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This chapter provides an introduction to cluster Monte Carlo algorithms for
classical statistical-mechanical systems. A brief review of the conventional
Metropolis algorithm is given, followed by a detailed discussion of the lattice
cluster algorithm developed by Swendsen and Wang and the single-cluster
variant introduced by Wolff. For continuum systems, the geometric cluster
algorithm of Dress and Krauth is described. It is shown how their geometric
approach can be generalized to incorporate particle interactions beyond hard-
core repulsions, thus forging a connection between the lattice and continuum
approaches. Several illustrative examples are discussed.

1 Introduction

The Monte Carlo method is applied in wide areas of science and engineering.
This chapter specifically focuses on its use in equilibrium statistical mechanics
of classical systems of particles or spins. To set the stage, I first review the
fundamental concepts of Monte Carlo simulation and discuss the importance
sampling method introduced by Metropolis et al. However, the main emphasis
in these notes lies on so-called cluster methods that have been developed over
the last two decades. These are collective-update schemes that are capable
of generating independent particle configurations in a very efficient manner.
While originally believed to be only applicable to lattice-based systems, they
now have been extended to large classes of off-lattice models. Their wide range
of applicability is illustrated by means of several examples.

2 Local Monte Carlo Simulations

2.1 Importance Sampling and the Metropolis Method

It is one of the fundamental results of statistical mechanics that a thermody-
namic system is described by its partition function,

Z =
∑

{s}
exp(−βEs) , (1)

where the sum runs over all possible states of the system, Es denotes the
energy of state s, and β = 1/(kBT ), with kB Boltzmann’s constant and T
the absolute temperature. Thermodynamic properties can be computed as
ensemble averages,

〈A〉 =
1
Z

∑

{s}
As exp(−βEs) , (2)

where 〈A〉 is the expectation value of an observable and As is the value of this
observable if the system resides in state s.
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The integrals (summations) in (1) and (2) are taken over phase space,
which spans 2dN dimensions for N particles in a system of dimensionality d.
If a conventional numerical integration method would be applied, a prohibitive
computational effort would be required to obtain an acceptable accuracy. An
alternative approach is simple sampling. The integrand is evaluated for a set
of randomly chosen states (“samples”), and the mean of these individual eval-
uations is an estimate of the integral. While this indeed works for smoothly
varying functions, the Boltzmann factor exp(−βEs) is vanishingly small for
most samples, making the statistical uncertainty in the integral very large. In
general, this problem can be resolved via importance sampling, in which the
samples are chosen according to a probability distribution. By preferentially
sampling states that strongly contribute to the integral in (2) the variance
in the estimate of this integral is greatly reduced. Specifically, we desire to
sample the states with a probability distribution exp(−βEs)/Z.

However, even though we can compute the relative probability with which
two specific states should occur in a set of samples, we cannot compute their
absolute probability, since we do not know the normalization constant Z. It is
the accomplishment of Metropolis et al. [1] to have found a way to calculate
expectation values (2) without evaluating the partition function. The basic
idea is to create a Markov chain of states, i.e., a sequence of states in which
each state only depends on the state immediately preceding it. One starts
from a configuration si that has a nonvanishing Boltzmann factor pi. This is
the first member of the Markov chain. From this configuration, a new trial
configuration sj is created, which has a Boltzmann factor pj . The trial config-
uration is either accepted or rejected. If it is accepted, it is the next member of
the Markov chain. If it is rejected, then the next member of the Markov chain
is again si. This process is repeated iteratively to generate a sequence of con-
figurations. It is emphasized that each trial configuration is created from the
previous state in the Markov chain and accepted or rejected only based upon
a comparison with this previous state. There is thus a transition probability
from each state si to each state sj , represented by a transition matrix πij . It is
our goal to find a transition matrix that yields the equilibrium distribution pj .
Evidently, this matrix must satisfy the condition

∑

i

piπij = pj . (3)

Finding a solution πij of this equation is greatly simplified by imposing the
condition of microscopic reversibility or detailed balance, i.e., on average the
number of transitions from a state i to a state j is balanced by the number of
transitions from state j to state i.

piπij = pjπji . (4)

Indeed, summation over all states si reduces (4) to (3):
∑

i

piπij =
∑

i

pjπji = pj

∑

i

πji = pj , (5)
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where we have used that ∑

i

πji = 1 . (6)

The matrix elements πij are the product of two factors, namely an a priori
probability αij of generating a trial configuration sj from a configuration si

and an acceptance probability Pij of accepting the trial configuration as the
new state. The detailed balance condition can thus be written as

piαijPij = pjαjiPji . (7)

In the simplest scheme, αij is symmetric and the condition reduces to

piPij = pjPji , (8)

which can be rewritten as

Pij

Pji
= exp [−β(Ej − Ei)] . (9)

The acceptance probability is not uniquely defined by this equation. Metropo-
lis et al. [1] proposed the solution

Pij =
{

exp [−β(Ej − Ei)] if Ej > Ei

1 if Ej ≤ Ei
, (10)

which is sometimes summarized as

Pij = min [exp (−β∆ij) , 1] , (11)

with ∆ij = Ej − Ei.
The trial configuration sj is generated via a so-called trial move. For ex-

ample, if we consider an assembly of N particles, then a trial move can consist
of a small displacement of one particle, in a random direction. If the resulting
configuration has an energy that is lower than the original configuration, the
new state is always accepted. If the trial configuration has a higher energy, it
is only accepted with a probability equal to the ratio of the Boltzmann factor
of the new configuration and the Boltzmann factor of the original configura-
tion. In practice, this is realized by generating a random number 0 ≤ r < 1
and accepting the trial configuration only if r < Pij .

The expectation value of a thermodynamic property A is calculated as fol-
lows. A sequence {s1, . . . , sM} of M configurations is generated, and for each
configuration sn the property An is sampled. The thermodynamic average (2)
is then estimated as a simple average,

〈A〉 ≈ 1
M

M∑

n=1

An . (12)
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2.2 Elementary Moves and Ergodicity

The trial moves or elementary moves that are used to generate a trial config-
uration depend on the nature of the system. A simple model for a fluid is the
above-mentioned example of an assembly of N spherical particles, confined to
a certain volume. In an elementary move, one randomly selected particle with
position r is displaced to a new position r′ = r+ δr. The displacement δr can
be chosen as a randomly oriented vector on a sphere with radius 0 < |δr| < �.
However, it is computationally simpler to choose the new position r′ within
a cube of linear dimension �, centered around the original position r. In ei-
ther case (sphere or cube) the a priori probability αij is symmetric, i.e., the
probability to generate the trial configuration from the original configuration
is identical to the probability of the reverse process. As will be discussed in
Sect. 2.3, the parameter � permits control over the efficiency of the simulation.
Monte Carlo algorithms with trial moves that involve small displacements of
individual particles are also called local-update algorithms.

