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Classical critical behavior of spin models with long-range interactions
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We present the results of extensive Monte Carlo simulations of Ising models with algebraically decaying
ferromagnetic interactions in the regime where classical critical behavior is expected for these systems. We
corroborate the values for the exponents predicted by renormalization theory for systems in one, two, and three
dimensions and accurately observe the predicted logarithmic corrections at the upper critical dimension. We
give both theoretical and numerical evidence that above the upper critical dimension the decay of the critical
spin-spin correlation function in finite systems consists of two different regimes. For one-dimensional systems
our estimates for the critical couplings are more than two orders of magnitude more accurate than existing
estimates. In two and three dimensions we are unaware of any other results for the critical couplings.
[S0163-18297)05638-3

[. INTRODUCTION decay sulfficiently slowly. In the borderlingnverse-squane
case, the 1D model displays a remarkable behavior: At the
The critical behavior of Ising models with long-range in- critical temperature the order parameter exhibits a finite
teractions has attracted much attention during the last thrgemp (see Sec. )| but the free energy has an essential sin-
decades. For the one-dimensional case, some analytical rgularity such that all thermal properties are smooth. In this
sults have been obtainéd!'as well as a number of numeri- sense, the phase transition can be regarded as the one-
cal results. The numerical results apply to both inversedimensional analog of a Kosterlitz-Thouless transiftoff,
square interaction$™*° and general algebraically decaying although the jump in the magnetization is not present there,
interactionst®%” The work by Anderson, Yuval, and as follows from the Mermin-Wagner theoréfhJust agd=2
Hamanr?®-3! which greatly stimulated the interest in spin is the lower critical dimension for the two-dimensionayY
chains with long-range interactions, deserves special memnodel with short-range interactions=1 is a critical decay
tion. They also developed a renormalizationlike approach teate in a one-dimensional system with interactions decaying
the one-dimensiondllD) inverse-square modé&l:3! Further asr~(1*9) see Ref. 32. With respect to higher-dimensional
renormalization-group studies of this particular case are presystems, we note that the decay rate of van der Waals forces
sented in Refs. 12 and 32-34. A major contribution wasn realistic three-dimensional systems is only slightly faster
made by Fisher, Ma, and Nickeland Sak’® who obtained than at the boundary between short-rarftgng-like) and
renormalization predictions for the critical exponents oflong-range critical behavior. The question of criticality in
models of general dimensionalitg<4 with algebraically ionic systems, where thécreenef Coulomb interactions
decaying interactiongobtained independently by Suzuét  might lead to effectively algebraically decaying interactions,
al.®). Other works concerning>1 are two conjectures on, appears still open to debat&>°It has also been claimed that
respectively, the boundary between long-range and shorexponents in the long-range universality class have been ob-
range behavior and the boundary between clasg¢inean-  served experimentally in a ferromagnetic phase transition.
field) and nonclassical behavior, both by Stélka (refuted Recently, it has been derived that critical fluctuations may
conjecture by Griffiths? a rigorous confirmation of the up- give rise to long-range Casimir forcésecaying much more
per critical dimension by Aizenman and Femdez® and a  slowly than van der Waals interactiorisetween uncharged
variational approach to the Ising model with long-rangeparticles immersed in a critical fluf. Furthermore, it was
interactions'® Furthermore, Monte Carlo simulations have shown by Anderson and Yud?° that the Kondo problem
been carried out for one particular choice of the spin-spircorresponds to a one-dimensional Ising model with a combi-
interaction in a two-dimensional mod®.However, to our nation of inverse-square and nearest-neighbor interactions.
knowledge, neither any further verifications of the renormal-Yet another application follows from Ref. 22, where it was
ization predictions nor any other results are available forshown that random exchangg&évy-flight) processes can
higher-dimensional d>1) models. To conclude this sum- generate effective interactions which decay algebraically.
mary, we mention that the one-dimensiorptate Potts Hence, the universal critical properties of the nonequilibrium
model with long-range interactions has been studiedsteady state of these systems are those of the long-range
analytically®** numerically}>**and in a mean-field approxi- equilibrium Ising models studied in this paper. Finally, the
mation on the Bethe lattic¥. realization that the upper critical dimension can be varied by
Why are these models interesting? In the first place fromuning the decay rate of the interaction led to a special ap-
a fundamental point of view: They enable us to study theplication of these models in Ref. 53. Here, they were used to
influence of the interaction range on the critical behavior.analyze a long-standing controversy on the universality of
For example, in one-dimensional systems long-range order ithe renormalized coupling constant above the upper critical
only possible in the presence of spin—spin interactions whicldimension.
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In this article, we present accurate numerical results fodoes not diverge in the limX— oo, For algebraically decay-
Ising systems with algebraically decaying interactions ining interactions, this implies the absence of a phase tran-
one, two, and three dimensions. Until now, the long-rangesition for a>2. Shortly later, Dysoh proved the exis-

character of the spin-spin interactions has been the maignce of a phase transition if the sumsN_,J(n) and
bottleneck for the examination of these systems by means cﬁ,’}'zl(lnlnn)[nSJ(n)]*l both converge, for positive and

numerical methodgand, in fact, also for their analytical So- 1,qngtonically decreasing(n). In particular, a phase transi-
lution). All previously published numerical results therefore tion occurs ford(n)en~¢ with 1< a<2. This partly cor-
rely on various extrapolations based on data for small sys;oporated the conjecture of Kac and Thomp&dmiz., that

tems. However, the development of a more powerful Monty,q e ig 4 phase transition forla<2. Furthermore, Dyson
Carlo algorithm* enabled us to efficiently simulate these was (as were—much later—also Rogers and Thompson

&ble to replace Ruelle’s condition with a stronger one, which
however still left the case=2 undecided. This also holds
for an even more stringent criterion by Thouléssho gen-
eralized the argument of Landau and LifsFitfor the ab-

spectives(i) verification of the renormalization predictions
for the critical exponents(ii) accurate observation of loga-
rithmic corrections at the upper critical dimensidiii;) first

estimates of the C”t'c"’.‘l temperatures of two-. and Fhree'sence of a phase transition in an Ising chain with short-range
dimensional systems with long-range interactiois) veri-

ficati ¢ iously obtained estimat ¢ the critical t interactions. However, Thouless argued on entropic grounds
ication of previously oblained estimates of the criical tem-y, o4 5 phase transition exists far=2, the magnetization

peratures of one-dlmenS|onaI systems, V\.'h'Ch In addltlor?‘nust have aliscontinuityat the transition point. This was
implies a check on the various extrapolapon methods tha|Iater dubbed the “Thouless effect” by Dyson, who proved it
have pgen developeds) ve'r|f|ca.t|'on (.)f predicted bounds ON o occur in the closely related hierarchical motfeSimon
the critical temperaturegyi) verification of a conjecture on and Sokal made Thouless' argument partially rigor%bsu

the behavior of the critical temperature as a function of thelater Aizenmaret al® showed that, although a discontinuity
decay parameter. Another problem one encounters in thﬁ\1 the order parametas indeed p;esenilf there is a phase

simulation; is the large parameter space: The_simulations fchansition, his argument doewt account for this. Namely,

a set of different temperatures and system sizes have 10 B, jass had assumed that the spin-spin correlation function
repeated for a range of valqes of the deqay parameter and f?£03r>_<50><5r> vanishes in the limir —o, whereas actu-
d=123. The t_otal computing time ded|cat¢d to the result lly the critical exponenty is equal to 1 in this case. Mean-
presented in this paper amounts to approximately two CP hile, Frahlich and Spencérhad been able to rigorously

years on a modern workstation. Part of the numerical resultgrove theexistenceof a phase transition in the borderline

pRrefse5n3ted in this work have been reported in concise form illase ang thus to corroborate the Kac-Thompson conjecture
el. 03 for «=2 as well. Another interesting point is the rigorous
proof for the existence of an intermediate ordered phase in

The outline of this paper is as follows. In Sec. Il, we sum
up the known rigorous results for the Ising chain with Iong'the one-dimensional model with inverse-square interactions,
here the two-point correlation function exhibits power-law

range interactions. In Sec. Ill, we review the renormalizatior\N
scenario of these models and derive the finite-size scahngecay with an exponent that varies continuously in a finite

behavipr of several quantities. This includes_ _the CprreCti_on%mperature range below the critical temperafdre.
to scaling, both at and above the upper critical dimension.

