational
[Fig. 13(a)] and columnar [Fig. 14(a)] order parameters, xg
and x, respectively. Both quantities exhibit a peak at a
chemical potential that approaches, with increasing system
size, the location of the peak observed in Cy.

To confirm the nature of the phase transition, we consider
the scaling of the peaks in Cy, xg, and x. For a first-order
transition, these quantities should exhibit a é-function singu-
larity in the thermodynamic limit, or, equivalently, for finite
systems, their peaks must scale with the lattice size in a finite
system. We find that the heat-capacity peak, apart from a
constant background, indeed scales with the lattice size 12
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FIG. 11. Phase diagram at low doping, with the critical line of
fixed points separating the dimer-hole liquid phase [u<u.(x)] from
the columnar solid [u>u.(x)].

for the range of system sizes (up to L=140) that we consid-
ered. This is supported by the behavior of the system-size
dependent maxima in y and x., see Figs. 13 and 14, which
both scale as L?, indicating that %=0. In addition, all local
order parameters must develop a discontinuity at the transi-
tion point as the system size increases. Whereas the jump in
the dimer density [Fig. 12(a)] is not very sharp, the jump in
the columnar and orientational order parameters, C and R, is
quite pronounced already for the system sizes studied here,
see Figs. 15(a) and 15(b). Furthermore, the location the order
parameter jump provides a good indication of the transition
point.

The strongest evidence, however, is provided by the
fourth-order amplitude ratio of the density, Q,. At a first-
order transition, this quantity displays a specific behavior, as
discussed in Ref. 70. In particular, the positions of two
minima observed in Fig. 16(a) approach, in the thermody-
namic limit, the densities of the two coexisting phases. Out-
side the coexistence region, Q,, approaches a limiting value
of 1/3, characteristic of Gaussian fluctuations. This type of
behavior is not found at a continuous phase transition and
should be considered as a strong indicator for the occurrence
of a first-order transition. This is particularly important since
the very weak nature of the first-order transition makes it
impossible to unambiguously confirm the existence of a
double peak in the histograms of the internal energy for the
system sizes that we considered. Whereas the first-order tran-
sition becomes more pronounced at higher couplings, and it
thus should become easier to distinguish the two peaks in the
energy histogram, in practice, those simulations are seriously
hampered by the very large relaxation times encountered for
large dimer interactions.

By repeating the analysis presented here for different cou-
plings, and estimating the coexistence chemical potential
from the convergence point observed at the order-parameter
discontinuity (cf. Fig. 15), we derive the phase diagram in
the z,-u plane, see Fig. 16(b).
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FIG. 12. (Color online) (a) The p,-u, equation of state for cou-
pling #=3.5 and different lattice sizes. As the system size increases,
the jump in the dimer density at the first-order phase transition
gradually becomes more pronounced but remains relatively weak.
(b) The heat capacity of the classical interacting dimer model for
the same coupling strength. We find that the peak scales as C,.x
~ Cy+L?, providing strong evidence for a first-order transition at
u=3.5.

VI. EFFECTS OF REPULSIVE HOLE-HOLE
INTERACTIONS NEAR THE FIRST-ORDER
TRANSITION REGION

We now discuss briefly the effects of additional interac-
tions near the coexistence curve. It is clear that additional
interactions near the first-order transition line should stabi-
lize more complex ordered inhomogeneous phases. The sim-
plest interaction that competes with the tendency of holes to
pair and phase separate from the crystal is a weak nearest-
neighbor hole-hole repulsion V). The addition of such an
interaction to the classical dimer model would lead to an
additional energy cost for homogeneous and isotropic clus-
ters of holes. Remarkably, for a range of dimer interactions
u, this energy cost leads to the formation of commensurate
hole stripes with period of 3, in a region in the phase diagram
located between the dimer-columnar crystal and the hole-
dimer liquid. For general values of u, V,, and hole densities,
one expects a complex phase diagram, most likely similar to
what is found in theories of commensurate-incommensurate
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FIG. 13. (Color online) (a) Susceptibility of the orientational
order parameter R for coupling u=3.5 and different lattice sizes. (b)
Asymptotically, the maxima of yj scale with the lattice size, con-
firming the first-order nature of the phase transition.

transitions, which we do not explore here in detail but are
discussed in Refs. 71-74.

This phase can be thought of as the ground-state wave
function of a quantum Hamiltonian constructed using the
approach described in Sec. II. The quantum Hamiltonian that
leads to the prescribed wave function includes a generalized
form of the hole-related Hamiltonian of Eq. (2.6),

H=H;+ tholez [- |C?><C?’| - |C?,><C?| + yRel Rel|chycl

1, (6.1)

where Rch and Rei’ denote the number of pairs of holes

+yfake|cliel

formed in the corresponding configurations C! and Cf” (cf.
Fig. 17). More specifically, the ground-state wave function is

. 1 N h
Gy = ———— S WMy c, ). (6.2)
"NZW YN (o ) !

