
*Corresponding author. Tel.: #49-6131-3923348; fax: #49-6131-3925441.
E-mail address: kurt.binder@uni-mainz.de (K. Binder).

Physics Reports 344 (2001) 179}253

Monte Carlo tests of renormalization-group predictions
for critical phenomena in Ising models

Kurt Binder*, Erik Luijten

Institut fu( r Physik, Johannes-Gutenberg-Universita( t, Staudinger Weg 7, D-55099 Mainz, Germany

Received June 2000; editor: I. Procaccia

Contents

1. Introduction 181
2. Methodological tools 182

2.1. General aspects 182
2.2. The Metropolis algorithms and the

problem of statistical errors 184
2.3. Cluster algorithms 190
2.4. Finite-size scaling 192

3. Results for the critical behavior of the
three-dimensional Ising model with
short-range interactions 199

4. The nearest-neighbor Ising model in d"5
dimensions 203
4.1. A brief review of the pertinent theory 203
4.2. Comparison with Monte Carlo

results 207
5. Crossover scaling in Ising systems with large

but "nite interaction range in d"2 and d"3
dimensions 211
5.1. General theory 211

5.2. Numerical results for d"2 dimensions 214
5.3. Numerical results in d"3 dimensions and

comparison with theoretical predictions 220
6. Algebraically decaying interactions 227

6.1. Overview 227
6.2. Renormalization-group predictions 228
6.3. Numerical results for the critical

exponents 229
6.4. Finite-size scaling functions 231

7. The interface localization transition in
Ising "lms with competing walls 233
7.1. A "nite-size scaling study 233
7.2. Phenomenological mean-"eld theory and

Ginzburg criteria 235
7.3. Monte Carlo test of the theory 240

8. Summary and outlook 241
Acknowledgements 246
References 246

Abstract

A critical review is given of status and perspectives of Monte Carlo simulations that address bulk and
interfacial phase transitions of ferromagnetic Ising models. First, some basic methodological aspects of these
simulations are brie#y summarized (single-spin #ip vs. cluster algorithms, "nite-size scaling concepts), and
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then the application of these techniques to the nearest-neighbor Ising model in d"3 and 5 dimensions is
described, and a detailed comparison to theoretical predictions is made. In addition, the case of Ising models
with a large but "nite range of interaction and the crossover scaling from mean-"eld behavior to the Ising
universality class are treated. If one considers instead a long-range interaction described by a power-law
decay, new classes of critical behavior depending on the exponent of this power law become accessible, and
a stringent test of the �-expansion becomes possible. As a "nal type of crossover from mean-"eld type
behavior to two-dimensional Ising behavior, the interface localization}delocalization transition of Ising "lms
con"ned between `competinga walls is considered. This problem is still hampered by questions regarding the
appropriate coarse-grainedmodel for the #uctuating interface near a wall, which is the starting point for both
this problem and the theory of critical wetting. � 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.10.Cc
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1. Introduction

The Ising model [1}3] is one of the workhorses of statistical mechanics, playing a role similar to
that of the fruit#y in genetics: techniques such as transfer-matrix methods [2,3] and high-
temperature series expansions [4] have initially been formulated for the Ising model and were then
generalized and applied to many other problems. Similarly, the Ising model has played a pivotal
role in the development of concepts about critical phenomena, from scaling [5,6] and universality
[7}9] to the renormalization group [10}22]. In addition, critical phenomena in Ising models have
been under study by Monte Carlo (MC) simulations since about thirty years [23}37], and recently
these studies have reached an accuracy [36}51] that is competitive with the most accurate
renormalization-group estimates [52}55]. As far as the critical properties of the nearest-neighbor
ferromagnetic Ising model are concerned, there is also fair agreement with estimates drawn from
recent series-expansion analyses [56}59], the Monte Carlo renormalization-group (MCRG) ap-
proach [60}63], and the coherent-anomaly method [64].
Despite this impressive progress, there are still many problems left that are less well understood,

and hence in the focus of the present article. Monte Carlo simulations of critical phenomena almost
always rely on the use of "nite-size scaling theory [24}37,65}97], but certain aspects of this theory
still appear to be under discussion even for short-range Ising models [93}97], particularly if the
system dimensionality d exceeds the marginal dimension dH (dH"4 here; for d'dH the critical
behavior is described by the simple Landau theory [5}22]). There has been a longstanding
discrepancy between the simple predictions by BreH zin and Zinn-Justin [74] and Monte Carlo
results for the "ve-dimensional Ising model [72,73,98], and although this discrepancy has been
resolved now [99}104], there are still controversial issues regarding the form of "nite-size scaling
functions above the upper critical dimension [93}96]. The question how to extend "nite-size-
scaling analyses to mean-"eld like systems is not a purely academic one, since classical mean-"eld
critical behavior can also arise in two- and three-dimensional systems if the interaction is of
su$ciently long range [5,14,45}51,87,92,105}108]. If there is an interaction J(r) of in"nite range
that decays with distance r like an inverse power law, J(r)Jr������, the marginal dimension for
�(2 gets lowered to dH"2�, and consequently the critical behavior is classical for 0(�(d/2.
However, a very interesting situation also arises if the interaction range R is "nite but large
[45,46,48}50,87,92]: then the asymptotic critical behavior for very small temperature distances
t"(¹!¹

�
)/¹

�
from the critical temperature ¹

�
is the same as that of the short-range Ising

model, but somewhat further away from ¹
�
(although still in the region where �t�;1) a crossover

to classical critical behavior occurs. While qualitatively the understanding of such a crossover is
already provided by the Ginzburg criterion [109], its quantitative description by renormalization-
group theory has been a longstanding problem [110}124]. Since a related crossover occurs near
the unmixing critical point in polymer blends as well (the larger the chain length N of the
macromolecules, the more the system behaves mean-"eld like [125}133]), this crossover between
Ising-like and mean-"eld critical behavior can be observed experimentally rather directly
[134}141]. Various other systems (polymer solutions [142], micellar solutions [143] and ionic
systems [144}147] that undergo phase separation) are also candidates for the observation of such
crossover phenomena. Therefore, the theoretical understanding of this crossover is relevant to
a broad variety of physical systems, and hence the Monte Carlo investigation of these crossover
phenomena is one of the main topics of this article.
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A "nal topic that we shall consider here is the statistical mechanics of #uctuating interfaces near
walls and the related interface localization}delocalization transitions that occur in Ising "lms with
competing boundary "elds of the walls [148}159]. Ising lattices with nearest-neighbor ferromag-
netic interactions are expected to exhibit rather complex phase diagrams [150,159]: phase
transitions of either second order [148,149,152,154}157] or "rst order [150,158,159] are possible,
and in the second-order case one again encounters a problem where crossover between two-
dimensional Ising criticality and mean-"eld behavior occurs [157]. At the same time, the problem
is intimately connected to the problem of critical wetting in the presence of short-range forces
[160}177] and the appropriate choice of e!ective interface Hamiltonians [167,178}186], which are
the starting point of analytic theories for these phenomena, is still a matter of discussion.
The outline of this review is as follows: In Section 2, we brie#y recall the basic methodological

aspects of Monte Carlo simulations, as far as they are essential for the reader to easily appreciate
their use as a tool for the analysis of critical phenomena, but also for better understanding of the
intrinsic limitations of such simulations. In Section 3, we then consider the analysis of critical
behavior for the short-range Ising model in d"3 dimensions, while Section 4 is devoted to the case
of d"5 dimensions. Section 5 deals with the case of large but "nite interaction ranges, and the
problem of crossover scaling between the Ising and mean-"eld universality classes, both in d"2
and in d"3 dimensions. Section 6 summarizes results for Ising models with interactions that
decay as a power law. Finally, Section 7 deals with the interface delocalization problem, while
Section 8 gives a summary and an outlook to related problems that have not been dealt with
in this article.

2. Methodological tools

2.1. General aspects

As is well known [29}37], Monte Carlo simulations numerically evaluate canonical thermal
averages of some observable A,

�A�
�

"

1
Z
Tr�A(x) exp[!H(x)/k

�
¹]� , (2.1)

where Z"Tr�exp[!H(x)/k
�
¹]� is the partition function, k

�
is Boltzmann's constant, ¹ is the

absolute temperature and the Hamiltonian in our case is that of the Ising model, where N spins
S
�
"$1 are placed on lattice sites labeled by the index i

H
�����

(�S
�
�)"!�

���

J
��
S
�
S
�
!H�

�

S
�
. (2.2)

Here J
��
are the exchange constants, and we have also included a magnetic "eld H. The points x

of the (quasiclassical) phase space are the con"gurations that can be taken by the N spins and
the trace operation in Eq. (2.1) is a summation over all the 2� states. Monte Carlo simulations
replace this exact average by an approximate one, where M states �x�� are selected by an
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importance-sampling process,

AM "M��
�
�

���

A(x�) . (2.3)

The importance-sampling process consists of the construction of a Markov chain of states
(x

�
Px

�
P2Px�Px���

P2), where a suitable choice of the transition probability
=(x�Px���

) ensures that, for large enough �, states x� are selected according to the canonical
equilibrium probabilities, P

��
(x� )Jexp[!H(x�)/k�¹].

From this brief description, we can already recognize the main limitations:
(i) Only in the limitMPR we can expect to obtain an exact result, while for "niteM a `statist-

ical errora is expected. The estimation of this error is a very nontrivial matter, since } depending on
the precise choice of= } subsequently generated states are more or less correlated. In fact, if the
Monte Carlo sampling process is interpreted dynamically (associating a (pseudo)time with the label
� of subsequent con"gurations, one can interpret the Monte Carlo procedure as the numerical
implementation of a master equation describing a kinetic Ising model [187]), one recognizes that
the `correlation timea is expected to diverge in the thermodynamic limit at a second-order phase
transition (`critical slowing downa [188]).
(ii) While the importance sampling method guarantees that, for �PR, the states are selected

according to P
��
(x�), for choices of � that are not large enough there is still some `memorya of the

(arbitrary!) initial state with which the Markov chain was started. In practice, one may start with
a completely random spin con"guration, or a state where all spins are up, or an (equilibrated) spin
con"guration of a previous Monte Carlo run (which, e.g., was carried out at some other temper-
ature ¹). Invoking once more the above dynamic interpretation of Monte Carlo sampling, it is
clear that one must `waita until the system has `relaxeda from the initial state toward the correct
thermal equilibrium. Also this `nonequilibrium relaxation timea [189}191] is divergent at a sec-
ond-order phase transition in the thermodynamic limit. Due to "nite-size e!ects, both the critical
divergence of the above correlation time and the critical divergence of this nonequilibrium
relaxation time will be rounded o! to large but "nite values. However, if one does not omit
su$ciently many states generated at the beginning of the Markov chain before the averaging in
Eq. (2.3) is started, systematic errors will still be generated.
(iii) For the realization of the Markov chain, (pseudo)random numbers are used both for

constructing a trial state x	� from a given state x� and for the decision whether or not to accept the
trial con"guration as a new con"guration (in the Metropolis algorithm this is done if the transition
probability= exceeds a random number 
 that is uniformly distributed in the interval from zero to
one [29}37]). The Monte Carlo method clearly requires random numbers, however, that are not
only uniformly distributed in a given interval, but also uncorrelated, and in practice this absence of
correlations is ful"lled only approximately [192}202]. Thus, it is necessary to carefully test the
`qualitya of the random numbers for each new application of the Monte Carlo method, and this is
again a nontrivial matter, since there is no unique way of testing random-number generators
[192}202], and there is no absolute guarantee that a random-number generator that has passed all
the standard tests does not yield random numbers that lead, due to some subtle correlations among
them, to systematic errors in a particular application. These remarks are not entirely academic
} even in studies of the nearest-neighbor Ising model results are documented in the literature
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[203}208] where `bada random numbers have caused systematic errors. Thus for Monte Carlo
studies which aim at a high precision it is clearly mandatory to check the results using di!erent
high-quality random-number generators and to verify that no systematic discrepancies are found.
(iv) Last, but certainly not least, the "nite size of the simulated lattice (typically one chooses

a (hyper)cubic lattice of linear dimension ¸ with periodic boundary conditions in all lattice
directions) causes a systematic rounding and shifting of the critical singularities one wishes to
investigate: singularities of the free energy can only develop in the thermodynamic limit ¸PR.
This remark is particularly obvious for the correlation length �, which cannot diverge toward
in"nity in a "nite simulation box, so that serious "nite-size e!ects must be expected when � has
grown to a size comparable to ¸. On the one hand, these "nite-size e!ects constitute a serious
limitation, hampering the possibility to extract critical properties from simulations in a direct
manner, like it is done in experiments on real systems [209}213]. On the other hand, these
"nite-size e!ects o!er a powerful tool, via "nite-size scaling analyses [70,79,80,83,84], for the study
of critical phenomena. While the key ideas of "nite-size scaling are quite old [65,66] and their
application in the context of simulations is standard [26}37], the optimal use of these concepts
remains under discussion [214}223].
In the present article we do not attempt to give a full account of all these problems (i)}(iv),

but shall restrict ourselves to a brief discussion of critical slowing down and statistical errors
(Section 2.2) and how this problem is eased by the use of cluster algorithms (Section 2.3);
in Section 2.4 we then recall those aspects of "nite-size scaling analyses which are most relevant
for the simulations described in the later sections. A complete discussion of "nite-size scaling,
of course, should also address aspects other than the critical behavior of the Ising model,
but this is beyond the scope of our discussion. Other technical aspects, such as histogram
extrapolations [224,225], multicanonical Monte Carlo methods [226}230], etc., will not be
discussed here either.

2.2. The Metropolis algorithms and the problem of statistical errors

In the standard Metropolis algorithm [29}37,231], the Markov chain of states
x
�
Px

�
P2Px�P2 mentioned above is realized by attempting single-spin #ips, S

�
PS

�
. The

procedure consists of the selection of a lattice site i that is considered for a #ip (one may either
choose the sites at random or go through the lattice in a regular fashion) and the calculation of the
energy change �H in the Hamiltonian (2.2), that would be caused by this #ip. From this energy
change one computes the transition probability=,

=(xPx	)"Min[1, exp(!�H/k
�
¹)] . (2.4)

If ="1 the spin #ip is always accepted. If =(1, one draws a random number 
 uniformly
distributed between zero and unity: if 
(= the spin is #ipped, while otherwise this trial move is
rejected and the old con"guration is counted once more for the averaging, Eq. (2.3).
The quantities that are most straightforward to average are the energy per spin, E"�H�

�
/N,

and the magnetization per spin �m�, or (in the absence of the symmetry-breaking "eld H) its
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absolute value, or higher-order moments

��m��"

1
N��

�
�
���

S
� ��

�

, �m��"��
1
N

�
�
���

S
��

�

�
�

, k"1, 2,2 . (2.5)

For a discussion of critical behavior, one is also interested in the susceptibility 
 and the speci"c
heat C. These are typically calculated from #uctuation relations, which read (again all quantities
are normalized per spin to allow for a straightforward thermodynamic limit)

C/k
�
"[�H��!�H��]/(Nk�

�
¹�) , (2.6)


"[�m��!�m��]N/(k
�
¹) , (2.7)


	"[�m��!��m���]N/(k
�
¹) . (2.8)

Note that (for H"0) one needs to use the standard expression for 
 [Eq. (2.7)] while for ¹'¹
�

the expression 
	 [Eq. (2.8)] should be used for ¹(¹
�
[32,36]. The reason for the need of these

two di!erent expressions is the spontaneous symmetry breaking that occurs at ¹
�
, due to the

appearance of a spontaneous magnetization m
�	
: In statistical mechanics, the proper de"nition of

the spontaneous magnetization would be

m
�	

" lim
	
	

lim
�



�m�
��	

, (2.9)

while at all nonzero temperatures one obtains a trivial result if the limits are interchanged, since

lim
	
	

�m�
��	

"0 ∀N . (2.9a)

Thus, for any "nite N and H"0, Eq. (2.7) is equivalent to k
�
¹
"N�m��

��	�	
, which for large

but "nite N converges to k
�
¹
+Nm�

�	
PN as ¹P0. It follows that 
 as de"ned in Eq. (2.7) is

a monotonically increasing function when ¹ decreases through ¹
�
which does not show a max-

imum at any nonzero temperature under equilibrium conditions (if one uses a single-spin #ip
algorithm, full equilibrium is actually often not obtained for ¹(¹

�
, due to the exponential

divergence of the `ergodic timea �
�
withN for ¹(¹

�
, and a spurious, observation-time-dependent

maximummay occur for 
 as well, as is discussed elsewhere in the literature [32,36]). On the other
hand, we have

m
�	

" lim
�



��m��
��	�	

(2.10)

and therefore 
	 as de"ned in Eq. (2.8) converges to the correct expression for the susceptibility
below ¹

�
. Above ¹

�
, however, 
 and 
	 di!er by a trivial factor in the thermodynamic limit. This is

realized by noting that the probability distribution of m, for su$ciently large N"¸�, is a simple
Gaussian [31]

p
�
(m)"¸���(2�k

�
¹
���)��� exp[!m�¸�/(2k

�
¹
���)], ¹'¹

�
, H"0 , (2.11)

where the notation 
��� indicates that for large but "nite ¸ there still may be some residual
"nite-size e!ect in the susceptibility although in fact we do expect a smooth convergence toward
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the susceptibility 
�
� in the thermodynamic limit. From Eq. (2.11), it can easily be shown that [32]


	���"
���(1!2/�) . (2.12)

For ¹ su$ciently far below ¹
�
, the distribution function p

�
(m) can, near its peaks (which occur at

$m
�	
as ¸PR), be approximated by a sum of two Gaussians [31]

p
�
(m)"

1
2

¸���(2�k
�
¹
	���)����exp[!(m!m���


��
)�¸�/(2k

�
¹
	���)]

# exp[!(m#m���

��

)�¸�/(2k
�
¹
	���)]� ¹(¹

�
, H"0 ; (2.13)

again, the positions $m���

��

of these peaks may di!er from $m
�	

by some residual "nite-size
e!ects, but a smooth convergence of m���


��
toward m

�	
is expected as ¸PR. Note that it is 
	 (2.8)

that is appropriate for the widths of the Gaussians in Eq. (2.13).
Thus the phase transition of the Ising model in zero "eld shows up via a change of the

order-parameter distribution p
�
(m) from a single-peak shape to a double-peak shape. A convenient

measure of this change in behavior is the fourth-order cumulant [31]

;
�
"1!�m
�/[3�m���] , (2.14)

which converges to zero for ¹'¹
�
, as one easily derives from Eq. (2.11), while it converges to

;



"2/3 for ¹(¹
�
. At ¹"¹

�
, ;

�
converges to a nontrivial universal constant, as will be

discussed below in the context of "nite-size scaling. We also note that ;
�
appears in the literature

in several variants and under a number of di!erent names. For example, g
�
"!3;

�
is confusing-

ly referred to as the `renormalized coupling constanta [72] } we want to stress here that the use of
this nomenclature is to be deprecated! Later this name was correctly used for the related quantity
g
�
(¸/�

�
)� where �

�
is the "nite-lattice correlation length [219]. In this article we shall also employ

the simpli"ed notation Q
�
"�m���/�m
�. Other authors use still di!erent normalizations and

names, such as the `Binder parametera.
A crucial point of any Monte Carlo simulation is the estimation of the statistical errors of the

various observables A that are recorded. Suppose we record M `measurementsa A(X� ) that are
perfectly uncorrelated. Then the statistical error �A of the estimate AM in Eq. (2.3) can be estimated
as [232]

�A�"[�A��!�A��]/M , (2.15)

while the variance ���
�
�"�A��!�A�� can be estimated from

���
�
�+

�
�
���

[A(X� )!AM ]�/(M!1) . (2.16)

Note the denominatorM!1 rather thanM in Eq. (2.16): this denominator accounts for the fact
that AM in Eq. (2.16) is estimated from the sameM `measurementsa A(X�) already, and hence there
remain only M!1 rather than M statistically independent `measurementsa of [A(X�)!AM ]�. In
practice, however, if observables such as the speci"c heat or susceptibilities are sampled from
#uctuation relations, this point is sometimes ignored and the same formula Eq. (2.3) is used for the
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estimation of variances as well,

��
�

"

�
�
���

[A(X�)!AM ]�/M . (2.17)

The replacement ofM!1 [Eq. (2.16)] in favor of M [Eq. (2.17)] obviously leads to a systematic
underestimation of quantities such as C or 
. While this bias is negligible in the limit of very large
M, it does become a problem if the `measurementsa A(X�) are correlated: both the statistical error
and the bias then get strongly enhanced.
Let us "rst consider the expectation value of the square of the statistical error, based on

M successive observations A�,A(X�) [187]:

�(�A)��"��
1
M

�
�
���

(A�!�A�)�
�

�
"

1
M�

�
�

���

�(A�!�A�)��#

2
M�

�
�

����

�
�

�������

(�A��
A��

�!�A��) . (2.18)

Changing the summation index �
�
to �

�
#�, Eq. (2.18) can be rewritten as

�(�A)��"

1
M
[�A��!�A��]�1#2

�
�
���

�1!

