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Part 1: Schematic illustration of the concept of synchronized self-assembly 

Supplementary Figure 1 
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Figure Legend 

Schematic illustration of the concept of synchronized self-assembly. The red clock arrows 

represent phases of individual units undergoing periodic motion. The gradual paling of the 

arrows gives a sense of their dynamics and angular velocities. As units come closer and self-

assemble (dotted lines represent interactions), their motions start to couple, as seen in the 

progressive approach towards frequency and phase locking. Finally, synchronization between the 

self-assembled structure and its constituent units limits steady-state self-assembly to specific 

synchronization-consistent structures.   

 

Part 2:  Details of single-particle dynamics 

Supplementary Figure 2 

 

Figure Legend 
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Magnetic hysteresis curve of an as-deposited nickel film (18 nm thick), deposited from above 

onto a dense monolayer of silica particles on a planar support. The magnetic parameters of 

individual colloidal particles are calculated from the areal density of the layer. The black curve is 

measured in the film plane. The red curve is measured in the direction perpendicular to the 

surface.   

 

Supplementary Figure 3 

 

Figure Legend

(a,b) Time-dependent optical microscope images of a single Janus particle in a precessing 

magnetic field at 20 Hz, field strength 5 mT and precession angle 50°.  Images are spaced by 

18 ms. Ni coating is 18 nm thick. Scale bars are 2 m. The precession axis is perpendicular to 

the image (a) and horizontal in the image (b).  (c,d) Time-dependent spatial three-dimensional 
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trajectory following the tip of the Janus director, as predicted by the equations of motion for 

 = 50° (c) and  = 25° (d) for the same parameters as in (a). Here, time is coded using standard 

HSV color code, from 0 to 133 ms in (c) and from 0 to 534 ms in (d). The black arrows indicate 

the direction of time flow and the precession axis is parallel to the z-axis. The rotation speed 

slows with decreasing  while oscillation frequency in the orthogonal direction increases. The 

microscopy images are fully described by the equations of motion, as can be seen vividly in 

Supplementary Movies 1 and 2.

 

Supplementary Figure 4 

 

Figure Legend

(a) Coordinates and symbols used in the derivation of the equations of motion. (b) Internal 

coordinates of an individual particle.  

 

Derivation of the equation of motion 
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This derivation follows the reasoning of Tierno et al.10 We model the Janus particles as 

paramagnetic spheres with anisotropic magnetic susceptibility, shown in Supplementary Fig. 4b. 

We work at a field strength (5 mT) higher than the coercive field so that the response of the film 

is predominantly paramagnetic. Because only torque is involved in the single-particle dynamics, 

this dynamics is not influenced by the fact that the dipole moment is shifted from the geometric 

center. The volumetric magnetization is 

ˆ ˆ( )m H H H n n      
    

where       . Here   is the susceptibility parallel to n̂  and   the susceptibility in any 

direction perpendicular to n̂ . Only the second term, not collinear with  H


, contributes to a torque 

on the particle 2
m w Ni w Ni

ˆ ˆˆ ˆ( )( )V m H V H n H n H         
 , where w  is the permeability of 

water, the suspending liquid (close to the vacuum permeability 0), and VNi is the volume of 

nickel coated on one particle. We obtain   and    by averaging the upper and lower branches 

of the hysteresis curve and applying a linear fit.  We work at such low frequencies (10–100 Hz) 

that there is no lag in the magnetic response of the film to the external field.  

The precessing magnetic field can be expressed as (sin cos ,sin sin ,cos )H HH H t t    


, 

where H is the frequency of the driving field. The particle's director can be expressed as 

ˆ (cos cos ,cos sin ,sin )n      , where  is the azimuth angle and  the complement of the 

inclination angle. 