A valid Monte Carlo scheme must not only obey detailed balance, but must
also be ergodic. This means that there is a path in phase space from every
state to every other state, via a succession of trial moves. Clearly, if the trial
states are chosen in such a manner that certain states can never be reached,
then the estimator for a thermodynamic observable can differ severely from
the correct expectation value.

2.3 Efficiency Considerations

The statistical quality of the estimate (12) depends on the number of indepen-
dent samples in the sequence of configurations, and it is therefore the objective
of a simulation to maximize the rate at which independent configurations are
generated. If a trial configuration is generated via a small change to the pre-
vious configuration, the energy difference ∆ij will typically be small and the
acceptance ratio will be large. However, many configurations may have to be
generated before an independent configuration results. Conversely, if a trial
configuration is generated via a big change to the previous configuration then
the sequence of configurations would decorrelate quickly, were it not that the
typical energy difference will be large and the acceptance probability thus
very small. For the elementary moves described in Sect. 2.2, the parameter
� controls the maximum displacement of a particle and thus the acceptance
ratio.

It follows from these considerations that it is not always desirable to sample
the property An in (12) in each successive configuration, in particular not if
the calculation of An is computationally expensive. However, it is crucial that
the sampling takes place at a regular interval. A typical mistake in Monte
Carlo calculations is that a sample only is taken after a fixed number of trial
configurations have been accepted. This is wrong, as can also easily be seen
from the following example: At low temperatures a configuration with a low
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energy is very unlikely to make a transition to a state with a higher energy. But
this precisely borne out by (2): Low-energy states contribute more strongly
to the expectation value and hence should be sampled more frequently than
high-energy states.

In addition to variation of the maximum single-particle displacement, one
may also attempt to increase the rate at which configurations evolve by mov-
ing several particles at a time. However, if the moves of these particles are
independent, this is less efficient than a sequence of single-particle moves [2].

2.4 Ising Model

In order to describe the collective-update schemes that are the focus of this
chapter, it is necessary to introduce the Ising model. This model is defined on
a d-dimensional lattice of linear size L (a square lattice in d = 2 and a cubic
lattice in d = 3) with, on each vertex of the lattice, a one-component spin of
fixed magnitude that can point up or down. This system is described by the
Hamiltonian,

HIsing = −J
∑

〈ij〉
sisj . (13)

The spins s take values ±1. The sum runs over all pairs of nearest neighbors,
which are coupled via a ferromagnetic coupling with strength J > 0. The
Metropolis algorithm can be applied directly to this system. Local trial moves
amount to the inversion of a single spin and are accepted or rejected on the
basis of the change in coupling energy.

3 Lattice Cluster Algorithms

3.1 Swendsen–Wang Algorithm

In 1987, Swendsen and Wang (SW) [3] introduced a new Monte Carlo algo-
rithm for the Ising spin model, which constituted a radical departure from the
Metropolis or “single-spin flip” method used until then. Since the “recipe” is
relatively straightforward, it is instructive to begin with a description of this
algorithm.

Starting from a given configuration of spins, the SW algorithm proceeds
as follows:

1. A “bond” is formed between every pair of nearest neighbors that are
aligned, with a probability pij = 1 − exp(−2βJ), where J is the coupling
constant [cf. (13)].

2. All spins that are connected, directly or indirectly, via bonds belong to
a single cluster. Thus, the bond assignment procedure divides the system
into clusters of parallel spins (a so-called cluster decomposition). Note
how the bond probability (and hence the typical cluster size) grows with
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increasing coupling strength βJ (decreasing temperature). For finite βJ ,
pij < 1 and hence a cluster is generally a subset of all spins of a given
sign – in other words, two spins of the same sign need not belong to the
same cluster, even if these spins are adjacent on the lattice.

3. All spins in each cluster are flipped collectively with a probability 1
2 . I.e.,

for each cluster of spins a spin value ±1 is chosen and this value is assigned
to all spins that belong to the cluster.

4. All bonds are erased and the “cluster move” is complete; a new spin
configuration has been created. The algorithm restarts at step (1).

Step (3) is the crucial one. It is made possible by the so-called Fortuin–
Kasteleyn mapping [4, 5] of the Ising model on the random-cluster model.1

This mathematical result essentially shows that the partition function of the
Potts model can be written as a sum over all possible clusters, or “graphs,”
on the lattice. Consequently, all spins in a cluster (a “connected component”
in the random-cluster model) are uncorrelated with all spins that belong to
other clusters and can be independently assigned a new spin value. Here, we
use the word cluster in a general sense: A cluster may also consist of a single,
isolated spin. The independence of clusters also implies that the cluster-flip
probability in step (3) can be chosen at will. Evidently, if this probability
is very small the configuration does not change much. On the other hand,
flipping the spins in all clusters amounts to an inversion of the entire sample
and therefore does not accomplish anything. Thus, a probability halfway these
two extremes is typically chosen in order to maximize the rate at which the
system evolves.

One remarkable aspect of this algorithm is that it is rejection free.2 Indeed,
the assignment of bonds involves specific probabilities, but once the clusters
have been formed each of them can be flipped independently without imposing
an acceptance criterion that involves the energy change induced by such a
collective spin-reversal operation. We note that the absence of an acceptance
criterion does not imply that a cluster flip does not entail an energy difference!
Indeed, there is nothing in the algorithm that would guarantee this property
(which would require that the boundary of the cluster cuts through an equal
number of parallel and antiparallel pairs of interacting spins). Furthermore,
this peculiar property would cause the system to move over a constant-energy
surface in phase space, which is certainly not what one desires for a simulation
that operates in the canonical ensemble. In contrast, the cluster flips do result
in a sequence of configurations with different energies, in such a way that they
appear exactly according to the Boltzmann distribution.

