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ABSTRACT

We compute the free energy of confinement for a flexible self-avoiding polymer inside a spherical cavity. Accurate numerical results allow us

to arbitrate between three competing scaling predictions. For moderate confinement, the free energy exhibits a power-law dependence on
cavity size that is different from what is observed for planar and cylindrical confinement. At high monomer concentrations, crossover to a

different scaling regime is observed, consistent with the screening of the excluded-volume interactions. We demonstrate how our findings

lead to a revised prediction for the escape time of a polymer from a spherical confinement.

Confinement of a polymer reduces its number of accessibleof a “blob” description of the polymét by assuming that
conformations drastically and thus results in an excess freeAF scales linearly with the degree of polymerizatidh,
energy. The precise behavior of this free energy has aand depends only on the ratis/R. Casass4 proved that
relevance that extends well beyond the realm of fundamental(up to a prefactor) thesamescaling relation holds for an
polymer physics. It plays an important role in various ideal polymer forced inside an infinitely long capillary or a
biological problems, including the packaging of DNA inside spherical cavity of radiugR. For planar and cylindrical
virus capsids® and its subsequent injection into the host geometries, eq 1 can immediately be generalized to self-
cell# It also governs the translocation of polynucleotidés  avoiding (nonideal) polymet%
and has been suggested to affect the stability of folded
proteins® Furthermore, confinement of polymers is encoun- (Re)l’” (g)”v N (g)”o
tered in numerous applications, such as filtration, colloidal pAF~\R] ~Ng) ~Ng )
stabilization? flow-injection problems? and drug-delivery
techniqued! The dependence of the excess free energy onwherev ~ 0.588 is the Flory exponetit'® and ¢ denotes
the geometry, degree of confinement, and chain length the monomer size. Experimentally, this prediction may be
determines the partitioning of polymer chains and the tested by the determination of equilibrium partitioning or
entropic force on the polymer. Although the corresponding possibly even via force measurements, but currently available
scaling behavior is covered in standard tézSthere is an verifications predominantly result from numerical simula-
important lingering controversy, which we address in this tions. Equation 2 indeed has been confirmed for chains
Letter. confined within slit$>2° and within tubeg! although an
The calculation of the entropy loss due to the confinement unexpectedly slow convergence toward the asymptotic
of an ideal chain is indeed an old probléfné For a polymer ~ behavior has been claimétiHowever, it appears less widely
confined between two parallel plates at separafothe free  appreciated that the applicability of eq 2dehericalcavities

energy,F, increases as (Figure 1) is controversial. Although some studies explicitly
staté® and emplo¥* this relation for such a geometry, two
AL alternative theories have been put forward.
BAF ~ (ﬁ) (1) First, self-consistent field theory (SCFT) prediéé®
. . . . BAF ~ NZ(ER)3 = Ng @3)
whereRg is the radius of gyration of the unperturbed chain 2

andp = 1/(ksT), with ks the Boltzmann constant andthe

absolute temperature. This result can be obtained by meangvhereg¢ = N(o/(2R))? is the monomer volume fraction. This
mean-field estimate is just the leading correction to the free
* Corresponding author. E-mail: luijten@uiuc.edu. energy of an ideal polymer due to excluded-volume interac-
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Figure 2. Force per monomer exerted by a polymer of length
= 256 against the confining wall,(1) (eq 7) for different values
of a.

_ . We explore the statistical properties of the model by means
Figure 1. Snapshot of a polymer chain df = 2048 monomers . : ; ;
confined within a spherical cavity at monomer concentration of Monte Carlo simulations involving local monomer moves.

0.03. For clarity, we depict the monomers smaller than their actual TO demonstrate that this model reproduces the proper scaling
size. dimensions, we compute the radius of gyratidt, for

unconfined chains with 32 N < 1024. We find a power-
tions” Second, a blob scaling description has been pro- 1aw dependenc®s [ N%%4#0:9% in good agreement with

posedi22which explicitly recognizes that, unlike in a planar  the renormalization-group 'resdﬂ. _ o
or cylindrical geometry, the monomer concentration in a e encapsulate the chain in a spherical cavity mimicked

spherical geometry increases upon confinement. As a resultPy @ confining potential centered around the origin
the free energy is predicted to exhibit the same concentration

dependence as in semidilute solutit8 u,() = kT ! 1 (> 0) @
“ -
R so thatr; is the distance of monomefrom the center of the

sphere and represents the radius of the cavity (all distances

The differences between these predictions are by no meansire expressed in units of monomer diametgr The free
minor: Equation 4 predictdF 0O R 3% compared toAF energy of confinement can now be computed via thermo-
OR3ineq 3 andAF 0O R17in eq 2. dynamic integratiod® The free energylifferencebetween

To the best of our knowledge, this discrepancy has not two states identified by, and 4. is given by
been addressed either by experiments or by computer
simulations. It is the purpose of the present work to resolve 2, 3ua(i)
the controversy by means of a systematic, accurate numerical AF =F(4,) — F(1) = / Lo ud/l (8)
study of the free-energy cost of confinement of nonideal, !
linear chains in a spherical geometry. where[l.[] denotes the ensemble average in the presence of