Under the conditions of the experiments, the hydrodynamic flow has a low Reynolds number 

(Re < 10−5) so that we can ignore inertia (i.e., the motion is overdamped). The extra weight due 

to the coating is less than 5% of the weight of the particle. This translates into a maximum 
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energy difference of about 2 kBT between downward-pointing and upward-pointing particles, far 

less than the magnetic energy of the particle itself, which is on the order of 3×104 kBT. Hence, 

the weight of the coating has a negligible influence on particle orientation. Furthermore, since 

the magnetic energy is so much larger than kBT, we do not include thermal noise in the derivation. 

By balancing the viscous drag v against magnetic torque m we arrive at 

v m w Nir0 V m H         

  

where r is the rotational drag coefficient of a sphere in the fluid, and   is the particle's angular 

velocity.  Here r = 8πR3, where  is the solvent viscosity (8.9×10–4 Pa s for water at 293 K). 

After some trigonometry we obtain 

c
d (sin cos sin cos cos )(cos cos sin sin cos )
dt
               

c
d sin sin (cos cos sin sin cos )
d cosHt
        


                                     

Here the parameter  = Ht   is the phase lag between the azimuth angles of the external field 

and the particle, and  c  is defined as wVNiH2/r, a characteristic frequency arising when 

magnetic force and viscous force are balanced. We note that while a similar problem has been 

solved for rod-like particles10,31, the different sign of   leads to a completely different solution. 

For particles with rod-like magnetic symmetry, there exists a steady-state solution such that the 

particle precesses with the frequency of the external field and a precession angle smaller than . 

However, for the present Janus particles with discoid magnetic symmetry, this mode is unstable. 

The equation set does not have a steady-state solution in which  or  is constant. We solved this 


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equation set numerically in Matlab and obtained the trajectories of the director (Supplementary 

Fig. 3c and 3d provide two examples).  The director oscillates between  and −, while rotating 

around the precession axis with a lower frequency than the external field, the exact value of 

which depends on . 

 

Supplementary Figure 5 

 

Figure Legend 

(a) Optical microscope image of multiple particles sedimented to the bottom of the sample cell, 

under the influence of magnetic field with frequency 20 Hz and strength 5 mT, with precession 

axis perpendicular to the image. The precession angle  = 50 was such that particles slightly 

repelled each other in the imaging plane to maintain separations large enough that coupling 

between their dynamics was negligible.  Therefore they satisfied the free-particle condition of the 

simulations in panel b. The scale bar is 3 m. (b) Phase portrait of free particles generated by 

simulation.  First, 104 particles were exposed to a static field in z, then to a precessing field with 

 = 25, mimicking the laboratory experimental procedure. The large blue circle, taken from the 
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trajectory of one particle, shows the limit cycle of the dynamics in . Small red circles 

correspond to the instantaneous phase of 100 randomly picked particles; all of them fall on the 

limit cycle. The y-axis has units of rad/s. Inset shows a histogram of the distribution of all 

particles' instantaneous phases on the limit cycle.  

 

Discussion regarding the phase freedom 

The dynamics of magnetic Janus particles in precessing fields exhibit generic properties of basic 

units capable of synchronization; first as self-sustained oscillators in  (oscillation) and secondly 

as forced rotators in  (rotation around the precession axis).  Such dynamic systems are known 

to have a limit cycle with zero Lyapunov exponent in one direction and negative Lyaponuv 

exponent in all other directions6. We confirmed this for the oscillatory motion by applying 

manual perturbations to steady-state trajectories (i.e., a limit cycle in the phase portrait d/dt 

versus , Supplementary Fig. 5b) in the numerical solution of the equations of motion. All 

perturbations away from the limit cycle relax back to the limit cycle, but perturbations along the 

limit cycle neither grow nor decay. The reason for the observed phase freedom is the degeneracy 

introduced by the discoid magnetic symmetry of magnetic Janus particles.  Even in a static field 

that forces the director to remain in the plane perpendicular to the external field, particles can 

point in different degenerate directions within that plane.  
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Part 3: Synchronization between two Janus particles  