The aspect that made the SW algorithm very popular is its ability to
strongly suppress dynamic slowing down near a critical point. This can be

1 Strictly, the Fortuin–Kasteleyn mapping applies to the q-state Potts model, but
the Ising model is equivalent to a Potts model with q = 2.

2 The selection of clusters that are flipped and clusters that are not flipped is
considered as part of the move, and not as a “rejection.”
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explained by a brief digression into the field of critical phenomena. For a
substance near a critical point (a continuous phase transition), the relaxation
time of thermodynamic properties depends as a power law on the correlation
length ξ,

τ ∝ ξz , (14)

where z ≈ 2 is the so-called dynamical critical exponent [6]. The correlation
length itself diverges as a power law of the difference between the tempera-
ture T of the substance and the critical temperature Tc,

ξ ∝ |T − Tc|−ν , (15)

where ν is a positive exponent. In simulations of finite systems, e.g., a d-
dimensional “hypercube” of volume Ld, the correlation length is bounded by
the linear system size L. Thus, if the temperature approaches Tc, ξ grows
according to (15) until it reaches a maximum value ξmax ∝ L, and for tem-
peratures sufficiently close to the critical temperature, (14) is replaced by

τ ∝ Lz . (16)

We thus encounter a phenomenon called critical slowing down. If a system be-
comes larger, the correlation time grows very rapidly and it becomes increas-
ingly difficult to generate statistically independent configurations. However,
the clusters created in the Swendsen–Wang algorithm have a structure that
is very efficient at destroying nonlocal correlations. As a result, the dynam-
ical critical exponent z is lowered to a much smaller value and independent
configurations can be generated at a much faster rate than with a single-spin
flip algorithm. This advantage only holds in the vicinity of the critical tem-
perature, which also happens to be the most interesting point in the study of
lattice spin models such as the Ising model.

3.2 Wolff or Single-Cluster Algorithm

Soon after the SW algorithm described in Sect. 3.1 had been developed,
Wolff [7] introduced a so-called single-cluster variant of this algorithm. In
the SW algorithm, small and large clusters are created. While the destruction
of critical correlations is predominantly due to the large clusters, a consider-
able amount of effort is spent on constructing the smaller clusters. In Wolff’s
implementation, no decomposition of the entire spin configuration into clus-
ters takes place. Instead, only a single cluster is formed, which is then always
flipped. If this cluster turns out to be large, correlations are destroyed as ef-
fectively as by means of the large clusters in the SW algorithm, without the
effort of creating the smaller clusters that fill up the remainder of the system.
If the Wolff cluster turns out to be small, then not much is gained, but also
not much computational effort is required. As a result, critical slowing down is
suppressed even more strongly than in the SW algorithm, and the dynamical
critical exponent z [see (16)] is even smaller.
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A convenient side effect, which has certainly contributed to the popularity
of the Wolff algorithm, is that it is exceedingly simple to implement. The
prescription is as follows:

1. A spin i is selected at random.
2. All nearest neighbors j of this spin are added to the cluster with a prob-

ability pij = 1 − exp(−2βJ), provided spins i and j are parallel and the
bond between i and j has not been considered before.

3. Each spin j that is indeed added to the cluster is also placed on the stack.
Once all neighbors of i have been considered for inclusion in the cluster,
a spin is retrieved from the stack and all its neighbors are considered in
turn for inclusion in the cluster as well, following step (2).

4. Steps (2) and (3) are repeated iteratively until the stack is empty.
5. Once the cluster has been completed, all spins that belong to the cluster

are inverted.

Again, this is a rejection-free algorithm, in the sense that the cluster is al-
ways flipped. Just as in the SW algorithm, the cluster-construction process is
probabilistic, but the probabilities pij involve energies of individual spin pairs
in contrast with an acceptance criterion that involves the total energy change
induced by a cluster flip. The implementation can be simplified by a small
trick: In step (2), each spin j that is added to the cluster can immediately be
inverted. This guarantees that a spin is never added twice. Step (5) can then
be eliminated.3

3.3 Cluster Algorithms for Other Lattice Models

The algorithms described here are not restricted to the Ising model, but can
be applied to a number of other problems. (i) For multicomponent spins (such
as the XY or planar model), Wolff [7] replaced the spin-inversion operation by
a reflection operation in which only the component of a spin is reversed that is
orthogonal to a randomly oriented plane. For each cluster, a new orientation
of the plane is chosen. (ii) The original Fortuin–Kasteleyn mapping is valid
for q-state Potts models in which each lattice site corresponds to a variable
that can take q different, equivalent states. In the SW algorithm, after the
cluster decomposition, one of these q values is assigned with probability 1/q
to each cluster and all variables in the cluster take this new value. (iii) The
Fortuin–Kasteleyn mapping can also be applied to systems in which each spin
interacts not only with its nearest neighbors, but also with other spins [8].
In particular, the coupling strength can be different for different spin pairs,
leading to a probability pij that is, e.g., dependent on the separation between
spins i and j. While this permits the direct formulation of a cluster Monte

3 To formulate this more precisely, also spin i should be inverted upon selection in
step (1) and in step (2) the spins j must be considered for addition to the cluster
if their sign is the same as the original sign of spin i.
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Carlo algorithm for these systems, the cluster addition probability becomes
very small if the interaction is long-ranged. As shown by Luijten and Blöte [9],
this can be resolved by reformulating the algorithm, allowing the study of spin
systems with medium- [10] and long-range [11,12] ferromagnetic interactions,
as well as dipolar [13] interactions.

4 Cluster Algorithms for Continuum Systems

4.1 Geometric Cluster Algorithm for Hard-Sphere Mixtures

The advantages brought by the cluster algorithms described in Sect. 3, in par-
ticular the suppression of critical slowing down, made it a widely pursued goal
to generalize the SW and Wolff algorithms to fluid systems in which particles
are not confined to lattice sites but can take arbitrary positions in continuum
space. Unfortunately, the absence of a lattice structure breaks a fundamen-
tal symmetry, rendering such attempts largely unsuccessful. An Ising model
can be interpreted as a so-called lattice gas, where a spin +1 corresponds
to a particle and a spin −1 corresponds to an empty site. Accordingly, a
spin-inversion operation corresponds to a particle being inserted into or re-
moved from the system. This “particle–hole symmetry” is absent in off-lattice
(continuum) systems. While a particle in a fluid configuration can straightfor-
wardly be deleted, there is no unambiguous prescription on how to transform
empty space into a particle. More precisely, in the lattice cluster algorithms
the operation performed on every spin is self-inverse. This requirement is not
fulfilled for off-lattice fluids.

