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The liquid—vapa transition in He and “He is investigatel by mears of path-integrh molecular
dynamice and the quantum virial expansionBoth method are applied to the critical isoba and the
critical isochore While previows path-integrh simulatiors have mainly considerd the lambda
transition ard superflud regime in “He, we focus on the vicinity of the critical point and obtain good
agreemen with experimenth resuls for the molar volume and the internd enegy down to
subcriticd temperaturesWe find that an effective classich potentid thet propery describs the
two-partick radid distribution function exhibits astrorg temperatue dependenenea the critical
temperatureThis contrass with the behavia of essentialf classicdsystens like xenon whete the
effective potentid is independenof temperaturelt is conjecture that, owing to this differen@ in
behavio betweea classich and quantum-mechanitaystemsthe crossove behavio observe for
helium in the vicinity of the critical point differs qualitatively from tha of otha simple liquids.
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I. INTRODUCTION

Crossove phenomea hawe enjoyal arenewael attention
in recen years both from the theoretich (seg e.g, Refs.
1-5) ard from the experimenthside (cf. Refs 6-8); see also
Ref. 9 ard reference therein This concers in particula the
crossove from mean-field-lile to Ising-type critical behavior
upon approabt of the critical point The accura¢ numerical
determinatio of crossove scalirg functiors for the isother-
md compressibiliy and the liqguid—vapa coexistence
curvé® has motivatel the reexaminatia of experimental
dat for *He ard Xe.! Xenon with avery high molar mass
ard a relatively high critical temperaturgis essentiall a
classica system while the critical point for *He occurs at a
temperatue and densiyy where quantum effects are expected
to be non-negligible This is also expressé by the de Boer
paramete A*.'?> For monatomé gass of atomc mas m,
tha are describe by a Lennard-Jongpotentid with param-
etes ¢ ard o, this parameteis definal as A* =h/ome.
For He its value is A* =3.08 compare to A* =0.064 for
xenon®® Neverthelessthe natuee of the critical point itseff is
the same for both fluids, becaus the critical fluctuations
dominat over the quantum-mechanitdluctuatiors at tem-
perature sufficiently close to the critica temperatue T..
Thus the values of the critical exponendg are not affected.
For the crossoveregion the situatian is less clea-cut Since
the correlatian length now has afinite (althoudn large) value,
nonunivershbehaviao may be expectd for differert systems
and has actualy been observed. Howeve, accordim to
theowy, this nonuniversalif is largely determine by the so-
called cutdf paramete (the wave numbe correspondig to
some microscopt characterist length which in most
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simpk fluids has a very similar value! Furthermorealso in
numerica simulatiors of Ising-type systens ahigh degre of
universaliy has been observe for crossove scaling
functions* Thus it came as quite asurpris tha the cross-
over behavia for 3He exhibits amarkel differenc from that
of xenon™ Owing to the shot range of the interactions,
thes systens cannad be expecte to complee the full cross-
ove to mean-field-lile behavia before leaving the critical
region [where t<1, with t=(T—T.)/T.]. Neverthelessfor
T>T, the crossove behavia of the isotherm& compress-
ibility of xenm turned out to agree very well with the nu-
mericd dat for the three-dimensiordalsing modd with
varying interaction range’® wherea the correspondig ex-
perimenta dat for 3He seemd to be describe by a quali-
tatively differert curve For t=0.01, the compressibiliy ap-
pear@ essentiall suppesseé comparé to the crossover
scalirg function In Ref. 11, this differen@ in behavio was
conjecturd to be relatal to quantum-mechanita&ffects The
critical compressibilig of *He would be enhancd due to
quantun fluctuations which are temperatue dependent.
Hence this contributian is expecté to decreas appreciably
within the (high-temperatunecrossove region effectively
leadirg to an additiond reduction of the compressibility
upon increag of the temperatureClearly, it is only the com-
pressibiliy due to the therma fluctuatiors which is described
by the various theoretich expressioa for the crossove scal-
ing function.