�
M�����

� 	 , (2.19)

where ����
�

is an autocorrelation function

����
�

"

�A��
A�����!�A��

�A��!�A��
. (2.20)

This result can be interpreted associating a `timea t�"�t� with theMonte Carlo process, �t being
the `time intervala between two successive `measurementsa A� and A���

. It is possible to take
�t"1/N, i.e., every Monte Carlo move (e.g., every attempted spin #ip in a single-spin-#ip
Metropolis algorithm) is included in the calculation, but then it is clear that subsequent states
X� are highly correlated for large N, since they di!er by at most one out of N spin orientations.
Thus it is more common to choose �t"1 (corresponding to a `timea unit of 1 Monte Carlo step
per spin), although near ¹

�
it often is more e$cient to take even less `measurementsa, e.g., �t"10.

Thus, we replace ����
�
by �

�
(t) (noting also that in equilibrium there is an invariance with respect to

the choice of the time origin),

�
�
(t)"[�A(0)A(t)�!�A��]/[�A��!�A��] , (2.21)

and, by treating t as a continuous rather than a discrete variable, replace the sum in Eq. (2.19) by an
integral, where �

�
"M �t is the observation time over which the averaging is extended,

�(�A)��"

1
M
[�A��!�A��]�1#2


��

	

dt
�t�1!

t
�
�
���

(t)� . (2.22)

De"ning a correlation time as

�
�

"




	

�
�
(t) dt (2.23)
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and assuming that the observation time �
�

<�
�
, one can rewrite Eq. (2.22) as

�(�A)��"

1
M
[�A��!�A��](1#2�

�
/�t) . (2.24)

If �
�
diverges near a critical point and �t is kept of order unity, as anticipated above, we have

�
�
/�t<1 and Eq. (2.24) becomes

�(�A)��"2
�
�

�
�

[�A��!�A��] . (2.25)

This result shows that the statistical error is independent of the choice of the time interval �t and
only depends on the number n"�

�
/(2�

�
) of statistically independent `measurementsa: although

for a given observation time �
�
a choice of a smaller value �t results in a correspondingly larger

value of the number of observations, it does not decrease the statistical error. It is only the ratio
between the relaxation time �

�
and the observation time �

�
that matters. Thus, the estimation of

these relaxation times is indispensable for a correct estimation of statistical errors. From these
considerations it is already evident how useful it has been to develop algorithms that reduce the
critical slowing down near phase transitions or even remove it completely.
These correlation times also have a signi"cant e!ect on the problem of biased estimates

mentioned above: unbiased estimates of variances are obtained if we take only n measurements
A(X�� ) at time intervals 2�� apart,

���
�
�+



�

����

[A(X��)!AM ]�/(n!1) . (2.26)

Often n is not very much larger than unity, and then Eq. (2.26) is signi"cantly di!erent from
Eq. (2.17). This has been demonstrated by Ferrenberg et al. [233] for the three-dimensional Ising
model at ¹

�
, cf. Fig. 1. One can see that due to the systematic underestimation of both C and 
 (by

a factor 1!1/n for large n) the data approach their asymptotic values always from below with
increasing number of measurementsM (denoted asN in the "gure). ForC the saturation is reached
somewhat faster than for 
, since the correlation time �

�
of the energy is smaller than the

correlation time �
�
for the magnetization. Note also that the time needed to reach the correct

saturation values increases with increasing ¸. This is due to the "nite-size rounding of the
relaxation time in the single-spin-#ip kinetic Ising model:

�
�
J�

�
J¸� ¹"¹

�
, (2.27)

with a dynamical critical exponent z+2 [234]. Therefore, there is a strong decrease of the number
n of statistically independent `measurementsa with increasing ¸, and it becomes very di$cult to
carry out, with single-spin-#ip algorithms, meaningful simulations for values of ¸ distinctly larger
than those included in Fig. 1.
Another important aspect of statistical errors is the question how these scale with the linear

dimension of the simulated systems. If we wish to record the energy or the magnetization,
we conclude from Eqs. (2.6)}(2.8) and (2.25) that the squared errors are expected to scale inversely
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Fig. 1. Speci"c heat (a) and susceptibility (b) plotted vs. the number of measurementsN in a bin, for �t"10MCS and the
simple cubic nearest-neighbor Ising model at ¹

�
[J/k

�
¹

�
"0.221654 was used here]. For each linear lattice dimension

¸, a total e!ort of at least 3�10� MCS/spin was invested, using a single-spin-#ip algorithm. The `measurementsa of
energy and magnetization were grouped into bins containing N entries each, and then C and 
 were calculated using
Eq. (2.17). Finally, the results were averaged over all the available bins to reduce the statistical error compared to the
systematic error resulting from the bias. From Ferrenberg et al. [233].

with the system volume N"¸�,

�(�E)��"

2�
�

�
�

k
�
¹�C
¸�

, �(�m)��"

2�
�

�
�

[�m��!�m��]"
2�

�
�
�

k
�
¹


¸�
. (2.28)

The property that squared errors scale inversely with the volume is called `strong self-averaginga
[235] and only holds away from¹

�
, whereas at¹

�
it is replaced by so-called `weak self-averaginga:

Since, at ¹
�
, in a "nite system 
 and C scale like powers of ¸ [for d44 we have


(¹"¹
�
)J¸���, C(¹"¹

�
)J¸���, where �, � and � are the standard critical exponents of the

speci"c heat, the susceptibility and the correlation length, respectively, see below], we have

�(�m)��J

1
n

¸�����, �(�E)��J

1
n

¸�����, ¹"¹
�
. (2.29)

However, the situation is very di!erent if we consider the errors of quantities that are derived from
#uctuation relations, such as 
 andC themselves [Eqs. (2.6)}(2.8)]: Now the quantityA in Eq. (2.25)
has to be replaced by ¸�(�m)� or ¸�(�E)�, respectively, with �m"m!�m� and �E"E!�E�, and
hence [235]

(k
�
¹ �
)�"

1
n

¸��[�(�m)
�!�(�m)���], (k
�
¹��C)�"

1
n

¸��[�(�E)
�!�(�E)���] . (2.30)

Using the fact that away from ¹
�
both �m and �E are Gaussian distributed for large enough

¸, �(�m)
�"3�(�m)���, �(�E)
�"3�(�E)��� can be used to reduce Eq. (2.30) to

�(k
�
¹ �
)�"�

2
n

¸��(�m)��"�
2
n
k
�
¹
, i.e. �(�
)�/
"�2/n , (2.31)

�(k
�
¹��C)�"�

2
n

¸��(�E)��"�
2
n
k
�
¹�C, i.e. �(�C)�/C"�2/n . (2.32)
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Thus we see that the relative error of quantities sampled from #uctuation relations does not
decrease at all with increasing¸, but gets small only when the number n of statistically independent
samples becomes large. This property is called `lack of self-averaginga [235].

2.3. Cluster algorithms

From the discussion of statistical errors in the previous section it will be evident that critical
slowing downmakes it very di$cult to obtain precise estimates for the observables of interest in the
critical region, using the Metropolis algorithm and su$ciently large lattices. Only by use of highly
e$cient vectorizing algorithms on supercomputers with vector architecture and a massive invest-
ment of CPU resources it has been possible to obtain very good results in this way [33,39,233].
Given this situation, the invention of cluster algorithms [225,236}251] that o!er a dramatic
reduction of critical slowing down has been crucial for allowing more widespread studies.
Here, we "rst discuss the original cluster algorithm for the nearest-neighbor Ising model in zero

external "eld. The starting point is the Fortuin}Kasteleyn representation [252] of the partition
function, writing K"J/k

�
¹,

Z"�
���

�
exp�K�


���

S
�
S
��"�

���
�
�

���

e�[(1!p)#p�
����

] (2.33)

or

Z"�
���

�
�

�
���
�

���

e�[(1!p)�

�� �	

#p�
����

�

�� ��

] , (2.34)

where the n
��
are auxiliary bond variables that can take the values 0 and 1. Only if the two spins

S
�
and S

�
are equal, the bond n

��
is `occupieda or `activea (n

��
"1) with probability p,

p"1!exp(!2K) , (2.35)

while otherwise n
��

"0. In Eq. (2.33) we used the fact that the product S
�
S
�
can only be #1 if both

spins are equal and !1 if they are not, so exp(KS
�
S
�
)"x#y�

����
is easily solved for x and y. For

Eq. (2.34) the simple identity

a#b"
�
�

�	

(a�

�	

#b�

��
) (2.36)

has been used. Now the Swendsen}Wang algorithm [236] makes use of the joint probability
distribution for the spin and bond variables implicit in Eq. (2.34). A `cluster update sweepa
[35,251] then consists of alternating updates of the bond variables n

��
for a given spin con"guration

�S
�
� and updates of the spins S

�
for the given bond con"guration. Thus the algorithm consists of the

following steps:
(i) If S

�
OS

�
, set n

��
"0. If S

�
"S

�
, assign values n

��
"1 and n

��
"0 with probability p

[Eq. (2.35)] or 1!p, respectively.
(ii) Identify clusters of spins that are connected by `activea bonds (n

��
"1). Clearly, this step is

relatively time-consuming, but in the context of the bond-percolation problem [253,254] rather
e$cient cluster-counting routines have been developed. In any case, this somewhat `technicala
issue is out of consideration here.
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Table 1
The critical exponent z of the integrated relaxation time �

�
of various observables (A"energy E, magnetization m, or

susceptibility 
) in d"2 and d"3 dimensions (�
�

J¸�). The typical error is of the order of 0.02

Algorithm d"2 d"3 Observable Reference

Metropolis 2.16 2.03 E and m [234,256]
Swendsen}Wang 0.27 0.50 E [238]

0.20 0.50 
 [238]
Wol! 0.26 0.28 E [238]

0.13 0.14 
 [238]

(iii) Draw a random value $1 independently for each cluster (including clusters containing
a single spin only), which then is assigned as the spin value for all spins in this cluster.
Note that the clusters de"ned in this way are `stochastica clusters that di!er from clusters that

one could de"ne on a purely geometric basis as contours around groups of identical spins [255].
In the present clusters, some bonds between identical spins are deleted with probability
p
���

"1!p"exp(!2K): Thus, in the high-temperature limit,KP0, large clusters cannot occur,
unlike the `geometric clustersa where even for KP0 arbitrary large clusters occur with nonzero
probability. Obviously the present `stochastica clusters are on average smaller than the `geometric
clustersa: Only at ¹P0 (KPR) p

���
vanishes and the present clusters become identical to the

geometric clusters.
It turns out that this Swendsen}Wang algorithm spends too much time identifying and handling

small clusters, which are present at the critical point, too, although the important physics (such as
the diverging correlation length) is embodied in the very large clusters only. For this reason, it is
more e$cient to consider a single cluster at a time, instead of making a full decomposition of the
whole lattice into clusters. In this `single-cluster algorithma due to Wol! [237}239] one chooses
a lattice site at random, constructs only the `stochastica cluster connected to this site, using the
same probability p of setting active bonds as discussed above, and then #ips all the spins of this
cluster. If �c� denotes the average cluster size, a `sweepa through the lattice is de"ned by the
number ¸�/�c� of such single-cluster steps, while in the Metropolis single-spin-#ip algorithm
a `sweepa is de"ned when (on average) every of the ¸� lattice sites has been considered once for
a spin-#ip. With these de"nitions of `sweepsa, a sensible comparison of the correlation times of
various quantities for the di!erent algorithms is possible (Table 1) [35,256].
An important generalization of cluster algorithms is the extension to long-range interactions due

to Luijten and BloK te [250]. It has the remarkable property that the e$ciency is independent of the
number of interactions per spin, and can be applied to any O(n) and Potts model without
frustration. Furthermore, it is applicable to any interaction pro"le and dimensionality. Obviously,
this implies an enormous improvement compared to conventional single-spin-#ip and cluster
algorithms alike, with a typical speed-up of several orders of magnitude. The essential ingredient of
this method is that one does not consider every single interacting neighbor of a spin for inclusion
into the cluster being built, but instead calculates which spin is the next one to be considered for
inclusion. For the technical details, the reader is referred to the original literature [250], while also
Ref. [257] contains a pedagogical introduction.
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2.4. Finite-size scaling

As already mentioned in the introduction, the literature on "nite-size scaling is rich and in some
aspects still controversial [24}37,65}97], so that we cannot give an exhaustive review here; instead
we focus on those aspects which are most pertinent to the Monte Carlo studies that are reviewed in
the following sections.
The key idea (at least for systems that obey the hyperscaling relation [12}22] between critical

exponents, d�"�#2�) is that the linear dimension ¸ `scales with the correlation length �a,
�Jt��, t"¹/¹

�
!1. For the probability distribution of observing a magnetization m in a cubic

box of size ¸ (with periodic boundary conditions) this idea implies [31]

P
�
(m, t)"�	��P(¸/�,m�	��)"¸	��PI (¸/�,m¸	��) ¸PR, �PR, ¸/� "xed . (2.37)

Here the function P
�
(m, t), a function of three variables ¸,m and t, is, via the scaling assumption,

reduced to a `scaling functiona (P or PI , respectively) that depends on two arguments only (¸/� and
m�	�� or m¸	��, respectively). For the sake of a transparent formulation, we have replaced the
variable t by the related variable ����� in Eq. (2.37). We note from the outset that "nite-size scaling
holds in the limit where both ¸PR and tP0 (and consequently mP0), as is the case for all
scaling descriptions near critical points. At "xed ¸ and/or "xed �, corrections to the asymptotic
critical behavior embodied in Eq. (2.37) must be considered, as is discussed below.
The scale factors �	�� or ¸	�� in Eq. (2.37) trivially follow from the condition that P

�
(m, t) is

normalized to unity:



��

��

P
�
(m, t) dm"1 ∀t, ∀¸ . (2.38)

In the limit considered, P
�
(m, t) is nonzero only near m"0 and hence the integration limits $1

can be replaced by $R with negligible error. Naturally, the scaling forms with P and PI in
Eq. (2.37) are fully equivalent, since with the arguments X"¸/�, >"m�	�� we can form new
variables X"¸/�, Z">X	��"m¸	��.
The moments �m�� considered in Eq. (2.5) can be found straightforwardly from Eq. (2.37) as

�m��"

�


�


m�P
�
(m, t)dm"¸��	��MI �

�
(¸/�)"¸��	��M

�
(¸���t) , (2.39)

whereMI �
�
(X) is the resulting scaling function, with the symbol $ referring to the sign of t. It is

more convenient to work with the single functionM
�
which may have both positive and negative

arguments and in fact is analytic near t"0, while MI �
�
would be singular near XP0. Eqs. (2.7),

(2.8) and (2.14) then yield (using �m�,0 in zero external "eld)

��m��"¸�	��M
�
(¸���t) , (2.40)


"(¸�/k
�
¹)¸��	��M

�
(¸���t) , (2.41)


	"(¸�/k
�
¹)¸��	���M

�
(¸���t)![M

�
(¸���t)]�� (2.42)

and

;
�
"1!M



(¸���t)/�3[M

�
(¸���t)]��,;I (¸���t) . (2.43)

Analogously, the quantity Q
�
"�m���/�m
� can be written as Q

�
"QI (¸���t) in this limit.
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From Eqs. (2.40)}(2.42) we recover simple power laws in the limit ¸/�PR or ¸���tPR,
requiring that powers of ¸ must cancel to obtain a sensible thermodynamic limit. Hence (taking
X	,¸���t),

M
�
(X	P!R)J(!X	)�	, ��m��J��	��J(!t)	, t(0 , (2.44)

M
�
(X	PR)J(X	)�����, k

�
¹
Jk

�
¹
	J¸���	������t�, t'0 . (2.45)

We recognize from this result that hyperscaling is built into the description (2.37), since the power
of ¸ in Eq. (2.45) only cancels if d�"2�#� [31].
Just like Eqs. (2.40)}(2.42) imply simple power laws in t and hence in � if ¸PR, one "nds

simple power laws in ¸ in the limit �PR, i.e., when considering the behavior right at
¹

�
: MI �

�
(0)"MI �

�
(0) are simple constants, and hence

��m��
��

J¸�	�� , ;
����

";I (0) . (2.46)

While the power laws for ��m�� and 
 (or 
	, respectively) involve nonuniversal prefactors (the
critical amplitudes), both in the t dependence [Eqs. (2.44) and (2.45)] and in the ¸ dependence
[Eq. (2.46)], these amplitudes cancel out in the ratio ;I (0) [or QI (0)], which therefore is a universal
constant that has proven very useful for the identi"cation of the corresponding universality class.
For completeness, we mention that the "nite-size scaling description can be extended to the

energy per spin E and the speci"c heat C [Eq. (2.6)],

E"E
�
#¸��������EI (¸���t) , (2.47)

C/k
�
"¸���CI (¸���t) . (2.48)

Imposing once more that powers of ¸ must cancel in the thermodynamic limit, one "nds

EI (X	P$R)J�X	����, CI (X	P$R)J�X	���, CJ�t��� , (2.49)

while for t"0 we have the power laws in ¸ (we assume �'0 here)

E!E
�
J¸��������, CJ¸��� . (2.50)

Clearly, we have only considered the leading critical behavior in this description, and neither
nonanalytic corrections to scaling nor analytic background terms (which are, e.g., expected for
quantities such as the speci"c heat C) have been taken into account yet.
It is also of interest to estimate the correlation length itself from the simulations. One can either

sample the spin pair correlation function

G(r)"�S(r
�
)S(r

�
#r)� (2.51)

and study its asymptotic decay for large r in order to obtain the true correlation range
[G(r)Jexp(!r/�) for r<�; note that � de"ned in this way in general depends on the direction of
the lattice [6]], or one can obtain the second-moment correlation length. This quantity is de"ned
from the behavior of the structure factor S(k) at small k,

��"[S(0)/S(k)!1]/k� , (2.52)

K. Binder, E. Luijten / Physics Reports 344 (2001) 179}253 193



Fig. 2. Plot of !3;"�m
�/�m���!3 (left) and g
�
"3(¸/�)�; (right) vs. K"J/k

�
¹ for the nearest-neighbor Ising

model on the simple cubic lattice. The data were obtained from histogram reweighting of data taken atK
��


"0.221655;
thus the values of ; and g

�
shown as di!erent points are not based on independent runs, but are highly correlated, and

the plotted error bars are just the statistical error observed at K
��


. Three choices of ¸ are shown, data being obtained
with the Swendsen}Wang cluster algorithm at the Thinking Machine CM-5 computers, based on about 500 000
measurements per size. The estimates for K

�
are taken from the crossing points of data for ¸"128 and ¸"256. From

Gupta and Tamayo [62].

where

S(k)"
1
¸����

�

S(r
�
) exp(ik ) r

�
)�
�

� . (2.53)

We now brie#y discuss how these "nite-size scaling relations can be utilized to investigate critical
phenomena. The "rst task is to locate the critical temperature¹

�
. A method that does not need any

a priori knowledge of critical exponents is based on the observation [31] that at ¹
�
the cumulant

;
�
should take a universal value ;I (0), Eq. (2.46). On the other hand, we know that for ¹(¹

�
,

;
�

converges to ;



"2/3 for ¸PR, while for ¹'¹
�
, ;

�
P0 in this limit, and

d;
�
/d¹�

��
J;I 	(0)¸��� [cf. Eq. (2.43)]. These results imply that ;

�
(¹) for di!erent ¸ should be

a family of curves which all merge at ;
�
"2/3 at low temperatures, splay out and intersect in

a unique intersection point ;I (0) at ¹
�
, and then spread out again, since the slope at this

intersection point scales as ¸���.
If one is satis"ed with a modest accuracy, this is indeed a very useful and simple method, and it

therefore has been of widespread use for a variety of systems [32}37]. However, if a very
high precision in the location of ¹

�
is desired, deviations from this intersection property will be

found, due to the residual e!ect of corrections to "nite-size scaling. These corrections to the leading
"nite-size scaling behavior are only small if su$ciently large lattice sizes are available.
As an example, Fig. 2 presents a plot of !3; and the renormalized coupling constant
g
�
"(¸/�)�[3!�m
�/�m���] vs. K,J/k

�
¹ for the nearest-neighbor Ising model [62]. Three

rather large values of ¸ are included: ¸"64, ¸"128 and ¸"256. Due to the very "ne resolution
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of both abscissa and ordinate scale, one clearly "nds three distinct intersection points in the range
from K"0.221652 to K"0.221656, and there is a corresponding uncertainty in !3; (the
intersection is in the range between !1.39 and !1.41, corresponding to QI (0)"0.625$0.004).
The relative inaccuracy of K

�
in this determination is only 10�� or perhaps even less [since other

criteria can be derived from the same simulation, the authors suggest K
�
"0.221655 (1) [62]].