Independently of these efforts, in 1995 Dress and Krauth [14] proposed a
method to efficiently generate particle configurations for a hard-sphere liquid.
In this system, particles are represented by impenetrable spheres (or disks, in
the two-dimensional variant) that have no interaction as long as they do not
overlap. Because of the hard-core repulsion, a Monte Carlo algorithm involv-
ing local moves is relatively inefficient, since any move that generates a par-
ticle overlap is rejected. Instead, the geometric cluster algorithm (GCA) [14]
is designed to avoid such overlaps while generating a new configuration, by
proceeding as follows (cf. Fig. 1).

1. In a given configuration C of particles, a “pivot” is chosen at random.
2. A configuration C̃ is now generated by carrying out a point reflection for

all particles in C with respect to the pivot.4

3. The configuration C and its transformed counterpart C̃ are superimposed,
which leads to groups of overlapping particles. The groups generally come

4 In the original algorithm, a π rotation with respect to the pivot was performed
for all particles. In the two-dimensional example of Fig. 1 this is equivalent to
a point reflection, but the reflection is more suitable for generalization to higher
dimensions.
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Fig. 1. Illustration of the geometric cluster algorithm for hard disks [14]. (a) Original
configuration. (b) A new configuration (shaded circles) is created by means of a point
reflection of all particles with respect to a randomly chosen pivot point (small filled
disk). The superposition of the original and the new configuration leads to groups of
overlapping particles. In this example, there are three pairs of groups ({1, 2}, {3},
{4, 5, 6}). Each pair is denoted a cluster. The particles in any one of these clusters
can be point-reflected with respect to the pivot without affecting the other two
clusters. This can be used to carry out the point reflection for every cluster with a
pre-set probability. (c) Final configuration that results if, starting from the original
configuration, only the particles in the third cluster {4, 5, 6} are point-reflected. This
approach guarantees that every generated configuration will be free of overlaps. Note
that the pivot will generally not be placed in the center of the cell, and that the
periodic boundary conditions indeed permit any position. Reprinted figure with
permission from [16]. Copyright 2005 by the American Physical Society

in pairs, except possibly for a single group that is symmetric with respect
to the pivot. Each pair is denoted a “cluster.”

4. For each cluster, all particles can be exchanged between C and C̃ without
affecting particles belonging to other clusters. This exchange is performed
for each cluster independently with a probability 1

2 . Thus, if the superpo-
sition of C and C̃ is decomposed into N clusters, there are 2N possible
new configurations. The configurations that are actually realized are de-
noted C ′ and C̃ ′, i.e., the original configuration C is transformed into C ′

and its point-reflected counterpart C̃ is transformed into C̃ ′.
5. The configuration C̃ ′ is discarded and C ′ is the new configuration, serving

as the starting point for the next iteration of the algorithm. Note that a
new pivot is chosen in every iteration.

Observe that periodic boundary conditions must be employed, such that an
arbitrary placement of the pivot is possible. Other self-inverse operations are
permissible, such as a reflection in a plane [15], in which case various orienta-
tions of the plane must be chosen in order to satisfy ergodicity.

Comparison to the lattice cluster algorithms of Sect. 3 shows that the
SW and Wolff algorithms operate in the grand-canonical ensemble, in which
the cluster moves do not conserve the magnetization (or the number of parti-
cles, in the lattice-gas interpretation), whereas the geometric cluster algorithm



Introduction to Cluster Monte Carlo Algorithms 25

operates in the canonical ensemble. Nevertheless, this prescription bears a
remarkable resemblance to the SW algorithm. The original configuration is
decomposed into clusters by exploiting a symmetry operation that leaves the
Hamiltonian invariant if applied to the entire configuration; in the SW algo-
rithm this is the spin-inversion operation and in the geometric cluster algo-
rithm it is a geometric symmetry operation. Subsequently, a new configuration
is created by moving each cluster independently with a certain probability.

This approach is very general. For example, it is not restricted to monodis-
perse systems, and Krauth and co-workers have applied it successfully to bi-
nary [17] and polydisperse [18] mixtures. Indeed, conventional simulations of
size-asymmetric mixtures typically suffer from jamming problems, in which a
very large fraction of all trial moves is rejected because of particle overlaps.
In the geometric cluster algorithm particles are moved in a nonlocal fashion,
yet overlaps are avoided.

The most important limitation of the GCA is the fact that the average
cluster size increases very rapidly for systems with a density that exceeds the
percolation threshold of the combined system containing the superposition of
the configurations C and C̃. Once the clusters span the entire system, the
algorithm is clearly no longer ergodic.

In order to emphasize the analogy with the lattice cluster algorithms, we
can also formulate a single-cluster (Wolff) variant of the geometric cluster
algorithm [15,19].

1. In a given configuration C, a “pivot” is chosen at random.
2. A particle i is selected as the first particle that belongs to the cluster.

This particle is moved via a point reflection with respect to the pivot. In
its new position, the particle is referred to as i′.

3. The point reflection in step 2 is repeated iteratively for each particle j that
overlaps with i′. Thus, if the (moved) particle j′ overlaps with another
particle k, particle k is moved as well. Note that all translations involve
the same pivot.

4. Once all overlaps have been resolved, the cluster move is complete.

As in the SW-like prescription, a new pivot is chosen for each cluster that is
constructed.

4.2 Generalized Geometric Cluster Algorithm
for Interacting Particles

The geometric cluster algorithm described in the previous section is formu-
lated for particles that interact via hard-core repulsions only. Clearly, in order
to make this approach widely applicable, a generalization to other types of
pair potentials must be found. Thus, Dress and Krauth [14] suggested to im-
pose a Metropolis-type acceptance criterion, based upon the energy difference
induced by the cluster move. Indeed, if a pair potential consists of a hard-
core contribution supplemented by an attractive or repulsive tail, such as a
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Yukawa potential, the cluster-construction procedure takes into account the
excluded-volume contribution, guaranteeing that no overlaps are generated,
and the acceptance criterion takes into account the tail of the interactions.
For “soft-core” potentials, such as a Lennard-Jones interaction, the situation
becomes already somewhat more complicated, since an arbitrary excluded-
volume distance must be chosen in the cluster construction. As the algorithm
will not generate configurations in which the separation (center-to-center dis-
tance) between a pair of particles is less than this distance (i.e., the particle
“diameter,” in the case of monodisperse systems), it must be set to a value
that is smaller than any separation that would typically occur. It is impor-
tant to recognize that both for hard-core particles with an additional tail and
for soft-core particles the clusters are now constructed on the basis of only a
part of the pair potential, and the evaluation of a part of the energy change
resulting from a cluster move is deferred until the acceptance step. As a re-
sult, the computational efficiency can decrease significantly, since – similar to
the situation for regular multiple-particle moves – rejection of a cluster move
is quite likely. To make things worse, every rejection leads to a considerable
waste of computational effort spent on the construction of the cluster and the
evaluation of the corresponding energy change. Nevertheless, this approach
certainly works in principle, as shown by a study of Yukawa mixtures with
moderate size asymmetry (diameter ratio ≤ 5) [20].