Supplementary Figure 6 

 

Figure Legend 

Approach to synchronization of two particles in simulation. Time-dependent interparticle 

distance D, normalized by the particle diameter 2R (right axis), and time-dependent torque z (in 

simulation units of N·m) are plotted against elapsed time. The two particles are initially separated 

by 3.5 diameters along the z-axis, which is the precession axis. Parameters are the same as for 

Fig. 1d in the main text. Physically, each particle's dipole moment generates a magnetic field that 

acts on the other particle's dipole.  Their cross product torque adds to the torque provided by the 

external field but as the magnitude is significant only when particles are in close proximity, 

phase synchronization lags spatial approach. The sign of this additional torque is invariably 

negative, signifying that particles mutually slow one another, leading to lesser rotation frequency 

in the synchronized state. The oscillation in z reflects the continual oscillation of separation and 

relative orientation of the two dipoles, due to the nutation-like single-particle dynamics.  In 

experiment, the final interparticle separation is determined by the balance between the magnetic 

attraction and electrostatic repulsion, which image analysis using home-written code32 shows to 

be ~200 nm. This is consistent with the Debye length of ~250 nm, inferred from conductivity 
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measurements made immediately before the experiment, following the standard procedure33. The 

Debye length does not decay over the time scale of the experiment (~10 min). 

Part 4: Zigzag chains  

Supplementary Figure 7 

 

Figure Legend 

(a) Representative image of a zigzag chain in a horizontal static (5 mT) field. The result is 

similar to Ref 8. (b) Schematic representation of zigzag chains, with dipole moment of each 

sphere shown as a yellow arrow. The dipole moment is displaced from the geometric center due 

to the one-sided coating. (c) Representative discrete zigzag chains in Region II of the phase 

diagram (Fig. 2a in the main text). The field strength is 5 mT, with frequency 20 Hz and  = 30°.  

Scale bars are 3 m. 
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Part 5: Analysis of synchronization between the microtube and its constituent particles  

Supplementary Figure 8 

 

Figure Legend 

Coordinate system for the quantitative assessment of tubular order.  To quantify the positional 

order in these tubular structures, we define S=
in

1

1 exp( 2 )
n

j
j

i k
n



  where jin is the azimuth angle 

of the position vector of particle j (cyan in the figure) and the sum runs over all particles in the 

tube. This definition yields S = 1 for a perfect (kk0) structure and 0 for a random distribution 

around the z-axis.  

 

Derivation of the Adler equation for tubular structure of magnetic Janus particles 

Microtubes are driven to rotate by the rotation of their constituent particles. To derive the Adler 

equation, we do not consider out-of-plane nodding of the particles, fluctuations of their rotation 

velocity, or positional fluctuations, all of which are considered to be secondary effects.  The 

analysis applies to a frequency range (10–100 Hz, experimentally) where particles do not have 

time to relax positionally.  The orientation of a single particle, in the reference frame of the tube, 
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is quantified by the angle , which we assume to be identical for each particle (an assumption 

confirmed by numerical simulations), and the energy E of a (kk0) structure is only a function of 

this angle. To proceed, we determine E() in Supplementary Fig. 9.  As expected, the ground 

state of the tubular structure in a static or precessing field corresponds to a configuration with 

 = 0. Deviation from this configuration raises the energy due to less favorable dipole alignment, 

as characterized by dE/d.  Physically, this term means that a constituent particle in the 

reference frame of the tube experiences a torque  p = −dE/d, which drives the particle back to 

the lowest energy state,  = 0.  A counter torque on the tube arises (normalized by the number of 

particles in the tube), tube = dE/d. This torque provides the driving force for rotation of the 

entire structure. 

From a force analysis we find that dE/dsin, and numerical calculation of dE/d 

(Supplementary Fig. 9a) confirms this sinusoidal dependence. The coupling coefficient  

quantifies the “rigidity” of the structure in response to distortion. 