Now an alternative way to "nd¹
�
is to locate the positionsK

�
(¸) where quantities such asC and


	 have a peak, and to extrapolate these peak positions toward ¸PR (we recall that 
 itself does
not have a peak, but is monotonically increasing toward ¸�/k

�
¹ as ¹P0). Actually, in practice the

peak of C is not well suited, since the speci"c-heat exponent � is rather small and the position
t

��

where the functionCI (X	) takes its maximum is strongly a!ected both by singular corrections to
scaling and by regular background terms, unless ¸ is exceedingly large. Only when the singular
contribution written in Eq. (2.48) is actually dominant, we can conclude that the maximum of
C occurs at a value X	���


��
"¸���t���


��
where the function CI (X	) has its maximum

t���

��

"X	���

��

¸���� . (2.54)

We emphasize that there is no reason to expect that the maximum of C and the maximum of 
	
[Eq. (2.42)], with


	"(¸���/k
�
¹

�
)
� 	(¸���t) , (2.55)

will coincide: Actually one "nds a maximum at a di!erent valueX	

��

�
�� of the scaling variable, and
hence

t�
��

��

"X	�
�

��

¸���� . (2.55)

Similar behavior occurs for other quantities which exhibit a maximum, such as the temperature
derivative of moments, d��m��/d¹, d�m��/d¹, etc. These temperature derivatives (or correspond-
ing derivatives d��m��/dK,2) can be obtained from suitable #uctuation relations

d�A�/dK"(�AE�!�A��E�)¸� . (2.56)

Histogram reweighting [224,225] is a convenient technique to record these correlation functions
�AE�!�A��E� for a range of values around a suitably chosen value K

��

and to "nd their

maxima. The recipe is then to extrapolate all the resulting `pseudocriticala couplings K���
�
(¸) vs.

¸���� and to attempt to locate a unique critical point K
�
"K���

�
(R), cf. Fig. 3. Here, we have

included data from both Gupta and Tamayo [62] (using the Swendsen}Wang algorithm, for sizes
¸"64, 128, 256) and Ferrenberg and Landau [39] (using the Metropolis algorithm for sizes in the
range 244¸496) to show that reasonably consistent results are obtained. To take into account
the leading singular correction to scaling in the extrapolation shown in Fig. 3, one should use
a formula [39]

K���
�
(¸)"K

�
#a���¸����[1#b���¸��#2] , (2.57)

involving a (universal) correction-to-scaling exponent� and a (nonuniversal) amplitude factor b���.
The data in Fig. 3 do not give a clear indication whether or not such corrections to scaling are
important in this range of system sizes, although the #uctuation in the cumulant intersection points
suggests that such corrections are still present.
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Fig. 3. (a) Estimate ofK
�
by extrapolation of data forK���

�
(¸) for di!erent observables A, as shown in the "gure, plotting

K���
�
(¸) vs. ¸���� assuming �"0.625. The data are for K

��

"0.221655. The resulting best estimate for K

�
is

K
�
"0.221654 (2). From Gupta and Tamayo [62]. (b) Same as in Fig. 3(a), but using data for much smaller sizes

(244¸496) on more expanded scales. A rather good linear "t is obtained, using �"0.629, and the resulting estimate
for K

�
then is K

�
"0.2216595 (26), which is nowadays believed to be somewhat too high (cf. Table 2). From Ferrenberg

and Landau [39].

In principle, corrections to scaling could be safely ignored if still much larger sizes could be
simulated reliably. While calculations of Ising models have been performed up to lattice sizes of
4800� [258] (as well as short runs for 5888� [259] and [in d"2] 496640� [259] and [in d"5] 112�
[258] spins), these calculations could not produce well-equilibrated con"gurations at ¹

�
, thus

prohibiting a meaningful "nite-size analysis. Also it may well be doubted that an appreciable
statistical accuracy can be reached for these systems.
An alternative strategy is not to strive for as large lattices as possible but on the contrary work

with relatively small lattices (or, at best, lattices of intermediate size) and to obtain results of very
high statistical quality, so that the problem of various corrections to the leading asymptotic
behavior can be addressed in a serious way [39}51,214]. This will be the strategy emphasized in the
following sections. For this purpose, it is helpful not to proceed simply on an entirely phenom-
enological level [as done in Eqs. (2.37)}(2.57)], but to take some guidance from the renormaliz-
ation-group description of "nite-size scaling [67,83,260]. Denoting the normalized free-energy
density by f"F/(k

�
¹¸�), where the free energy F is related to the partition function Z as

F"!k
�
¹ lnZ, we obtain the following behavior under a renormalization transformation with

a scaling factor b (see, e.g., Ref. [42]):

f (t, h, u,¸��)"b��f
����

(b��t, b��h,�b��u
�
�, b/¸)#g(t, h,�u

�
�) i"1, 2,2 . (2.58)

Here t and h are the temperature-like and magnetic-"eld-like scaling "elds, which are `relevanta
in the renormalization-group sense, while �u

�
� is the set of all other scaling "elds, which are

`irrelevant variablesa [14}22]. The pertinent exponents are denoted as y
�
, y

�
(which are both

positive) and �y
�
� ((0) respectively. The function g(t, h,�u

�
�) is the regular (analytic) part resulting

from the scale transformation, and f
����

the singular part. The key aspect of the renormalization-
group theory of "nite-size scaling is that the inverse linear dimension ¸�� simply scales with b; no
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other scaling power appears here. For our purposes, it will be su$cient to keep one irrelevant
variable (the one with the largest exponent y

�
,!�), which we shall simply denote as u. Note

also the relation with the standard critical exponents [14}22]

y
�
"1/�, y

�
"d!�/� . (2.59)

By di!erentiating k times with respect to h, and setting b"¸ and h"0, one obtains

f ���(t, 0, u,¸��)"¸�����f ���
����

(¸��t, 0,¸��u, 1)#g���(t, 0, u) . (2.60)

We now "rst concentrate on the moments �m�� and �m
�, which follow from di!erentiations of the
free energy with respect to the physical magnetic "eld H,

�m��"!¸��(R�f/RH�)
	�	

, �m
�"!¸���(R
f/RH
)
	�	

#3¸���(R�f/RH�)�
	�	

. (2.61)

The Ising spin up}spin down symmetry ensures that the scaling "eld h is an odd function of H.
However, it does not need to be simply proportional to it, but can contain higher odd powers of
H as well. Similarly, the scaling "eld t has a power-series expansion in K

��
!K

�
[we write

J
��
/k

�
¹"K

��
for the nearest-neighbor coupling here to emphasize that one may allow for

further-neighbor interactions as well [42]], where both even and odd powers can occur. Thus

R�f
RH�

"f ����
Rh
RH�

�
,
R
f
RH


"f �
��
Rh
RH�



#4f ����

Rh
RH��

R�h
RH�� . (2.62)

Both the analytic term in Eq. (2.60) and the second term on the right-hand side of the above
expression for R
f/RH
 give rise to corrections to scaling. We now use Eqs. (2.59)}(2.62) to derive
a systematic expansion ofQ

�
"�m���/�m
� in powers of t and u (orK

��
!K

�
and u, respectively).

After some algebra, the result is, for the limit where t is small and ¸ large but "nite [42],

Q
�
(K

��
)"Q#a

�
(K

��
!K

�
)¸���#a

�
(K

��
!K

�
)�¸���#a

�
(K

��
!K

�
)�¸���#2

#b
�
¸��#b

�
¸����	��#2 , (2.63)

where Q is a universal constant, whereas the expansion coe$cients a
�
, a

�
, a

�
,2 and b

�
, b

�
,2 are

nonuniversal. The powers of the geometric factor Rh/RH have canceled in the "rst term on the
right-hand side of Eq. (2.63) and the last term results from the analytic background term in
Eq. (2.60). The corrections resulting from Eq. (2.62) are decaying even more rapidly with ¸ and have
been omitted.
The magnetic susceptibility 
"¸��m��/k

�
¹ becomes [42]

k
�
¹
"g���(t)#¸�����f ���

����
(¸��t, 0,¸��u, 1) , (2.64)

which yields upon expansion in t and u

k
�
¹
"c

	
#c

�
(K

��
!K

�
)#2

#¸���[a
	
#a

�
(K

��
!K

�
)¸���#a

�
(K

��
!K

�
)�¸���#2#b

�
¸��#2] ,

(2.65)

where the a
�
, b

�
and c

�
are nonuniversal coe$cients, di!erent from those used in (2.63). Similar

expansions can be derived from Eq. (2.60) for k"0 to obtain both the energy and the speci"c heat
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[42]. Extending the treatment to include local "elds H
	
, Hr that couple to spins at positions 0 and

r, the spin}spin correlation function G(r) [Eq. (2.51)] can be included in this treatment as well, and
also expansions for the temperature derivatives of 
 andQ can be derived in the same way [42]. The
strategy is then to obtain very precise data for a broad range of sizes (34¸440 was studied by
BloK te et al. [42] for the short-range Ising model in d"3 dimensions) and all these quantities. Each
quantity is "tted independently, usingK

�
, the critical exponents and the nonuniversal constants as

"t parameters. In order to avoid ambiguities with these "tting procedures, it is advisable to proceed
in steps, using the values of the critical exponents from "eld-theoretic renormalization [20] as
initial guesses to obtain a good "rst estimate of K

�
. This result is then used as input in an analysis

where one tries to obtain the critical exponents from the "t, and thus the "tting procedures can be
iterated. In a "nal stage, one can also keep a subset of the exponents "xed to "t the remaining ones,
etc., and apply many consistency checks. The outcome of such an analysis will be described in the
next section. As emphasized above, we have assumed the validity of hyperscaling throughout, and
thus hyperscaling is implicit in the expansions Eqs. (2.63) and (2.65) on which the analysis of the
next section is based. However, we shall discuss the necessary modi"cation of this treatment in
Section 4, where we consider Ising models in more than four dimensions, where hyperscaling is
violated. Also the extension of "nite-size scaling to properly describe the crossover from one
universality class to another one will be described only in the context where this is needed to
understand the crossover between the Ising universality class and the mean-"eld universality class
(Section 5).
Even for the short-range Ising model in d"3 dimensions, our discussion of the use of "nite-size

scaling has been far from exhaustive: we have not discussed deviations from "nite-size scaling
predicted to occur in the limit ¸PRat "xed �(R[97]. If one considers the relative di!erence
between a quantity in the thermodynamic limit (such as the susceptibility 
) and its counterpart in
the "nite system, 


�
"¸��m��

�
/k

�
¹,

�,(
!

�
)/
"�(�,¸) , (2.66)

it is argued that, in the limit ¸PR at "xed �, � is not in accord with "nite-size scaling [which
would imply that �(�,¸) only depends on �/¸]. However, since the scale for this deviation from
"nite-size scaling is very small [of the order of exp(!¸/�) which is negligible in the considered
limit], this problem is presumably not a practical limitation on "nite-size scaling analyses of critical
phenomena.
We also do not address the approach of numerically computing "nite-size scaling functions

[216}218,220], where one attempts to construct ratios such as 

�
/
 as function of ¸/�

�
, �

�
being

derived from Eq. (2.52). It has been suggested that this type of "nite-size scaling works already for
small values of ¸ and that no a priori information on the critical behavior of the system is required.
This procedure would test "nite-size scaling itself by means of the resulting data collapse. The
extrapolated results for 
, �, etc. can be "tted straightforwardly to power laws in order to extract the
critical exponents. Although the results of this approach so far look quite encouraging [220], we
feel there is a need to worry about the e!ects of the various corrections to scaling, that are possibly
masked in this approach, leading to systematic deviations in the estimates of critical properties.
Thus, even for the short-range Ising model in d"3 the "nite-size scaling analysis of critical
phenomena is still an active topic of research.
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Table 2
The critical coupling of the nearest-neighbor simple cubic Ising lattice

K
�

0.221655 (5) 0.221620 (6) 0.221663 (9) 0.2216544 (3) 0.221660 (4)
Reference and year [56] 1983 [58] 1989 [261] 1997 [262] 1998 [263] 1998
Method High-temperature series extrapolation

K
�

0.221654 (6) 0.221652 (6) 0.221652 (3) 0.221655 (1)
Reference and year [60] 184 [264] 1989 [61] 1992 [62] 1996
Method Monte Carlo renormalization group

K
�

0.2216595 (26) 0.2216544 (10) 0.221657 (3) 0.221648 (4) 0.2216576 (22)
Reference and year [39] 1991 [38] 1991 [265] 1991 [40] 1993 [41] 1994
Method Monte Carlo (MC) and "nite-size scaling

K
�

0.2216546 (10) 0.2216544 (6) 0.221655 (15) 0.221655 (1) 0.2216546 (10)
Reference and year [42] 1995 [43] 1996 [220] 1996 [62] 1996 [266] 1998
Method Monte Carlo (MC) and "nite-size scaling (FSS)

3. Results for the critical behavior of the three-dimensional Ising model
with short-range interactions

In this section we summarize the results that were obtained in the last decade for various critical
properties of the Ising model. Table 2 quotes estimates for the critical coupling K

�
of the

nearest-neighbor model (some of the exponent estimates have also been obtained for models
including next-nearest and 3rd nearest-neighbor interactions, in an attempt to reduce corrections
to scaling [42,63]; these results are not included here). It now appears well established that the
critical point occurs at

K
�
"0.221655 (5) (3.1)

which was already suggested from high-temperature series extrapolations as early as 1983 [56].
However, among the attempts to narrow down the error bar of this estimate, the method of
high-temperature series extrapolation [58,261}263] seems to be rather inconclusive, as is shown by
a comparison of the more recent estimates obtained by this technique. Thus, if we ignore this
method and rely exclusively on MCRG [60}62,264] and MC [38}43,265,266] estimates, we see
that it is rather certain that

K
�
"0.221655 (2) . (3.2)

This re"ned estimate still barely excludes the Rosengren conjecture [267]

tanh(K
�
)"(�5!2) cos(�/8), i.e., K

�
"0.221658632 . (3.3)

On the other hand, there are strong theoretical arguments against Eq. (3.3) [268].
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Fig. 4. Log}log plot of derivatives dQ/dK�

��

of several quantities Q, namely Q"!3;, Q"ln��m�� and Q"ln�m��,
vs. ¸ (Q is here not to be confused with the amplitude ratio it generally indicates). Corresponding estimates for � are
quoted in the "gure (left). Log}log plot of �m�� atK"K

�
"0.221655 vs. ¸ (curve labeled 
 (right), curve labeled 
	 refers

to �m��!��m���). From Gupta and Tamayo [62].

Having established the location of the critical point with a satisfactory accuracy, one can proceed
to estimate the critical exponents. Often, "ts are carried out where K

�
is kept "xed. Di!erent

choices forK
�
create di!erent biases for the resulting exponent estimates; unfortunately the quoted

uncertainties do not always re#ect the e!ect of this bias.
As indicated in Section 2.3, di!erent strategies can be applied with respect to the treatment of

corrections to scaling: one, naive, strategy is to choose in a "nite-size scaling analysis the range of
linear dimensions ¸ su$ciently large and simply "t the Monte Carlo data at ¹

�
to the power laws

in Eq. (2.46) that yield �/� and �/�. Corresponding data for temperature derivatives at ¹
�

d;/dK�
����

Jd ln��m��/dK�
��

Jd ln�m��/dK�
��

J¸���, ¸PR , (3.4)

are "tted to obtain 1/�. To avoid the bias from the choice ofK
�
one can also use the corresponding

derivative at the value K"K
�
where the derivative is maximal (Fig. 4). The second strategy is to

also include smaller values of ¸ in the analysis and not just rely on the leading power laws [Eqs.
(2.46) and (3.4)] but rather include corrections to "nite-size scaling in the "t, applying expansions
such as Eqs. (2.63) and (2.65). Table 3 summarizes the corresponding results, again comparing the
outcome of di!erent methods. We have put the results stemming from "eld-theoretic renormaliz-
ation-group methods [53,55] at the top of the table: over the last twenty years, these results have
not been questioned, and even in the light of all the additional work summarized in this table, there
is no good reason to question the accuracy of the estimates obtained by Zinn-Justin et al. [53,55].
In contrast, the estimates obtained both from extrapolation of high-temperature series

[56,57,261}263,269}271] and from Monte Carlo-based methods [39,42,60}63,220,222,223,
264,266,272] are more varying, although they now both appear to have reached a level that is
comparable in accuracy. In some cases the table includes entries where the error has not
been given(!), and in some cases extremely small error estimates are quoted } these estimates seem
overly optimistic to us, however: We feel that both high-temperature series extrapolations and
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Table 3
Estimates for the exponents y

�
"1/�, y

�
"3!�/� and �

Method Ref. Year y
�

y
�

�

Field-theoretic [53] 1980 1.587 (4) 2.485 (2) 0.79 (3)
renormalization group [55] 1998 1.586 (3) 2.483 (2) 0.799 (11)

High-temperature [333] 1981 1.585 (8) 2.482 (5)
series extrapolation [334] 1981 1.586 (4) 2.482 (3) 0.90 (11)

[56] 1983 1.585 (10) 2.482 (6)
[269] 1985 1.5823 (25) 2.4806 (15) 0.85 (8)
[270] 1987 1.582 (7) 2.480 (6)
[271] 1990 1.587 (4) 2.4821 (4) 0.83 (5)
[57] 1991 1.587 2.4823 0.84
[261] 1997 1.577 (5) 2.481 (5)
[262] 1998 1.5835 (20) 2.4808 (20)
[263] 1998 1.587 (12) 2.483 (6)

CAM [64] 1995 1.586 (4) 2.482 (4)

MCRG [60] 1984 1.590 (10) 2.485 (3)
[264] 1989 1.590 (8) 2.4865 (25)
[61] 1992 1.602 (5) 2.4870 (15) 0.825 (25)
[62] 1996 1.600 (3) 2.488 (3) 0.7
[63] 1996 1.585 (3) 2.481 (1)

MC [39] 1991 1.590 (2) 2.4914 (28)
FSS [41] 1994 1.590 (2) 2.482 (7)

[42] 1995 1.587 (2) 2.4815 (15) 0.82 (6)
[62] 1996 1.585 (7) 2.487 (3)
[220] 1996 1.558 2.465
[44] 1997 1.585 (3)
[266] 1999 1.5865 (14) 2.4815 (4) 0.82
[223] 1999 1.5883 (5) 2.4821 (2) 0.845 (10)
[222] 1999 1.5878 (13) 2.4817 (4)
[272] 1999 1.5888 (12) 2.4821 (5) 0.87 (4)

Monte Carlo methods at this point have reached an accuracy that is competitive with the accuracy
of "eld-theoretic renormalization-group results for the Ising model, but it would be premature to
claim that the accuracy already is much better. Thus, in our opinion it is rather certain that the
exponent estimates that follow from Monte Carlo analysis can be summarized as

y
�
"1.588 (2), y

�
"2.482 (2), �"0.83 (4) , (3.5)

well consistent with the estimates of [53,55]. It remains to be seen whether the high accuracy
claimed in very recent work [222,223,266,272] can be maintained. We also note that some rather
recent estimates [220] fall well outside the range of Eq. (3.5), but these estimates were obtained
from "ts of extrapolated bulk data over a fairly extended range in the reduced temperature t, and
no corrections to scaling terms were allowed for. Thus, these estimates (which deliberately did
not quote any estimates for the error) really should be discarded, and we have included them in
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Table 3 just for the sake of completeness of the historical record. Some other estimates included in
Table 3 were not taken from simulations of the Ising model but rather from the �
 model on the
simple cubic lattice [222,223]; at this point we rely on the hypothesis that the Ising model (with
discrete spins S

�
"$1) and the �
 model (with continuous degrees of freedom !R(�

�
(R)

do belong to the same universality class.
Some of the studies mentioned above have attempted to extract more than two exponents (y

�
and

y
�
or � and 
, respectively) from the "nite-size scaling analysis (e.g., one can obtain �/� and �/�

independently, or one can try to estimate (1!�)/� from the critical part of the energy, etc.). By
means of such analyses, both the hyperscaling relation (�/�#2�/�"d) and the thermodynamic
scaling relation (�#2�"2!�) can be tested. Within the quoted accuracy of the various studies,
the scaling relations always were found to be ful"lled rather convincingly. For details of these
studies we refer the interested reader to the original publications quoted in Table 3.
Other critical properties of the Ising model have also been estimated occasionally, such as the
"nite-size scaling invariant Q"�m���/�m
� at K"K

�
. While early estimates [39] only reached

a relatively modest accuracy, Q+0.63 (1), BloK te et al. [42] obtained the rather precise estimate
Q"0.6233 (4) and this result was even more re"ned by BloK te et al. [266], Q"0.62358 (15),
while Ballesteros et al. [272] obtained Q"0.6238 (4) and Hasenbusch et al. [222] found
Q"0.62393 (13).
The related renormalized coupling constant g


�
, de"ned by

g

�

" lim
�
��

lim
�



�
¸

� �
�
[3!�m
�/�m���] (3.6)

has also received considerable attention in the literature [219,221,262,273}275]. Estimates
from "eld-theoretic calculations [275] yielded g

�
"23.73 (2), while series expansions gave

g
�
"23.69 (10) [273] or g

�
"23.55 (15) [274]. While originally it was concluded [219] that

Monte Carlo results strongly disagree with these estimates, Ballesteros et al. [221] have presented
new data that are compatible with these estimates, though not really accurate! The problem is
complicated, because g

�
(¸,K) approaches its limiting behavior nonuniformly, i.e., g


�
di!ers from

the quantity g�
�
obtained by taking the limits in Eq. (3.6) in the reverse order: g�

�
"5.25 (3) [221].