This wave function has a counterpart in the grand-canonical
ensemble, for which the exactly solvable quantum Hamil-
tonian is a generalization, in exactly the same way as above,
of Eq. (2.3).
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FIG. 14. (Color online) (a) Susceptibility of the columnar order
parameter C for coupling u=3.5. (b) The maxima of y as a func-
tion of the linear lattice dimension. As for xp [Fig. 13(b)], the
maxima scale with lattice size, supporting the occurrence of a
o-function singularity in yc in the thermodynamic limit, as ex-
pected for a first-order phase transition.

By performing grand-canonical simulations for weak hole
repulsions, VhS%u, in the regime of strong dimer attrac-
tions, u>4.0, where the first-order transition is more pro-
nounced, a hole-stripe phase was observed. In particular, for
the couplings #=5.0, V;,=0.5, and a dimer chemical potential
—1.1<wu;<-0.8 (i.e., between the liquid phase u;=-1.2
and the columnar phase u;=—0.8), the hole density structure
factor shows nontrivial peaks at (k,,k,)=(x27/3,0),
(0, +27/3), which sharpen as the lattice size increases (see
Fig. 18). A snapshot of the ordered phase (Fig. 19) illustrates
how the holes order in stripes with a period of three lattice
spacings, whereas the dimers are still ordered in a columnar
pattern. In this way, the holes minimize the effect of the
hole-hole repulsions and the dimers simultaneously maxi-
mize the effect of the attractive dimer-dimer interactions.
The same pattern is also found for u=4.0,4.5,6.0, in similar
regimes for the hole-hole interaction.

More generally, we expect that, as the liquid phase is
approached in the regime of strong dimer couplings, a se-
quence of hole-commensurate phases will be stabilized, lead-
ing ultimately to incommensurate phases next to the liquid
phase. The formation of this phase diagram is similar in
spirit to the ones discussed in Refs. 71-74.
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FIG. 15. (Color online) (a) The columnar order parameter C as
a function of the dimer chemical potential wu, for coupling u=3.5.
The rapid increase near the transition becomes more pronounced as
the thermodynamic limit is approached. The dashed line shows the
approximate position of the transition point. (b) The orientational
order parameter R as a function of the chemical potential u, for
coupling u=3.5. It also shows a rapid increase similar to the behav-
ior of C, at the same chemical potential.

VII. ELEMENTARY QUANTUM EXCITATIONS OF
DOPED QUANTUM DIMER MODELS

In the preceding two sections, we discussed the properties
of the ground-state wave functions and the behavior of
equal-time correlation functions of several operators of
physical interest. There we used extensively the connection
that exists for these types of wave functions between the
computation of equal-time correlators of local operators and
computations of similar objects in the equivalent two-
dimensional classical statistical mechanical system of inter-
acting dimers and holes. In this section, we will be interested
in the spectrum of low-lying excitations, which is inherently
a quantum-mechanical property.

Unfortunately, as it usually the case in QDMs,!' all we
know is the ground-state wave function. The low-lying exci-
tation spectrum is not known exactly but it can be computed
approximately using the variational principle. This is the
single-mode approximation (SMA), which is a useful tool for
studying the excited states of many-body systems.”>"° It is
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FIG. 16. (Color online) (a) Fourth-order amplitude ratio for the
dimer density at coupling u=3.5. The exhibited behavior is typical
of a first-order transition (Ref. 70), with two minima in the thermo-
dynamic limit approaching the coexisting densities. (b) Phase
boundary between the dimer liquid and the columnar solid. For low
couplings, the transition is continuous (solid line). Our best estimate
for the multicritical point (u,=2.6) is represented by the large cir-
cular dot. Beyond the multicritical point, the phase boundary
(dashed line) is estimated from grand-canonical MC simulations at
fixed dimer fugacity z,.

particularly useful in the case of quantum dimer models at
their RK points due to the fact that the exact ground-state
wave function is known exactly. The computation of the low-

ch ol

SN

r

—>

FIG. 17. (Color online) A particular hopping process realized in
the Hamiltonian [Eq. (6.1)]. The potential terms that are present in
the Hamiltonian depend on the number of additional pairs of holes
that are formed after the hopping process. In the process shown
above, this number is 1.
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FIG. 18. (Color online) The hole density structure factor S(k) for
dimer coupling u#=5.0, hole repulsion V,=0.5, and dimer chemical
potential u,=-1.0, for linear system size L=128. The four peaks at
(x27/3,0) and (0, £27/3) correspond to the ordered configuration
of hole stripes shown in Fig. 19.

lying collective modes in the QDM was done by Rokhsar
and Kivelson.! Alternatively, one can describe qualitatively
the low-lying spectrum using the effective field theory of the
quantum dimer models (and their generalizations) at critical-
ity, the quantum Lifshitz model of Ref. 11.