However, an entirely different approach is possible, by carrying the anal-
ogy with the lattice cluster algorithms further. The probability pij to add
a spin j (which is neighboring a spin i) to the cluster in the SW algorithm
can be phrased in terms of the corresponding energy difference. Two different
situations can be discerned that lead to a change in the relative energy ∆SW

ij

between a spin i that belongs to the cluster and a spin j that does not yet
belong to the cluster. If i and j are initially antiparallel, j will never be added
to the cluster and only spin i will be inverted, yielding an energy change
∆SW

ij = −2J < 0 that occurs with probability unity. If i and j are initially
parallel and j is not added to the cluster, the resulting change in the pair en-
ergy equals ∆SW

ij = +2J > 0. This occurs with a probability exp(−2βJ) < 1.
These two situations can be summarized as

1 − pij = min
[
exp(−β∆SW

ij ), 1
]
, (17)

so that the probability of adding spin j to the cluster can be written as
pij = max[1− exp(−β∆SW

ij ), 0]. The GCA, although formulated in continuum
space rather than on a lattice, can now be interpreted as special situation in
which either ∆ij = 0 (after reflection of particle i, there is no overlap between
particles i and j), leading to pij = 0, or ∆ij = ∞ (after point reflection,
particle i overlaps with particle j), leading to pij = 1.

A generalization of the GCA to general pair potentials then follows in a
natural way [19]. All interactions are treated in a unified manner, so that
there is no technical distinction between attractive and repulsive interactions
or between hard-core and soft-core potentials. This generalized GCA is most
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Fig. 2. Two-dimensional illustration of the interacting geometric cluster algorithm.
Like in Fig. 1, open and shaded disks denote the particles before and after the
geometric operation, respectively, and the small disk denotes the pivot. However, in
the generalized GCA a single cluster is constructed, to which particles are added
with an interaction-dependent probability. (a) Original configuration. (b) A cluster
is constructed as follows. Particle 1 is point-reflected with respect to the pivot. If, in
its new position, it has a repulsive interaction with particle 2, the latter has a certain
probability to be point-reflected as well, with respect to the same pivot. Assuming
an attractive interaction between particles 2 and 3, particle 3 is translated as well,
but only with a certain probability. If particles 4–6 are not affected by these point
reflections, the cluster construction terminates. (c) The new configuration consists
of particles 1–3 in their new positions and particles 4–6 in the original positions. A
new pivot is chosen and the procedure is repeated. Reprinted figure with permission
from [16]. Copyright 2005 by the American Physical Society

easily described as a combination of the single-cluster methods formulated in
Sect. 3.2 and Sect. 4.1. We assume a general pair potential Vij(rij) that does
not have to be identical for all pairs (i, j) (see Fig. 2).

1. In a given configuration C, a “pivot” is chosen at random.
2. A particle i at position ri is selected as the first particle that belongs to

the cluster. This particle is moved via a point reflection with respect to the
pivot. In its new position, the particle is referred to as i′, at position r′i.

3. Each particle j that interacts with i or i′ is now considered for addition to
the cluster. A particle j that interacts with i both in its old and in its new
position is nevertheless treated once. Unlike the first particle, particle j
is point-reflected with respect to the pivot only with a probability pij =
max[1 − exp(−β∆ij), 0], where ∆ij = V (|r′i − rj |) − V (|ri − rj |).

4. Each particle j that is indeed added to the cluster (i.e., moved) is also
placed on the stack. Once all particles interacting with i or i′ have been
considered, a particle is retrieved from the stack and all its neighbors that
are not yet part of the cluster are considered in turn for inclusion in the
cluster as well, following step 3.

5. Steps 3 and 4 are repeated iteratively until the stack is empty. The cluster
move is now complete.
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If a particle interacts with multiple other particles that have been added to the
cluster, it can thus be considered multiple times for inclusion. However, once it
has been added to the cluster, it cannot be removed. This is an important point
in practice, since particles undergo a point reflection already during the cluster
construction process (and thus need to be tagged, in order to prevent them
from being returned to their original position by a second point reflection). A
crucial aspect is that the probability pij only depends on the change in pair
energy between i and j that occurs if particle i is point-reflected with respect
to the pivot, but particle j is not added to the cluster (and hence not point-
reflected). This happens with a probability 1−pij = min[exp(−β∆ij), 1], just
as we found for the SW algorithm in (17). The similarity of this probability
to the Metropolis acceptance criterion is deceptive (and merely reflects the
fact that both algorithms aim to generate configurations according to the
Boltzmann distribution), since ∆ij does not represent the total energy change
resulting from the translation of particle i. Instead, other energy changes are
taken into account via the iterative nature of the algorithm.

It is interesting to note that the GCA can also be applied to lattice-based
models. This was first done for the Ising model by Heringa and Blöte [21,22],
who also devised a way to take into account the nearest-neighbor interac-
tions between spins already during the cluster construction. While this lattice
model can obviously be simulated by the SW and Wolff algorithms, their
approach permits simulation in the constant-magnetization ensemble. Since
the geometric operations employed map the spin lattice onto itself, excluded-
volume conditions are satisfied automatically: Every spin move amounts to
an exchange of spins. For every spin pair (i, i′) that is exchanged, each of its
nearest-neighbor pairs (k, k′) is exchanged with a probability that depends on
the change in pair energy, ∆ = (Eik + Ei′k′) − (Eik′ + Ei′k). This procedure
is then again performed iteratively for the neighbors of all spin pairs that are
exchanged. This is similar to the generalized GCA discussed above, although,
in the absence of a lattice, particles are added to the cluster on an individual
basis rather than in pairs.