Our numerical results are presented and analyzed in Sec. IV

and compared with previously obtained results. Finally, we

summarize our conclusions in Sec. V. The Appendix con- lll. FINITE-SIZE ANALYSIS OF THE CRITICAL
tains technical details concerning the application of the long- BEHAVIOR

range Monte Carlo algorithm to the models studied in this Already in a very early stage of the history of theex-

paper. pansion, Fisher, Ma, and Nickel analyzed the critical behav-
ior of d-dimensional systemsd&4) with long-range inter-
Il. RIGOROUS RESULTS FOR THE ONE-DIMENSIONAL actions decaying as ("), with o>0.2 They concluded
CASE that the upper critical dimension is given by= 20, as was

reviously conjectured by Stéfland later rigorously proven
y Aizenman and Fermalez!® For more slowly decaying
interactions, 8o <<d/2, the critical behavior is classical,
H:E Ji—)sis;, (1) whereas the critical exponents assume nonclassical, continu-
i ously varying values fod/2<o<2. For 0>2 they take
their short-range values. Sdkhowever, found that already
Yor o>2— 1 the critical behavior is Isinglike, where,
«n~ % To ensure that the energy of the system does nogenotes the' expongm in the_ corresponding model with
short-range interactions. In this article we concentrate on the

diverge, it is required tha&>1. In 1968, Ruell&rigorously . . .
: > .7 . classical range, for which we have performed extensive
proved the absence of long-range order in a spin chain withy

ferromagnetic spin-spin coupling€i —j) such that the sum Monte Carlo simulations of spin models th=1,2,3. The
g pin-sp P J nonclassical range will be the subject of a future artitle.

N We briefly outline the renormalization scenario for these
2 nJ(n) 2) models, in order to derive the finite-size scaling relations
n=1 required to analyze the numerical data. We start from the

For the one-dimensional case, the Hamiltonian is given b)g

where the sum runs over all spin pairs. We are particularl
interested in algebraically decaying interactions, iXn)
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following Landau-Ginzburg-Wilson Hamiltonian in momen- and the last term is the so-called shift of the critical tempera-
tum space, ture. The factord1+a(n+8)u(e®'—1)/e]"* in Egs. (5)
and (6) are higher-order corrections in Under successive
1 _ o renormalization transformations) approaches the value
H(d’k)/kBT:E; (JoK7+ ]2k +T0) pup u*=0 and the Gaussian fixed point (0,0) is thus indeed
stable. The pertinent renormalization exponents we.o,
u yn=(d+0)/2, andy,=20—d.
+mk2 kE kE i, P, Puy®—k,—ky—ks At £=0, the Gaussian fixed point becomes marginally
v s stable. Solving Eq(4b) leads to

N
~h \gm_o. 3 -

()= ————,
The j k7 term arises from the Fourier transform of the in- " 1+a(n+8)ul
teractions decaying as (4" ). Thej,k? term normally rep-
resenting the short-range interactions is included because
will appear anyway in the renormalization process and will
compete with the long-range terfiUnder a renormalization
transformation with a rescaling factbr=¢€', the termj ,k” is _ _
transformed intq k', with k' =kb. To keep the coefficient ro(N=[ro+ac(n+2)u/(d/2)]
of the k” term fixed, we rescale the fieldp, to

)

where the superscript “uc” indicates that we are operating at
the upper critical dimension. This solution can be used to
solve, again to leading order in, Eq. (43, yielding

1 (n+2)/(n+8)
b =b~72¢y. Thus, the coefficient of th&? term de- % v _
creases ab” 2 and the coefficient of the* term changes 1+a(n+8)ul
proportional to b2’ 9. Hence, the Gaussian fixed point _
dominates the renormalization flow fer<d/2, which is the _ac(n+2)u/(d/2) ®
situation studied in this paper. 1+a(n+8)ul
For the sake of generality we treat here the case of an _
n-component order parameter wid(n) symmetry. The Of, in terms of the rescaling factdr,
renormalization equations are then given by
ro=Lro+ac(n+2)u/(d/2)]
dr
—2=grota(n+2)u(c—ry), (48 1 (n+2)/(n+8)
dl < b __
1+a(n+8)ulnb
du -
a:su_a(n_’_8)uZ, (4b) _aC(n+2)U/(d/2) (9)

1+a(n+8)ulnb’
where (1+2) and f+8) are the usual factors arising from
the tensorial structure of the interaction part of the Hamil-
tonian ande =20 —d. These equations are not complete to
second order, because t%u?) term is missing in Eq(4a).

We first consider the case<0. The solution of the sec-
ond equation is given by

Since o is fixed atd/2 the factord/2 in the last term is
identical to the corresponding factad { o) in Eq. (6). Fur-
ther comparison of Eq96) and (8) shows that above the
upper critical dimension the leading shift of the critical tem-
perature is proportional tb®, whereas this factor vanishes at
the upper critical dimension itself and the factef'C- 1)/e
in the second-order term turns into alterm, yielding a
1 logarithmic shift of the form 1/Inb+B).
1+u_[a(n+8)/s](e3'—1)' (5) From the solutions of the renormalization equations we
can derive the scaling behavior of the free energy and of
whereu denotes the value af at| =0. This yields, to lead- (combinations dfits derivatives. For the case<0 the free-
ing order inu, the following solution for the first equation: energy densityf scales, to leading order, as

u(h)=ue

ro()=[ro+ac(n+2)u/(d—a)] f(t,h,u,1L)=b~ 9 (bY{t+ aub¥i~¥t],b¥nh,bYiu,b/L) -i—(:lg-;é)
1 (n+2)/(n+8) _
x v _ where o= —ac(n+2)/(d—o) and we have included a
1+[a(n+8)/e]u(e®' —1) finite-size fieldL . g denotes the analytic part of the trans-

formation. We abbreviate the first term on the right-hand
side asb™9f(t’,h’,u’,b/L). However, we must take into
account the fact that, foF<T,, the free energy is singular
L atu=0. This makes a so-calleddangerousrrelevant vari-

with r g=ry(I=0). The first factor between square bracketsable; see, e.g., Ref. 59. As discussed in Ref. 53, the correct
is proportional to the reduced temperature(T—T,.)/T. finite-size scaling properties are obtained by settirglL

_ac(n+ 2)uef/(d— o)
1+[a(n+8)/e]u(e’'—1)’