In this section, we will consider only the SMA spectrum
in the dimer-hole liquid phase. Similar calculations can be
done in the phase with long-range columnar order. In the
dimer-hole liquid phase, the equal-time correlation function
of the hole density operator, i.e., the one-body density ma-
trix, approaches a constant at long distances. Thus, the wave
function for this phase exhibits a Bose condensate of holes.
Since the holes are charged, this is a charge Bose condensate.
To determine if it is a superfluid (or more precisely a super-
conductor), it is necessary to show that it has a finite super-
fluid stiffness, i.e., a critical velocity. This can be determined
form the spectrum of density fluctuations and hence from the
spectrum of collective modes. It will turn out that, in spite of
the more correlated nature of the wave functions we consider
here, the result will be similar to that of Rokhsar and
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FIG. 19. Snapshot of a part of a typical ordered configuration
that appears at the couplings ©=5.0, V;,=0.5, u,=-1.0, and linear
system size L=128. Holes prefer to form commensurate stripes of
period of 3, so as to minimize the effect of the weak hole
repulsions.
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Kivelson,! i.e., no superfluid stiffness. Given the more gen-
eral structure (while still local) of the wave functions we
study here, we conclude that wave functions associated with
Hamiltonians satisfying the RK condition, in general, do not
describe superfluid states.

We begin by summarizing the SMA procedure, focusing
on doped quantum dimer models. Firstly, one must know the
exact ground state of the system |0) and the type of excita-
tions which saturate the frequency sum rule. In our case,
there are two candidates: the dimer density and the hole den-
sity excitations. Since it follows from a variational principle,
the SMA provides a proof of existence only for gapless ex-
citations but not for gapped ones. The energy of an excitation
created by an operator with wave vector k, which we will
denote by py, acting on the ground state is bounded from

above as follows: 77
_ S0 _ (OlLp(-k).[H.p(k)]10)
BB ™ opewpaom Y

where f(Kk) is the “oscillator strength” and s(Kk) is the struc-
ture factor (i.e., the equal-time correlation function) for the
operator p(k).

In the case of doped QDMs at their RK point, we know
their ground-state wave functions exactly and they have (by
construction) zero ground-state energy, E;=0. Thus, the ex-
citation spectrum must be positive. The system will have
gapless excitations if Ey—E vanishes at some wave vector.
It is worth noting that there are two distinct ways for the
SMA bound to vanish close to some k=k,. One way is if
f(K) vanishes at k. This can happen only if the commutator
[H,p(ky)] vanishes. This means that p(kg) is a conserved
quantity. The other way occurs when s(k) becomes infinite at
k. This is a signature of a nearby density-ordered state like
the columnar dimer crystal we found in the phase diagram of
the dimer models under study, shown in Fig. 2.

In the following, we will use the following operator defi-
nitions. For dimers, fr‘fy(r) denotes the dimer-density operator
and it takes the values of +1 if a dimer is present or absent at
the link which begins at the position r and has direction &
=X,y. For holes, 6" (r) denotes the hole density operator and
it takes the values of +1 if a hole is present or absent at the
position r.

Details of the derivations of the SMA oscillator strength
functions for both models are given in Appendix B. Here, we
just quote the main results.

A. Fixed-hole-density model
1. Hole density excitations
For the fixed-hole-density model, the SMA oscillator
strength function f(k) for hole density excitations is given by
f(k) = 4'l‘holeq2 (72)

for k=(7r, ) +q.

From the results of the Sec. III and Appendix A, we may
conclude that for k=(7,7)+q, the structure factor near
(7, ) scales like s(™™ (K)o and, thus, s‘™™(0) is a

1
q2+§—2
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constant. Thus, E::W)— Ey><q>. For k=(0,0)+q, the results
from the following section, which formally hold only for low

density of dimers, lead to the conclusion that s (k)

o = - and 5©9(0) is again a constant but has strong oscil-

latory behavior in real space. Thus, from the correlation
function we computed in Appendix A, we conclude that
these excitations are also quadratic in the momentum q, i.e.,
Ey—Ey=q?. This result is consistent with the compressibility
argument, given in Ref. 1, which would also give quadratic
dispersion in this case [keeping in mind that in this case, the
compressibility is infinite when the system is doped (con-
stant number of holes)]. However, it is important to stress
that the compressibility argument is a stronger condition be-
cause our calculation of the correlation function is legitimate
for low dimer densities.

2. Dimer-density excitations

For the fixed-hole-density model, the SMA oscillator
strength function f(k) for dimer-density excitations is given

by

S(K) = faimer-fiip(K) + fhole(1) (K) (7.3)

Close to the wave vector Qy=(, ) with k=Q,+(q, both
oscillator strengths fgimer.qip(K) and fhore(1)(K) vanish qua-
dratically (cf. Appendix B) and more specifically,

fdimer—ﬂip(q) = 8“12, (74)

fhole(l)(q) == tholeqz- (75)

Given the fact that the dimer-density structure factor is a
constant at Q,=(r,7) and combining Egs. (B12) and (7.3)
we may conclude that there are gapless dimer-density exci-
tations at Qg=(m, 7).