There is also a considerable interest in precisely estimating the (nonuniversal) critical amplitudes
of various quantities, in order to "nd results for the universal critical amplitude ratios [213]. While
such critical amplitude ratios have been estimated both by "eld-theoretic renormalization-group
methods [55] and by high-temperature series expansions [58,213], recent Monte Carlo estimates
of these quantities are comparably scarce [276}278]. We de"ne the critical amplitudes of the
speci"c heat C, the correlation length �, the susceptibility 
, the order parameter ��m��, the singular
part of the free energy f

����
and the surface tension � as follows [213]:

C"(A�/�)�t���, ��m��"B(!t)	, 
"���t���, �"��
	

�t��� , (3.7)

f
����

"f�
	

�t����, �"�
	
(!t)����� . (3.8)

Two-scale factor universality [279] implies that all of the following combinations of these
amplitudes are universal

A�/A�, ��/��, R
�
"A���/B�, ��

	
/��

	
, R�� "(A�)�����

	
,

(��
	
)�f�

	
, (��

	
)�f�

	
, f �

	
/f�
	
, r��"��

	
(��

	
)��� �"[4��

	
(��

	
)���]�� . (3.9)
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Table 4
Selected critical amplitude values for the d"3 Ising model

Quantity �-expansion Field-theoretic RG
in d"3

High-T/Low-T series Monte Carlo

A�/A�

�
0.524$0.010 [280]

0.527$0.037 [55] �
0.541$0.014 [280]

0.537$0.019 [55]

0.523$0.009 [58] 0.550$0.012 [276]

��/��

�
4.9 [280]
4.73$0.16 [55] �

4.77$0.30 [280]
4.79$0.10 [55]

4.95$0.15 [58]

�
4.75$0.03 [277]
5.18$0.33 [283]

��
	
/��

	
1.91 [281] 2.013$0.028 [282] 1.96$0.01 [58]

�
2.06$0.01 [283]

1.95$0.02 [277]

3��/[(��
	
)�B�] 14.4$0.2 [282] 14.8$1.0 [58]

�
17.1$1.9 [283]
14.3$0.1 [277]

��/[(��
	
)�B�] 3.02$0.08 [280] 3.09$0.08 [58]

�
3.36$0.23 [283]

3.05$0.05 [277]
R�� 0.27 [280] 0.2700$0.0007 0.2659$0.0007 [58]
f�
	
(��

	
)� 0.0355$0.0015 [277]

R�� 0.2 [284] 0.39$0.03 [285] 0.36$0.01 [286] 0.34$0.02 [278]

� 1.5 [284] 0.86 [288]

�
1.2$0.3 [287]

0.88$0.04 [278]

Of course, not all of these ratios are independent: e.g., f�
	
/f�
	

and A�/A� are obviously related as
the speci"c heat is the second temperature derivative of the free energy and from ��

	
/��

	
and

R�� one can easily obtain � (which should not be confused with the leading irrelevant exponent).
Nevertheless, we want to mention these combinations, because they are commonly used in the
literature. Many more universal amplitude ratios come into play if one considers the dependence of
various quantities on the magnetic "eld at t"0 [213]. However, we are not aware that this
problem has found much attention from simulations recently } some more work in this direction
would be desirable!
Table 4 summarizes some of the predictions on the ratios de"ned in Eq. (3.9) that can be found in

the literature [55,58,276}288]. The accuracy of early estimates for these quantities was often
overestimated, and even the most recent results for these ratios are much less accurate than these
for the corresponding exponents. Also here, more work on these quantities would clearly be
desirable.

4. The nearest-neighbor Ising model in d�5 dimensions

4.1. A brief review of the pertinent theory

One of the basic results of renormalization-group theory [10}22] is that, for systems with
short-range interactions, nonclassical critical exponents only occur for d(4 dimensions, while for
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�Preliminary data have also been obtained for the case d"6.

d'4 the `classicala exponents of simple Landau theory apply. The case d"4 itself is a borderline
case, where logarithmic corrections to the classical power laws are present. A test of this case with
Monte Carlo simulations is fairly involved [289] and will remain out of consideration here.
However, the situation in d"5 should be much simpler andMonte Carlo simulations for this case
should provide a good testing ground to check whether our current theoretical understanding of
systems above their upper critical dimensionality is in fact complete. While obviously no laborat-
ory experiment can be carried out in d"5 spatial dimensions, the study of such high (but integer�)
[290] dimensions is in fact straightforward by means of simulational techniques.
We start by reviewing the adaption of the theory of "nite-size scaling to this case [72}74]. Using

the fact that for d'dH"4 we have the Landau values for the exponents y
�
, y

�
and the (leading)

correction to scaling exponent �,

y
�
"2, y

�
"1#d/2, �"d!4 , (4.1)

the singular part of the free-energy density f
�
of a "nite system with linear dimensions ¸ in

a external "eld h is written as [cf. Eq. (2.58) for b"¸] [71]

f
�
(t, h,¸)"¸�� fI �t�

¸

��
	
�

�
, h¸�����, u¸
��	 . (4.2)

Here we have used the mean-"eld result �"��
	
t���� (for t'0) and scaled the length ¸ with the

length ��
	
to make the "rst argument of fI dimensionless [and to remind the reader of the "nite-size

scaling principle that this term simply can be interpreted as (¸/�)�].
Now an important issue is that although (!�)"4!d for d'4 is negative and hence

u¸
��P0 for ¸PR, one nevertheless may not omit the last term, because u is a `dangerous
irrelevant variablea [291,292]. This statement means that the scaling function fI (x,x	, y) is singular
in the limit yP0 and cannot be simply replaced by f (x,x	, 0). Also the variable y is normalized such
that it is dimensionless, and this is borne out by our notation by writing uJl��


	
, where l

	
is

another (microscopic) length, so that y"(¸/l
	
)
��. For brevity we will henceforth simply write

�
	
instead of ��

	
.

Taking suitable derivatives of Eq. (4.2) with respect to the "eld h we can write for the order
parameter ��m��, the (high-temperature) susceptibility 
 and the ratio Q (in zero "eld)

��m��"¸��������P
�
�t(¸/�

	
)�, (¸/l

	
)
��� , (4.3)

k
�
¹
"!(R�f

�
/Rh�)

�
"¸��m��"¸�P
�t(¸/�	 )�, (¸/l	 )
��� (4.4)

and

Q"�m���/�m
�"P
�
�t(¸/�

	
)�, (¸/l

	
)
��� , (4.5)

where P
�
,P
 and P�

are the (universal [293]) "nite-size scaling functions of the quantities ��m��,

 and Q. The question how these functions behave in the limit yP0 was "rst addressed in [72],

204 K. Binder, E. Luijten / Physics Reports 344 (2001) 179}253



where it was assumed that the dangerous irrelevant variable y enters in the form of multiplicative
singular powers of y, e.g.,

f
�
(x, x	,y)+y�� fI

�
(xy�� , x	y�� ) as yP0 , (4.6)

with p
�
, p

�
and p

�
suitable exponents [72]. This assumption was in the "rst place motivated by the

fact that this is the mechanism that operates for the scaling in the bulk for d'4 [292]. In addition,
Eq. (4.6) is supported by various phenomenological arguments. In particular, it was argued [72,73]
that standard thermodynamic #uctuation theory requires, for ¹(¹

�
and su$ciently large ¸, that

the distribution function P
�
(m) of the magnetization per spin for m near the spontaneous magnetiz-

ation $m
�	
can be written as a sum of two Gaussians [cf. Eq. (2.13)]. Using m

�	
"B(!t)��� and


	"��(!t)�� the arguments of the exponential functions in Eq. (2.13) have the form

!

1
2
[(m/B)(!t)����G1]�(¸/l

�
)� , (4.7)

where the `thermodynamic lengtha l
�
is de"ned as

l
�
"[m��

�	

	]���"(B����)���(!t)���� . (4.8)

Taking moments of P
�
(m) it was then concluded that the scaling functions P

�
,P
 and P

�
in

Eqs. (4.3)}(4.5) should reduce to scaling functions of a single variable

(¸/l
�
)���"t¸������

	
l�
�����
	

"x/�y , (4.9)

��m��"¸���
PI
�
(t¸������

	
l�
�����
	

) , (4.10)


"¸���PI 
 (t¸������
	

l�
�����
	

) (4.11)

and

Q"PI
�
(t¸������

	
l�
�����
	

) . (4.12)

Scale factors for the magnetization and the susceptibility have been absorbed in P
�
(or PI

�
) and

P
 (or PI 
), respectively, while in ratios likeQ (and hence in P
�
and PI

�
) such scale factors cancel out

and fully universal scaling functions remain.
While these arguments did not yield explicit expressions for the scaling functions, BreH zin and

Zinn-Justin [74] did propose such an explicit form, suggesting that for d'dH"4 one could split
the argument of the Boltzmann factor into a contribution due to the uniform magnetization
(the `zero modea) and contributions of nonuniform magnetization #uctuations, which can be
treated perturbatively. Thus

exp�!
H�S

�
�

k
�
¹ �"exp�!

(m�/m�
�	

!1)�
8k

�
¹
	/m�

�	

¸�##uctuation contributions	 . (4.13)

The #uctuation contributions were argued to yield only a shift of ¹
�
,

¹
�
(¸)/¹

�
(R)!1J¸��� , (4.14)

which is of higher order than the rounding of the singularities [scaling like ¸����, cf.
Eq. (4.10)}(4.12)] and hence negligible in the limit of large ¸, compared to the "nite-size e!ects
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included in Eqs. (4.10)}(4.12). If the #uctuation contributions in Eq. (4.13) are ignored completely,
this so-called `zero-mode theorya yields an explicit result for the distribution function of
the magnetization,

P
�
(m)J¸��� exp�![m�/(B�t)!1]�(¸/l

�
)�/8� . (4.15)

From this result it is straightforward to obtain PI
�
, PI 
 and PI

�
. In particular, one derives the

universal constant at ¹
�
[74]

Q�
��

"PI
�
(0)"8��/�
(1/4)+0.456947 . (4.16)

This treatment has recently been criticized by Chen and Dohm [93}95] who presented detailed
arguments that for d'dH the standard treatment of the �
 "eld theory in continuous space yields
a misleading description of the "nite-size behavior, being di!erent from the "nite-size behavior of
a �
 model on a lattice, which is believed to be equivalent to an Ising Model [10}22]. Chen and
Dohm emphasized that therefore the justi"cation given for the zero-mode theory is invalid and
stated that the moment ratio mentioned above does not have the universal properties predicted
previously [94]. Their analysis is based on the �
-model on a (hyper)cubic lattice,

H"�
�
�
r
	
2

��
�
#u

	
(��

�
)��#�

���

J
��
2
(�

�
!�

�
)� , (4.17)

where r
	
, u

	
and the J

��
are constants, and �

�
is an n-component vector. Chen and Dohm have

considered both the limit nPR, which can be treated exactly, and the case n"1 (which
corresponds to the Ising model); the latter, however, is only treated to one-loop order in a perturba-
tion expansion. In terms of the reduced moments

�
�
(>)"





	

d��� exp�!
1
2
>��!�
��





	

d� exp�!
1
2
>��!�
� , (4.18)

the scaling functions P
(x, y) and P�
(x, y) are written

P
(x, y)"
1
J
	

�
�
(>(x, y))

�y#36I
�
(r� )y�

, (4.19)

P
�
(x, y)"[�

�
(>(x, y))]�/�



(>(x, y)) , (4.20)

with J
	
"�

���
J
��
(r
�
!r

�
)/d¸� and

>(x, y)"[x!12yI
�
(r� )!144�

�
(x/�y)I

�
(r� )y���]/[�y(1#36I

�
(r� )y)���] . (4.21)

Here further abbreviations r� ,x#12�
�
(x/�y)�y and

I
�
(x)"(2�)���





	

dyy��� exp(!xy/4��)��
�
y�

���
!�

�

�

���


e���
��

�
#1� (4.22)

were introduced.
Eqs. (4.18)}(4.22) are the "rst results for the scaling functions P
 and P

�
that contain the

dependence on both variables x"t¸����
	

and y"(¸/l
	
)
�� separately and explicitly. However,

at the same time these results do con"rm the validity of the `zero-modea results, such as
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Eqs. (4.10)}(4.12) and (4.16), in the limit of large enough ¸ (when yP0). This is obvious from
Eq. (4.21), since for yP0 we "nd

>(x, y)Px/�y, P
(x, y)"(J
	
�y)���

�
(x/�y), P

�
"[�

�
(x/�y)]�/�



(x/�y) , (4.23)

fully compatible with Eqs. (4.9)}(4.12) and the results proposed by BreH zin and Zinn-Justin [74],
including Eq. (4.16).

4.2. Comparison with Monte Carlo results

While already in early Monte Carlo work it was claimed from very small linear dimensions,
¸"3 to 7 [72,73], that the data agree with the scaling structure of Eqs. (4.10)}(4.12), there seemed
to occur a discrepancy with Eq. (4.16) and this discrepancy was con"rmed in later work using
somewhat larger sizes (¸415) [98]. In contrast, it was then shown in Ref. [99] for a completely
di!erent class of models, which are however expected to be described by the same renormaliz-
ation-group equations as high-dimensional Ising models, that Eq. (4.16) holds to a very high
accuracy, for a wide range of distances to the upper critical dimension. It was also demonstrated
how the "ndings of Ref. [98] could be traced back to the neglect of certain corrections to scaling
and an insu$cient statistical accuracy. Nevertheless, several additional attempt were undertaken
to clarify matters by more extensive simulations of the "ve-dimensional Ising model itself
[100}104] and it is fair to say that on the simulational side there no longer exists any discrepancy
regarding the value of the parameter Q at criticality. On the analytical side, however, matters
appear to be less clear, in particular regarding the shape of the "nite-size scaling functions [93}95].
Here we shall describe the approach taken in the most recent analysis [104] where a comparison
with both the `zero-modea results [74] and the alternative expressions, Eqs. (4.18)}(4.22),
was made.
Fig. 5 shows that if one studies the variation of Q over a wide range (0.3�Q�1) and uses

a correspondingly wide range of the scaling variable t¸���, !44t¸���4#4, the data suggest
that already for these relatively limited system sizes the scaling prediction, Eq. (4.12) is a reasonable
approximation, although there are still slight deviations. The accuracy of the currently available
data is such that statistical scatter and systematic deviations can be clearly distinguished. This
allows a closer look at the behavior of the amplitude ratio in the neighborhood of ¹

�
, revealing

how the deviations found in Refs. [72,73] and also in Ref. [98] could come about. For this, we refer
to Fig. 6, where only data for Q near t¸�"0 are included. If corrections to Eq. (4.12) were
negligible, we would expect in this plot the three curves for the three values of ¸ to intersect at
t¸�"0 at the critical value of Q (4.16). On the other hand, if corrections to scaling are non-
negligible, one would have expected that there is no longer an unique intersection point at all, but
a di!erent intersection for each pair of curves, i.e., a behavior qualitatively analogous to Fig. 2.
However, what happens instead is that the three curves apparently still have a intersection point,
but at a wrong value: this intersection occurs not at t"0, but at a negative value of t¸�, and the
value of Q is here correspondingly higher than in Eq. (4.16). Interestingly, the theory of Chen and
Dohm [95] qualitatively predicts precisely such a behavior with a spurious `intersection pointa,
although it is clearly not in quantitative agreement with the Monte Carlo data either.
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Fig. 5. Plot of Q"�m���/�m
� for the nearest-neighbor Ising model in d"5 dimensions vs. the scaling variable t¸���

[cf. Eq. (4.12)], including bothMonte Carlo (MC) data for ¸"4 [72], ¸"8, 12 [103] and the results of Chen and Dohm

(CD) [95], Eqs. (4.18)}(4.22). Note that the result of the zero-mode theory [74] results from setting >"x/�y in Eqs.
(4.18)}(4.22). The critical temperature was estimated as J/k

�
¹

�
"0.1139155 (2), and the constants �

	
, l

	
were estimated

as �
	
"0.549 (2) and l

	
"0.603 (13), see the text. From Luijten et al. [104].

Fig. 6. Magni"ed plot of Q vs. t¸� near t¸�"0, to demonstrate the occurrence of spurious cumulant intersections.
Broken curves are again the predictions of Chen and Dohm (CD) [95], Eqs. (4.18)}(4.22), with the parameters as quoted
in the caption of Fig. 5, while the symbols indicate the Monte Carlo data. From Luijten et al. [104].

For the comparison between the theory, Eqs. (4.18)}(4.22), and the simulation it is essential to
determine the parameters ¹

�
, �

	
and l

	
correctly. Using data for 
 in the range 54¸422,

a "nite-size scaling expansion similar to Eq. (2.65) was used [104],


"¸���(c
	
#c

�
tK ¸�

H
� #c

�
tK �¸��H

� #q
�
¸
��#q

�
¸��
���) , (4.24)

where tK is a variable that includes a "nite-size shift of ¹
�
,

tK "t#�¸��� , (4.25)
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Fig. 7. Plot of (a) 
¸���� and (b) Q vs. ¸ at J/k
�
¹

�
"0.1139150. The dashed curve in (a) is the "t according to Eq. (4.24),

while the dotted curve is the result of Chen and Dohm [95], Eq. (4.19). In (b) the horizontal straight line highlights the
asymptotic value, Eq. (4.16), while the broken curve is a "t of Q according to Eq. (5.28), and the dotted line represents
again the result of Chen and Dohm [95], Eq. (4.20). From Luijten et al. [104].

and the parameters c
	
, c

�
, c

�
, q

�
, q

�
and � are adjustable constants. In a "rst step of the

"tting procedure, yH
�
was also treated as an adjustable constant, which yielded yH

�
"2.53 (4) and

J/k
�
¹

�
"0.1139152 (4). Obviously this result does not indicate any serious problem with the

prediction [cf. Eq. (4.9)] yH
�
"y

�
#�/2"2#(d!4)/2"5/2. In the second step of the "tting

procedure, this exponent was also "xed at its theoretical value, yielding then, in particular,
J/k

�
¹

�
"0.1139155 (2) and c

	
"1.91 (2). Using now the asymptotic result following from

Eq. (4.19), namely (J
	
"2J/k

�
¹)


"¸���P
 (0, 0)"
¸��

�
(0)

J
	
�y

"

¸���

�l
	
J
	

�(3/4)
�(1/4)

, (4.26)

one recognizes that the constant c
	
is directly related to the length l

	
, for which one "nds (in units

of the lattice spacing) l
	
"0.603 (13) [104].
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�After submission of the present review, Chen and Dome [335] attempted a reanalysis allowing for an additional
amplitude factor A"0.678 (the present treatment means A,1). Thus "tting an additional parameter the discrepancy
between their theory and the Monte Carlo results can be reduced.