(6)
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and making the substitutios’ = ¢/u’*. This leads to a At the upper critical dimension itself, i.e., at=0, the
new universal functionf , with free-energy density scales as
f(t',h",u’,)+g="T(t,h), (12)

b%:
(1+Z’u|nb)(”+2)/(”+8)

1
~ ~ —_ph—d
where't =t’/u’Y2 andh=h’'/u’¥4 The analytic part of the f(”‘*“’[) =b~"f
transformation also contributes to the singular dependence of
the free energy on (see, e.g., Ref. 60, Chap. VI, Seqg: 3

Despite the regularity of this term in each single renormal- ~ u
ization step, the infinite number of steps still Ieadito the X|t+ab t(lJrEmmJ)e/(nm) '
buildup of a singularity. This contribution, denoted by is
absorbed inf as well. Settind=L and combining Eqg10) b
and(11) yields byhh,’yL,_ +g (139
1+ Bulnb 'L
f| t,h,u L =L"9F Lyt’yi’zi[t+~uLVi’yl]
L 1 1 L ul/2 a 1
LYt 1
h =L79F = (n+2)/(n+8)—1/2 . 1/2
|_y.ryi/4Wl (129 (1+ BulnL) u
X| t+al ™Vt !
o — ’
| ~ g D (1+ BulnL)8(n*+8)
=L °f LtuT/z[t‘f'aUL' t,L hm. A
(12b Lyhm[l+'/§ulnL]1’4) , (13b
u

Here, we have introduced the exponewfs=y,—y;/2=d/2

and y} =y, —yi/4=3d/4. The corresponding critical expo- _

nents indeed assume their fixed, classical values;0, whereg=a(n+8) and we have sdi=L in the last line.u
B=1/2,y=1, 6=3. The exponeny is singled out here as a is now a marginal variable and although we again have to
special case; even without taking into account the modificaperform the substitutiop— ¢’ (the Gaussian fixed point is
tion of y, andy,, due to the dangerous irrelevant variable onemarginally stablg the exponentg, andyy, coincide withy;
obtains the classical valug=1. Since the correlation length andy}; , respectively, becausg vanishes. Thus, the scaling
exponentr=1/y, (it is not affected by the singular depen- relations(12b) and(13b) differ to leading order only in the
dence of the free energy ar), we see that hyperscaling is |ogarithmic factors arising in the arguments of

violated, which is a well-known result for systems above As usual, the finite-size scaling relations are now found
their upper critical dimensioff. The rescaling of the pair- py taking derivatives of the free-energy density with respect
correlation  function g(r) (decaying proportional to tg the appropriate scaling fields. In the Monte Carlo simula-
Lr?=2*7) relates the exponeny to the rescaling factor of tjons we have sampled the second and the fourth moment of
the field, yieldingn=2—o. Note that this contrasts with the the magnetization density, the dimensionless amplitude ratio
short-range caseo(=2), where 7 assumes its mean-field Q=(m?)%/(m* (which is directly related to the Binder
value for all dimensionalitiesi=4. This implies that direct cumulant?), and the spin-spin correlation function over half
experimental measurement of eitheior » offers a way to  the system sizéfor even system sizeésThe second moment
discern whether the interactions in a system are mean-fieltf the magnetization density i@part from a volume factpr
like (v=1/2, n=0) or have the form of a slowly decaying equal to the second derivative of the free-energy density with
power law.Belowthe upper critical dimension, however, the respect tch,

finite-size scaling behavior of the spin-spin correlation func-

tion is (apart from a volume factpridentical to that of the

magnetic susceptibility. This relation yields a contradiction 52f .

above the upper critical dimension, singedepends on the <m2>:|_—dﬁ(t,h,u,1/L):|_2yh—Zdu—lfz

scaled combinatiotLY: , instead ofLY:. Indeed, the suscep-

tibility diverges ast™” and the finite-size behavior of is ; h
thus y, =L =L%2 corresponding tog, <L ~%2. On the X T LY — L m), (14
other hand, if one assumes that the finite-size behavior of the u u

correlation function is identical to its large-distance behav-

ior, one expects thag <L~ (@72t 7= ~(d=9)_ QOnly at the *2) L

upper critical dimensiond,= 20, these two predictions co- whgref stands for the S?CO”d_E’e”Y?“Ve biwith respect
incide. We will return to this point at the end of this section. t0 its second argument arte=t+aul¥i™t. At =0, loga-
Furthermore, we will examine the behavior of the spin-spinrithmic factors do arise not only in the argumentsféf), but
correlation function in Sec. IV. also in the prefactor,
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= 1/2 IV. NUMERICAL RESULTS AND COMPARISON
) 1+ BulnL
(m >=|_2Vh*2d — WITH EARLIER RESULTS
A. Simulations
y . . .
<T@ L™ i We have carried out Monte Carlo simulations for systems
(1+ BulnL)(n+2/(n+8)=1/2 172 described by the Hamiltonian
- u

X[t Al e, HikgT==2 J(ri—rj)ss;, (17)

(1+ BulnL) (ij)

h where the sum runs over all spin pairs and periodic bound-
LYh_[1+:éu|n|_]1/4). (15  aries were employed. The precise form of {heng-range
ul/ spin-spin interaction)(r) as used in the simulations was
chosen dependent on the dimensionality. &erl we have
followed the conventional choicé(r)=K/r4*° (with dis-
For the fourth magnetization moment similar expressiongrete values forr), as this allows us to comparal our
hold and in the amplitude ratiQ all prefactors divide out, results(including nonuniversal quantitiego previous esti-
both for e<0 ande=0. Thus we find that the ratiQ is  mates. However, as explained in Ref. 54 and the Appendix,
given by a universal functiobﬁ, this discrete form requires the construction of a lookup table,
which becomes inefficient for higher dimensionalities. For
d=2 we have thus applied an interaction which is the inte-
gral of a continuously decaying function,

~ x
QL(T>=Q( L —

u

+QqLd Dh+..., (16)

y

ry+1/2 ry+ 1/2
J(|r|):Kf dxf dy(X2+y2)7(d+a)/2,
rx—1/2 ry—1/2
(18)

X
where we have omitted tHedependence d®, since we are ) )
only interested in the case=0. The additional term propor- Wherer=(ry,ry). In d=3 the corresponding volume inte-
tional toq; arises from thé dependence of the analytic part gral was used fod|r|. This modification of the interaction

of the free enerdf and the ellipsis stands for higher powers does only change nonuniver_sal quantities IiI§e the cri_ti_cal
temperature, but should not influence the universal critical

of L4~ (faster-decaying termsAt £ =0, t must be re- ,onerties like the critical exponents and dimensionless am-
placed by the first argument within square brackets in Edpjityde ratios, since the difference between the continuous
(13b), multiplied by the factor (# BulnL)¥2-(1+2/("*8)  3nd the discrete interaction consists of faster decaying terms
Finally, we may derive the finite-size scaling behavior of thethat are irrelevant according to renormalization theory. De-
spin-spin correlation functiorg(r) by differentiating the tails concerning the simulations can be found in the Appen-
free-energy density to twdocal magnetic fields, which dix.

Coup|e to the Spins at positior& andr, respecti\/e|y, and The foIIowing system sizes have been examined: chains
assuming that the finite-size behavior is identical to the Of length 16<L<150 000, square systems of linear size
dependence dj. If we do not take into account the danger- 4<L=240, and cubic systems of linear size<#<64. At

ous irrelevant variable mechanism, we findy, the upper critical dimension simulations for even larger sys-
L 2¥n~20= | ~(d=9) jyst as we found before from=2—¢.  €Ms have been carried out in order to obtain accurate results

However, replacing;, by yi yieldsg, <L 92, in agreement from the analysed: =300 000 ind=1 andL=400 ind=2.