In addition to these results, we may have additional
branches of dimer-density excitations, especially when there
is a divergence of the structure factor at some wave vector
Q, which would be an indication of dimer order at a nearby
phase. In particular, this happens at the phase boundary be-
tween the hole-dimer liquid phase and the columnar-ordered
crystalline phase.

B. Fixed-hole fugacity model

As above, we can study the hole density excitations of the
second model, the grand-canonical model, in which the hole
density is not fixed but is determined by a parameter z which
plays the role of a hole fugacity in the wave function. By the
fact that there is no conservation of the number of holes is
explicitly broken, we can predict that the numerator f(k) will
vanish only at Qy=(, ). This happens because of the bi-
partite lattice symmetry that enforces the number holes on
each sublattice to be equal. For the fixed-hole fugacity
model, the SMA oscillator strength function f(k) for hole
density excitations is

fhole(Z)(k) = 4tpairing[2 + COS(kX) + COS(ky)] .

The formula shows that the numerator fje(2)(kK) vanishes
only at the wave vector Qy=(7,7) quadratically, as ex-

(7.6)
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pected. The dimer-density excitations are not gapless (in the
sense that the numerator does not vanish for any Q,), be-
cause the dimer-flip contribution vanishes at (7, ),(0, )
and the dimer-breaking term gives a constant contribution.
This is expected due to the violation of the dimer number
conservation. It is important to stress that the behavior of the
structure factor is exactly the same as before (in the fixed-
hole-density model). The reason is the equivalence of the
canonical and grand-canonical ensembles in the thermody-
namic limit for classical systems.

It is certainly worth noting that, although the two ground-
state wave functions of Egs. (2.7) and (2.9) have the same
ground-state physics, due to the essential equivalence of the
classical canonical and grand-canonical ensembles in the
thermodynamic limit, the nature of their quantum elementary
excitations is drastically different.

VIII. CONCLUSIONS

In this work, we have constructed generalizations of the
quantum dimer model to include the effects of dimer corre-
lations as well as finite hole doping in the wave function.
Throughout, we considered the case of bosonic (charged)
holes and neglected the fermionic spinons. We have con-
structed generalized RK Hamiltonians whose ground-state
wave functions describe the effects of (attractive) dimer cor-
relations and finite hole doping. We have discussed the rich
phase diagram and critical behavior of three doped interact-
ing quantum dimer models at their RK point using both ana-
lytic methods and numerical simulations. We have shown
that the ground-state wave function embodies a complex
phase diagram which consists of dimer-hole liquid and co-
lumnar phases separated by a critical line with varying ex-
ponents, ending at a multicritical point with a Kosterlitz-
Thouless structure where the transition becomes first order.
The critical behavior along the low-doping section of the
phase boundary was investigated in detail, and the predic-
tions of our scaling analysis were confirmed with large-scale
Monte Carlo simulations. Monte Carlo simulations were also
used to show that the transition between the dimer-hole lig-
uid and the columnar solid does indeed become first order
and to estimate the location of the multicritical point and of
the first-order phase boundary.

In the high-doping regime, near the first-order transition
line, additional repulsive interactions among holes were
shown to generate, at the expense of the two-phase region, an
even richer phase diagram with phases in which the dimer-
hole system becomes inhomogeneous. In the regime of
strong dimer coupling, u=5=0, and weak hole interactions,
V,=0.5, we found a stripe phase with wave vectors
(27/3,0) and (0,27/3). In general, we expect the two-phase
region to be replaced by a complex phase diagram with a
large number of commensurate and incommensurate phases.
This physics is well known in the context of two-
dimensional classical statistical mechanics of systems with
competing interactions.”'~”3 However, it is interesting to see
how it arises at the level of the exact ground-state wave
function of models of strongly correlated systems, particu-
larly given the current interest on this type of phenomena
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in  high-temperature related
systems.!3.80-84

In this paper, we have also presented an analysis of the
low-lying excitations of the quantum system and found that,
much as in the case of the Rokhsar-Kivelson quantum dimer
model, the doped system is a Bose-Einstein condensate but
not a superfluid, since the superfluid stiffness vanishes even
though both dimers and holes interact. It is apparent that in
order to render the Bose-Einstein condensate a true super-
fluid, it is necessary to violate the RK condition which forces
the wave function to have a local structure. The effects of
violations to the RK condition are poorly understood, and we
have not investigated this important problem which is essen-
tial in determining the generic phase diagram of these mod-
els.

superconductors  and
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APPENDIX A: MEAN-FIELD THEORY FOR DIMERS AND
HOLES

In this appendix, we give details of the mean-field theory
summarized in Sec. III. We will use Grassmann variable
methods to write down the partition functions for classical
interacting and doped dimers. We will use these methods to
derive a simple mean-field theory for this system. While
mean-field theory, as it is well known, fails to give the cor-
rect critical behavior in two-dimensional systems, it offers a
good qualitative description of the phases and, surprisingly,
even of the gross features of the phase diagram. In subse-
quent sections, we will use more sophisticated analytic and
numerical methods to study the phase transitions.