By definition, d/dt =  −   where  is the angular velocity of a constituent particle and  the 

angular velocity of the entire tube, in the laboratory reference frame. Here we derive these two 

terms, in order to obtain d/dt. 

By balancing the magnetic torque on the tube by the viscous drag of the entire structure, we find 

tube

sin 


  , wheretube is the rotational frictional coefficient of the tube in the fluid.  

Next, we derive . In addition to p derived arising from interparticle interactions, each 

constituent particle also experiences a magnetic torque from the external field. We approximate 

this torque as rfree, which is the magnitude needed to balance viscous drag if the particle were a 
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free particle rotating with the averaged angular velocity free predicted by the single-particle 

equations of motion, at the specified . One can understand free as the inherent frequency of the 

particle, before it is coupled to the microtube. Thus, the total magnetic torque mag on a 

constituent particle is mag = rfree −sin. Balancing mag with viscous drag r, we obtain the 

particle’s angular velocity free
r

sin  


  .  Notice that the second term slows the single-

particle rotation for  < /2.  Equation (1) in the main text then follows from combining the 

definition of  with the above analysis, 

1 1
free r tube

d ( )sin
dt
              

which has the same form as the Adler equation for synchronization20.  For free < c-free =

1 1
r tube( )    , this equation has a steady-state solution, in which d/dt = 0 and 

1 1
r tu

e

be

fr e

(
arcsin

)  
  

 . Then, when synchronized, the rotation speed of the tube and its 

constituent particles equal free

tube r/ 1


 
  


.  

Thus, when the particles and the tube are synchronized, the ratio free/ is a constant 

independent of  and , and always greater than 2 since tube r  .  Our simulations confirm this 

relation. Moreover, the higher k for a structure, the more slowly it rotates in the same magnetic 

field, due to the larger tube. While the magnitude of tube is difficult to calculate in a full 

hydrodynamic analysis, we can approximate it as the sum of the drag on each particle 

independently, 2
tube6 RR , where Rtube is the tube radius.  With this simplification, we find 
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tube/r = 1.45, 2.18 and 3.20 for k = 3, 4, 5, respectively, close to tube/r value obtained in our 

simulations (1.88, 2.64 and 3.47, for (330), (440) and (550), respectively).  

Rotation of one particle also creates a hydrodynamic shear flow and exerts a force on 

neighboring particles; this force also contributes to the torque on the whole tube. However, 

estimation shows that hydrodynamic interactions are a secondary effect, too weak to cause 

synchronization between the tube and constituent particles unless the separation is unrealistically 

small (~2 nm), far less than the 200 nm that we measure experimentally. Specifically:  following 

the approach of Ref. 34, consider two spheres of radius R (1.5 m) that rotate with rotational 

frequency  around their respective centers while simultaneously rotating with rotational 

frequency  as a pair (surface separation d) around the center of their common axis. In the 

absence of magnetic coupling between the spheres, the drag force on each sphere must be 

balanced by a lateral force on the same sphere generated by the hydrodynamic coupling,  

r0.1ln( / 2 ) / 6 ( / 2 )d R R R d R        

The experimentally observed separation d = 200 nm yields  ~ 0.36.  This is less than what is 

required for synchronization,  = 1. The hydrodynamic contributions could, if needed, be 

included in the Adler equation as a simple additive term.   
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Supplementary Figure 9 

Figure Legend: 

Calculation of the energy E per particle for various microtube structures.  E is reported in the 

reduced unit of energy kBT (defined in Part 7), and dE/d and  are expressed in kBT/rad.  E 

varies negligibly with the in-plane angle of the external magnetic field, due to the symmetry of 

(kk0) structures. dE/d is calculated via a uniform perturbation in  applied to all particles 

simultaneously. For simplicity, only interactions between particles are included, since the 

interaction of the particle moment with the external field does not change with ; the second-

order effect in which the external field acts on enhanced magnetic moments is not included. 