- : . .(l.e., in terms of numbers of particles the largest system size
with the L dependence of the magnetic susceptibility. ThIS( I . - -
clarifies the difference between the two predictions: At shorfO d=2 is considerably smaller than far=1 andd=3.)

distanceglarge wave vectojsthe j k”é. b term will be For the simulations we used a new cluster algorithm for
the dominant term in the LandaJ-Ginzburg-WiIson Hamil- long-range interactior¥. This algorithm isO(L*?) times

tonian and there is no “dangerous” dependence wn faster than a conventional Metropolis algorithm, wheris

Hence, the finite-size behavior of the spin-spin correlatiorf"€ dynamical critical exponent. For systems displaying
function will be given byL ~4=2*7 Fork=0, the coeffi- mean-field-like critical behavior, we expect an expongft

cient of the? term vanishes and thus thep* term is re- instead ofz and the efficiency gain in our simulations is thus

quired to act as a bound on the magnetization. To account fd?f Fhe ordehr of 18 for the Igr%est SYS‘g’m s(ijzes. Fgﬁr eacl?fdata
this singular dependence an we rescale the field, which point we have generated between®Idnd 4x10° Wo

o . * clusters.
implies thatyy, is replaced by} andg, scales ag ?h 29,

In a finite system, the wave vectors assume discrete values
k=(ny,ny,n,)27/L, and thus it is easily seen that even for
the lowest nonzero wave vectorsk? ¢, ¢ | constitutes the
dominant bounding term on the magnetization. Namely, the The critical couplingK, of these systems have been de-
coefficient of theg* term contains a volume factar 4 [cf.  termined using an analysis of the amplitude rafo The

Eg. (3)] and this term is thu&bove the upper critical dimen- finite-size scaling analysis was based on the Taylor expan-
sion) a higher-order contribution decaying B&”¢. sion of Eq.(16), which for <0 reads

B. Determination of the critical temperatures, the amplitude
ratio Q, and the thermal exponent
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TABLE I. The amplitude ratioQ and the thermal exponegf TABLE Il. The amplitude ratioQ and critical couplings<. for
for systems with long-range interactions in one, two, and three disystems with long-range interactions in one, two, and three dimen-
mensions, for several values of the decay parameter€d/2. sions, for several values of the decay parametero8=d/2. The

The values in the fifth column have been obtained v@ttiixed at ~ thermal exponentsee Table )l was kept fixed at its theoretical
the theoretically predicted valusee text and the last column lists value in all analyses. The estimates Koy in the last column have

the renormalization predictions fgi . been obtained by fixing) at its renormalization prediction. The
numbers between parentheses represent the errors in the last deci-
d o Q A vy RG mal places.
1 01 045668  0507(7)  0507(7) 3 d o Q K, K,
1 0.2  0.455(4) 0.54 (4) 0.504 (12) 3
1 0.25  0.457(3) 0.500 (8) 0.500 (5) i 1 0.1 0.4565(8) 0.0476162(13) 0.0476168(6)
1 0.3 0.454(2) 0.519 (14  0.506 (12) 1 1 0.2 0.4579(7) 0.092234(2) 0.0922314(15)
1 0.4 0.457(3) 0.50 (2) 0.50 (2) 1 1 0.25 0.4579(15 0.114143(4) 0.1141417(19)
1 05  0.462(6) 0.51 (5) 0.49 (2) i 1 03 04567(15 0.136113(4)  0.136110(2)
1 0.4 0.457(3) 0.181151(8) 0.181150(3)
2 02 0457410 101  101(2 11 05 046350  0229157(8)  0.229155(6)
2 0.4 0.455(2) 1.02 (2 1.009 (15) 1
2 0.6 0.450(6) 1.04 (4) 1.008 (17) 1 2 0.2 0.4573(100  0.028533(3) 0.0285324(14)
2 0.8 0.454(6) 1.03 (9) 1.03 (3) 1 2 0.4 0.4565(17) 0.051824(4) 0.0518249(14)
2 1.0 0.450(10) 1.02 (3) 1.03 (2) 1 2 0.6 0.456(4) 0.071364(7) 0.071366(2)
2 0.8 0.458(5) 0.088094(7) 0.088094(2)
3 02 04581(1) 151(3  1513(18 3 2 10 0447(8  0.102556(5)  0.102558(5)
3 0.4  04561(100 1.521(18 1512(15 3
3 06 045303 1.53 (4) 1521 (14 3 3 02 0458490 0.0144361(10) 0.0144354(6)
3 08 045802 1.48 (2) 1487(10) 3 3 04 045698  0.0262927(16) 0.0262929(7)
3 1.0 0.453(10) 1.52 (7) 1.508 (9) 3 3 0.6 0.4581(9) 0.036050(2) 0.0360469(11)
3 1.2 0.447(8) 1.56 (2) 1.519 (10) 3 3 0.8 0.4562(13) 0.044034(2) 0.0440354(10)
3 1.4 0.454(5) 1.48 (3) 1.48 (3) 3 3 1.0 0.4571(14) 0.050515(2) 0.0505152(12)
3 1.5 0.449(8) 1.53 (5) 1.46 (3) 3 3 1.2 0.457(3) 0.055682(3) 0.0556825(14)
3 1.4 0.455(5) 0.059666(2) 0.0596669(11)
3 15 0.449(7) 0.061251(2) 0.061253(2)
Qu(T)=Q+ patL¥ + p t2L 2% +p 3L et ... 4 L4 20
+oo+gglYit- (199 fore we have repeated the same analysis @itfixed at its

theoretical prediction—as appears justified by the values for
The term proportional toa in t yields a contribution Q in Table |—in order to obtain more accurate estimates for
q,LY12=q,L7 %2 and the termgsLYi comes from the de- y; . The results, shown in the fifth column of Table I, are
nominator in Eq.5). The coefficientp; andg; are nonuni- indeed in good agreement with the theoretically expected
versal. In addition to the corrections to scaling in Etf) we  values(last column. Thus, we have kept the thermal expo-
have also included higher powers g@fLYi, which become nent fixed at its theoretical value in the further analysis, just
particularly important whery; is small(i.e., wheno is close  as in Ref. 53. The corresponding results @rand K. are
to d/2), higher powers ofj;L9~2h =q,L 92, and the cross- Shown in Table II. As discussed in Ref. 53, over the full
range ofo andd the Monte Carlo results fo show good
agreement with the renormalization prediction, thus confirm-
a1?19 the universality of this quantity above the upper critical

en. . . . . .
added for most values af. First, we have only kept fixed ?g?,?g s:or:).f InRg;J mgg “S;)nmvglt%itsgr ersgrrnn :rtlfss gﬁ;int?:dorm

H ; *
the exponents in the correction terrysandyy, . The corre- Q(d=3,0=0.4) one decimal place too much was quoted,

sponding estimates fo@ andy; are shown in the third 4qesting a too high accuracy. Furthermore we note that the
and fourth column of Table I. One observes that the Mont&,awest result foK (d=3,0=1.2) deviates two standard de-
Carlo results for bottQ andy; are in quite good agree- yiations from the earlier estimate and that the accuracy of
ment with the renormalization predictidis® Q=87%  Q(d=3,0=1.4) is less than in Ref. 53. The latter difference
['*(1/4)=0.45694 ... andy; =d/2. However, the uncer- s due to the fact that we have taken into account more cor-
tainties in the estimates increase considerably with increasections to scaling.