1. Noninteracting dimers at finite hole density

The classical dimer-hole partition function can be formu-
lated in terms of a Grassmann functional integral, according
to the prescription of Ref. 32. The classical partition function
of the dimer problem on any lattice, which is defined by the
connectivity matrix M and with fugacity z for the dimers and
1 for the holes, is
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.z L
Z gimer = f DnDn' exp(E i+ EE M;;mm; 77]‘771{)'
i ij
(A1)

For the square lattice, M; is 1 if i,/ are nearest-neighbor
sites and zero otherwise. For the triangular lattice, M;; is 1 if
i,j are nearest neighbors and also next-nearest-neighbor
sites, but only along one diagonal, i.e., if j=i+X+y or j=i
—X-§. Also, the fugacity z ranges from 0 to . When z
—0, the system is filled with holes and there are very few
dimers, and when z— %, the system approaches the close-
packed limit with dimers. Both limits are worth of study due
to the existence of an important theorem by Heilmann and
Lieb,® which proves under rather general assumptions the
absence of any phase transitions with doping in this model.
Thus, the identification of the phase in the few dimer limit is
enough to conclude about the phase that the system enters
when doped. In this section, we will study this problem in
the limit in which the dimers are dilute. In this regime a
simple mean-field theory of the Hartree type is expected to
be accurate.?? Such a crude approximation should break near
criticality, i.e., near the close packing limit.

To proceed, we apply a Hubbard-Stratonovich transforma-
tion to the above partition function:

Z 1 _
exP(EE Mij77i772-77j77;> =Nf D¢ exp(— 2_22 ¢iMijl¢j
ij ij

(A2)

+2. 77;'77;(25;'),

where A is an irrelevant normalization constant. We may
also add sources for the hole density operators J77'. In this
way, the classical dimer partition function may be written as
follows:

i ! -1
Zaimer = | DIDAD' exp| =52 $M;/' ¢,
ij

+2 77i77i+(¢i+1+-li)), (A3)

where we have dropped the normalization constant N, as we
will do in what follows. (Note that what makes the above
problem unsolvable is the term “1” in the exponent.)

Upon integrating out the Grassmann variables, we find

1
Zdimer=fD¢eXp<_ 2_22 (¢i_Ji)M[_jl(¢j—Jj)
ij
(A4)

+ E In(¢p; + l)).

In the limit z— 0, we may formulate a legitimate and well-
defined mean-field theory. To this end, we rewrite the parti-
tion function in the following way:
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11 L
Zgmer= | Dpexp| = =| 52 (¢ = JIM; (=)
z|2 ij
— 22 In(¢;+ 1)])

= f Depe™ 1) (A5)

where

i

1
S(¢) =22 (= JIM; (= J) =22 In(h+ 1)

(A6)

is the effective action. As z— 0, we have a theory which has
a well-defined saddle point and the perturbation around this
point will be in powers of z which plays the role of an ef-
fective coupling constant. In this way, we have a very fast
convergent expansion.

The saddle-point is defined as follows:

oS
~ =0, (A7)
o b=

i

and we take the following equation for ¢:

Gi=Ji+z2 — (A8)
i ¢+l
In this approximation, the density of holes is given by
dIn Zdimer 1 as 1
pi={mm})= =-—-— (A9)

(9.]1‘ - Zdll‘zg_ﬁi_'_l.

So, the source J; in terms of the density of the holes p; is
given by

M 1

Ji:(_bi_zz_ i =_—Z2Mijp,-—l. (AlO)
j (bj +1 Pi j
The Legendre transform of the effective action S is
|
L(p) = ~S(&1(p).J(p)) + 2 Ty} (Alla)

=2 pMyp+ 2 Inp) + 2 (1=p).  (Al1D)
ij i i

We specialize now to the case of uniform hole density p;
=p and also for the case of the square lattice where the
number of nearest neighbors is 2D =4 and assuming that the
number of sites on the lattice is N. Then,

T(p)=-— §<4Np2) +NIn(p)+N(1-p).  (Al2)

At this level of approximation (‘“Hartree”), the equation of
state becomes
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1
J=—4zp+—-1. (A13)
p

So, when the sources are set to zero, the density in terms of
the fugacity, in the limit z—0, is

2z (A14)
P i+ 162

As a check of the approximation, we may expand the result
in the region of z— 0, where the result should be p=1 for
the hole density:

p=1-4z+0(2%). (A15)