The procedure of estimating l
	
is reviewed here in such detail since it has been criticized by Chen

and Dohm [95] in a note added to their paper. While we consider this criticism as unfounded, we
leave it to the reader to form his own opinion on this apparently controversial issue.�
Also the parameter �

	
can be extracted from the Monte Carlo data, since in the limit yP0, at

"xed small t, Eqs. (4.4), (4.19) imply


t"
��
	
J
	

x

�y#36I
�
(r� )y�

�
�
(>(x, y))

�
	
P ��

	
/J

	
. (4.27)

Alternatively, in Ref. [104] it was found convenient to use the result from high-temperature series
[294] for this purpose, 
"A/(1!v/v

�
) where v"tanh(J/k

�
¹) andA"1.311 (9). Rewriting this in

terms of t yields 
"1.322t�� and Eq. (4.27) gives �
	
"0.549 (2).

Having "xed all constants of the theories [Eqs. (4.9)}(4.12) or (4.18)}(4.22), respectively], we show
in Fig. 7 the approach of both 
 and Q at ¹

�
to their limiting behaviors. For Q an expansion

analogous to Eq. (4.24) was used [103]

Q(¸, t)"PI
�
(0)#c	

�
tK ¸���#c	

�
tK �¸�#q	

�
¸
��#q	

�
¸��
��� . (4.28)

In addition, analyses have been performed where Q (R, 0) was not "xed at its theoretical value
PI
�
(0), Eq. (4.16), but also in this case the results were nicely compatible with Eq. (4.28) [289]. The

data show that even for ¸"22 the data are still far from their asymptotic values, due to strong
corrections to the leading "nite-size scaling behavior Q(¸, 0)"PI

�
(0) and 
¸����"c

	
. The theory

of Chen and Dohm [95], which is claimed to describe exactly the leading corrections (of order
¸����) to the asymptotic behavior, is not useful in this regime. In particular, for 
¸���� it predicts
a monotonic decrease toward the asymptotic value, while the Monte Carlo data reach a shallow
maximum "rst and then a decrease in a much less pronounced way (note that, by construction,
both curves in Fig. 7b converge to the same constant c

	
!).

Thus the present state of a!airs concerning this model is somewhat disappointing: although one
knows all the critical exponents exactly (including those of the correction terms), and even
"nite-size scaling functions are believed to be known exactly both in the limit yP0 (where the
`zero-modea results [74] hold) and also beyond it, where nonuniform terms in Eq. (4.13) were
computed via perturbation theory in "rst-order loop expansion for the �
 model [Eq. (4.17)],
there is no explicit understanding of the behavior found in the accessible range of ¸ (Fig. 7). The
simulation data are compatible with the approach to `zero-modea results [74] for ¸PR, but the
approach is surprisingly slow, and for the accessible range of ¸ other corrections than those derived
by Chen and Dohm [95] are dominant. Luijten et al. [104] have speculated that this discrepancy
could be due to the need of including second-order terms in the loop expansion, or that corrections
might be present due to the fact that an Ising model only asymptotically agrees with a �
 model
[Eq. (4.17)]. Thus the e!ects of statistical #uctuations on critical behavior are not even completely
clear when ultimately the critical behavior is mean-"eld like.
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Table 5
The cuto! distance R

�
of the interaction function, the corresponding coordination number q, and the e!ective range of

interaction R for the equivalent-neighbor Ising model in d"2 and d"3 dimensions

d"2 d"3

q R�
�

R� q R�
�

R�

4 1 1 6 1 1
8 2 3/2 18 2 5/3
12 4 7/3 26 3 27/13
20 6 17/5 32 4 39/16
24 8 25/6 56 5 99/28
36 10 6 80 6 171/40
60 18 148/15 92 8 219/46
100 32 81/5 122 9 354/61
160 50 517/20 146 10 474/73
224 72 1007/28 170 11 606/85
316 100 4003/79 178 12 654/89
436 140 7594/109 202 13 810/101

250 14 1146/125

5. Crossover scaling in Ising systems with large but 5nite interaction range in
d�2 and d�3 dimensions

5.1. General theory

In this section we consider the Hamiltonian [45}51,92]

H/k
�
¹"!�

�

�
���

K(r
�
!r

�
)S

�
S
�
!h

	
�
�

S
�
, S

�
"$1 (5.1)

with an interaction K(r) de"ned as

K(r),cR�� r"�r
�
!r

�
�4R

�
; K(r)"0 r'R

�
. (5.2)

Here c is a constant, R
�
a cuto! distance and the range R of the interactionK(r) is de"ned in terms

of its second moment, as usual,
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�����
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�
!r

�
)�K(r

�
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�
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�	
�����

K(r
�
!r

�
)

"

1
q

	
�

�����

�r
�
!r

�
�� . (5.3)

Here q is the coordination number of this `equivalent-neighbor Ising modela and �	 indicates that
the summation is restricted to r4R

�
. For large R

�
we have a simple proportionality between

R and R
�
, R�"R�

�
/2 (d"2) or 3R�

�
/5 (d"3), whereas for small R

�
there are lattice e!ects. In

Table 5 we have listed the choices of R�
�
that have been studied [49,92].

For RPR this model crosses over to the trivial mean-"eld model of a ferromagnet, in which
every spin interacts equally with every other spin, and then the simple Weiss molecular "eld theory
becomes exact [9]. However, whenR is large but "nite one expects that mean-"eld theory describes
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Fig. 8. Qualitative picture of the renormalization trajectory describing the crossover from the Gaussian "xed point
�H
	
"(r

	
"0, u"0) to the Ising "xed point �H"(rH

	
, uH). From Luijten et al. [92].

the behavior of the model quite well, except in a very narrow neighborhood of the critical point:
There ultimatively mean-"eld theory must break down, and a crossover from mean-"eld critical
behavior (critical exponents �"0 ["nite jump in the speci"c heat], �"1/2, �"1, �"1/2, 
"0
[8,9,15,16]) to the critical behavior of the `Ising universality classa [13}21] occurs. The analysis of
this crossover by means of Monte Carlo simulations is in the focus of the present section.
To analyze this crossover it is instructive to consider the associated Ginzburg}Landau "eld

theory in continuous space [92]

H(�)/k
�
¹"!


�

dr�
1
2


�r�r�����

dr	�
c
R�

�(r)�(r	)�!
1
2
v��(r)!u

	
�
(r)#h

	
�(r)	 , (5.4)

where �(r) is the single-component order-parameter "eld, v is a temperature-like variable, and u
	
is

a constant. After Fourier transformation and suitable rescaling of �, this can be rewritten as
(remember that N"¸� is the total number of lattice sites)

HM (�
�
)/k

�
¹"

1
2
�
k �k�#

r
	
R���k��k#

u
4R
N

�
k
�

�
k
�

�
k
�

�k
�
�k

�
�k

�
�

�k
��k

��k
�
!

h
R�

N
2

�k�0 .

(5.5)

See Ref. [92] for a detailed derivation of the relation between the new parameters u, h and the old
ones (u

	
, h

	
). The variable r

	
is proportional to the relative deviation of the temperature from its

critical-point value in mean-"eld theory.
We are interested in identifying the crossover scaling variable associated with the crossover from

the Gaussian "xed point (u"0, r
	
"0) to the nontrivial "xed point (Fig. 8). Because of the trivial
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character of the Gaussian "xed point and the fact that the crossover scaling description should
hold all the way from the Ising "xed point to the Gaussian "xed point, one can infer the length scale
l
	
exactly,

l
	
"R
��
��� . (5.6)

This is done by considering a renormalization transformation by a length scale l,

k"kl, N	"Nl��, �	
��

"l���
�
. (5.7)

Note that Eq. (5.7) was constructed such that the Hamiltonian is left invariant,
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!

h
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N	
2
l������	k��0 . (5.8)

For d(4, the �
 term grows and the system moves away from the Gaussian "xed point �H
	
toward

the Ising "xed point. The crossover to Ising-like critical behavior occurs when the coe$cient of the
�
 term is of the same order as the k��� term, which is unity: This happens when l"l

	
as given in

Eq. (5.6). By comparing the coe$cient of the �
 term to that of the r
	
�� term, one derives

a criterion that states for which temperatures the critical behavior will be Ising-like and for which
temperatures it will be classical: actually this is nothing but the well-known Ginzburg criterion
[109]! One expects the Gaussian "xed point to dominate the renormalization #ow if, irrespective of
l, the �
 coe$cient is small compared to the temperature coe$cient. Thus, one requires the scaled
combination uR�
l
��/(r

	
R��l�)�
����� to be small, or, equivalently (see also [87])

r�
�����
	

R�/u<1 . (5.9)

Since the total free energy is conserved along the renormalization trajectory, we can conclude that
the singular part of the free-energy density resulting from Eqs. (5.4), (5.5) and (5.8) must satisfy the
scaling relation

fI
��
r
	
R�,

u
R
,

h
R�"l��fI

��
r
	
R�

l�,
u
R


l
��,
h
R
l������ . (5.10)

We see that a "nite and nonzero value for the second argument of fI
�
is retained exactly when l takes

the value of the crossover scale l
	
. Thus, we conclude from Eq. (5.10) that the singular part of the

free energy scales with R as follows:

fI
�
"R�
���
���fK

�
(r�
	
R����
���,u� , hR����
���) . (5.11)

In Eq. (5.10) we have anticipated that a natural choice of coordinates (Fig. 8) is to measure r�
	
and

u� as distances from the Ising "xed point, unlike in the original Hamiltonian, where r
	
and u

	
are

distances from the Gaussian "xed point. Eq. (5.11) describes how the temperature distance r�
	
from

criticality and the magnetic "eld h scale with the range of interaction R: Note that here the
crossover exponent is known exactly, unlike for other cases of crossover, such as the crossover
between the Ising and Heisenberg universality classes in isotropic magnets with varying
uniaxial anisotropy [295]. Obviously, the same result for the crossover exponent follows from
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simple-minded arguments using the Ginzburg criterion [87,109]. The location of the nontrivial
"xed point �H (Fig. 8), the associated critical exponents y

�
, y

�
,� and the explicit form of the scaling

functions fI
�
or fK

�
, respectively, cannot be obtained exactly. The calculation of these scaling functions

(as well as of corresponding scaling functions of free-energy derivatives, e.g. of the susceptibility)
remains a nontrivial task for both renormalization-group approaches [110}124] andMonte Carlo
calculations [45}50,87], as will be described below. If we carry out a rescaling transformation by
a factor b in the neighborhood of the Ising "xed point, the nontrivial exponents y

�
, y

�
and � must

show up in the transformation as follows:

fK
�
"b��R�
���
���fK

�
(tR����
���b�� , u� b��,hR����
���b��) , (5.12)

where for simplicity we have replaced the variable r�
	
by the reduced temperature distance t from

the true critical point, suppressing the prefactor in the relation r�
	
Jt. From Eq. (5.12), one can

derive scaling relations for critical amplitude prefactors of the magnetization, the susceptibility, the
speci"c heat, etc. [87,92], in powers of R. In addition, we can generalize Eq. (5.12) immediately to
the case of "nite-size scaling, by including l/¸ in Eq. (5.10) or l

	
b/¸"bR
��
���/¸ in Eq. (5.12) as

an additional scaling variable. The "nite-size scaling behavior is then found by choosing b such that
l
	
b/¸"1, i.e.,

b"¸R�
��
��� . (5.13)

The critical behavior of the magnetizationm and the susceptibility 
 are then obtained in terms of the
"rst ( fK ���

�
) and second ( fK ���

�
) derivative of the scaling function fK

�
for the free energy as follows [92]:

m"¸����R����
�� ���
���fK ���
�

�t¸��R�����������
���, u� ¸��R
���
���,h¸��R����
�� ���
���� , (5.14)
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���fK ���
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�t¸��R�����������
���,u� ¸��R
���
���, h¸��R����
�� ���
���� . (5.15)

The "nite-size scaling right at ¹
�
(t"0, h"0) can then be written as

��m��"¸����R����
�� ���
���m� (¸R�
��
���)"¸���
m\ (¸R�
��
���) , (5.16)


"¸�����R�����
�� ���
���
� (¸R�
��
���)"¸���
\ (¸R�
��
���) , (5.17)

and
Q"Q[ (¸R�
��
���) , (5.18)

where m� ,m\ , 
� , 
\ and Q[ are suitable scaling functions. Note that these functions have been de"ned
such as to bring out a simple limiting behavior in the respective limits, namely
m� (�PR)"const, 
� (�PR)"const, while m\ (�P0)"const, 
\ (�P0)"const. In the opposite
limit the functions then must be simple power laws, which are easily extracted from Eqs. (5.16) and
(5.17). On the other hand, the functionQ[ smoothly interpolates from the constant PI

�
(0) [Eq. (4.16)]

that is reached for �P0 to the constant Q[ (�PR) which is the respective universal constant Q
[Eq. (2.63)] for the corresponding universality class of the short-range Ising model at the respective
dimensionality d(4.

5.2. Numerical results for d"2 dimensions

The "rst task is again the accurate numerical determination of the critical temperature. Note that
the straightforward cumulant intersection method (Fig. 2) is not expected to work here, due to the
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Fig. 9. The amplitude ratio Q
�
(K

�
) at the critical point of the two-dimensional Ising model with interactions up to

R
�

"�140 as a function of linear system dimension ¸ (discrete points). For large ¸, Q
�
(K

�
) approaches the Ising limit

Q"0.856216 [296], dotted line. For decreasing ¸, Q
�
(K

�
) approaches the mean-"eld limit PI

�
(0) [Eq. (4.16)], until the

linear dimension becomes smaller than the range R
�
and strong "nite-size e!ects come into play. To illustrate that the

system indeed behaves mean-"eld like for small sizes, Q was also plotted for "nite systems in which all spins interact
equally strongly (dashed curve). The points are seen to approach this curve for small ¸. From Luijten et al. [92].

presence of the argument ¸R�
����
�"¸/R� in Eq. (5.18). As illustrated in Fig. 9, there is indeed
a slow crossover that is spread out over several decades in ¸. Obviously, it is very di$cult to cover
the full crossover with a single choice of R. In order to reproduce the mean-"eld limit described in
Eq. (4.16), one needs to choose R relatively large; at the same time, however, ¸ must not become
smaller than R, because otherwise every spin interacts with the same strength with every other spin
and the character of "nite-size e!ects is di!erent in this limit: For such a "nite mean-"eld system
containing N spins, one easily derives Q"PI

�
(0)#0.214002/�N #O(1/N) [250] (dotted curved

in Fig. 9). Fig. 9 shows that even for R
�

"�140 one does not yet fully reach the mean-"eld result
Q"PI

�
(0)+0.456947. On the other hand, in order to reach the Ising limit, values of ¸/R�+10�

are required (Fig. 10). The asymptotic value Q"Q[ (R) for the Ising limit is known with very high
precision, Q"0.856216 (1) [296], and this number is used as an input for the analysis. Luijten
et al. [46,92] used linear sizes up to ¸"500 for R�

�
410, and for larger ranges R

�
system sizes up

to ¸"700 or even ¸"800 (R�
�

"100, 140). For each run 10� Wol! clusters were generated after
equilibration of the system, sampling the various thermodynamic quantities after every tenth
Wol! cluster. Q

�
(K) was then "tted to Eq. (2.63), using the exponents appropriate to the d"2

Ising case,

�"1, �"1/8, �"2 . (5.19)

The resulting estimates for the critical coupling K
�
are plotted vs. R�� in Fig. 11. Motivated by

renormalization-group arguments [92], these data are "tted by a power law with a logarithmic
correction,

qK
�
"1#R��(a#b lnR)#cR�
 , (5.20)
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Fig. 10. Finite-size crossover scaling curves plotted in d"2 dimensions at ¹"¹
�
(R) vs. ¸/R� for (a) Q,

(b) �m�¸���/C[m], and (c) 
¸��/C[
]. In order to remove some corrections to scaling, corrections
C[m]"1!R��(b

�
#b

�
lnR�) and C[
]"1#R��(q

�
#q

�
lnR�)#q

�
R�
, with b

�
, b

�
, q

�
, q

�
and q

�
adjustable

constants, have been "tted to the data. (Note that the functional form of these "nite-range corrections can be justi"ed by
renormalization-group arguments). Di!erent symbols stand for the di!erent choices of R�

�
, as indicated in the "gure.

Mean-"eld and Ising asymptotes are included in parts b and c. From Luijten et al. [46].

where a"!0.267 (6), b"1.14 (6) and c"!0.27 (3). This relation (the curve drawn in Fig. 11)
is useful for providing estimates for very large R (i.e., for 5004R�

�
410000), where direct

determinations of K
�
from "nite-size scaling would no longer be feasible.

Fig. 10 has already provided evidence that the crossover from mean-"eld behavior to short-
range Ising behavior occurs in a smooth fashion and is spread out over several decades in the
crossover scaling variable, which is ¸/R� for d"2 [cf. Eqs. (5.16)}(5.18)]. Also the thermal
crossover spans a comparatively wide regime but now the crossover scaling variable is tR� [cf.
Eq. (5.12)]. Putting b"1 in Eq. (5.12) one directly obtains

��m��"t	R���	�����
���m�
�
(tR����
���)"R����
���m\

�
(tR����
���) (5.21)
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Fig. 11. Plot of 1/(zK
�
) vs. R��, where z denotes the number of equivalent neighbors, for the d"2 equivalent-neighbor

Ising model. The dotted line denotes the extrapolation to the mean-"eld limit. The inset shows 1/(zK
�
) over the full range

of R�� between the Ising and the mean-"eld limit. From Luijten et al. [92].

and


"t��R���������
���
�
�
(tR����
���)"R����
���
\

�
(tR����
���) , (5.22)

where we have attached the subscript t to the crossover scaling functions in order to distinguish
them from those for the "nite-size scaling crossover, Eqs. (5.16) and (5.17). Fig. 12 shows a corre-
sponding plot for ��m�� and Fig. 13 for 
 (at temperatures¹(¹

�
). One sees that the `raw dataa for

��m�� and 
 only show a rough collapse and that there are various systematic deviations from
a perfect match to a master curve. For example, for very small values of �tR�� the data start to
deviate from the slope of the Ising asymptote and approximately cross over, for temperatures closer
to ¹

�
, to a constant value. This crossover to a horizontal slope occurs at an ¸-dependent location

and is due to residual "nite-size e!ects: Eqs. (5.21) and (5.22) only follow from Eqs. (5.16) and (5.17)
in the limit ¸PRat "xed tR���
���. The data which are a!ected by such "nite-size e!ects were all
omitted in part (b) of Figs. 12 and 13.
However, even in the remaining data one "nds that, in the regime where ��m��R is already

proportional to (!tR�)��� for small �tR��, there is a systematic o!set in the prefactor: One obtains
a set of parallel straight lines rather than a collapse on a single line. It turns out that this e!ect
results from a `"nite-rangea correction C[m] to the critical amplitude. The same correction was
already involved in the "nite-size crossover scaling plot, Fig. 10. The presence of such corrections
actually is no surprise at all } the treatment presented in the previous section applies for
RPR, tP0 and tR����
��� "nite or RPR, ¸PR and ¸R�
��
��� "nite, whereas we have
included rather small values of R in Figs. 10}13. If one would only include data lying in the
appropriate scaling limit into the analysis, there would be no need for the present corrections:
However, in order to reach, for large R, the scaling limit of the Ising universality class, one would
have to simulate huge systems very close to ¹

�
(R). Presently, such simulations are not feasible, and

therefore Luijten et al. [45}51,92] decided to include relatively small values of R in the analysis as
well and to apply appropriate corrections. The functional form of this range-dependent corrections
can be justi"ed by renormalization-group arguments.
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Fig. 12. Log}log plot of (a) ��m��R and (b) ��m��R/C[m] vs. tR�, for the d"2 equivalent-neighbor Ising model, where the
reduced temperature t is de"ned as t"[¹!¹

�
(R)]/¹

�
(R) and the symbols denote various choices of R�

�
as indicated. In

(a) no additional correction terms have been used, while in (b) the factor C[m] has been divided out (see text), data points
in the "nite-size regime have been omitted, and data for R�

�
572 have been corrected for saturation e!ects. The dotted

straight lines show the asymptotic power laws in the Ising and mean-"eld regime, respectively. From Luijten et al. [46].

Fig. 13. Log}log plot for the susceptibility 
� ,[�m��!��m���]¸�/(k
�
¹), normalized by a factor R�C[
], see text, vs. the

thermal crossover variable tR�. Various choices of R�
�
are included as indicated. In part (b) data points in the "nite-size

regime, which are included in (a), have been omitted, and data for R�
�

572 were corrected for saturation e!ects. Dotted
straight lines show the asymptotic power laws in the Ising and mean-"eld regime, respectively. From Luijten et al. [46].