ing o, because the leading irrelevant exponent becomes very The universality ofQ is illustrated graphically in Figs.
small. An exception is the relatively large uncertainty in 1(a)—1(c), where the increasing importance of corrections to
yi (d=1,0=0.2), which originates from the fact that the scaling upon approaching the upper critical dimension
Monte Carlo data were taken in a rather narrow temperaturelearly follows from the size of the error bars. At the upper
region around the critical point. Furthermore, an accurateritical dimension itself §=0) this culminates in the ap-
simultaneous determination & andy; is very difficult, pearance of logarithmic corrections, where the finite-size
because of the correlation between the two quantities. Therecaling form ofQ, is given by

term proportional td.¥ ™.
All analyses were carried out on the same data set
used in Ref. 53, to which several data points have be
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FIG. 1. The amplitude rati@ as a function of the decay param-
etero in (@) d=1, (b) d=2, and(c) d=3 dimensions. The solid
line marks the renormalization prediction.
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FIG. 2. The amplitude rati® in a one-dimensional system as a
function of the system size for various values ofr. (a) illustrates
the increase of the finite-size corrections when the upper critical
dimension ¢=d/2) is approached(b) emphasizes the difference
between finite-size correctiorabovethe upper critical dimension
(power-law and at the upper critical dimension itséibgarithmig.

series is reflected in the uncertainty in the resulting estimates
for Q at the upper critical dimension. To illustrate the depen-
dence of the finite-size corrections enmore directly, Fig.
2(a) displays(for various values ofr) the finite-size scaling
functions as they follow from a least-squares fit of the data
for d=1 to Egs.(19) and (20), respectively. Although one
clearly observes the increase of finite-size corrections when
o—d/2, the true nature of the logarithmic corrections in Eq.
(20) cannot be appreciated from this graph. To emphasize
the difference betwees=0 and <0, we therefore also
show [Fig. 2(b)] the same plot for the enormous range
0<L<10' Now it is evident how strongly the case=0
differs even from a case with strong power-law corrections,
such ass=0.4 (¢=—0.2).

We have used the universality @f to considerably nar-
row the error margins o by fixing Q at its theoretical
value in the least-squares fit. The corresponding couplings
are shown in Table Il as well. The relative accuracy of the
critical couplings lies between 1&107° and 5.0<10 °.

For the one-dimensional case, we can compare these results
to earlier estimates, see Table Ill. One notes that the newest
estimates are more than two orders of magnitude more accu-

The ellipses denote terms containing higher powers ofate than previous estimates. The first estinfitere ob-
L9~ and 1/I.. The extremely slow convergence of this tained by carrying out exact calculations for chains of 1 to 20
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TABLE lll. Comparison between our best estimates of the critical couplifigior the one-dimensional
system and earlier estimates.

o This work Ref. 18 Ref. 19 Ref. 20 Ref. 42 Ref. 21 Ref. 27 Ref. 43
0.1 0.0476168(6) 0.0478468 0.050%5) 0.04635 0.0477712) 0.0469 0.0481
0.2 0.0922314(15 0.0926(5) 0.0933992 0.09239) 0.09155 0.09283) 0.0898

0.25 0.114141719) 0.1106

0.3 0.136110(2) 0.1370(7) 0.138478 0.136214) 0.1359 0.137510) 0.1314 0.144
0.4 0.181150(3) 0.1825(10) 0.184081 0.181518) 0.1813 0.183(2) 0.1750
0.5 0.229155(6) 0.2307 (14) 0.230821 0.2302) 0.2295 0.231(4) 0.2251 0.250

spins and subsequently extrapolating these results using Pastingent criterion. Furthermore, the application of Vigfus-
approximants. Note that the estimates Torin Ref. 18 are  son’s metho® has yielded even closer lower bounds for
expressed in units of the inverse of the Riemann zeta funce=0.1 ando=0.2.

tion and thus must be multiplied b§(1+ o). All couplings Apart from these approximations, one may also use mean-
are somewhat too high, but still in fair agreement with ourfield theory to make some predictions concerning the critical
estimates. The results of Dordrhave no error bars. Still, coupling in the limito| 0. It was shown by Brankd¥ that in

his results concern us, since he carries out a cluster approadhis limit the d-dimensional system with an interaction po-
obtaining critical couplings which start at the mean-fieldtential «o/r9*” is equivalent to the Husimi-Temperley
value for cluster size zero and increase monotonically withmean spherical model. More specifically, it was conjectured
increasing cluster size, as they should, since mean-fieldy Canna¥ that for the one-dimensional case
theory yields a lower bound on the critical coupling®e lim,_ (K.~ a/2, which is also the first term in the Taylor
below). Thus, he argues that the true couplings will lie expansion of Eq(21). Indeed, in mean-field theory one has
higherthan his best estimatdebtained for cluster size 10). zKM =1, wherez is the coordination number. Far=1 this
However, all these best estimates lie alrealpveour esti-  corresponds to the requirement

mates, which seems to indicate a problem inherent in his

approach. Reference 20 presents results of an approximation *
coined “finite-range scaling” with error margins of 1%. For ZKQAF(U) Z
o=0.1 the error is considerably underestimated, but for the =t
other values of the decay parameter the couplings agree witjhere /(x) denotes the Riemann zeta function. The expan-
our results well within the quoted errors. The same techniquejon of ¢(x) aroundx=1 vyields the conjectured relation
was applied in Ref. 42, but now the un%ertalnty in the coutim,, KM = o/2. Figure 3a) shows the critical coupling as a
plings was estimated to be less than 10%, for smad few  f,nction of the decay parameter along with KCMF(U) and

times larger. This is clearly a too conservative estimate, ag,qo asymptotic behavior far| 0. One observes that. (o)

the difference with our results is only a few percent forindeed approaches (o) when o approaches zercc> Fur-

o=0.1 and considerably less for larget In Ref. 21, the tthermore KMF( o) iscsmaller tharK (o) for all &, as one
n ! '

coherent-anomaly method was used to obtain two differe d :
estimates without error margins. We have quoted the avera gpects from the fact that ’T‘e?”'f'e'd .themyeresnmates
y YFe critical temperature. It is interesting to note that for

of the two results, with their difference as a crude measure ME__ .

for the uncertainty. The agreement is quite good, although aﬁ;_ 0'1.(K° MO'.0472.39)Rthf'5 Iz\éver Zound_?lﬁadm eXSUdeS
results lie systematically above our values. Yet another apt— € gstlmaN'EFes given In REeIs. 4z an _@" able I1). Re- i
proach has been formulated in Ref. 27, where the Onsag&#@CcingzKc™ by the integrated interaction, we can generalize
reaction-field theory was applied to obtain a general expressUch estimates to higher dimensionalities,

sion for the critical coupling,

1
r.]1+0'