Magnetic parameters are selected to compare with the distributions in Fig. 2c in the main text; 

they match a nickel coating of 21 nm thickness.  (a) In a static ( = 0°) magnetic field of 5 mT 

along the z-axis, E (black) and dE/d (blue) are plotted versus  for the (330) structure. dE/d 

varies sinusoidally with . From the maximum of the dE/d curve,  is extracted.  (b) In a static 
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magnetic field of 5 mT along the z-axis, dE/d is plotted versus  for different structures: black, 

(330); red, (440); blue, (550). The same color coding applies to panel c. In a static field, the 

energy per particle for (330), (440) and (550) is −42173, −42304 and −42353 kBT, respectively.

(c) Coupling parameter  plotted against  for different structures.  varies weakly with . 

 

Supplementary Figure 10

Figure Legend: 

 plotted against in simulated (330) tube with parameters corresponding to a 21 nm Ni coating. 

Though the Adler equation mathematically defines a transition at  = π/2, the microtube might 

not be able to sustain such a large distortion. In simulation the transition appears to begin at  ≈ 

30º, when the particle directors start to point to their neighbors instead of the center.  At this time 

the structure becomes looser, which decreases the effective coupling coefficient , triggering the 

actual synchronization transition. Then phase slip sets in and the structure dissociates via the 

pathway described in Fig. 3c in the main text. With the derived value of  and assuming c = 30º, 

the Adler equation predicts c (24º) very close to this observed transition. 
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Supplementary Figure 11 

 

Figure Legend: 

 The experimentally measured state diagram, Fig. 2a of the main text, is replotted in the 

B2–free plane, to compare with the classic  plot in synchronization6.  Here B is the strength 

of the magnetic field in tesla and free the single particle rotation frequency (rad/s), calculated 

from the equations of motion. Only the portion concerning the synchronization transition is 

shown. The blue squares denote the region inhabited by microtubes and red crosses denote the 

region consisting purely of zigzag chains. This plot essentially gives the right half of the Arnold 

tongue known in the field of synchronization6. Though the data exhibit scatter, this plot does 

show a roughly linear boundary between the region of microtube and the zigzag chain, as 

predicted from the Adler analysis. The effect of external frequency enters indirectly through the 

modulation of free, as quantitatively described by the equations of motion in Part 2. 
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Part 6:  Selection of tubular structures  

Supplementary Figure 12 

 

Figure Legend 

Experimentally determined distributions of microtube structures are plotted against , showing 

all (kk0) structures that we observed at a given .  The (220) and (660) structures contribute less 

than 15% under all conditions tested.  An abbreviated version of these distributions is given in 

Fig. 2c in the main text.  Many higher-k structures coexist below 20°, but their visual 

identification is difficult.   
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Supplementary Figure 13 

Figure Legend 

Limits of stability of various microtubes, obtained by simulating particles with 21 nm nickel 

coatings.  The order parameter S and the frequency difference  (units of rad/s) are plotted 

against  for different microtubes. Before reaching the instability transition, the small negative 

trends reflect end effects; a visual check confirms that the main structures are phase-locked and 

stable. Above c the plots are noisy, because the microtubes have lost synchronization and have 

disassembled into loose aggregates whose overall rotation speeds are ill-defined.  The simulated 

critical values of c, 23°, 20° and 16° for (330), (440) and (550) structures, respectively, agree in 

trend with experimental observations but are slightly lower quantitatively, probably due to the 

point dipole simplification or omission of hydrodynamic interactions.  
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Part 7: Simulation details 

Simulations are performed via molecular dynamics including self-consistent magnetic 

interactions and shifted-truncated Lennard Jones (STLJ) interactions; both aspects are described 

below.  Simulations are performed using reduced units.  The particle diameter is taken to be 4.3 

in simulation length units, equivalent to a physical diameter of 3 μm, and the fluid density is 

taken to be 2.5 in simulation density units, corresponding approximately to the density of water 

at room temperature.  The simulated particles are neutrally buoyant, as experiments confirm 

buoyancy and substrate interaction do not significantly affect the observed phenomena.  All 

simulations are performed at field strength and frequency equivalent to 5 mT and 20 Hz, for 

2  108 timesteps, long enough to conclusively determine the steady-state behavior. 