A further systematic deviation from a data collapse for ��m�� is encountered for large values of
�tR��: There the curves systematically bend away from the mean-"eld asymptote toward smaller
values. This results from a saturation of the order parameter at low temperatures, as can be
understood already within mean-"eld theory: the magnetization must fall below the power law
��m��"�3(!t)��� as ¹P0 since then ��m��P1 rather than ��m��P�3. In fact, from the
self-consistent molecular-"eld equation ��m��"tanh(��m��¹

�
/¹) one can derive [46]

��m��R+�3(!tR�)����1!

2
5R�

(!tR�)!
12

175R

(!tR�)�� . (5.23)
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Using the term in square brackets to correct the numerical data for large �tR��, one obtains the
almost perfect data collapse for the magnetization shown in Fig. 12b.
Similar e!ects occur in the susceptibility, Fig. 13: For small �tR��, the curves bend away from the

Ising asymptote toward ¸-dependent plateau values because of "nite-size e!ects and for large �tR��
the curves decrease more strongly than expected from the mean-"eld asymptote, which is again
a saturation e!ect, since 
"(1!m�)/(t#m�) in the molecular "eld approximation, and the
numerator of this expression vanishes asmP1. In fact, it is straightforward to derive the expansion
[46]


��(¹(¹
�
)+(!2t)���1#

9
5
t!

36
175

t�!

36
175

t�!

13 428
67 375

t
� (5.24)

and using again the term in square brackets to correct the data for 
 for these saturation e!ects, one
obtains the perfect collapse on a master curve shown in part b of Fig. 13.
A very remarkable feature occurs in the central part of the crossover, for !14tR�4!10��,

where the scaled data fall below the mean-"eld asymptote before reaching the Ising asymptote.
This means that in the intermediate regime of the crossover scaling one "nds an e!ective exponent
�
���

(1! These e!ective exponents are traditionally de"ned as logarithmic derivatives [297],

�
���

,d ln��m��/d ln �t�, �
���

"!d ln 
/d ln �t�"!td ln 
/dt . (5.25)

While �
���

varies monotonically from the mean-"eld value �
��

"1/2 for large �tR�� to the Ising
value �"1/8 for small �tR�� [46], the variation of �

���
is monotonic above ¹

�
but nonmonotonic

below ¹
�
(Fig. 14). The physical reason why ��

���
varies monotonically while ��

���
shows this

`underswinga is unclear, and there are presently no theoretical predictions for the crossover scaling
functions shown in Figs. 13b and 14a! However, for ¹'¹

�
, �

���
has been found by Pelissetto et al.

[124] by means of a systematic perturbation around the mean-"eld limit, and the agreement with
Fig. 14b is almost perfect, cf. Fig. 14c.
One question that has been left unanswered by the treatment of Section 5.1 is the universality of

crossover scaling functions such as fK
�
[Eq. (5.12)] or the functions fK ���

�
, fK ���

�
, m� , 
� , m�

�
, 
�

�
[Eqs.

(5.14)}(5.17), (5.21), (5.22)] derived from it: Is there a single variable R that controls such crossover
phenomena, or are there additional parameters on which these crossover scaling functions might
depend? There is no complete consensus on this problem in the literature [110}124]. In the absence
of clear theoretical guidance, and because of suggestions that the presence of an additional length
scale might in#uence the nature of the crossover [121], it has been speculated that the shape of the
interaction function K(r) might play a role [50]. In order to check this conjecture, a function K(r)
was constructed that did not only involve a single length scale R, but rather two di!erent scales
R

�
, R

�
, by choosingK(r)"K

�
for 0(r(R

�
and K(r)"K

�
for R

�
(r(R

�
. In order to create

a strong asymmetry between the two domains, a large strength ratio was chosen, K
�
/K

�
"16.

Now it is possible to choose very di!erent combinations R
�
,R

�
that yield the same e!ective range

R, de"ned from Eq. (5.3) in the usual way. For example, choosing R�
�
"93, R�

�
"140 yields

R�"48.8 while the very di!erent choice R�
�
"4, R�

�
"140 yields the quite similar value

R�"49.99. Indeed, one "nds that both choices yield appreciably di!erent results forK
�
, although

R is almost the same. However, the crossover scaling function for both choices is precisely identical!
Thus, the idea that the crossover scaling functions might be nonuniversal because they depend on
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Fig. 14. E!ective susceptibility exponents (a) ��
���

and (b) ��
���

for ¹(¹
�
and ¹'¹

�
, respectively, plotted vs. tR�. The

Ising value (�"7/4) and the mean-"eld (MF) limit (�"1) are indicated. The symbols indicate di!erent values of R. From
Luijten et al. [45]. (c) E!ective exponent �

���
for the d"2 Ising model for ¹'¹

�
, as a function of tR�, comparing results

of Luijten et al. [46] with results from a systematic perturbation expansion around the mean-"eld limit. Pluses, crosses,
squares and diamonds correspond to data for R�

�
"10, 72, 140 and 1000, respectively. From Pelissetto et al. [124].

the detailed shape of K(r) can be refuted } although this "nding clearly cannot rule out that other
parameters that induce nonuniversal variations of the scaling functions might exist.

5.3. Numerical results in d"3 dimensions and comparison with theoretical predictions

The analysis of Luijten and Binder [48,49] in the case d"3 closely followed the procedures
that already had been applied earlier in the case of d"2, and thus we keep the description of the
results rather brief. The "nite-size crossover scaling variable is now ¸/R
��
���"¸/R
 [cf.
Eqs. (5.16)}(5.18)]. Thus one has to reach the regime where¸/R
<1 and at the same time ful"ll the
requirement R<1 in order to span the full crossover region, and these simulations are therefore
computationally quite demanding. In fact, simulations have been carried out for linear dimensions
up to ¸"200, i.e., 8 million lattice sites, attempting to nevertheless obtain Q

�
(K

�
) with a precision

of one part in a thousand.
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Fig. 15. Finite-size crossover scaling curves for d"3 dimensions at ¹"¹
�
(R) vs. ¸/R
 for (a) Q, (b) �m�¸��
/C[m] and

(c) 
¸����/C[
]. Systems with up to q"52 514 interacting neighbors have been included. From Luijten [49].

Again Q
�
(K) was "tted to Eq. (2.63), using now the value Q"0.6233 (4) as an input (see

Section 3), as well as the exponents 1/�"1.587 (2) and �"0.82(6), as obtained from a similar data
analysis for the nearest-neighbor model. The resulting values for K

�
(R) are compatible with an

expression expected from renormalization-group arguments,

qK
�
"1#

c
	
R�

#

c
�
R�

#

c
��
c
�
lnR

R�
#2 (5.26)

In comparison with the corresponding result for d"2, Eq. (5.20), the logarithmic correction
appears in rather high order only, and hence the resulting coe$cient c

�
(as well as the coe$cients of

the neighboring orders c
�
and c

�
) are di$cult to determine. Only c

	
"0.498 (2) is known to a high

precision [49].
Fig. 15 shows the analog of the plots in Fig. 10 for the "nite-size crossover scaling. One observes

that the crossover spans at least four decades in the variable ¸/R
. Correction terms of the form
C[m]"1#aR��, C[
]"1#bR��#cR�
 were applied to correct for residual "nite-range
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Fig. 16. Log}log plot of the scaled susceptibility, 
� G, vs. the scaled temperature distance from criticality, t/G, for the
three-dimensional equivalent-neighbor model and temperatures ¹'¹

�
. Di!erent symbols show di!erent interaction

ranges R, as indicated in the key of the "gure. The `Ginzburg numbera G is de"ned in Eq. (5.28). The crossover functions
due to Belyakov and Kiselev (BK) [119] and Bagnuls and Bervillier (BB) [112] are also included, but are indistinguish-
able from each other (and from the numerical data) on the scale of this graph. The asymptotic power laws in the
mean-"eld limit (
� "1/t) and in the Ising limit (
� "��t��, with �"1.237 and ��"1.1025, cf. text) are included as well
(dotted straight lines). From Luijten and Binder [48].

e!ects. Coordination numbers from q"18 to q"52 514 were included in Fig. 15. The straight
lines marked `Isinga in parts (b) and (c) have the theoretical slopes y

�
!9/4"0.2315 and

2y
�
!9/2, respectively. The amplitudes of the horizontal mean-"eld asymptotes in these plots are

known exactly. For RPRone has

��m��¸��
"12��

�(1/2)
�(1/4)

+0.909891 ,


¸����"�12
�(3/4)
�(1/4)

+1.170829 , (5.27)

which agrees well with the data.
Fig. 16 presents the thermal crossover for the susceptibility 
 for ¹'¹

�
. In this "gure, the

reduced susceptibility 
� was de"ned as (¹
�
(R)/¹)¸��m��, so that in the mean-"eld limit one simply

has 
� "t��, while for the nearest-neighbor Ising model 
� "��t�� where �"1.237 [42] and
��"1.1025 [58] have been taken. From Eq. (5.22) we notice that the crossover scaling variable is
tR� in d"3 dimensions. When discussing the universality of the crossover scaling description,
a suitable amplitude factor for this crossover scaling variable must be taken into account. In order
to make contact with experimental analyses of crossover phenomena, we introduce the notion of
the `Ginzburg numbera G [19,109]. Writing the phenomenological Ginzburg criterion in terms of
the mean-"eld power laws for the order parameter (��m��"B

��
(!t)���), the susceptibility

(
� "��
��
t��) and the correlation length (�"��

	���
t����), mean-"eld theory is valid for �t�<G, with

G"�
3
4��

�(��
��
)�

(B
��
)

[v

	
/(��

	���
)�]�"G

	
R�� . (5.28)
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Fig. 17. (a) E!ective exponent ��
���

of the susceptibility of the three-dimensional equivalent-neighbor Ising model above
¹

�
plotted vs. the logarithm of the crossover scaling variable t/G, along with three theoretical calculations, obtained from

the work of Seglar and Fisher (SF) [110], Bagnuls and Bervillier (BB) [112] and Belyakov and Kiselev (BK) [119], as
described in the text. (b) Same as (a) but for the exponent ��

���
for ¹(¹

�
. `Appa denotes the approximation discussed in

the text. From Luijten and Binder [48].

Here v
	
is the unit of volume (v

	
"1 in the Ising model, if length is measured in units of the lattice

spacing). For the gas}liquid transition or for unmixing transitions in mixtures of small molecules,
v
	
is the volume per molecule and in the case of polymer mixtures v

	
is interpreted as the volume

per monomer [132}141]. Since in the mean-"eld theory of an equivalent-neighbor Ising model
��
	���

JR and the other amplitudes occurring in Eq. (5.28) do not depend on R, the simple power
lawG"G

	
R�� is obtained. In many experimental studies one actually does not attempt to extract

all the amplitudes in Eq. (5.28) from experimental data, but often simply takes G as an adjustable
constant [141].
In principle, the crossover scaling description of Eqs. (5.21) and (5.22) is only expected to hold in

the limit �t�P0, RPR, with �tR����
����"�tR�� "nite. However, Fig. 16 shows that it is even
possible to approximately represent data for all R down to R"1 by a single master curve. This is
possible because the amplitude G

	
+0.1027 in Eq. (5.28) was chosen such that the scaling function

of Ref. [119] precisely reproduces the amplitude ��"1.1025 for R"1 [48]. Also a scale
parameter in the theory [112] included in Fig. 16 was adjusted such that the prefactors of the two
asymptotic power laws are reproduced. One should not be misled by the apparently perfect
agreement between these theories and the simulation results, however: Since the ordinate scale
spans 10 decades, systematic deviations in the crossover regime cannot be detected here. Therefore
it is again important to also consider the variation of the e!ective exponents ��

���
and ��

���
, as

was done already in the case d"2 (Fig. 17). While in the direct representation of the susceptibility
data (Fig. 16) the crossover seems to be rather sharp, the plot of the e!ective exponent shows that
also in d"3 dimensions the crossover is actually spread out over many decades in the scaling
variable t/G.
Several theoretical descriptions have been included in Fig. 17a. The "rst one is based on an

extrapolation of a "rst-order �-expansion [110], which we write as

��
���

"1#(�!1)/�1#exp[�
�
ln(ct/G)]� , (5.29)
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where the constant c is an ad hoc "t parameter introduced in [48] to "t the initial rise of ��
���

with
decreasing log

�	
(t/G). The second curve (labeled as BB) results from a renormalization treatment

[112] and also involves a single adjustable parameter for the abscissa scale. Given the great
success of this technique in accurately predicting the Ising critical exponents (see Table 3,
Section 3), one expects that this theory provides the most accurate description in the limit
where GP0 but t/G remains "nite. The third description is another phenomenological generaliz-
ation of "rst-order �-expansions [119], which is now very popular with experimentalists (e.g., it has
been used to analyze crossover scaling phenomena in polymer mixtures [140,141]), and hence we
describe it here in some detail. The susceptibility is written as the solution of the following implicit
equation

t/G"[1#�(
� G)
��]������
�(
� G)��#[1#�(
� G)
��]���
� , (5.30)

where �+2.333 is a universal constant, and �"��+0.508 (25) [43] is the critical exponent of the
leading correction to scaling. As mentioned above, G

	
"0.1027 must be chosen in order to

describe the Ising asymptote in Fig. 16, while the theoretical value [119] for G
	
in our model would

be G
	
"27/�
+0.27718. We shall return to this problem below. Here we only emphasize that all

three theoretical formulas as well as the Monte Carlo data imply that in the symmetric phase
(¹'¹

�
) the variation of the e!ective exponent with t/G is monotonic, in contrast to a conjecture

of Fisher [115] who suggested that a nonmonotonic variation of ��
���

might be a property of the
universal scaling function. However, the data in the phase of broken symmetry (¹(¹

�
, Fig. 17b)

show that here ��
���

stays close to the mean-"eld value �
��

"1 over a muchmore extended region of
log

�	
(!t/G), namely from large values of log

�	
(!t/G) down to about log

�	
(!t/G)+1, followed

by a rather sharp rise of ��
���
, similar to the situation for ¹(¹

�
in d"2 (Fig. 14a). In fact, a very

small underswing (��
���

(�
��

"1) cannot be ruled out for the data near log
�	
(!t/G)"1. This

would then be a precursor of the pronounced underswing found in d"2 (Fig. 14a). Later
systematic expansions around mean-"eld theory [124] have in fact predicted such a slight
underswing (Fig. 18).
Unfortunately, the theoretical predictions for ��

���
are rather scarce: The "eld-theoretical calcu-

lations [298] have only been formulated for relatively small values of t/G and hence do not cover
the entire crossover region. Motivated by the success of Eq. (5.29) for ¹'¹

�
, Luijten and Binder

[48] used a similar, but now purely phenomenological, expression for ¹(¹
�
,

��
���

"1#(�!1)/[1#exp(ln c	t/G)] , (5.31)

where c	 is another adjustable constant. This approximation happens to "t the numerical results
fairly well (Fig. 17b), although it does not yield the above-mentioned `underswinga predicted by
Pelissetto et al. [124].
We now turn to the interpretation of the systematic deviations between the numerical data for

��
���

(Fig. 17a) and all the theories, occurring near the Ising limit: Does this systematic deviation
mean that the theories fail to predict the universal crossover scaling limit (tP0, GP0, t/G "nite)
for small t/G (small tR�)? Actually we believe that this is not the case, but that the discrepancies are
caused by the inclusion of too small values of R (such as models with interactions between only
nearest (R"1) or nearest and next-nearest (R"1.3) neighbors, for instance). In fact, in Figs. 10, 12
and 15 it was already emphasized that corrections due to the "nite range R are required in order to
obtain valid data in the crossover scaling limit. Of course, the quantitatively accurate estimation of
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Fig. 18. E!ective susceptibility exponent as a function of �t�R� for the high and low-temperature phase of the
three-dimensional Ising model. The curves are the result of a systematic perturbative expansion around the mean-"eld
limit. From Pelissetto et al. [124].

such correction terms is a delicate matter, and hence residual systematic errors must be anticipated
for too small R.
This conclusion is also corroborated by the systematic perturbation expansions around the

mean-"eld limit (which is exact for RPRat "xed tO0) [124]. This work shows that correction
terms to the crossover scaling limit appear in various quantities and scale to leading order like
R�� lnR for d"2 and R�� for d"3, respectively. Hence, these corrections have the same form as
the deviations from the mean-"eld result for the critical temperature [cf. Eq. (5.20) and (5.26),
respectively], as found from renormalization-group arguments [49,92].
Further evidence that the Monte Carlo data for small t/G in Fig. 17a do not re#ect the behavior

of the universal crossover scaling limit comes from analysis of these data [299] in terms of a recent
phenomenological two-parameter description of crossover scaling [120,121] that has proven
very useful to account for various experimental data of #uids and binary #uid mixtures
[142,145,146,300,301]. This description was derived from a renormalization-group matching for
the free-energy density, and although it is based on a "rst-order �"4!d expansion, using the
correct exponents of the d"3 Ising model instead of their values in "rst order in � makes this
description a #exible and useful interpolation scheme. It contains two crossover parameters,
a parameter u� related to the coe$cient u of the quartic term in Eq. (5.5) and a parameter� which is
essentially a large-momentum cuto!, both of which are system dependent. Then there exist
nonuniversal scale factors c

�
, c� in the inverse square correlation length ��� and the inverse

susceptibility 
��, which are both written in terms of a crossover function >(u� ,�):

���"c
�
t>�������
 , (5.32)

1!(1!u� )>"u� [1#(��)�]���>��
 , (5.33)
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��"c��c�
¹

�
¹

t>������
�1#

�uH
2� � 2[(��)��#1]��/�#

(1!u� )>
1!(1!u� )>�!(2�!1)/�		

��
.

(5.34)

Here uH"0.472 is the universal coupling constant at the RG "xed point [302]. In the approxima-
tion of an in"nite cuto! �PR, which physically corresponds to neglecting the discrete structure
of matter, u� P0 and the two crossover parameters u� , � in Eqs. (5.32)}(5.34) collapse into a single
one, u� �, which is related to the Ginzburg number G by G"g

	
(u� �)�/c

�
where g

	
+0.028 is

a universal constant [120]. In this limit Eqs. (5.32)}(5.34) reduce to Eq. (5.30). This single-parameter
crossover is universal, and has been calculated by powerful "eld-theoretic methods by Bagnuls and
Bervillier [112], as noted above. Pelissetto et al. [124] have investigated the numerical accuracy of
Eqs. (5.32)}(5.34) [299]. The single-parameter scaling (u� "0 reduces to the curve labeled BK in
Fig. 17a) does not "t the data for small R

�
, and one rather needs u� "1.22 to "t the data forR

�
"1.

As an interpolation, we have used u� "u�
	
R�
 with u�

	
"1.22, and �"� for a three-dimensional

Ising lattice. Since the e!ective exponent ��
���
(u� ,�, t) is a nontrivial function of three parameters

[121] the di!erent choices of R
�
(or R) corresponding to di!erent choices of u� do not lead to

a single function ��
���
(tR�) but to a whole family of functions (see Fig. 19). The choice of u�

	
"1.22

implies a variation of the Ginzburg number G"G�
	
R�� with G�

	
+0.24, qualitatively consistent

with Eq. (5.28). However, a similar "t of ��
���

implies that for ¹(¹
�
G"G�

	
/G�

	
"2.58, which

appears at variance with the theoretical result G�
	
/G�

	
"3.125 [303].