=2kM(o)t(1+0)=1, (22

dr2 o 1
K¥F (o) 5 dr——=1. (23
. rl= Mg r
K (o) = ra+ 0')SII"I(7TO'/2)‘ (21) (2>

(1_ 0_) 71_l+a’
TABLE IV. Comparison of our best estimates of the critical

Unfortunately, no estimate for the accuracy of this expres-COUp"ngS for the one-dimensional system with some lower and up-

sion is given, but it seems to generally underestimate th8%' bounds.
critical coupling by a few percent. Finally, some estimateso_
have recently been obtained by means of the real-space
renormalization-group techniqd. 0.1 0.0476168(6) =0.04726 <0.09456 =0.04753
In addition, Monroe has calculated various bounds on th®.2 0.0922314(15) =0.08947 <=0.1792 =0.09162
critical couplings as shown in Table IV. The Bethe lattice 0.3 0.136110(2) =0.1273 <0.2558
approximatioﬁ4 was used to obtain both upper and lower .4 0.181150(3) >0.1615 <0.3258
bounds, to which our results indeed conform, although ity 5 0.229155(6) >0.1923 <0.3903 _
must be said that the upper bounds do not constitute a very

This work Ref. 24 Ref. 24 Ref. 25
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FIG. 3. The critical coupling, as a function of the decay
parameter for (a) d=1, (b) d=2, and(c) d=3. Also shown is the
asymptotic behavior foo-| 0 as predicted by mean-field theory and
mean-field values foK . over the full range of &2 o<d/2 (for d=2
andd=3 only approximately.

For d>1, the lower distance cutofh, of the integral, i.e.,
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omg. (24
An expansion in terms of- shows that the first term is in-
dependent ofm,. For d=1,2,3 one finds, respectively,
KMF~ o012, KMF~ o/ (27r), K¥F~ o/ (47r). Figures 8b) and
3(c) showK (o) for d=2 andd=3, the corresponding as-
ymptotes and Eq24) with my=1/2.

The deviation ofK (o) from K¥ (o) is also expressed
by the last term in the renormalization expressién How-
ever, in order to assess thedependence of this term one has
to calculate ther dependence of the coefficiendssand c,
arising from the integrals over the-dependent propagators.

C. Determination of critical exponents

1. Magnetic susceptibility

The magnetic susceptibility is directly proportional to
the average square magnetization density,

x=L{m?), (25)

and thus we can use E@l4) to analyze the finite-size data.
Expanding this equation ihandu we obtain fore <0

Xx=L20 " Yag+a, LY +a t2L 2 + -« 4+ by LYi+ - - -),

(26)
and fore=0
v,
=L InL| ag+a;LY(InL)Y8| t+ v
X otagL( (InL)28
2
LYt b
2y 13 Rt T
+a,L2(InL) t+v(|nL)2/3> o .
(27)

The analytic part of the free energy might give rise to an
additional constant, but this could not be observed in our
simulations, because it is dominated by the corrections to
scaling. In Table V we list the results of an analysis of the
numerical data. For all examined systems we have deter-
mined the exponeny; and the critical coupling. The esti-
mates for the latter are in good agreement with those ob-
tained from the analysis of the universal amplitude r&io
Furthermore, the exponents agree nicely, for all dimension-
alities, with the renormalization predictiorf = 3d/4. Just as
before, the uncertainties increase with increasinglthough

the analyses at the upper critical dimension itself seem to
yield better results than those just above it. Compare in par-
ticular the results forr=1.4 (yj=—0.2) ando=1.5. The
logarithmic prefactor in Eq(27) can be clearly observed in
the sense that the quality of the least-squares fit decreases

the minimal interaction distance with the nearest neighborsgonsiderably when this factor is omitted. To reduce the un-
does not have an isotropic value, since there is no interactiogertainty in the exponents we have repeated the analysis with
within an elementargubearound the origin. Nevertheless, a K. fixed at the best values in Table I, i.e., those obtained

constant valueng, e.g.,my=1/2, is a good approximation.
Furthermore, ford=1 the integral is only a first-order ap-
proximation of Eq.(22), but ford=2 andd=3 it precisely
corresponds to the interactid8) and its generalization to
d=3, respectively. As a first estimate one thus obtains

with fixed Q. The corresponding estimates pf are also
shown in Table V and are indeed in good agreement with the
renormalization predictions.

Now we can calculate the critical exponents and compare
them to earlier estimates for=1. We do this for the corre-
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TABLE V. Estimates for the critical coupling. and the expo- r andL determines which of the modes applies. In the bulk
nentyy as obtained from the analysis of the magnetic susceptibilityof our simulations we have restrictedin g(r) to r=_L/2.
The values fory;; in the fifth column have been obtained by fixing Since this quantity reflects tHe=0 mode of the correlation
K. at their best estimates from Table II; the error margins do noffynction, we write fore <0 an expression analogous to that
include the uncertainty in these values ®y. for the magnetic susceptibility

a
Py,
(9]

o Ke Yh Yh

g(L/2)=L2h 29[ co+c TLY +c,t2L 2

1 01 0.047616119) 0.7487 (14) 0.7493(6) 2 yi
1 02 0.0922394) 0.752 (2) 0.7504 (100 2 to AL (28)
1 025 0.1141454) 0.7477(15 0.7468(16) 3 and fore=0
1 03 0.13611005) 0.747 (3) 0.7490(17) 3
1 04 0181170100 0.749(5)  0.746 (3) 3 LY
1 05 0.2291536) 0.748(2)  0.7490(8) 3 g(L/2)=L#n24InL| co+ ¢4 L¥(InL) Y t+v(| NG
n
2 0.2 0.028537(5) 1.500 (6) 1.495 (3) % 2
2 04 00518306)  1.498(9)  1.496 (3) 2 oy 13 L%
2 06 00713705  1.497(6) 1498(2) 3 FCLP(INL) T tho (InL) 28
2 0.8 0.08809510)  1.496 (5) 1.495 (3) 2
2 1.0 0.102556(3) 1.495 (4) 1.497 (2) 3 d,; 29
+oit—4...1.

3 0.2 0.01443479) 2.249(2) 2.2504 (8) 2 InL

9
2 8'2 8'8223222 ;’;Zg g ;’;ii g s For values ofr such thatg(r) doesnot correspond to this
3 0.8 0.0440349(17) 2.243 o 2-246 3 ¢ mode of the correlation function, the-dependent exponent
3 1'0 0.050516(3) 2'239 © 2'243 @) B Yh Wi_II appear in Eq.(_28) instead_ ofy} . Furthermqre, _the
3 1'2 0.055679(2) 2'247 11) 2'251 @ 3 logarithmic prefactor in Eq(29) will be absent, as it arises
3 1'4 0.059663 18 2'27 3 2.26 5 3 from the dangerous irrelevant variadlef. Eq. (15)]. The

' ‘ G1g) 227 (3) 26 (2) s results of our analysis are shown in Table VIII. They evi-

3 15 0.061251(2) 2.257 (120  2.249(5) H

dently corroborate that the exponeyjt coincides with that
appearing in the susceptibility. Also the factgnL in Eq.
lation length exponent=1/(yf +Y;/2) and the magnetiza- (29) was clearly visible in the least-squares analysis. The
tion exponentB=(d—y})/y;y . The results are shown in critical couplings agree with the estimates fr@randy and
Tables VI and VII. Since all our estimates fgf andy}y we have again tried to increase the accuracyjirby repeat-
agree with the renormalization values, als@and 8 are in  ing the analysis withK fixed at their best values in Table II.
agreement with the classical critical exponents. Unfortu-The accuracy of the results is somewhat less than of those
nately, the accuracy in both exponents is seriously hampereshtained from the magnetic susceptibility, because we have
by the uncertainty iry; , which has only been determined now only used numerical data for even system sizes. The fact
from the temperature-dependent termQnin particular the  that theL dependence afi(L/2) is determined by th&=0
results forv from Ref. 42 are, for smaltr, in better agree- mode raises the question whether one can also observe the
ment with the theoretica”y predicted values than our eSti'power_|aW decay described by in finite Systems_ To this
mates. Hovv_ever, all previous res_ults, both foand for g3, end, we have samplegi(r) as a function ofr in the one-
deviate seriously from the predicted values whenap-  gimensional model. In order to clearly distinguish the two
proaches 1/2, which is not the case for our values. This cagedictions for the decay @f(r) we have examined a system
probably be attribpted to the fact that corrections to scaling?ar from the upper critical dimension, viz., with=0.1. It
have been taken into account more adequately. turned out to be necessary to sampbey large system sizes