To be able to study long chains, we adopt a simple bead the potentialu,(1) at fixed sphere radiué. Becausel, >
spring model, in which the polymer is represented by a linear R represents the limit of an unconfined chaixf(R) can
series ofN spherical beads of diameteconnected by bonds  pe obtained by integrating over the range, [R]. The
of maximal extensionfax = 1.9. All monomers interact  normalized integrand, (1) = N~20u,(1)/0A[], represents the

via a hard-core repulsion force per monomer exerted by the polymer on the wall of
the cavity. To ensure that our choice ®fin eq 7 does not
_Joifry>o affect the functional dependence Af on the size of the
Un(ri) =1 o i <o ®) cavity, we measurd,(1) as a function ofi for different

values ofa. As shown in Figure 2, even fad = 256, the

shortest chain length employed in this stuidy4) converges

rapidly with increasingx (i.e., when the confining potential

becomes sufficiently steep). Thus, we adapt 12 for all

. further calculations.

U(fi_p) = {0 !f Miic1 = lmax ) Because the thermodynamic integration in eq 8 needs to
oL oo if g > o be carried out numerically, we perform accurate simulations

whererj is the pair separation. The nearest-neighbor bonds
are described as
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Figure 3. Free-energy cost of planar, cylindrical, and spherical
confinement of a self-avoiding flexible polymer chainlf= 256
monomers as a function of the compression paramBtgR.

R /R

Figure 4. Free energy of confinement for a self-avoiding flexible
polymer (N = 2048 monomers) in a spherical cavity of radRias

. . a function of the compression parametBg/R. Along with the

for a large number of sphere sizes with densely spaced valuesyumerical data, three different scaling predictions are plotted as
of 1. We fit the force per monomef,(4), to a power law  well.

A/A* and integrate this expression to obtaR/N. Although
the confining potential decays quite rapidly for= 12, it is = 3.93 (eq 4). In fact, the agreement is even better if one
important to take into account that the effective radiRids realizes that the finite chains employed here have a slightly
smaller thaml.. Because a monomer has a potential energy larger effective Flory exponent, = 0.594, corresponding
keT atr = A — 1, we define the radiu®}, as ¢ — 1) + /5, to y = 3.84. Figure 4 also shows the alternative predictions,
where the ternt/, is added to account for the finite size of eq 2 ¢/ = 1.70) and the SCFT result eq 8 € 3). Clearly,
the monomers. neither of these alternatives provides a valid description. This
To check the validity of our approach, we also apply it to unambiguous confirmation of the revised blob scaling
two cases that are known to be described by eq 2, namely,prediction (eq 4) is the central result of this Letter.
a polymer chain between two parallel plates and a chain To ensure that no spurious nonuniversal effects are
confined within an infinitely long cylindrical shell. Figure 3  introduced by the monomewall interactions, we also
summarizes the findings fotf = 256 and permits two crucial  employ a different method to obtain the free-energy density
observationg? First, it confirms thatAF exhibits thesame of confinement. We perform simulations in the conjugate
power-law dependendg™” for planar and cylindrical con-  (NPT) ensemblé&? in which a uniform external pressure,
finement and shows that our approach yields a quite accuratds imposed and the volume is allowed to fluctuate. The free
estimate of this power law:Re/R)6%:0-% for parallel plates ~ energy difference is then recovered by determining the
and Re/R)1°%006 for a cylinder, both in good accordance equation of state?(p), of the polymer and integrating it over
with (Re/R)¥. For both geometries, these results appear to the densityp = 9/, ¢
be among the most accurate currently available and certainly
in better agreement with the prediction thar= 1.4+ 0.1
(2.4+ 0.1 for the force) observed for chain lengths as large
as N = 8000 in a simple cubic lattice mod&l.Second,
spherical confinement clearly showsnaich strongeincrease ) ) ) )
of the free energy with decreasifyTo accurately determine ~ In this ensemble, the spherical boundary is described as a
the corresponding power law and to minimize possible hard wall, which eliminates any ambiguity in determining
artifacts due to the use of short chains, we present resultsthe effective volume of the cavity. .
for N = 2048 in Figure 4. At small values /R, there are Figure 5 presents the free energy of confinement as a
significant error bars. This is a physical effect: at weak function of monomer volume fractiog for three different
confinement, the spherical cavity poses only a minor chain lengthsN = 512, 1024, 2048), for th&lPT as well
perturbation to the chain and thus there are considerable@s theNVTensemble. It is rewarding that the results for both
fluctuations. Nevertheless, we are able to follow the increase€nsembles are in good agreement, ruling out ensemble-

a clear power-law dependence monomer, all curves collap$é,confirming the extensive

character of the free energy at fixéd For moderate values
R.)3&:01 of ¢, all data coincide on a line with slope= 1.28+ 0.06,
BAF O (ﬁ)

AF _ [eP(p), ,

9) in agreement with the prediction of eq¥= 1/(3v — 1) =
1.31, and in contrast with the linear concentration dependence
predicted by SCFT (eq 3).
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Figure 5. Concentration dependence of the free energy of
confinement per monomer, obtained at constant volusér() and
constant pressur®PT). The coinciding curves for different chain
lengths confirm the extensive character of the free energy¢For
< 0.15, the data exhibit a power-law behavidf [ ¢1-28 (dashed

line), in agreement with eq 4. The dotted line is a guide to the eye,
indicating the systematic deviations at high concentrations (see the

text).