Or, equivalently, for p— 17,

1(1 1
z=5(;_1>=Z(1—P)+0((1_p)2)‘ (A16)

The hole density-density correlation function can be obtained
in the following way by using the Legendre transform:

. FInZ, ap;
At paly — (W Ty = L Edimer _ P
Gij = (mim; mm;) = e Xmmp) PYETARTA

(A17)

and also

T |
9= [ 3Pic7pj] . (A1S)

By using Egs. (Al1b) and (A18), we have

#T 1
(G = =—zM;; - 511? (A19)

Ipidp; i

Since M;; is a function of the distance between sites and
vanishes except for nearest neighbors, its Fourier transform
is

2
M(§) =d>, e Ty (r, - r)= 2a%Y, cos g,a.
i

a=1

(A20)

Also, we set a=1, and finally, the hole density connected
correlation function is

g(‘;) = 12

-—- 222 COS ¢,
P a=1

(A21)

For momenta near Q= (7, 7), q=Q+p, with p small, it be-
comes

__pE?
£+ p”

where £ is the correlation length

Gp+Q) = (A22)
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1-
E=\

1 (A23)

Finally, the connected hole density correlation function (the
structure factor) in real space for p—1 is

(_ l)rx+ry+1 -

Gr) = ———e"" (A24)
\rér

If we restore the units, the correlation length is §=a\/f"%.

Surprisingly, given how crude this approximation is,p the
result of Eq. (A24) is consistent with the numerical results
provided by Krauth and Moessner?® for much of the dimer-
density range they studied. Significant deviations are seen
only upon approach of the close packing regime where the
classical dimer model is critical and this mean-field calcula-
tion fails, e.g., the correlation length diverges as p— 0 with
exponent 1/2, given by Eq. (A23) (the mean-field value).
The correct value of the exponent can be deduced from Table
Tanditis 1/(2—1/4)=4/7 (1/4 being the scaling dimension
of the hole operator for the noninteracting case.) As we show
in Sec. IV A (and in Table I), the dimension of the hole
operator grows from the value of 1/4 for free dimers to a
value of 2 at the (Kosterlitz-Thouless) transition to the co-
lumnar state, where it should exhibit an essential singularity
due to the marginality of the hole operator.

2. Adding interactions between dimers

Clearly, the mean-field method for the noninteracting
dimer-hole system can be easily extended to dimer-hole sys-
tems with local interactions. In the case of attractive interac-
tions between parallel dimers, the partition function of the
monomer-dimer system should be

Z +
Zd-im=fD7ﬂ77f GXP(E |+ 5 2 M) )
i

ij
VS o i
+ 52 M)y mon 77177?), (A25)
ijkl
where V=z%(e*~1) for an attractive interaction of strength
u >0 between parallel neighboring dimers. M; represents the
coordination array of the lattice and it takes the value of 1
when i is nearest neighbor to j and otherwise is zero. In the

same respect, M ;jki takes the value of 1 only when i,j,k, [ are
arranged on a square plaquette and is zero otherwise. The
sums run along all possible lattice sites for each index. We
may perform two Hubbard-Stratonovich transformations by
introducing the fields y and ¢ and then we have (again,
dropping all normalization constants)

1

2 Xij(Mijkl)_lel

Zyim= f DyDy' Dy exp| 2 n7) —
i Vi

z
+2 ﬂiﬂj’ljﬂj’()(ij*‘ EMij):|
ij

. | -
= f DyDy'DxDé eXpl— ‘—/E Xii (M) ™ X
ijki
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1 -1
- ZE d’i()(ij"' %Mij) &+ E 77i77j(¢i+ 1)}

1 -
= f DxD¢ eXPl‘ ‘_/E Xii (M i)™ X
ijkl
1 -1
—ZE ¢i<Xij+§Mij) ¢j+2 In(¢; + 1)].
ij i
(A26)

Just as we did above, we introduce a set of auxiliary sources
J% defined on links ij and J? defined on sites i. The partition
function now reads

Zyinl I = J DYDpe 11VISGxI%1 - (A97)

where the action now is

S(,x: 040 =22, (xij— J,)';)(Mi_/'kl)_l()(kl -JY)
ikl

-1
+%% (¢i‘fz¢)()(ij+§sz> (¢,—J;ﬁ)
~Vz>, In(¢;+1). (A28)

We define the densities conjugate to the fields ¢; and y;; as

dln Zd-int 1 -
=g~ M)
d ln Zd—int 2 ~
myy= ———= = > (M) X (A29)
! ar veag Y

Solving for the fields and replacing in Eq. (A28), we fi-
nally have the following for the effective potential or equiva-
lently the Gibbs free energy:

\% - \% — Z
I(z,V)=—2 miM jjm + 2ol = Mijmy + —M; |n;
4 2 2
ijki ij ki

Vo ~ .
- E In 22 _E Mijklmkl+ iMl] nj+ 1.
i Jj 2 kl 2
(A30)