2. Spin-spin correlation function to observe the regime Whegz(r)ocr_(d_"). Figure 4 dis-
n plays the spin-spin correlation function scaled witf? ver-
fsusr/L. The scaling makes the results collapse rfaf the

In Sec. Il two different decay modes for the spin-spi
correlation function were derived. The relative magnitude o

0.5 2.04(8) 2.34 2.33 2.81 2.0 0.5 0.51(2) 0.39 0.408

TABLE VI. The correlation length exponent as a function of TABLE VII. The magnetization exponem as a function ofo

o for the one-dimensional model, together with earlier estimatedor the one-dimensional model, together with earlier estimates and
and the renormalization predictions. the renormalization predictions.
o This work  Ref. 20 Ref. 42  Ref. 43 RG o This work Ref. 18 Ref. 21 RG
0.1 9.3 (6) 9.12 9.9 10.48 10.0 0.1 0.494(8) 0.495 3
0.2 493 4.90 4.95 5.0 0.2 0.495(13 0.5 0.482 3
0.25 4.00(8) 4.0 0.25 0.506(8) 3
0.3 3.27(12 341 3.32 3.90 3... 0.3 0.497 (15) 0.48 0.460 3
0.4 2.50(13 271 2.68 25 0.4 0.51(2) 0.45 0.435 3

1

2
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TABLE VIII. Estimates for the critical couplindk. and the cause this calculation relied on the assumption that
exponenty} as obtained from the analysis of the spin-spin correla—X(L,KC) —x(L—1Ky)~g(L)~ L~ (d=2+7) they called the
tion function. The values foy} in the fifth column have been
obtained by fixingK; at their best estimates from Table II; the error
margins do not include the uncertainty in these valueKfor

corresponding exponenj. The results fory turned out to
assume a constant value approximately equal to 1.50 for

0<o=<0.5. Thus, the identification af with 7 was assumed

d o Ke¢ v yi RG to be invalid in Ref. 35. Now we see thatis in excellent
H * — *
1 01 0.0476193) 0.750(2) 0.7488(9) 3 agreement withy™ =d+2- 2y, =2-d/2.
1 0.2 0.092233(7) 0.749 (3) 0.7513 (16) %
1 0.25 0.11414810) 0.750 (5) 0.747 (2) % V. CONCLUSIONS
3

1 03 01361167 0.753(5)  0.752(3) 3 In this paper we have studied systems with long-range
1 04 018115815  0747(7)  0.750(4) : interactions decaying as (¢*?) in one, two, and three di-
1 05 02291507) 0749(2) 0.7503(10) 2 interaction: ying > WO, ¢ e

mensions in the regime where these interactions exhibit clas-
2 0.2 0.02853%7) 1.499 (9)  1.496 (3) 3 sical critical behavior, i.e., for @o=<d/2. From the renor-
2 04 0.051831(6) 1.505 (6) 1.499 (4) 3 malization equations we have derived the scaling behavior,
2 0.6 0.0713696) 1.507 (4)  1.502 (4) 3 including the corrections to scaling, for various quantities.
2 0.8  0.088091(6) 1.495(7)  1.497 (3) 3 These predictions, in particular the critical exponents and the
2 10 0.1025544)  1.490(6)  1.496 (3) 5 scaling behavior of the amplitude ratign®)?/(m*), have

been verified by accurate Monte Carlo results. At the upper
3 02 0.014434816) 2.256(6) 2.254(4) 1 critical dimension, the logarithmic factors appearing in the
3 04  0.026296(3) 2.257(8) 2.245(5) Z finite-size scaling functions could be accurately observed.
3 06 0.036053(4) 2.262 (100 2.246(4) g The Monte Carlo results have been obtained with a dedicated
3 0.8 0.044035(4) 2.252 (11) 2.250(5) g algorithm. This algorithm is many orders of magnitude faster
3 1.0 0.050511(5) 2.228 (15) 2.249 (9) g (up to the order of 1®for the largest examined systgthan
3 1.2  0.055680(3) 2.253 (14 2.257(9) g a conventional Monte Carlo algorithm for these systems. Our
3 1.4 0.059667(2) 2.22 (4) 2.31 (4) 2 analysis has also yielded estimates for the critical couplings.
3 15 0.061251(5) 2.26 (3) 2.248 (7) 2 Ford=1 these values have an accuracy which is more than

two orders of magnitude better than previous estimates and
could thus serve as a check for half a dozen different ap-
order of the system size. Here, the correlation function levelproximations. Ford=2 and d=3 we have, to our best
off. This is the mean-field like contribution to the correlation knowledge, obtained the first estimates for the critical cou-
function, which dominates in the spatial integral yielding theplings. Finally, we have given both theoretical and numerical
magnetic susceptibility. For smallthe data do not collapse arguments that above the upper critical dimension the decay
at all, which shows thag(r) exhibits different scaling be- of the critical spin-spin correlation function in finite systems
havior in this regime. Indeed, the correlation function decaysonsists of two regimes: One where it decays a¥—2*7
here ag ~ (9= =r 9% and not ag ~92. Note, however, that and one where it is independent of the distance.
this regime is restricted to a small regionrofind can only As an outlook we note that many interesting results may
be observed for very large system sizes. be expectedelowthe upper critical dimension, where nei-

It is interesting to note that already Nagle and Bofhfer ther any rigorous results nor any accurate numerical results
have tried to calculate; in a spin chain with long-range are available. This regime will be the subject of a future
interactions from finite-size data for the susceptibility. Be-investigatiorr®

100 T r T r
APPENDIX: DETAILS OF THE MONTE CARLO

ALGORITHM FOR LONG-RANGE INTERACTIONS

The cluster algorithm applied in this study has been de-
Slope —0.5 scribed for the first time in Ref. 54. A somewhat more elabo-
slope 0.9 - | rate treatment of the mathematical aspects was given in Ref.
65. Although conceptually no new aspects arise in the appli-
cation to algebraically decaying interactions in more than
one dimension, several important practical issues must be
taken care of in actual simulations. It is the purpose of this
. . appendix to discuss these issues and their solutions in some
| , Wolel onoyoy o o more detail. We do not repeat the full cluster algorithm here,
107 107° 1074 1073 1072 107! 05 but only describe how the cluster formation process proceeds
rIL from a given spins; which has already been added to the
cluster(the so-callecturrent spin).
FIG. 4. The spin-spin correlation function versod. in the As explained in Ref. 54, the key element of the algorithm
one-dimensional model witkr=0.1. Results for various system lies in splitting up the so-called bond-activation probability
sizes are shown. For a discussion see the text. p(si.s)) = 55i$j pij = 5sisj[1—exp(—2Jij)] into two parts,