It is of interest to also discuss the limitations of the scaling

observe that the deviation may also arise from comparatively
high monomer concentrations within the pore. Indeed, for
0.2 < ¢ < 0.35,AF in our model is described by an effective
power lawAF ~ Ngt-9#0.07 [] N2:970.07 remarkably con-
sistent with the experimental findings. Although the orgset
of this regime is nonuniversal, the power law can be
understood from the screening of the excluded-volume
interactions in concentrated soluti&t?’ which reduces the
effective Flory exponent to its Gaussian value. Thus, the
exponentv in eq 4 must be set t,, yielding AF ~ Ng¢2.
The data in Figure 5 confirm this crossover from the
semidilute to the concentrated regime.

One problem directly affected by our confirmation of eq
4 is the escape of a polymer from a spherical cavity. On the
basis of classical nucleation theory and eq 2 it has been
predicted* that, for a sufficiently strong entropic driving
force, the average escape time scales asN(N/g)Y®), In
light of our results, this prediction must be altered to

N N

N _ —1/(@—1)
T an T AR

(12)

whereAu is the chemical potential gradient per monomer.

prediction. For concentrations exceeding approximately 0.2, Thus, the escape time has a much stronger concentration
the data cross over to a power-law behavior with an exponentdependence than predicted in ref 24 and at fixed concentra-

X ~ 2. Although this crossover is consistent with the

tion the escape time Igearly proportional to the length of

screening of the excluded-volume interactions in concentratedthe polymer rather than superlinearly. The chain-length
solutions (as discussed below), it is also important to dependence must be treated with some caution because it
emphasize the breakdown of the blob scaling description atimplies, for long chains, a translocation time that is smaller
sufficiently high concentrations. Indeed, we can estimate the than the equilibration time. For translocation through a planar

number of monomers per blol, from scaling argu-

membrane, Kantor and Kardamproposed the unimpeded

mentst226 The key ingredient is that the average monomer motion of a polymer coil as a lower bound, yielding~

concentrationNy/(2£)3, within a blob of radius must equal
the global monomer concentration inside the cavity=

N/(2R)3, where we recall that all lengths are expressed in

terms of the monomer diameter. For the self-avoiding
polymers in our simulationR; = AjN” with Aq ~ 0.6, so
that the blob radius can be estimated &s—= AoN,".

Consequently, the typical number of monomers per blob

reduces rapidly with increasing concentration,
N, = (8A%) " (11)

For ¢ = 0.1 we findN, ~ 10, but already fop = 0.25,Np

N*/Au. Applied to a spherical cavity, this implies that eq
12 is modified further as

Nl+v N1+V
~

Au  AFIN

~ Nl+v¢—ll(3l/—l) (13)

Coincidentally, for self-avoiding chains in three dimensions
the power-law behaviof\N'*”, is numerically very close to
the predictio”d* N put the physical origin of the
exponent is very different. In addition, the corrected con-
centration dependence of eq 12 remains unaltered in eq 13.
In conclusion, we have demonstrated, for the first time,

is as small as three. These estimates indeed confirm that onghat the free energy of a flexible self-avoiding polymer

¢ ~ 0.15. Conversely, in the dilute regime we anticipate

cannot expect the scaling regime to hold above a thresholdconfined to a spherical cavity exhibits a different dependence

on pore size than the free energy of a polymer confined

considerable finite-size effects because the total number ofpetween parallel plates or within a cylindrical geometry. For

blobs becomes very small. For examplegat 0.01 there

moderate monomer concentrations, the free energy of

are approximately 200 monomers per blob so that even ourconfinement is in good agreement with the scaling law first

longest chain (wittN = 2048) consists of only 10 blobs.
In experiments on the partitioning of poly(ethylene glycol)
in protein nanoporéd a strongly nonlinear chain-length
dependence for the free energy was obseniéd]] N31+0-2
(indeed in disagreement with eq 2). Sakaue and Raghae

argued that the chains are effectively confined in a spherical

cavity, implying (from eq 4)AF ~ N3/~1) = N231 and
tentatively attributed the deviation to finite-size effects. We

904

introduced by Grosberg and Khokhlé&8AF ~ N¢t/3—1),

At strong confinement, excluded-volume interactions are
screened and a crossover to a different scaling behavior is
observed.
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