In order to establish the correctness of the generalized GCA, we need to
prove ergodicity as well as detailed balance. The ergodicity of this algorithm
follows from the fact that there is a nonvanishing probability that a clus-
ter consists of only one particle, which can be moved over an arbitrarily small
distance, since the location of the pivot is chosen at random. This obviously re-
quires that not all particles are part of the cluster, a condition that is violated
at high packing fractions and, depending on the nature of the interactions, at
very strong coupling strengths.

Detailed balance is proven as follows. We consider a configuration X that
is transformed into a configuration Y by means of a cluster move. All parti-
cles included in the cluster maintain their relative separation; as noted above,
an energy change arises if a particle is not included in the cluster, but inter-
acts with a particle that does belong to the cluster. Following Wolff [7] we
denote each of these interactions as a “broken bond.” A broken bond k that
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corresponds to an energy change ∆k occurs with a probability 1 − pk = 1 if
∆k ≤ 0 and a probability 1 − pk = exp(−β∆k) if ∆k > 0. The formation of
an entire cluster corresponds to the breaking of a set {k} of bonds, which has
a probability P . This set is comprised of the subset {l} of broken bonds l that
lead to an increase in pair energy and the subset {m} of broken bonds that
lead to a decrease in pair energy, such that

P =
∏

k

(1 − pk) = exp

[
−β
∑

l

∆l

]
. (18)

The transition probability from configuration X to configuration Y is propor-
tional to the cluster formation probability,

T (X → Y ) = C exp

[
−β
∑

l

∆l

]
, (19)

where the factor C accounts for the fact that various arrangements of bonds
within the cluster (“internal bonds”) correspond to the same set of broken
bonds. In addition, it incorporates the probability of choosing a particular
pivot and a specific particle as the starting point for the cluster.

If we now consider the reverse transition Y → X, we observe that this
again involves the set {k}, but all the energy differences change sign compared
to the forward move. Consequently, the subset {l} in (19) is replaced by its
complement {m} and the transition probability is given by

T (Y → X) = C exp

[
+β
∑

m

∆m

]
, (20)

where the factor C is identical to the prefactor in (19). Since we require
the geometric operation to be self-inverse we thus find that the cluster move
satisfies detailed balance at an acceptance ratio of unity,

T (X → Y )
T (Y → X)

=
exp [−β

∑
l ∆l]

exp [+β
∑

m ∆m]
= exp

[
−β
∑

k

∆k

]

= exp [−β(EY − EX)] =
exp(−βEY )
exp(−βEX)

, (21)

where EX and EY are the internal energies of configurations X and Y , respec-
tively. That is, the ratio of the forward and reverse transition probabilities is
equal to the inverse ratio of the Boltzmann factors, so that we indeed have
created a rejection-free algorithm. This is obscured to some extent by the fact
that in our prescription the cluster is moved while it is being constructed, sim-
ilar to the Wolff algorithm in Sect. 3.2. The central point, however, is that the
construction solely involves single-particle energies, whereas a Metropolis-type
approach only evaluates the total energy change induced by a multi-particle
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move and then frequently rejects this move. By contrast, the GCA avoids
large energy differences by incorporating “offending” particles into the cluster
with a high probability (i.e., strong bonds are unlikely to be broken).

4.3 Generalized Geometric Cluster Algorithm:
Full Cluster Decomposition

It is instructive to also formulate a SW version of the generalized GCA, based
upon the single-cluster version described in the previous section. This demon-
strates that the generalized GCA is a true off-lattice counterpart of the cluster
algorithms of Sect. 3. Furthermore, it is of conceptual interest, as this algo-
rithm decomposes a continuum fluid configuration into stochastically inde-
pendent clusters. This implies an interesting and remarkable analogy with the
Ising model. As observed by Coniglio and Klein [23] for the two-dimensional
Ising model at its critical point, the clusters created according to the pre-
scription in Sect. 3 are just the so-called “Fisher droplets” [24]. Indeed, these
“Coniglio–Klein clusters” are implied by the Fortuin–Kasteleyn mapping of
the Potts model onto the random-cluster model [5], which in turn constitutes
the basis for the Swendsen–Wang approach [3]. The clusters generated by
the GCA do not have an immediate physical interpretation, as they typically
consist of two spatially disconnected parts. However, just like the Ising clus-
ters can be inverted at random, each cluster of fluid particles can be moved
independently with respect to the remainder of the system. As such, the gen-
eralized GCA can be viewed as a continuum version of the Fortuin–Kasteleyn
mapping.

The cluster decomposition of a configuration proceeds as follows. First, a
cluster is constructed according to the single-cluster algorithm of Sect. 4.2,
with the exception that the cluster is only identified ; particles belonging to
the cluster are marked but not actually moved. The pivot employed will also
be used for the construction of all subsequent clusters in this decomposition.
These subsequent clusters are built just like the first cluster, except that par-
ticles that are already part of an earlier cluster will never be considered for a
new cluster. Once each particle is part of exactly one cluster the decomposi-
tion is completed. Like in the SW algorithm, every cluster can then be moved
(i.e., all particles belonging to it are translated via a point reflection) inde-
pendently, e.g., with a probability f . Despite the fact that all clusters except
the first are built in a restricted fashion, each individual cluster is constructed
according to the rules of the Wolff formulation of Sect. 4.2. The exclusion
of particles that are already part of another cluster simply corresponds to
the fact that every bond should be considered only once. If a bond is broken
during the construction of an earlier cluster it should not be re-established
during the construction of a subsequent cluster. The cluster decomposition
thus obtained is not unique, as it depends on the placement of the pivot and
the choice of the first particle. Evidently, this also holds for the SW algorithm.
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In order to establish that this prescription is a true equivalent of the SW
algorithm, we prove that each cluster can be moved (reflected) independently
while preserving detailed balance. If only a single cluster is actually moved,
this essentially corresponds to the Wolff version of the GCA, since each clus-
ter is built according to the GCA prescription. The same holds true if several
clusters are moved and no interactions are present between particles that be-
long to different clusters (the hard-sphere algorithm is a particular realization
of this situation). If two or more clusters are moved and broken bonds exist
between these clusters, i.e., a nonvanishing interaction exists between particles
that belong to disparate (moving) clusters, then the shared broken bonds are
actually preserved and the proof of detailed balance provided in the previous
section no longer applies in its original form. However, since these bonds are
identical in the forward and the reverse move, the corresponding factors can-
cel out. This is illustrated for the situation of two clusters whose construction
involves, respectively, two sets of broken bonds {k1} and {k2}. Each set com-
prises bonds l ({l1} and {l2}, respectively) that lead to an increase in pair
energy and bonds m ({m1} and {m2}, respectively) that lead to a decrease in
pair energy. We further subdivide these sets into external bonds that connect
cluster 1 or 2 with the remainder of the system and joint bonds that connect
cluster 1 with cluster 2. Accordingly, the probability of creating cluster 1 is
given by