We take the Boltzmann constant kB = 1 and the temperature T = 1, giving an energy or 

equivalently a time conversion between experiment and simulation units. However, thermal 

effects are not incorporated in the simulation.  We take the permeability of free space 0 = 1 

giving a conversion between laboratory and simulation magnetic units.  

The system size is 40 × 40 × 80 or 40 × 40 × 160 with up to 80 particles in a microtube. Whereas 

the simulation cell has periodic boundary conditions, the tubes are finite and aligned with the 

long side of the cell.  The system is large enough to prevent either periodicity artifacts or 

dominant end effects. Doubling the number of particles (i.e., doubling the length of the 

microtubes) did not lead to qualitative changes.  In addition, we note that because for isolated 

tubes this is effectively a one-dimensional problem, the 1/r3 nature of the dipolar interaction does 

not lead to a divergence of the total energy. 
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The time step is 0.001 (= 1.2610–7 s), which gives sufficient energy stability in the overdamped 

regime where we operate.  The need to simulate accurately in the overdamped regimefor 

example to reproduce the crossover between a particle following the field and the higher-

frequency regime where the field-induced torque cannot balance viscous dragproduces the 

largest constraint on coarse graining our simulation for computational efficiency. To be 

conservative, our parameters almost exactly match physical values in experiment, after unit 

conversions. 

The interactions in the simulation are translational and rotational Langevin damping of each 

particle and the magnetic and STLJ interactions between particles. The Langevin dynamics are at 

zero temperature and operate on each particle separately. As mentioned in the derivation of the 

equations of motion, the disregard of thermal effects is justified by the fact that the strength of 

interaction (~104 kBT) greatly exceeds the thermal energy.  The drag coefficients are those of a 

sphere in water. 

Each particle is treated as a point dipole shifted slightly from the particle’s geometric center, 

selecting the dipole shift such that a single chain in static magnetic field assembles with a zigzag 

angle8 close to observed experimental values.  For example, when the laboratory nickel coating 

is 18 nm thick, the dipole shift is 0.240 simulation length units away from the particle's 

geometric center; for a 21 nm coating, the corresponding simulation value is 0.213. The 

magnetic susceptibility is scaled by the coating thickness.  

At each time step, magnetic interactions are re-evaluated by solving the linear system of 

equations for each particle’s magnetic moment as a function of the field produced by the other 
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particles and the spatially uniform, time-dependent external field.  For each of the n particles, 

there is an equation for the magnetic moment im
 , 

total ( )i j im H H H    
  

 

where  is the anisotropic magnetic susceptibility tensor and j iH 


 is the magnetic field produced 

by all other particles, which is a linear function of the magnetic moments jm


 for j ≠ i35.  For 

example, for the 18 nm nickel coating studied in the laboratory, in simulation units  = 21.870 

and Δχ = 10.619. 

Once the magnetic moments are determined, calculation of forces and torques on each particle is 

straightforward.  The minimum-image convention is used, so forces do not operate at more than 

20 length units. The STLJ interactions employ ε = 2500, which is sufficiently large to prevent the 

particles approaching within the singularity in magnetic susceptibility, and  = 4.3, with the 

usual cutoff at 21/6  and a shift such that the potential is smooth at the cutoff.  We verified that 

the general conclusions are independent of the detailed form of the repulsive term.   

Simulations to evaluate tubular structure stability begin with particles arranged in the given 

tubular structure, at the equilibrium average pair distance, with particles oriented toward the 

central axis of the tube. 
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