In orde to gauge the quantum-mechanitaontribution
to the compressibiliy, a comprehensig theoretich descrip-
tion of the critical behavia, including the role of quantum
effects is required suc a description shoutl encompasthe
temperatue dependeneof this contributian in the vicinity of
T.. Indeed for a weakly interactig Bose fluid a scaling
function has been calculatel describirg the crossove from
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criticality (i.e., the lambda point to ideal Bose-gas tween those monomers that have the same index within the
behaviort>®In particular, it was found that a mapping of the respective polymers to which they belong, and the effective
Hamiltonian for the Bose gas onto a classical spin modetemperature in the isomorphic classical representation is
yields a Landau—Ginzburg—Wilson Hamiltonian with a quar-given by TM. For more details, we refer the reader to the
tic term that has a strongly temperature-dependenoriginal literature and review articld$:1922:23
coefficient'® Since this coefficient plays a pivotal role in Depending on the nature of the problem under study,
crossover scaling functions, a corresponding effect in the viMonte Carlo methods are preferable to molecular dynamics
cinity of the liquid—vapor critical point would definitely af- or vice versa. PIMC has so far been the method of choice for
fect the nature of the crossover from Ising-type to meanf{inite-temperature simulations of condensed helium, in par-
field-like critical behavior. These considerations haveticular when exchange effects played an important role. Far
motivated us to examine the behavior of helium close to theway from the superfluid regime, however, exchange effects
critical point by means of quantum-mechanical numericalcan be neglectet!,so that PIMC is not necessarily advanta-
methods. In particular, it is of interest to see whether thegeous to PIMD for the study of the liquid—vapor transition.
magnitude of quantum effects indeed changes appreciablor example, in the gas phase, ballistic trajectories can be
over the crossover region, as conjectured in Ref. 11. In theealized in PIMD, which allows rapid changes in the con-
present study, we pay some attention®ite, but our main figuration. In conventional Monte Carlo methods, motions
focus is on*He. Due to the higher mass 6He, quantum are constrained to be diffusive and large correlation times
effects are less pronounced, which is only reinforced by thenay be expected. Also, in isobaric simulations volume
correspondingly higher critical temperature. This facilitatesmoves are done at no extra cost in a molecular dynamics
the numerical calculations considerably, as will be outlinedsimulation, while Monte Carlo methods require the evalua-
in Sec. Il A. At the same time, the quantum effects are stilltion of the total energy of the system.
clearly visible in the crossover region and the isothermal Using an appropriate representation of the internal coor-
compressibility indeed exhibits a deviation from the pre-dinates of the chain molecules, it is possible to avoid ineffi-
dicted crossover curve, similar to that found fdte.!* For  cient sampling! e.g., in the regular representation, where
comparison/He has a de Boer paramet&* =2.67, com- each bead in a chain has the same dynamical inertia, the
pared to the above-mentioned valté = 3.08 for*He.:® time-step discretization has to be chosen proportional to

For completeness we remark tiftde has been exten- M~2. In this study, we have used a representation of the
sively studied by means of the path-integral Monte Carlochain molecules in terms of the center-of-mass coordinate
method, especially in the context of the lambda transitiorand the eigencoordinates of the free particles, defined in Eq.
taking place at 2.17 K; cf. Ref. 17. Also, the high-density (3) below, which makes it possible to work with time steps
region has been explored in this w&but we are not aware independent oM. While the “dynamical” center-of-mass
of numerical studies in the vicinity of the liquid—vapor criti- coordinate is chosen to be identical with the real mass
cal point. different massesn, are attributed to each eigenmodeAn

The outline of this paper is as follows. In Sec. Il we efficient choice isn,= (k+k,)m/k, wherek is an adjustable
introduce the methods that we have applied: Path-integrglarameter ant, is the stiffness associated with the eigen-
molecular dynamics is discussed in Sec. Il A, followed by mageq, k is conveniently chosen such that in the condensed
the quantum virial expansion in Sec. II B. Section Ill con- hage all modes move on approximately the same time scale.
ta|n4$ all our main resglts,_namely dgta for thg atomic volume 5 disadvantage of PIMD is that for a fixetynamictime
of “"He and for its kinetic, potential, and internal energy siepAt, errors due to the finiteness At may increase lin-
a_llong the crmaal |sobar,3 as well as for_the klnetlp and_p_oten—eaﬂy with increasing Trotter numbéd. In such a case the
tial energy of"He and“He along their respective critical oynd-off errors increase with decreasiimgaginary time
|sogh0r¢s. Furthermore, results for the effective pair potentialier, g/M . While the radial distribution function, the average
of "He in the vicinity of the critical temperature are pre- hotential energy, and the virial estimator for the kinetic
sented. Our conclusions are summarized in Sec. IV. energ* do not suffer noticeably from this effect in our