The ordered phase of dimers is expected to be a columnar

one. So, for m;;=(~1)4; ;_sm+m, and n;=n, the free energy
is

I'z,V
% = Vm? + 2Vmi + 4Vmgn® + 2zn*

afronffzen-3)
o Fem-3)

(A31)
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Now, we proceed by solving two of the three extremal
(saddle-point) equations:

or or
—=0 and —=0,

A32
on omy ( )

which take the following explicit form:

{5 om)-3)

8Vmgn + 4zn —
m Z
1+ 8n(V<— +m0) + —)
2 2

3 om)3

- =0,
m Z
1+ 8n(V(— — +m0> + —)
2 2
4nV

m Z
I+ 8n<V<— = +m0> + —)
2 2

4nV
- =0.

m z
1+ 8n<V(—+m0) + —)
2 2

For z=V=0, the solution of the saddle-point equations is
trivial, mo=n=1. For small z, we can solve Egs. (A33) and
(A34) recursively, expanding also in the small order param-
eter m (this is correct close to a continuous phase transition
or to a weakly first-order transition):

(A33)

4Vmy+4Vn® -

(A34)

1 ( 16V2m?
42V +2)\ (1 + 8V +4z)?
256Vim* 4096V°m® )

+ 7+ s
(1+8V+4z2)* (1+8V+4z)

n=1-4z-8V-

(A35)

2 1 128V3m? 2048V m*
my=——————1+— S+ -
1+8V+4z 4V\(1+8V+4z)” (1 +8V+4z)
32768V m®
+—7 .
(1+8V+4z)

Replacing Egs. (A35) and (A36) in the free energy (A31),
and also expanding in the small parameter z, we have

(A36)

I'(z,V
(jv ) = CO(Z’ Vr) + C2(Z7 Vr)mz + C4(Z’ Vr)m4 + CG(Z7 Vr)m6
P (A37)
where V.= Y=¢“—1 and

Z

32
Co(z,V,)==2z+(8-2V)* + ?(— 5+3V,)2 +0(zY),
(A38)

Cy(z,V) = V.2 [1 + 8V, 22— 128V, 23 = 256(- 7+ V,)V,2*]
+0(7), (A39)
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Ci(z,V,) ==32V/ (1 =2(19+ V,)z + 4[184 + V(4 + V) ]2°

+8{1336+ V,[- 232+ V(4 + V) ]}z°) + O(z'),
(A40)

Co(z,V,) = 128V —4(V, + 12)z
+4[340 + V(28 +3V)) 2%} + O(z"3).
(A41)
In the limit of very low dimer density, z— 0, from Eqs.
(A38)—(A41), there is a clear first-order phase transition from
an empty lattice (n=1, m=0) to a columnar dimer crystal

(m+0) because C,>0, C4,<0, and C¢>0. In particular, in
this limit, the first-order transition happens when

C2
Cr=—+, (A42)

4Cq

., (32v))?
= —512sz‘0 i (A43)
u 1 -2 2 u
e=l+pzaz =2z%e"=1. (A44)
Z

Condition (A44) can be derived through a very simple argu-
ment: In the limit of very low dimer densities, the nonlocal
effects which are related to the hard-core dimer constraint
are negligible. If we consider just a single plaquette, then the
contribution from four holes on this plaquette to the Gibbs
weight of the partition function will be just unity, but the
contribution of two parallel dimers arranged either vertically
or horizontally will be 27%¢*. When 2z%¢*=1, the holes be-
come unstable to the formation of pairs of parallel nearest
neighboring dimers and the result is a columnar dimer crys-
tal.

When C,=C,=0 (whereas C, remains positive), there is a
mean-field tricritical point where the transition ultimately be-
comes continuous. Using the approximate Egs. (A39)—(A41),
we can have an estimate for the tricritical point. Solving the
set of equations, we arrive at the following estimate:

z,,=0.075, (A45)

u, =2.733. (A46)

Remarkably enough, these estimates are very close to the
estimates from the grand-canonical simulations that are pre-
sented in Sec. V. However, we should be very cautious on
taking these estimates too seriously since the terms in the
expansion of the coefficients Cy, C,, Cy4, and Cg in powers of
z generically have alternating signs with increasingly large
constant coefficients, which suggests that this expansion is
not convergent. In any case, mean-field approximations, such
as the one presented here, fail in two dimensions. The actual
multicritical point has a more complex analytic structure,
akin to a Kosterlitz-Thouless transition, than suggested by
these Landau-Ginzburg-type arguments. On the other hand,
the multicritical point can be approached from the high
dimer-density limit, where the transition is continuous and
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thus, an effective field theory description is possible. As we
show in Secs. IV A and IV B, this multicritical point is con-
trolled by a marginally relevant operator and belongs to the
Kosterlitz-Thouless universality class.