C1

∏

i∈{k1}
(1−pi) = C1

∏

i∈{l1}
(1−pi) = C1

∏

i∈{lext
1 }

(1−pi)
∏

j∈{ljoint
1 }

(1−pj) . (22)

Upon construction of the first cluster, the creation of the second cluster has
a probability

C2

∏

i∈{lext
2 }

(1 − pi) , (23)

since all joint bonds in {ljoint
2 } = {ljoint

1 } already have been broken. The factors
C1 and C2 refer to the probability of realizing a particular arrangement of
internal bonds in clusters 1 and 2, respectively (cf. Sect. 4.2). Hence, the total
transition probability of moving both clusters is given by

T12(X → Y ) = C1C2 exp



−β
∑

i∈{lext
1 }

∆i − β
∑

j∈{lext
2 }

∆j − β
∑

n∈{ljoint
1 }

∆n



 .

(24)
In the reverse move, the energy differences for all external broken bonds have
changed sign, but the energy differences for the joint bonds connecting cluster
1 and 2 are the same as in the forward move. Thus, cluster 1 is created with
probability
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C1

∏

i∈{mext
1 }

(1−p̄i)
∏

j∈{ljoint
1 }

(1−pj) = C1

∏

i∈{mext
1 }

exp[+β∆i]
∏

j∈{ljoint
1 }

exp[−β∆j ] ,

(25)
where the p̄i reflects the sign change of the energy differences compared to
the forward move and the product over the external bonds involves the com-
plement of the set {lext

1 }. The creation probability for the second cluster is

C2

∏

i∈{mext
2 }

(1 − p̄i) = C2

∏

i∈{mext
2 }

exp[+β∆i] (26)

and the total transition probability for the reverse move is

T12(Y → X) = C1C2 exp



+β
∑

i∈{mext
1 }

∆i + β
∑

j∈{mext
2 }

∆j − β
∑

n∈{ljoint
1 }

∆n



 .

(27)
Accordingly, detailed balance is still fulfilled with an acceptance ratio of unity,

T12(X → Y )
T12(Y → X)

= exp



−β
∑

i∈{kext
1 }

∆i − β
∑

j∈{kext
2 }

∆j



 = exp [−β(EY − EX)] ,

(28)
in which {kext

1 } = {lext
1 }∪{mext

1 } and {kext
2 } = {lext

2 }∪{mext
2 } and EX and EY

refer to the internal energy of the system before and after the move, respec-
tively. This treatment applies to any simultaneous move of clusters, so that
each cluster in the decomposition indeed can be moved independently without
violating detailed balance. This completes the proof of the multiple-cluster
version of the GCA. It is noteworthy that the probabilities for breaking joint
bonds in the forward and reverse moves cancel only because the probability
in the cluster construction factorizes into individual probabilities.

4.4 Implementation Issues

The actual implementation of the generalized GCA involves a variety of issues.
The point reflection with respect to the pivot requires careful consideration of
the periodic boundary conditions. Furthermore, as mentioned above, particles
that have been translated via a point reflection must not be translated again
within the same cluster move, and particles that interact with a given cluster
particle both before and after the translation of that cluster particle must
be considered only once, on the basis of the difference in pair potential. One
way to account for all interacting pairs in an efficient manner is the use of
the cell index method [25]. For mixtures with large size asymmetries (the
situation where the generalized GCA excels), it is natural to set up different
cell structures, with cell lengths based upon the cutoffs of the various particle
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interactions. For example, in the case of a binary mixture of two species with
very different sizes and cutoff radii (rlarge

cut and rsmall
cut , respectively), the use of

a single cell structure with a cell size that is determined by the large particles
would be highly inefficient for the smaller particles. Thus, two cell structures
are constructed in this case (with cell sizes llarge and lsmall, respectively) and
each particle is stored in the appropriate cell of the structure belonging to
its species, and incorporated in the corresponding linked list, following the
standard approach [25]. However, in order to efficiently deal with interactions
between unlike species (which have a cutoff rls

cut), a mapping between the
two cell structures is required. If all small particles that interact with a given
large particle must be located, one proceeds as follows. First, the small cell c
is identified in which the center of the large particle resides. Subsequently,
the interacting particles are located by scanning over all small cells within
a cubic box with linear size 2rls

cut, centered around c. This set of cells is
predetermined at the beginning of a run and their indices are stored in an
array. Each set contains approximately Ncell = (2rls

cut/lsmall)3 members. In an
efficient implementation, lsmall is not much larger than rsmall

cut , which for short-
range interactions is of the order of the size of a small particle. Likewise, rls

cut

is typically of the order of the size of the large particle, so that Ncell = O(α3),
where α > 1 denotes the size asymmetry between the two species. Since Ncell

indices must be stored for each large cell, the memory requirements become
very large for cases with large size asymmetry, such as the suspension of
colloids and nanoparticles (size asymmetry α = 100) studied in [26].