PIMD simulations, the so-called primitive estimator for the

Il. METHODS kinetic energyK i, does. Thus, the typical systematic error
in Kpim due to finiteAt is M times larger than that in the
virial estimator. An estimator is a function whoseerage

Path-integral Monte Carl6PIMC)'®?°and path-integral value corresponds to the expectation value of a property of
molecular dynami(;$P|MD)21 are well-established methods interest. For anndividual configuration, however, the asso-
to calculate thermodynamic properties of many-particleciation of the actual value of the estimator with the actual
quantum systems. Path-integral techniques exploit the posstalue of the property is meaningleds,, is given by*
bility to represent the quantum-mechanical partition function
of point particles as a classical partition function of closed
polymers!’ Neighboring beads in the polymer are coupled
via elastic springs with stiffnesds=mM?/ 8242, wherem is
the mass of the point particle, the so-called Trotter nunber wherer; . represents the position of thth monomer in poly-
represents the number of beads in the polymer, gnd meri, andk is the stiffness introduced at the beginning of
=1/kgT. Interaction between polymers only takes place bethis section. In addition to the above-mentioned systematic

A. Path-integral molecular dynamics
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error,Kim has been shown to have large statistical errors foinvestigatedB, is larger for the bosonic case than if thide

large Trotter numberdl, even in PIMC simulation$! How-  atoms are treated as distinguishable. The bosonic case can be
ever, a simple trick remedies both of these shortconﬁﬁg‘s. treated by restricting the evaluation of E§) to even angu-
$NksTM? is replaced by the actual “dynamic” kinetic en- |ar momenta. The effect iB, (and 9B,/Jp) is approxi-

ergy, a new estimator can be defined mately 14% aff =3 K and approximately 10% &f=7 K.
L Therefore, in this temperature regime the difference between
Koim=s > (MviZ—kqr 1), 2 bospnic“He and “distinguishab_le““He in the leading cor-
2{=1 61 rections to the ideal-gas behavior is of the order of 10%.

, : . . . Its lower mass and lower liquid—gas transition tempera-
wherevj, denotes the velocity associated with the eigenco- . . 3
ordinate ture will make exchange effects more important fole than

for “He. On the other hand, there is significant cancellation
1 _ of exchange effects ifHe: If two spin-up®He atoms form a
M= >, r;,e2ma™. (3)  dimer, the spin wave function will be symmetric while the
JM =1 . ) . -
real-space wave function will be antisymmettfermionic).
For methods to perform PIMD simulations at constant presHowever, if a spin-up’He and a spin-dowrfHe form a
sure, we refer to Refs. 25 and 26. dimer, the opposite will happen: The spin wave function will

All simulations, as well as the virial expansions, arebe antisymmetric and the real-space wave function will be
based on the Aziz HFD-B potenti&i,which is considered Symmetric(bosonig. At finite temperatures, these competing
one of the best-known interatomic model potentfdlg.con- ~ €xchange effects in the real-space wave function may cancel
sists of a Hartree—Fockexponential short-range repulsive to a significant extent in the case of sgiriermions. More-
term and algebraic long-range attractive termg(t,lﬂ/rsl over, the critical molar volume is larger foHe than for
1/r19. Recently, efforts have been devoted to incorporatingHe, which also tends to reduce the importance of exchange
three-body effects into the helium potential energy surfdce. in *He.