APPENDIX B: DERIVATION OF THE SINGLE MODE
APPROXIMATION OSCILLATOR STRENGTH
FUNCTIONS f(k)

In this appendix, we present the details of the calculations
of the SMA oscillator strength functions f(k) discussed in
Sec. VIL

1. Fixed-hole-density model

a. Hole density excitations

The only term of Hamiltonian (2.6) which does not com-
mute with the hole density operator is the hopping term for
the holes. This term, in terms of destruction-creation Pauli

a* * .
operators o, and o, can be written as

Topote == Troe 2 0 (1) 0" (1) 05 ()05 (r5). (B1)
(ijk)
At this point, we are not interested for the possible orienta-
tions of the dimers with respect to the holes, as the hole
density operator commutes with the dimer-density operator.
Now, we will repeatedly use that

[0, 0"]= 720"

at the same position in real space. At any distance different
from zero, the commutator vanishes. For a given hole at a
position R, there are four possible positions R’'=R*xX+y
where it may move through the available hopping term. By
counting contributions from all these terms for every site of
the lattice, we exactly take into account all the terms of the
Hamiltonian including Hermitian conjugates.

If R is the initial hole position and R+r, the final one,
then r, has eight possible values: ry=+x+y. The first com-
mutator can now be computed for any site R [the operator
Thole(R, 1) contains each of the above eight hopping terms].
We have

[_ thole,]}lole(R’rO)’Uh(k)]

(B2)

== thole,]Ilole(R:rO)(e_ik.R - e—ik-(R+r0)) B (B3)
[Uh(_ k)7_ thole’z;lole(erO)]
= thole,];ole(Rer) (eik.R - eik-(R+r0)) s (B4‘)
[O-h(_ k)’[_ thole,Thole(R,rO)’ oﬁ(k)]]
= 2tpg1c Thole (R, 1) [1 = cos(k - rg)]. (B5)

Thus, the oscillator strength f(k) can now be calculated:

J&) = 2 ([0"(= k), [~ thote Trote(R 1), 0" (1) 1)

R.rj

X202 [1 = cos(k - 1)].

Ty

(B6)

If we set k=Q,+q, where q is assumed to be small, then for
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Qy,=(0,0), the above expression can be expanded:

(k) =4t.9° (B7)
For Qy=(, ), we have
FK) = 2.2 [1 = (= 1)0*0r cos(q - 1g)].  (BS)

0
Foxtroy, can take only the values of O and 2. Thus,
(=1)"o*toy=1 for all ry’s. In this way, if we expand around
(7, 7), we have again

f(k) = 4tholeq2-

It is obvious that for any other k’s, the oscillator strength
f(K) cannot vanish. So, the upper bound to the excitation
energy for the holes is

(B9)

(B10)

b. Dimer density excitations

In the same way as before, we may calculate the numera-
tor for the case where we use the dimer density operator U‘é
instead of the hole density. Now, the operator does not com-
mute with both the dimer-flip term and the hole-hopping
terms.

In the case of the dimer-flip term, the commutator will
give the following contribution!® (the dimer-density opera-
tor is taken to be at the &=x direction):

fdimer»ﬂip(k) =81 2 [1 + COS(k : I‘O)],

r=ty

(B11)

where ry==+y for the case of a horizontal dimer. This term
comes from the original quantum dimer model. As it was
pointed out in Ref. 86, it vanishes quadratically at Q,
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=(m,m) and Q,=(0, ). In particular, at Qy=(7, ), with k
=Q+q, it vanishes as

fdimer—ﬂip(q) = Stqz' (B 1 2)

In the case of hole-hopping terms which mix horizontal
and vertical dimers ry=-ry/2=(x£+y)/2 (where r, denotes
the displacement vector for the hole in the considered move),
we have

[- fholeﬁgle(R»ro), O'g(k)]

—_ thole/zﬁ))le(R’rO) (e—ik~(R+rO/2) _ e—ik.R) , (B 13)
[O-g(_ k)’[_ tholeljﬁlo)le(R’rO)’ Ug(k)]]
=2t TR r)[ 1 — cos(k - 1¢/2)],  (B14)

r”)} (B15)

2. Fixed-hole fugacity model

k
Fhote((K) = 2th0192 [ 1- cos(

o

Let us follow the same strategy as before (ro=x,y):

[~ Thoie Z2)e (R, 1), 0" (K)]

ole

~ ) . o
= thole,]f]o)]e(R, I'O)(e kR L~k (R+r0)),

(B16)

where ’Zﬁ)le denotes the resonance part of the Hamiltonian in
Eq. (2.8). We also have
[0 (= K).[= Trre TGl (Roxo). o ()]
= 2o i (Rirg)[1 +cos(k - 1)) (B17)

Finally, after adding the contribution of the Hermitian con-
jugate part of the Hamiltonian, we have

fhole(2)(k) = 4tpairing[2 + COS(kx) + COS(ky)] . (B 1 8)
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