While it is gratifying that the same crossover scaling model [Eqs. (5.32)}(5.34)] can describe both
the equivalent-neighbor Ising model and various experimental systems (although we note that this
model is essentially of a phenomenological nature!), it is clear that some problems regarding the
quantitative accuracy of both the model [Eqs. (5.32)}(5.34)] and the Monte Carlo results [48] still
need to be resolved. Of course, the problem that the simulations cannot easily reach the crossover
scaling limit (tP0, GP0, t/G "xed) for small t/G is also shared by many experiments, where
typically G cannot be varied at all. Thus, it is of interest to compare the Monte Carlo results
directly to the experiments. This has recently been performed for both Xe and �He [304], and for
small t/G very good agreement between experiment and the Ising model simulations has been
found. Using data for the compressibility above the gas}liquid transition and for the coexistence
curve below it, the Ginzburg parameter G

�
(or G

�
, respectively) was used as a single adjustable

parameter, resulting in G
�
(Xe)"0.07 (2), G

�
(He)"0.070 (8), G

�
(Xe)"0.018 (2), G

�
(He)"

0.0025 (10). The compressibility data for �He strongly deviate from the crossover scaling function
for t/G��10, unlike the Xe data. This distinction was tentatively attributed to quantum e!ects
[304].
Further problems with the theoretical interpretation of experimental crossover scaling data

occur for polymer mixtures [140,141], where one does not "nd the theoretically predicted
[125}131] behaviorGJN��whereN is the degree of polymerization of the polymers. In this case,
the discrepancy is attributed to a pressure dependence of the e!ective interaction parameter not
taken into account in the theories. This problem also deserves further investigation. In any case, it
is clear that quantitative studies of crossover phenomena from the Ising universality class to
mean-"eld behavior by means of either simulations or experiments have only started a few years
ago, and much more work remains to be done.
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Fig. 19. The e!ective susceptibility exponent ��
���

for the three-dimensional variable-range Ising model and ¹'¹
�
. The

symbols indicate numerical simulation data for various choices of R�
�
, as indicated (for clarity, the error bars have been

omitted; they are all of the order of 0.004). The solid curves were calculated from Eqs. (5.32)}(5.34), using u� "u� R�

	

with
u�
	
"1.22. The dotted curve corresponds to the alternative choice u� "1.22, while the dash-dotted curve refers to the

crossover scaling limit. Note that "tting the data for the di!erent choices of R�
�
separately yields di!erent cuts of a two-

dimensional surface and thus one does not "nd a unique solid curve but a whole family of curves, which merge on the
curve for u� "0 for large enough R

�
. From Anisimov et al. [299].

6. Algebraically decaying interactions

6.1. Overview

In addition to the dimensionality, the range of the interactions is one of the few parameters that
in#uence the universal critical properties of Ising spin models. A natural extension of the "nite-
ranged interactions considered hitherto are interactions that decay as a power of the distance
between the spins. Following "rst calculations for the spherical model by Joyce [305] and
a number of rigorous results for the one-dimensional Ising model [306}308] in the 1960s, this case
was considered within the framework of the renormalization-group (RG) theory in the seminal
work by Fisher et al. [105]. As one of their central results emerged an explicit dependence of the
upper critical dimension on the decay power of the interactions. In the following decades, a limited
amount of numerical work was performed, almost exclusively restricted to the case d"1 and
mainly concerned with the calculation of the (nonuniversal) critical temperature as a function of the
power-law decay (cf. the references cited in Ref. [47]). Also on the analytical side progress focused
on the one-dimensional case, in particular on the pivotal case with inverse-square interactions
[309,310]. Obviously, the study of these systems is greatly complicated by the long-ranged nature
of the interactions. As far as numerical approaches are concerned, this leads to prohibitively large
computational requirements, restricting practical calculations to very small systems. Fortunately,
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for the case of arbitrary ferromagnetic interactions this bottleneck could be resolved by the
construction of a novel Monte Carlo algorithm which has an e$ciency that is independent of the
number of interactions per spin [250]. Indeed, this algorithm has allowed a major step forward in
the numerical treatment of several outstanding problems in the "eld of long-range interactions. For
a detailed description of the algorithm the reader is referred to Refs. [250,251].

6.2. Renormalization-group predictions

Let us "rst give a brief summary of the RG predictions as obtained in Ref. [105]. We employ here
the standard notation J(r)"r������ for the spin}spin interactions. The corresponding Landau}
Ginzburg}Wilson (LGW) Hamiltonian in momentum space then takes its standard �
 form,
except that the k� term resulting from the Fourier transform of the (��)� term (representing the
short-range interactions) is replaced by a term k� (we ignore here additional logarithmic factors
appearing for integer �). It follows then that the upper critical dimension is given by d

��
"2�. For

smaller values of � (more slowly decaying interactions), the critical behavior is mean-"eld-like and
the critical exponents take their standard classical values. An exception to this are the correlation-
function exponent 
"2!� and the correlation-length exponent �"1/�. For �'d/2, the
exponents become continuous functions of � and can be calculated by means of an �	 expansion,
where �	"2�!d [105]. There are strong indications, however, that for the exponent 
 all
correction terms vanish identically, such that also in the nonclassical regime 
 is given by 2!�.
This places us in the particular situation that we can study the critical properties of systems for
which (a) one of the two independent exponents is (presumably) known exactly and in addition (b)
the RG predictions can be veri"ed by numerical means for arbitrarily small �	, since �	 is
a continuous parameter even if the dimensionality has to take integer values. So we can speak of
a truly ideal testing ground here! At some border-line value of �, the critical behavior changes to
the standard short-range universality class. Originally, it was concluded from the RG calculations
that this occurred at �"2, where the k� term in the LGW Hamiltonian coincides with the
short-range k� term. This conclusion entails two remarkable implications. First, it would imply
a jump discontinuity in the exponent 
 as a function of �, since lim�t� 
"0 and lim�s� 
"


��
O0,

where 

��

is the exponent belonging to the corresponding short-range system. Secondly, the
one-dimensional case would not comply with this classi"cation, as rigorous results have shown
that a phase transition is absent here already for �'1 [306]. Subsequent work by Sak [106]
appeared to have resolved this point, with a smooth crossover at �"2!


��
, but later studies

[311}313] have casted some new doubts upon this issue.
Another area where RG predictions can be tested by means of numerical methods is the

perturbative calculation of "nite-size scaling functions. For systems with short-range interactions,
it was shown by BreH zin and Zinn-Justin [74] that an RG calculation of such functions is indeed
possible below the upper critical dimension, although the resulting expansion in powers of
�"4!d is a singular one. More speci"cally, the amplitude ratio Q,�m���/�m
�, where m is the
order parameter or magnetization density, is given by a Taylor series in ��. A veri"cation of this
rather striking result has not been possible to date, as the calculation has been carried out only to
second order in��, i.e., corrections are of O(����), and the numerical results are obviously restricted
to �"1, 2, 3. It is thus interesting to note that very recently the calculation of Ref. [74] has been
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generalized to periodic systems with an n-component order parameter and algebraically decaying
interactions [314,315]. It could be shown that, upon replacement of the original expansion
parameter (4!d) by (2�!d), the singular nature of the expansion is preserved, i.e., Q is again
given by a power series in ��	. Explicit expressions for the coe$cients of the "rst two correction
terms have been obtained, enabling a comparison to numerical results for small �	. At criticality, the
amplitude ratio is given by

Q"

4��(�


)

��(�


) �1#�4

�(�


)

�(�


)
!

1
2

�(�


)

�(�


)��6x#�13

��(�


)

��(�


)
#

1
16

��(�


)

��(�


)
!2�6x�#O(x�)� , (6.1)

with

x
	
"��	�

1
2

n#2

�3(n#8)�
�(�)
��

I
�
(2�,�, 0)#O(�	)	 . (6.2)

The integral I
�
(d, d/2, 0), which has been indicated only symbolically here, can be evaluated

numerically, yielding !2.9207092, !3.9002642 and !4.8227192, for d"1, 2, 3, respect-
ively [314].

6.3. Numerical results for the critical exponents

Since there exist very few systematic, precise comparisons between RG predictions for long-
range systems and corresponding numerical results beyond those obtained by means of the Monte
Carlo method introduced in Ref. [250], we will in this section exclusively concentrate on the latter.
The numerical results can be divided into two regimes: (i) 0(�4d/2, where (up to logarithmic
corrections) classical critical behavior is expected and (ii) �'d/2, where one expects nonclassical
behavior.
Regime (i) has been investigated in Ref. [47], where accurate results have been presented for

systems containing up to 300 000 spins, with d"1, 2 and 3. The "nite-size analysis concentrated on
the magnetization density, the magnetic susceptibility and Q. From the former two quantities, the
renormalization exponents yH

�
and yH

�
were determined, where the asterisk indicates that these

exponents are modi"ed due to the so-called dangerous-irrelevant-variable mechanism. Within the
numerical accuracy, the exponents agreed, over the entire � regime and for all three lattice
dimensionalities, with the predicted values yH

�
"d/2 and yH

�
"3d/4. Even at the upper critical

dimension, these values could be con"rmed to within 1}2 parts in a thousand after imposing the
predicted logarithmic factors in the analysis. Obviously, these systems also provide an excellent
way to study the behavior of Q above the upper critical dimension. Indeed, the so-called zero-mode
value predicted in Ref. [74] could be con"rmed with considerable accuracy over a wide range of
values for � and d [99], thus lending strong support to the expectation that the cumulant takes
this value over the entire classical regime. Finally, Ref. [47] also demonstrated that essentially two
types of behavior can be distinguished for the spin}spin correlation function g(r) in "nite systems: at
short distances (r/¸;1) it decays according to the predicted value for 
, i.e., like r������, to be
compared to a decay r������ for the spin}spin interactions. If one, however, considers g(r) at
r"¸/2, one essentially studies the k"0 mode and g(r)J¸���� for all 0(�(d/2.
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Fig. 20. Thermal exponent for the one-dimensional Ising model with algebraically decaying interactions, as a function of
the decay power. From Ref. [289]. Both the agreement with the second-order �	 expansion and the approach of the
Kosterlitz}Thouless transition at �"1 can be clearly observed.

The "ndings for regime (ii), which are at least as interesting, are unfortunately almost exclusively
available in Ref. [289, Chapter 5]. Here, we concentrate on the cases d"1 and d"2. Fig. 20 shows
the Monte Carlo results for the thermal exponent as a function of �, together with �	 expansion of
Ref. [105]. Up to �"0.75 (�	"0.5) the agreement is most satisfactory, where it is stressed that the
RG curve contains only terms up to second order in �	, without the application of any series
resummation. For higher values of �, the numerical values exhibit a rapid decay toward zero, in
agreement with the presence of a Kosterlitz}Thouless transition at �"1 [316}318] and the
consequential absence of an algebraic temperature dependence of the correlation length. We have
also included an expansion for y

�
around �"1 [318] in Fig. 20 and the numerical data indeed

appear to approach this curve for su$ciently large �. An interesting implication of the displayed
behavior of the thermal exponent has been pointed out in Ref. [319]: since y

�
'�

�
only for

�
�
(��0.65, the speci"c heat will consequentially only diverge for this part of the nonclassical
regime and display a cusp singularity for larger values of �. (In the classical regime, the speci"c heat
also exhibits a cusp singularity, but of a di!erent nature, cf. Ref. [319].) The corresponding graph
for the magnetic exponent (as obtained from a "nite-size scaling analysis of the magnetic suscepti-
bility) is displayed in Fig. 21. As can be seen, theMonte Carlo data follow the predicted dependence
y
�
"(d#�)/2 (corresponding to 
"2!�) very closely: for �"0.95, the relative deviation lies

below one part in a thousand. The analysis of the two-dimensional system is more involved, due to
the crossover to short-range critical behavior and the unknown nature of the corrections to scaling.
Both at the upper critical dimension (�"1) and in the short-range regime, the thermal exponent is
equal to unity. In the intermediate long-range regime, the �	 expansion suggests (like for d"1) an
initial increase of y

�
as a function of �, which is consistent with the trend exhibited by the numerical

results, although these mostly lie within one standard deviation from unity. The behavior of the
magnetic exponent o!ers the opportunity to determine the location of the transition between the
intermediate long-range critical regime and the short-range critical regime. Postponing a detailed
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Fig. 21. Magnetic exponent for the one-dimensional Ising model with algebraically decaying interactions, as a function
of the decay power. FromRef. [289]. The linear behavior of the numerical data in the nonclassical regime �

�
(�41 lends

strong support to the conjectured exactness of the zeroth-order RG result.

discussion to a later work [320], we only mention here that the numerical results strongly suggest
a crossover at �"2!


��
, i.e., at �"�



for d"2.

6.4. Finite-size scaling functions

The Monte Carlo simulations in regime (ii) also permit an accurate determination of the
amplitude ratio Q as a function of �. In order to provide a reference frame, Fig. 22 shows known
results for Q in periodic linear, square and cubic Ising systems, along with the "nite-size scaling
function calculated in Ref. [74]. Clearly, it is impossible to draw any conclusion on the singular
nature of the � expansion from this graph. Figs. 23 and 24 then show Q as a function of � for d"1
and d"2, respectively, where also the corresponding values of �	 have been indicated along the
upper horizontal axis. While a very close approach of the upper critical dimension is hampered by
the corresponding strong corrections to scaling, the numerical results clearly deeply penetrate into
the regime where the convergence of the �	 expansion does not have to be doubted. In the same
"gures, the second-order ��	 expansion of Eqs. (1) and (2) has been included. The agreement is
obviously extremely poor: the numerical results rather fall strikingly well onto a straight line, with
a weak deviation upon increasing �	. Let us point out two important indications for the consistency
of the numerical data: for d"1 the order-parameter jump implied by the Kosterlitz}Thouless
transition at �"1 leads to Q"1, in full agreement with the trend exhibited in Fig. 23. For d"2,
Q+0.856 in the short-range regime, in good agreement with the observed value at the transition
point �"1.75. The source of this discrepancy has not been identi"ed yet. While a slow conver-
gence of the �	 expansion appears as a natural suggestion, it is pointed out that marked deviations
already occur for values of �	 as low as 0.2 and that the relative size of the coe$cients appearing in
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Fig. 22. The amplitude ratio Q"�m���/�m
� at criticality for periodic, short-range Ising models in d"1, 2, 3, along
with the singular "nite-size scaling function obtained by means of the � expansion. For the numerical results, the symbol
size by far exceeds the uncertainty.

Fig. 23. The critical amplitude ratio Q(¹
�
) for the one-dimensional Ising model with algebraically decaying interactions

together with its second-order ��	 expansion, as a function of the decay power. The corresponding values for �	 are
indicated along the upper horizontal axis. From Ref. [314].

Fig. 24. The analog of Fig. 23 for the two-dimensional long-range Ising model. From Ref. [314].

Eq. (1) does not hint at unusually strong higher-order corrections. In addition, it is not obvious
how such correction terms would largely compensate the singular contribution of the "rst-order
term. In any case, an explicit calculation of the correction terms to O(��) and O(�	�), respectively,
seems highly desirable in order to shed some light onto this unexplained discrepancy.
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7. The interface localization transition in Ising 5lms with competing walls

7.1. A xnite-size scaling study

In the previous sections, ferromagnetic Ising systems in various dimensionalities have been
considered, and di!erent choices for the interaction range were treated, but bulk homogeneous
systems were studied exclusively. Although also in these cases there are some open questions, we
feel that the basic aspects of critical phenomena in these systems are well understood. The situation
is rather di!erent, however, when we consider inhomogeneous systems con"ned by walls. Many
new phenomena can arise because surface magnetic "elds may act at the walls, exchange constants
near walls may have values di!erent from those in the bulk, etc. Here we are not at all aiming at an
exhaustive review of such phenomena, but only treat one case which provides a good example of
the wealth of new physics that is involved. This case concerns a nearest-neighbor Ising ferromagnet
on the simple cubic lattice in an ¸�¸�D geometry, where periodic boundary conditions act in the
x and y direction, while one chooses two free ¸�¸ surfaces in the z-direction, where surface "elds
H

�
, act in the layer n"1 and H

�
"!H

�
in the layer n"D [148}159],

H"!J �

����

S
�
S
�
!H

�
�

���������

��

S
�
!H

�
�

���������

��

S
�
. (7.1)

In the limit ¸PR, for any "nite D the transition from the disordered phase for temperatures
¹ above the bulk critical temperature ¹

��
to the ordered phase at ¹(¹

��
is a gradual, rounded

transition without any singular behavior, although the system is already in"nite in two spatial
directions. This smearing of the transition happens because for ¹�¹

��
the state of the system is

characterized by the presence of an interface which runs parallel to the wall and has an average
position in the center of the "lm (Fig. 25). For ¹<¹

��
due to the action of the surface "elds there is

already a region of thickness �
�
(the correlation length in the bulk) adjacent to the left wall where

the local magnetization m(z) is positive, and similarly in the region D!�
�
we have m(z)(0. Near

¹
��
, when D becomes comparable to 2�

�
, these two regions start to interact, and a pro"le m(z)

develops, which decays smoothly from m(z"0) near the bulk magnetization m
�
toward m(z"D)

near !m
�
. Although m(z)"0 only for z"D/2, in the center of the "lm, and we have (for ¹�¹

��
and large D) a coexistence of two oppositely oriented domains with magnetizations $m

�
separated by an interface, the thin "lm as a whole still has zero magnetization, since ��

	
m(z)dz"0

when H
�

"!H
�
.

However, at some lower temperature ¹
�
(D), which does not converge to ¹

��
when DPR,

a phase transition does occur where the interface is either bound to the left wall (then �m�
���


(0)
or the right wall (then �m�

���

'0), cf. Fig. 25. The spontaneous symmetry breaking that occurs

here involves an one-component order parameter, and if a continuous transition occurs it should
fall in the universality class of the two-dimensional Ising model. If one studies this transition with
a "nite-size scaling analysis of Monte Carlo data, applying the most straightforward version of the
techniques described in Section 2.4, where one attempts to "rst locate ¹

�
by looking for cumulant

crossings (analogous to Fig. 2), one experiences a bad surprise (Fig. 26): Even on a very coarse scale
of inverse temperature, there is a distinct spread of cumulant crossings, and thus the extrapolation
of these crossing points toward¸PRcan yield only a rather crude estimate of J/k

�
¹

�
in a plot vs.
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Fig. 25. Schematic description of the interface localization}delocalization transition of an Ising model con"ned between
two walls a distance D apart, where at one wall (left side) a positive "eld H

�
acts, while on the other wall (right side)

a negative "eld H
�
acts. For ¹(¹

�
(D) the interface is bound either to the left or the right wall, and then the average

magnetization �m�
���


of the "lm is nonzero. For ¹
�
(D)(¹(¹

��
, however, the interface #uctuates in the center of the

"lm, and thus �m�
���


"0, although there is still a nonzero bulk magnetization $m
����

in an in"nite system, as well as
locally in the "lm away from the interface. For ¹'¹

��
, however, the "lm is disordered (apart from the regions near the

walls, where due to the response of the system to the surface "elds there occurs a local nonzero magnetization). The
description of the interface in terms of a coordinate z"l(�) with � being the x, y coordinates in the plane formed by
the left wall is also indicated. From Binder et al. [157].

1/¸ (Fig. 27). The alternative method (shown in the same "gure) of extrapolating the locations
K


��
(¸) of the maxima of speci"c heat (C


��
), susceptibility (



��
), etc. is not at all better. It is also

very disturbing that the ordinates of these cumulant crossings (;
�����

) are far o! the theoretical
value (;H"0.6107 in the d"2 Ising model [296], although they possibly converge to the correct
value as ¸PR(at least for D"6 and D"8 this seems plausible). Problems are also encountered
for the critical exponents: testing for the law 
	(K


��
(¸)),
	


��
J¸���"¸���� (Fig. 28) we "nd

rough agreement with the predicted power law for D"6, while systematically smaller e!ective
exponents occur for D"8 and D"12; note that this analysis is not a!ected by the uncertainty
in "nding the correct K

�
(D). And the thermal "nite-size scaling, as predicted in Eq. (2.40),

��m��¸	��"M
�
(¸���t) [��m��¸���"M

�
(¸t) in our case] works only roughly for D"6 and if we

restrict ourselves to ¸5128 (Fig. 29). In fact, despite considerable e!ort (for ¸"256, D"6 we
have in total 393 216 spins in the system, and the relaxation time at criticality is expected to be of
the order �J¸����+1.6�10� Monte Carlo steps/site) a data collapse is obtained (Fig. 29) which
only has a quality comparable to that of ¸�¸ square lattices with ¸"20 to 40, which would be
a student's exercise for a small personal computer.
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Fig. 26. Cumulant ;
�
plotted vs. J/k

�
¹, for the case H

�
/J"0.55 and "lm thickness D"6 (a) and D"12 (b), and

several choices of ¸, as indicated. Arrows in (a) indicate the locations of cumulant crossings of two neighboring lattice
sizes ¸, ¸	, while the arrow in part (b) indicates the location of the transition temperature of the wetting transition ¹

�
at

the surface of a semi-in"nite system. From Binder et al. [156].