However, even for atomic volumes as small as 25 there Besides the neglect of exchange effects, there are three
seems to be little deviation between the Aziz HFD-B poten-2dditional sources of errors that need to be addressed: statis-
tial and the three-body potential of Moroet al. (see, e.g., tical errors, finite time-step discretization errors, and errors
the 2% difference for the kinetic energy of sofidle shown due to finite Trotter numbers. For all figures presented in
in Fig. 6 of Ref. 25. We may thus safely assume that the Sec. Ill, these errors are smaller than or at most of the order
Aziz HFD-B potential is adequate for the description of lessof the symbol size. Typically, the statistical errors are smaller
dense systems, like those studied here. Furthermore, we ndf@gan 1% in both volume and energy. In the immediate vicin-
that it has been used very successfully in simulations of fluidty of the phase transition, the statistical errors are about five
and superfluid helium, as discussed in the well-known retimes larger. The extrapolatidd — o adds another 0.5% of
view of Ceperleyt’ The cutoff radius that we used in our uncertainty, again increased by a factor of 5 in the immediate
simulations was .=10 A. The particle number in all simu- Vicinity of the phase transition. The time-step discretization
lations wasN =500 and the Trotter number varied betweenerror was found to be much smaller than the statistical error
M =1 for classical simulations and =64 for the quantum- at both the lowest and the highest investigated temperatures.
mechanical“He simulations at the lowest temperatures,Indeed, these two limiting cases impose the most severe con-
keepingTM>200 K. The usual corrections of the order of straints onAt: At low temperatures, in the isobaric en-
1/M? were applied to the final datd.For the®He simula- Semble, the density and hence the elastic modulus are rela-
tions, TM>350 K was used with a maximum value df  tively large, leading to large “Debye frequencies,” thus
=128. We have used a cubic simulation box with periodicrequiring small time steps. At high temperatures, small time
boundary conditions; the length of each simulation amountegteps are required by the strong collisions, because the atoms
to at least 50 000 time steps. deeply penetrate the repulsive parts of the potential, leading

Note that our simulations mostly address the identificat0o sudden changes in the trajectories. Siates sufficiently
tion of quantum effects in the first derivatives of the thermo-small in either case, we can safely assume it to be so over the
dynamic potentialinternal energy, volume, ejc.while an ~ entire temperature range. In summary, when it comes to
estimation of second derivatives such as the compressibilitgomparison to experiment, we expect that, apart from finite-
(discussed in Ref. 11is not attempted: This would require size effects near criticality, the neglect of exchange interac-
much larger system sizes and is not feasible with our comtions introduces the largest errors.
puter resources.

Exchange effects were neglected in our study. This lead
to significant errors in the energy of the liquid in the super-
fluid phase and its vicinity. The order of magnitude of these  An alternative method for calculating thermodynamic
errors may be estimated by integrating thepeak in the properties of quantum gases is by means of the quantum
specific heat, which yields an energy of about 1 K. Howeveryirial expansion. In the original approa¢kee Ref. 13, Chap.
near the critical temperature, exchange effects will beb and references thergjra series expansion i is obtained
smaller and we follow an alternative route to estimate theséor every virial coefficient. Here, a more efficient technique
by calculating the virial coefficienB, (see Sec. Il B for is used®®~*2which is briefly outlined below.
more details It turns out that in the temperature regime The first correction to the internal energy of an ideal gas

M

E. Virial expansion
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arises from the pair interactiom5(8,V) of (quantum- 4 — T
mechanical particles. A pair of particles is described by a
center of mass mode, which can be treated classically in the ﬁ o classical MD
second-order virial expansion, and the relative coordinate 3t 1 ?E% -- By
which is confined to dspherical volumeV. Throughout the i % * PIMD
derivation, finite-volume corrections are ignored. M2 oL T' — B i
particle pairsU(N,V,8) become¥ = 0 scsssese oo ]
U(N,V —3N+N2 V+ONN2 4 1 I
( ] !B)_ﬁ ?ulZ(B! ) v I} ( )
whereu4(8,V) is calculated according to 0 . . . .
J R 0 2 4 6 8 10
Ui B,V) = — —log J dr (r|e” Altertvid|r) /A
B v

FIG. 1. Radial distribution functio(r) for “He at temperatur@ =10 K
J 3 _ gt and pressureP=0.227 46 MPa, as obtained from both classical and
+ @lOQ dr (rle”Flelr), ) quantum-mechanical calculations. The points result from simulations, while
v lines indicate second-order virial expansions. For clarity, the classical curves