Ld/2

10

i
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namely the Kronecker delta testing whether the spgjrend An alternative for the lookup table exists for interactions
s; are parallel and the “provisional” bond-activation prob- which can be explicitly summed. In those cases, &®)
ability p;;. This enables us to define @mulative bond can be solved fok, yielding an expression for the bond
probability C(k), from which we can read off which bond is distance in terms o€;(k), i.e., in terms of the random num-
the next one to be provisionally activated berg. For the interaction defined in Sec. Il the sum appear-
ing in the right-hand side of EGA3) is (for j=0) the trun-
cated Riemann zeta function,

i
C()=2 P(n) (A1)
n=1 k k 1
with 2 =K g (AS)
P(n)=(1-p)(1=pz) -+ (1=Pn-1)Pn. (A2) " \yhich cannot be expressed in closed form. In more than one

p;=1—exp(-2J) is an abbreviation fopy; , i.e., we define dimension, a lookup table is very impractical and an interac-
the origin at the position of the current spin. When compartion which can be summed explicitly becomes very desir-
ing the expressions to those in Ref. 54 one must take int@ble. Therefore we have taken an isotropic, continuous inter-
account that we now are working with Ising instead of Pottsaction of the formJ=K/r%*?. The interaction with a spin at
couplings.P(n) is the probability that in the first step—1  lattice siten is then given by the integral o over the
bonds are skipped and theh bond is provisionally acti- elementary squarécubg centered around [cf. Eq. (18)]
vated. Now the next bonfthat is provisionally activated is and the cumulative bond probability yields tfret necessar-
determined by a random numbge[0,1): j—1 bonds are ily integer-valued distancek at which the first provisional
skipped ifC(j—1)<g<C(j). The numbelj can be easily bond is placed. To this end, the sum in E43) is replaced
determined frong once we have tabulated the quantigj) by a d-dimensional integral over the coupling As J is

in a lookup table. If thgth bond is placed to a sps) thatis ~ isotropic, only an integral over the radius remains, which
indeed parallel to the current spi thens; is added to the ~runs from the minimal bond distance upkoThus ford=2
cluster(i.e., thejth bond is activated Subsequently we skip Ed. (A3) reduces to
again a number of bonds before another bond at a distance

k>j is provisionally activated. The appropriate cumulative . _2mKil 1
pRrofb%tL)‘)iIity is now given by a generalization of H&\1) (see Cj(k)=1-exp -2 o \jr o (AB)
ef. 59,

and ind=3 the factor 27 is simply replaced by 4. Equat-

k n—1 . .
ing C;(k) to the random numbey we find
cik= 2 | II (1—pm>}pn ‘
n=j+1 | m=j+1 o Yo
K kz[] + P In(1—9) (A7)
=l-exp -2 > J,|. (A3) i . .
n=j+1 Rescaling of the random number is no longer required: The

. . lowest valueg=0, leads to a provisional bond at the same
In principle we need now for each value jonother lookup distance as the previous on&=j. If g=Ci()=1
: J

e o e e o s L] ] h et prisionl bond 45 t i
(A1) and (A3) NameI;/ P q%ty and thusge[Ci(),1) yields no bond at all. Once the
' ' distancek has been obtained,— 1 further random numbers

j 01,02, ... are required to determine thdrection of the

H (1_pi):|cj(k) bond. Ind=2, we set¢p=g,/(27). The coordinates of the
i=1 next provisional bondrelative to the current spirare then
. . (ry,ry)=(kcosp,ksing), which are rounded to the nearest

=C)+1=ChIC;k) (Ad) integtyar coordinates. Finally, the periodic boundary condi-

or C;j(k)=[C(k)—C(j)]/[1-C(j)]. So we can calculate tions are applied to map these coordinates onto a lattice site.
C;(k) directly from C(k). In practice one realizes this by For the next provisional bong,is set equal td (notto the
using the bond distancg of the previous bond that was rounded distangeand a nevk is determined. If no bond has
provisionally activated to rescale tlieew) random number been placed yetj is set to 1/2, the lowest possible bond
gtog e€[C(j),1); g’=C(j)+[1—C(j)]g. Since we con- distance. Hence it is possible to find a /&< V2/2 and an
sider only ferromagnetic interactions, lim.C(j) exists and angle¢ such that the corresponding lattice site is the origin.
is smaller than 1, cf. Eq(A3). Still we can accommodate This does not affect the bond probabilities, but it is of course
only a limited number of bond distances in our lookup tablea “wasted” Monte Carlo step. Fail=3 the process is simi-
and must therefore devise some approximation scheme far, except that we need another random nungeio deter-
handle the tail of the long-range interaction, which is essenmine a second angle 7/2<y=</2, such that sit is dis-
tial for the critical behavior. This issue is addressed belowtributed uniformly; sins=1—2g,. The bond coordinates are
Furthermore, this description only takes into account thegiven by (kcosy cosp,kcosy sing,ksing).

bonds placed in one direction. The actual implementation of This approach can also be applied in the one-dimensional
the algorithm must of course allow for bonds in both direc-case, where the geometrical factor 2n Eq. (A6) must be
tions (assuming thatl=1). replaced by 2, which reflects the fact that bonds can be put to

C(k)=Co(k)=C(j)+
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the left and to the right of the origin. The direction of the

The accuracy of this procedure is further limited by the

bond is then simply determined by another random numbeffinite resolution of random numbers. For example, in our
As has already been mentioned in Ref. 54, this can be usegimulations the original random numbers are integers in the

to cope with the limited siz& of the lookup table. Beyond
the bond distanc# the sum in Eq(A3) is approximated by
an integral. l.e., if the random numbgrlies in the interval
[C(M),C()), the bond distanck is determined from the
one-dimensional version of EGA7), where the lower part of
the integral is replaced by an explicit sum

—1lo

-

+0o

k=|(M+5

2

1 M
Rln(l—g)JrnZl n“")
(AB)

range [0,222—1]. Thus, for bond distance$ such that
C(l)—C(I—1) is of the order 2%, the discreteness of the
random numbers is no longer negligible. b+ 2 andd=3,

the discreteness of the angles also limits the lattice sites that
can be selected for a provisional bond, but this generally
occurs at distances larger thlarOnce the value df has been
determined, with a safe margin, there are various approaches
to this limitation. One may, e.g., draw another random num-
ber to determine the precise bond distance. A simpler ap-
proach is to distribute all bonds beyohdniformly over the

Here, the geometrical factor is absent, as we have opteldttice, in order to prevent that certain lattice sites are never

to treat “left” and ‘“right” separately in our simulations
(no additional random number is required in that ga$be

selected. However, one should take care that such simple
approaches do not essentially modify the critical behavior. If

approximation (A8) effectively introduces a modification | is relatively small, the error introduced by a random distri-
of the spin-spin interaction, which however can be madebution of the bond distances might be larger than the effect

arbitrarily small by increasingV. Note that the offset 1/2

of an interaction which decreases slightly nonmonotonically

in the first term ensures a precise matching of the discretat large distances. Furthermore, in order to preserve the sym-
sum and the integral approximation: the random numbemetry of the lattice, such a uniform distribution of the bonds

g=C(M)=1—exgd —2K=M .n=1+9] yields k=M+1/2

should occur outside a squafeube instead of a circle

which is precisely the lowedt that is rounded to the integer (spher¢ with radiusl.

bond distanceM + 1.
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