4.5 Illustration 1: Efficiency of the Generalized Geometric
Cluster Algorithm

Probably the most important feature of the generalized GCA for practical ap-
plications is the efficiency with which it generates uncorrelated configurations
for size-asymmetric mixtures. This performance directly derives from the non-
local character of the point reflection employed. In general, the translation of
a single particle over large distances has a very low acceptance ratio in con-
ventional Monte Carlo simulations, except in extremely dilute conditions. The
situation only deteriorates for multiple-particle moves, unless the particles in-
volved in the move are selected in a very specific manner. The generalized
GCA makes nonlocal collective moves possible, without any negative conse-
quences in the acceptance ratio. The resulting efficiency gain is illustrated by
means of an example taken from [19], namely a simple binary mixture con-
taining 150 large particles of size σ22, at fixed volume fraction φ2 = 0.1, and
N1 small particles, also at fixed volume fraction φ1 = 0.1. The efficiency is
determined through the autocorrelation time, as a function of size asymmetry.
As the size σ11 of these small particles is varied from σ22/2 to σ22/15 (i.e.,
the size ratio α = σ22/σ11 is increased from 2 to 15), their number increases
from N1 = 1200 to 506 250.
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Fig. 3. Efficiency comparison between a conventional local update algorithm (open
symbols) and the generalized geometric cluster algorithm (closed symbols), for a
binary mixture (see text) with size ratio α. Whereas the autocorrelation time per
particle (expressed in µs of CPU time per particle move) rapidly increases with
size ratio, the GCA features only a weak dependence on α. Reprinted figure with
permission from [19]. Copyright 2004 by the American Physical Society

Pairs of small particles and pairs involving a large and a small particle act
like hard spheres. However, in order to prevent depletion-driven aggregation
of the large particles [27], a short-ranged Yukawa repulsion is introduced,

U22(r) =
{

+∞ r ≤ σ22
σ22
r ε exp[−κ(r − σ22)] r > σ22

, (29)

where βε = 3.0 and the screening length κ−1 = σ11. In the simulation, the
exponential tail is cut off at 3σ22.

The additional Yukawa interactions also lead to a fluctuating internal en-
ergy E(t) that makes it possible to determine the rate at which the large
(and slower) particles decorrelate. We consider the integrated autocorrelation
time τ obtained from the energy autocorrelation function [28],

C(t) =
〈E(0)E(t)〉 − 〈E(0)〉2

〈E(0)2〉 − 〈E(0)〉2
, (30)

and compare τ for a conventional (Metropolis) MC algorithm and the gen-
eralized GCA, see Fig. 3. In order to avoid arbitrariness resulting from the
computational cost involved with a single sweep or the construction of a clus-
ter, we assume that both methodologies have been programmed in an efficient
manner and express τ in actual CPU time. Furthermore, τ is normalized by
the total number of particles in the system, to account for the variation in N1

as the size ratio α is increased. The autocorrelation time for the conventional
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MC calculations, τMC, rapidly increases with increasing α, because the large
particles tend to get trapped by the small particles. Indeed, already for α > 7
it is not feasible to obtain an accurate estimate for τMC. By contrast, τGCA

exhibits a very different dependence on α. At α = 2 both algorithms require
virtually identical simulation time, which establishes that the GCA does not
involve considerable overhead compared to standard algorithms (if any, it
is mitigated by the fact that all moves are accepted). Upon increase of α,
τGCA initially decreases until it starts to increase weakly. The nonmonotonic
variation of τGCA results from the changing ratio N2/N1 which causes the
cluster composition to vary with α. The main points to note are: (i) the GCA
greatly suppresses the autocorrelation time, τGCA 	 τMC for α > 2, with
an efficiency increase that amounts to more than three orders of magnitude
already for α = 7; (ii) the increase of the autocorrelation time with α is much
slower for the GCA than for a local-move MC algorithm, making the GCA
increasingly advantageous with increasing size asymmetry.

4.6 Illustration 2: Temperature and Cluster Size

The cluster size clearly has a crucial influence on the performance of the GCA.
If a cluster contains more than 50% of all particles, an equivalent change to
the system could have been made by moving its complement; unfortunately it
is unclear how to determine this complement without constructing the cluster.
Nevertheless, it is found that the algorithm can operate in a comparatively
efficient manner for average relative cluster sizes as large as 90% or more.
Once the total packing fraction of the system exceeds a certain value, the
original hard-core GCA breaks down because each cluster occupies the en-
tire system. The same phenomenon occurs in the generalized GCA, but in
addition the cluster size can saturate because of strong interactions. Thus,
the maximum accessible volume fraction depends on a considerable number
of parameters, including the range of the potentials and the temperature.
For multi-component mixtures, size asymmetry and relative abundance of the
components are of importance as well, and the situation can be complicated
further by the presence of competing interactions.

As an illustration, we consider the cluster-size distribution for a monodis-
perse Lennard-Jones fluid (particle diameter σ, interaction cut-off 2.5σ) at
a rather arbitrary density 0.16σ−3, for a range of temperatures, see Fig. 4.
Whereas the distribution is a monotonously decreasing function of cluster size
at high temperatures, it becomes bimodal at temperatures around 25% above
the critical temperature. The bimodal form is indicative of the formation of
large clusters.

It turns out to be possible to influence the cluster-size distribution by
placing the pivot in a biased manner. Rather than first choosing the pivot
location, a particle is selected that will become the first member of the cluster.
Subsequently, the pivot is placed at random within a cubic box of linear
size δ, centered around the position of this particle. By decreasing δ, the
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Fig. 4. Cluster-size distributions as a function of relative cluster size X, for a
monodisperse Lennard-Jones fluid. The number density ρ = 0.16σ−3 is set to 50%
of the critical density. For low temperatures, the cluster-size distribution becomes
bimodal. At higher temperatures, it decreases monotonically. All temperatures are
indicated in units of ε/kB. Reprinted figure with permission from [16]. Copyright
2005 by the American Physical Society

displacement of the first particle is decreased, as well as the number of other
particles affected by this displacement. As a consequence, the average cluster
size decreases, and higher volume fractions can be reached. Ultimately, the
cluster size will still occupy the entire system (making the algorithm no longer
ergodic), but it has been found that the maximum accessible volume fraction
can be increased from approximately 0.23 to a value close to 0.34. This value
indeed corresponds to the percolation threshold for hard spheres. Note that
the proof of detailed balance is not affected by this modification.

Summary and Conclusions

In this chapter, I have presented a detailed discussion of cluster Monte Carlo
algorithms for off-lattice systems. In order to emphasize the efficiency of these
algorithms as well as their connection to methods developed earlier, I have first
introduced the basic ingredients of a conventional (Metropolis-type) Monte
Carlo algorithm. Subsequently, the Swendsen–Wang and Wolff algorithms for
Ising and q-state Potts models have been discussed, which are striking because
of their rejection-free character. The off-lattice cluster algorithms, which are
based upon geometric symmetry operations, are a direct generalization of
these lattice cluster methods, and illustrate that rejection-free algorithms are
by no means rare exceptions, but can actually be phrased for large classes of
systems.
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