2 . . .have been raised by 0.5.
wheret,. denotes the operator for the kinetic energy associ- y

ated with therelative motion of two particles and,, is their
potential energy. The two integrands on the right-hand side o
of Eq. (5) are the diagonal elements of the density matrixNiques at low temperatures. At a givenigh) temperature,

p(r,r',B) the systematic error is proportional toM?, just as in path-
o integral simulationg?
p(r,r’,B)={(rlexd — B(t,etv1)]|r"), (6) For spherically symmetrical potentials, E(@) can be

reduced to a sum of one-dimensional integrations by decom-
posing the density matrix into contributions belonging to dif-
ferent angular moment&:2*In practice, the squaring is done
n in terms of simple matrix multiplication by discretizing the
variabler. Of course, a cutoff; has to be introduced at a
reasonably large value of This induces artificial behavior at
the boundary not found in an infinitely large system, namely
that go(r) tends to zero as approaches.. Therefore, the
2 9By(B) integration in Eq(8) has to be confined to the region where
Ura B,V) = Vv B @) boundary effects are negligible. Alternatively, one may nor-
where, like for classical systems, the second virial coefficiengilzcirtlcgr;n;ﬁg;ag mwiltth?) by go(r), which resuits in a
. 2 c-
B2(p) can be expressed in terms gfr) Quantum effects in the calculation B§(8) will become
o important when the thermal wavelength\(B)
Ba(B)= —ZWJO drr?[gix(r) —go(r)]. (8)  =h/y27mkgT of the free particle is of the order of or larger
than the distance at which the interatomic potential is mini-
Here,g1,(r) andgy(r) denote the radial distribution function mum. However, this is a rather qualitative criterion, and one
in the interacting and noninteracting case, respectively.  might argue that quantum effects become important already
The diagonal elementg(r,r,3) can be calculated by when\(g) is of the order of the hard-sphere diameter, i.e., at
exploiting the semigroup property of the density operator four times higher temperatures. We illustrate this in the case
of “He at a temperaturé= 10 K, wherex~2.8 A. In Fig. 1,
p(r,r’,2,8)=f d3r"p(r,r",B)p(r",r',B). (9)  the two-particle radial distribution functiay(r) is shown for
a pair of “classical” helium atoms and a pair FHe atoms.
Thus, we can obtain the low-temperature density matrix afhe maximum ing(r) for the quantum-mechanical calcula-
temperaturel by squaring the density matrix at temperaturetion is shifted by about 0.59 A with respect to the classical
2T. Forn iterations, the starting temperature has to be choequilibrium distance and the height of the maxim(melative
sen as 2T. For the highest temperature of the iteration pro-to go=1) is decreased by a factor of about 5.8. Thus, an
cess, it is possible to use the so-called primitive decomposieffective classical potentiaV/.#(r) that would result in a
tion for p(r,r’,B/M), which underlies the path-integral similar g(r) of *He atT=10 K as the quantum-mechanical
simulations presented in this paper as well as most othesalculation would have a strongly reduced binding energy
path-integral simulations. One of the advantages of thevith respect to the original Aziz potential and an equilibrium
squaring procedure over path-integral simulations is that theistance shifted by 0.59 A. Note that also the curvature of the
required numerical effort scales only logarithmically with in- effective potential would be different from the original
verse temperature. Hence, it is easy to minimize discretizgpotential.
tion errors (for two-particle systemsusing squaring tech- In Fig. 1, PIMD simulation results, taken at the same

and of its noninteracting counterpart.

Up to a normalization factor, which is irrelevant for the
calculation ofu;(B,V) in Eq. (5), the radial distribution
function g(r) is given by the diagonal elements o
p(r,r’,B). Taking into account thaf,d® g(r)—V in the
thermodynamic limit, it is possible to rewrite E() in the
more familiar form
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FIG. 3. Kinetic energypositive valuesand potential energgnegative val-
10° . — . — ues for “He as a function of temperatuie at a pressur®=0.227 46 MPa.
1 Points result from simulations, while the solid curves result from the
, 0 second-order virial expansion. The dashed line indicates the classical kinetic
a ” energy.
E clﬁlssical MD
Ll - 82
<
S10° . . . . .
I 5 ] the discrepancies are considerably smaller than one might
o ‘S\\D ] have inferred from the discussion in Sec. Il A, and it cannot
| — experiment ] be excluded that to some extent there is a fortuitous cancel-
. EL’;"D lation of errors arising from the finite system size, the intro-
< X ] . . . . . .
1 z duction of a cutoff radius, and imperfections in the potential.
1 1 | 1 1 |