7.2. Phenomenological mean-xeld theory and Ginzburg criteria

The data shown in Figs. 26}29 already point to the fact that the critical region is very narrow due
to crossover phenomena. The theoretical interpretation of these crossover phenomena can in fact
be provided by the concept of the e!ective interface Hamiltonian H

���
(l) [160}162,164}167],
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Fig. 27. Cumulant crossing values ;
�����

vs. ¸�� for D"6, 8 and 12 (upper part). The arrow shows the value of the
two-dimensional Ising universality class, and the curves are only guides to the eye. The lower part shows, for D"6 only,
the extrapolations of inverse temperatures K

�����
(¸) of cumulant crossings as well as the inverse temperatures K


��
(¸)

where susceptibility (


��

) and speci"c heat (C

��

) have their maxima. The arrow with the error bar marks the "nal
estimate of J/k

�
¹(D"6), while straight lines indicate possible extrapolations. From Binder et al. [156].

a concept which is a very popular starting point for the description of wetting phenomena,
surface-induced disordering, surface melting, and related phenomena [167]. In its simplest version,
H

���
(l) is written in terms of a single collective coordinate l(�), the local distance of the interface

from the left wall at position � in the xy plane (Fig. 25),

H
���
(l)"
d��

�
2
(�l)�#��l(�)�� . (7.2)

Here a factor of (k
�
¹)�� is absorbed in the Hamiltonian throughout, and we have assumed that the

interfacial sti!ness � is a constant (rather than considering a dependence of � on the distance l of
the interface from the wall, �(l) [171,172,179,180]). For short-range forces due to the walls, such as
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Fig. 28. Log}log plot of (
	J)

��

"J
	(K

��

(¸)) vs. ¸ for D"6, 8 and 12. Straight line shows the theoretically predicted
slope �/�"1.75, while broken curves are guides to the eye only. From Binder et al. [156].

the surface "elds H
�
, H

�
[Eq. (7.1)], the e!ective potential is phenomenologically assumed as

follows [152]:

�(l)"!��a
	
[e��l#e�����l�]#b

	
[e���l#e������l�]!h(l!D/2), h,2m

�
H ,

��,(¹
�

!¹)/¹
�
. (7.3)

Here a
	
, b

	
are constants, �� is the normalized distance from a second-order wetting transition

which would occur at the temperature ¹
�
in a semi-in"nite system, and ��� is a transverse length

scale associated with the interface (if one derives Eq. (7.3) approximately from a Ginzburg}Landau
theory for the magnetization pro"le m(z) across the "lm, ���"�

�
is obtained [152,171,172]). The

last term on the right-hand side of Eq. (7.3) accounts for the e!ect of a bulk magnetic "eldH, which
is included here for convenience.
Apart from the questionable approximations that yield the explicit form (7.3) of the interface

potential �(l), Eq. (7.2) has also been questioned on more general grounds, suggesting that one
needs (at least) a second collective coordinate l

�
(�), which is related to #uctuations of the local

magnetizationm(z) very close to the wall [181}184]. It is argued that the coupling between l(�) and
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Fig. 29. Log}log plot of ��m��¸��� vs. ¸�t� for D"6. Three choices of ¸ are included. Data for ¹(¹
�
(D) are shown by

open symbols, data for ¹'¹
�
(D) by full symbols. The straight lines through the data were "tted using the correct

exponents for order parameter (�"1/8) and susceptibility (�"7/4) [recall that for ¹'¹
�
(D) we have [31]

��m��J��m��J(k
�
¹
/¸�)��� in d"2 dimensions, and hence ¸�����m��J(t¸)����]. From Binder et al. [157].

l
�
(�) has important e!ects, and when one approximately integrates out l

�
(�), one e!ectively

obtains Eqs. (7.2) and (7.3), but ���"�
�
is no longer true and one has instead [181}184]

���"�
�
(1#�/2) , (7.4)

where �"[4���
�
�]�� is the universal constant entering the theory of critical wetting

[160}162,164}167].
At this point, we only aim at a description of the interface localization transition in terms of the

most simple mean-"eld theory. In this spirit, #uctuations of the interface position, included in
Eq. (7.2) via the (�l)� term, are neglected altogether. Hence �(l) is treated as an e!ective free energy
function, which simply needs to be minimized in order to "nd the average position of the interface
l
��
in thermal equilibrium. For zero "eld h"0 and ¹'¹

�
all terms in Eq. (7.3) are positive, and

hence �(l) assumes its minimum for l
��

"D/2, i.e., we are in the `delocalized phasea. For ¹(¹
�
,

however, ��'0 in Eq. (7.3), so that the terms within the "rst pair of square brackets compete with
those within the second pair and a solution l

��
OD/2 is expected, i.e., a nonzero order parameter.

For h"0 the equilibrium condition hence yields

0"

R�(l)
Rl �l�l

��

"�� a
	
�[e��l!e�����l�]!2b

	
�[e���l!e������l�] (7.5)

and setting l
��

"D/2#� one obtains an equation for the order parameter �,

cosh(��)"�� a
	
exp (�D/2)/4b

	
. (7.6)
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For X"��;1, the expansion coshx+1#x�/2 yields

X"$

exp(�D/4)

�2b
	
/a

	

(!t)��� , !t,��!
4b

	
a
	

exp(!�D/2) . (7.7)

Here t,[¹
�
(D)!¹]/¹

�
is nothing but the reduced distance from the transition temperature in

the thin "lm. It is seen that ¹
�
(D) di!ers from ¹

�
only by terms exponentially small in �D/2 [152].

The order parameter �m�
���


(i.e., the magnetization) is then given by this mean-"eld (MF) theory
as follows:

�m���
���


"2
��

�/D"$�2a
	
/b

	
m

�
exp(�D/4)(!t)���/(�D) . (7.8)

Thus one sees that the order parameter satis"es the standard mean-"eld power law,
�m���

���

"B

��
(!t)���, but the amplitude is not B

��
"�3 as in the molecular-"eld approxima-

tion of a ferromagnet, but scales exponentially with the "lm thickness:

B
��

Jexp(�D/4)/(�D) . (7.9)

De"ning the response function for nonzero h as 
� ,(Rl
��
/Rh)

���
and noting that Eq. (7.3) also

implies 
� "1/(R��(l)/Rl�)l�l
��
, we obtain from Eq. (7.3) for t'0

R��
Rl� �l

��

"2 exp(!�D/2)��[!a
	

��#4b
	
exp(!�D/2)] , (7.10)

where on the right-hand side l
��

"D/2 has already been inserted. From Eq. (7.7) we see that
R��/Rl�l

��
vanishes at t"0, as expected. Thus


� "exp(�D/2)t��/(2��a
	
) , (7.11)

and noting that 
"R�m�
���


/RH"4m�
�

� /D one gets



��

"��
��
t��, ��

��
"(2m�

�
/�a

	
) exp(�D/2)/(�D) . (7.12)

Finally, the correlation length �
,
for #uctuations of the order parameter is computed. In the

framework of Eqs. (7.2) and (7.3), these #uctuations arise from #uctuations of the local interface
position around its mean value, �l(�)"l(�)!l

��
. From a quadratic expansion of Eq. (7.2) around

l"l
��

it follows that the problem is formally analogous to the treatment of correlations in the
standard Ginzburg}Landau theory. Thus the correlation function G

,
(�!�	)"��l(�)�l(�	)� has

the standard Ornstein}Zernike form, with a correlation length �
,
related to the coe$cient �/2

of the (�l)� term in Eq. (7.2) and the second derivative R��/Rl� �l
��

in the standard way,
���
,

"(R��/Rl� �l
��
)/�, and hence

�
,���

"��
	���

t����, ��
	���

"(�/2a
	
)��� exp(�D/4)/� . (7.13)

The most interesting aspect of this mean-"eld theory is the unusual behavior of the critical
amplitudes, which has the consequence that the regime where two-dimensional Ising critical
behavior occurs is unusually narrow and hence mean-"eld theory is unusually good. This is seen
when we work out the Ginzburg criterion, which states that mean-"eld theory is good if

G;�t�;1 (7.14)
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where the Ginzburg number G for d-dimensional critical behavior is (suppressing prefactors of
order unity) [321]

G"(��
��
)���
���B�
��
���

�� �
v
	

(��
	���

)��
���
���

. (7.15)

Here the dimensionality of the problem is d"2, and so we have instead of Eq. (5.28)

G"��
��
B��

��
[v

	
/(��

	���
)�]Jexp(!�D/2) . (7.16)

As a result, we predict that there is a crossover scaling similar to that described in Section 5.1,
except that the parameter R����
���JG�� has to be replaced using Eq. (7.16). As an example,

�m
���


�"D�� exp(�D/4)t���MI [t exp(�D/2)] (7.17)

is the analog of Eq. (5.21) and the cumulant ratio at t"0 is

;
�
";[ [exp(�D/2)/¸] , (7.18)

analogous to Eq. (5.18).

7.3. Monte Carlo test of the theory

First, the prediction that the critical amplitudes in the mean-"eld regime vary exponentially with
"lm thickness D is considered. This is most easily studied for the susceptibility 
 at temperatures
¹'¹

�
(D), Eq. (7.12). Noting that ¹

�
(D) di!ers from ¹

�
only by small terms proportional to

exp(!�D/2), cf. Eq. (7.7), one can check Eq. (7.12) by simply studying 
 (or related quantities
referring to the layer magnetization m



in the nth layer, such as 




"(Rm



/RH)

�
or 





"

(Rm


/RH



)
�
, the response function to a "eld acting in the nth layer) at "xed temperature as function

of D (Fig. 30). The theory outlined above implies 
J

��



J

��




Jexp(�D/2), and such a behavior
seems indeed more or less compatible with the data. There is clearly some curvature present in
these plots, and it would have been desirable to try to estimate these susceptibilities not only for the
systematically investigated range 64D420, but for still larger thicknesses as well. This task
would be very di$cult, however, because then also the lateral dimension ¸ must be substantially
larger than the choice ¸"128 used in Fig. 30, and also much larger sampling times are necessary
to avoid the bias shown in Fig. 1b. Thus the points for D"28 included in Fig. 30 may already be
subject to rather large systematic errors.
Nevertheless one can try to estimate � by considering ln(

��




)/D as function of D (Fig. 31). Rather

clear evidence is obtained that the identi"cation �"���
�

proposed by Parry and Evans [152] is
not correct; however, the idea of Parry and Boulter [181}184] that � e!ectively gets renormalized
[Eq. (7.4)] is better compatible with the data (Fig. 32). This choice of � [from Eq. (7.4)] then also
needs to be used in the crossover scaling relations Eqs. (7.17) and (7.18). The analysis shows
(Fig. 33) that the surprising behavior of the cumulant;

�
(Figs. 26 and 27) and the maximum value

of the susceptibility 
	

��

(Fig. 27) can indeed be interpreted in terms of the predicted crossover
scaling e!ects. However, unlike the data in Section 5 } which have bene"ted from a very e$cient
novel Monte Carlo algorithm } here only data of a much poorer statistical quality are available,
and systematic errors (e.g., due to the smallness of D) are clearly still present. In addition, only
a small part of the crossover regime could be explored [the mean-"eld limit ;H"0.2704, cf.
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Fig. 30. Semilog plot of (a) the total susceptibility 

���

"R�m�
���


/RH and (b) the maximum value of the (symmetrized)
layer susceptibility 




vs. "lm thickness. Di!erent symbols show various inverse temperatures J/k

�
¹, as indicated in the

"gure. Straight lines indicate the predicted exponential variation with thickness, while the broken curve is only a guide to
the eye. Linear dimension ¸"128 was used throughout. From Binder et al. [156].

Eq. (4.16), is beyond the scale of Fig. 33]. While the qualitative understanding of the interface
localization transition in thin Ising "lms as provided by the simulations reviewed here and the
pertinent theory is certainly encouraging, a quantitative understanding of the critical behavior of
this transition and the associated crossover phenomena remains a challenge for the future. Note
that the theoretical understanding of this transition is also rather rudimentary } it is just in the
stage of mean-"eld theory and phenomenological Ginzburg criteria, while a renormalization
approach only exists for critical wetting: for the interface localization transition between competing
walls it remains to be developed!

8. Summary and outlook

In this review we have summarized results on the static critical behavior of ferromagnetic Ising
models as obtained fromMonte Carlo simulations by various groups, and have contrasted them to
pertinent theoretical predictions. Our emphasis has been on bulk properties; the critical behavior of
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Fig. 31. Plot of the logarithm of the maximum value of the symmetrized layer susceptibility [(




)
��


"(





#


�
�

)/2,
where n	"D!n#1], divided by the "lm thickness, as a function of D. Di!erent symbols show various temperatures, as
indicated in the key. Curves are guides to the eye only, to illustrate that ln(

��




)
��


/D actually approaches plateau values
for each temperature, which can be interpreted as �(¹)/2 according to the theory [Eq. (7.12)]. However, the identi"cation
�(¹)/2"(2�

�
)�� does not hold, as shown by the corresponding broken horizontal straight lines, that were calculated

from the series expansions of Liu and Fisher [58]. From Binder et al. [156].

the interfacial tension has only been mentioned in connection with pertinent universal amplitude
ratios, and the e!ects of free surfaces have not been analyzed here at all. Both the critical behavior
of free surfaces and the problem of critical wetting with short-range forces have been outside the
scope of this review, although these topics still involve many fascinating and partially unsolved
questions.
We have also emphasized the approach of "nite-size scaling analysis of Monte Carlo data

calculated in the (grand)-canonical ensemble as the appropriate technique to study critical phe-
nomena by means of simulations. Other approaches exist in the literature (e.g., the analysis of
critical phenomena in the micro-canonical ensemble, or the use of the initial behavior of critical
relaxation to extract static critical exponents as well, etc.), but have been deliberately left out here.
Despite the interest of having several di!erent approaches, we felt that these `o!-mainstreama
approaches are not as thoroughly explored and have not yielded as accurate results as the methods
described here.
From the simulation data reviewed here, it is clear that with respect to bulk properties of Ising

models with short-range interactions in various dimensionalities, accurate numerical data can be
obtained by means of the single-clusterWol! algorithm, allowing the extraction of estimates for the
critical temperature, critical exponents and critical amplitudes with an accuracy that is already
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Fig. 32. Plot of the inverse length scale �/2 vs. J/k
�
¹. Here full dots represent estimates of (2�

�
)��, �

�
being the true

correlation range in a lattice direction, obtained from the leading term of the PadeH approximant to the low-temperature
series analysis of Liu and Fisher (LF) [58]. Open squares are corresponding Monte Carlo estimates of Hasenbusch and
Pinn (HP) [278]. Open circles are the direct estimates of �/2 extracted by Binder, Landau and Ferrenberg (BLF) [156],
as shown in Fig. 31. The dash-dotted curve shows the suggestion of Parry and coworkers [181}184] that
�/2"[�

�
(2#�)]��, Eq. (7.4), using �+0.86 [173] in the temperature region of interest. Arrows (with error bars) at the

abscissa show the location of ¹
�
(D) for D"12, 8 and 6, respectively. From Binder et al. [157].

better than the analysis of systematic high- and low-temperature series expansions. Universal
properties (critical exponents, universal amplitude ratios) can be obtained by "eld-theoretic
renormalization-groupmethods with a competitive accuracy: this method, however, does not yield
the nonuniversal characteristics of the critical behavior at the same time. Furthermore, some
properties that "eld-theoretic renormalization may yield in principle, like the crossover scaling
function for the universal crossover limit (RPR, tP0, tR����
��� "nite), are so far only available
for¹'¹

�
, but not for¹(¹

�
. In contrast, Monte Carlo simulations yield such results for¹'¹

�
and for ¹(¹

�
equally well. Thus, utilizing a novel extension of the cluster algorithm to Ising

models with interaction of arbitrary long range, the crossover in the critical behavior from the Ising
universality class in d"2 and d"3 dimensions to mean-"eld behavior, with increasing range R of
the interaction, has been thoroughly investigated, and we have reviewed these recent studies here in
detail. Results such as the nonmonotonic variation of the e!ective exponent �

���
of the susceptibility

below ¹
�
so far could not be obtained with any other method than Monte Carlo simulation.

For the nearest-neighbor Ising model on the simple cubic lattice, there now exist numerous
high-precisionMonte Carlo studies, and the value of ¹

�
as well as the critical exponents are known
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Fig. 33. Plot of the scaled susceptibility maximum 
	

��

(a) and of the cumulant (b) [Eq. (7.18)] vs. the crossover scaling
variable exp(�

�
D/2)/¸, using Eq. (7.4) and all values of ¸ that were available. Curves are guides to the eye only. The arrow

on the ordinate in (b) shows ;H. From Binder et al. [157].

very accurately. However, much less e!ort has been devoted to critical amplitude ratios, and
a matter which has been particularly neglected is the equation of state as a function of magnetic
"eld near the critical point. Thus, even for the d"3 nearest-neighbor Ising model still interesting
and important studies need to be made!
Another problem which we have emphasized in this article are short-range Ising models at high

dimensionality (such as d"5) and Ising models with a long-range interaction, described by
a power-law decay. Both cases are convenient testing grounds for our understanding of the theory
of phase transitions. In the former problem, the critical behavior is mean-"eld like: not only the
critical exponents are known, but it is also possible to systematically compute all quantities of
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interest by means of perturbation expansions. However, it is somewhat disturbing that there still
occur deviations between the theoretical description of "nite-size behavior and the simulational
results and our main hope is that the theoretical description will be extended to included
higher-order corrections. The case of long-range interactions is particularly rewarding, since here
the distance to the marginal dimension dH where mean-"eld behavior becomes valid is a parameter
that can be varied continuously. Also for this problem it appears that some properties are
incompletely understood, such as the variation of the invariant Q(K

�
) with d!dH in the non-

mean-"eld regime.
As a "nal case study reviewed here, we have taken the interface localization transition in Ising
"lms con"ned between competing walls. We have argued that the theoretical understanding of this
problem remains on a qualitative rather than a quantitative level: already the starting point of the
theory } the e!ective interface Hamiltonian } involves fundamental questions, which hamper other
problems (such as critical wetting) as well and theories beyond the mean-"eld level remain to be
developed. Unfortunately, also the quality of the available Monte Carlo data is much lower than
for the other problems described in the present article } available studies are based on the use of
simple Metropolis algorithms and hence severely su!er from the problem of critical slowing down.
In conclusion we draw attention to extensions that were not dealt with here at all. One such

extension is to allow for antiferromagnetic interactions to more distant neighbors competing with
the nearest-neighbor exchange: this yields the possibility of di!erent types of ordering beyond the
Ising universality class, and nontrivial phase diagrams occur [321]. A particularly fascinating topic
is the ANNNI (axial next-nearest-neighbor Ising model) [322], where the competing antiferromag-
netic exchange occurs in one lattice direction only. Beyond a certain critical strength of this
exchange, a transition to a modulated phase rather than to ferromagnetic order occurs. The critical
properties of the multicritical point that separates these di!erent types of order (the `Lifshitz pointa
[322]) are known only very roughly. Another fascinating extension of the Ising ferromagnet is to
re-interpret it as a lattice gas model and assign charges to the particles, adding an electric "eld
acting on these charges in order to maintain an electrical current through the system. Beyond
a critical interaction strength, this model undergoes a phase separation into a lattice gas of high
density coexisting with a low-density lattice gas, analogous to the transition of the standard
Ising-lattice gas model, but in a di!erent universality class. The critical exponents of this model
have been controversial for a long time, and only recent work applying an anisotropic extension of
"nite-size scaling seems to settle the issue [323].
Particularly interesting problems occur when we generalize the Ising model by introducing

quenched disorder, such as random bonds or random "elds [324]. The problem becomes much
harder now, because quantities such as the susceptibility 
 have to be obtained by a double average,
k
�
¹
"¸�[�m��

�
]
��
, where �2�

�
can still be obtained by the Monte Carlo methods as

described in the present article, but an additional average [2]
��
has to be carried out (via a simple

random sampling) over the distribution over the random bonds or random "elds, respectively. The
simplest case is that in which one has only random-bond disorder with bonds that still are all
ferromagnetic (i.e., a random mixture of stronger and weaker bonds). This problem has been
studied extensively by Monte Carlo simulations [325] and high-temperature series extrapolations
[326], but many problems remain. Much harder, however, is the problem of the random-"eld Ising
model (RFIM) [327] or the Ising spin glass [328}331]. In the RFIM, it is still controversial whether
one has a second-order transition from the paramagnetic to the ferromagnetic phase in d"3, or
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a weak "rst-order transition, or whether one has a glass-like phase intervening between the para-
and ferromagnetic phase. Ising spin glasses, on the other hand, where one has exchange constants of
random sign $J, have already been studied since about twenty-"ve years by Monte Carlo methods
[328]: still it seems controversial whether in d"3 the transition occurs at ¹

�
+1.1J [329] or

¹
�
+1.3J [330], and the nature of the ordered phase is also a point of debate [330}332]. Thus,

much still remains to be done in the "eld of simulation studies of Ising models in the next decades!
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