Only near the critical temperatur&, ,=5.1953 K3* small
(b) TK systematic deviations occur, which however may be tenta-
tively attributed to finite-size effects in the simulations. In
FIG. 2. (a) VolumeV per atom forHe (experiments correspond to the solid addition’ the performance of the phenomeno]ogica| equa’[ion

line, PIMD data to the circles, and the second-order quantum-mechanic ; : ; ; " :
virial expansion to the diamongand for “classical helium”(classical MD %f state itself might deteriorate in the critical region. The

data correspond to the open squares and the classical virial expansion to ti€cond-order quantum virial expansion, included in the same
dashed lingas a function of temperature at the critical isobafide (P,  figure, exhibits deviations from the experimental curve be-
=0.227 46 MPa (b) The same symbols as if@), but now the difference |ow a temperature of approximate|y 7 K.
between the ideal gas volumtyea= ksT/P and the actual volume per atom For comparison, data for “classical helium” are included
is shown as a function of temperature. . . .
in Fig. 2 as well. The absence of quantum fluctuations leads
one to expect an increase in both the critical temperature and
temperature and the critical pressi®g,=0.227 46 MP&2  the critical pressure. Thus, the classical system should un-
are included as well. The agreement between the virial exdergo a first-order phase transition at the critical pressure
pansion and the simulation is very good. For the classicaP.4, as is indeed borne out by the numerical data. The cor-
system, small differences ig(r) can be seen between both responding transition temperatufg could be located at ap-
methods that can be attributed to three-body effects, whicproximately 10 K; here, both the fluid and the gas phase

are neglected in the second-order virial expansion. were stable for the duration of the simulation. Hysteresis
effects and, possibly, slowing down owing to the vicinity of
IIl. RESULTS the critical point, may have affected the accuracy of this

estimate. Since neither the pressg, nor the correspond-
ing transition temperature play a particular role for the clas-
As a first test of the PIMD simulation and the virial sical system, no further attempts were made to improve the
expansion, we have calculated the atomic volume as a fun@stimate ofT,. We note only that theritical temperature
tion of temperature on the critical isoba®,,=0.227 46 TEasSS T, , of the classical system will be even higher than
MPa3* While for *He the diametepy=(pjiq+ pvapod/2 has a  T;. The magnitude of the shift of the transition temperature
slope that is almost zer,for “He it has a clearly positive is a clear indication of the importance of quantum-
slope. Thus, while the isobaric thermal expansion coefficientmechanical effects in the vicinity of the critical point. In-
V~1(9V/dT)p only has a finite peak as a function of tem- deed, from the principle of corresponding statemne finds
perature foP>P_, it diverges at the liquid—vapor transition (approximating the interaction potential by a Lennard-Jones
temperature forP<P.. The results for classical and potential with 0=2.56 A and e/kg=10.22 K, Ref. 13
guantum-mechanical calculations are presented in Fig. 2 anft®%=13 K andPS*=1.1 MPa.
comparison is made to a phenomenological wide-range equa- An interesting effect can be observed in the kinetic en-
tion of state based on experimental d¥t&As can be seen, ergy T, for *He, shown in Fig. 3. Upon lowering the tem-
the overall agreement between the experimental results amgkrature, T, suddenly rises in the vicinity of the critical
the quantum-mechanical simulations is very good. Indeedtemperature. This rise is purely related to the increase in the

A. Critical isobar of “*He
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FIG. 4. A comparison of experimental and numerical results for the internaFIG. 5. The kineticpositive valuesand potentialnegative valugsenergy

energy of*He as a function of temperature, both along the critical isobarper atom for*He as a function of temperatufie along its critical isochore.

(solid curve and closed circles, respectiveiynd along the critical isochore  Points result from simulation&losed circles for the quantum-mechanical

(dashed line and open circles, respectiyely both cases, the agreement is calculations and open squares for the classicalJpmésle the solid curves

good. result from second-order virial expansions. The dotted and the dashed
curves indicate second- and third-order virial expansions, respectively, for
the classical potential energy.

density of the system. It should be noted that the behavior of

Tyin Close toT. is likely to be affected by finite-size effects, non-negligible have dower critical density than would be

as these efgects generalgbshlft r‘:he top Of_thT COEXISIeNCE, hected from the principle of corresponding stafeEhis is
curve toward temperaturezbovethe true critical tempera- - 51q nicely illustrated by the critical propertiesfe, which
ture. The_ b_reakdowr_1 of the_ second-order vma! expansiong basically described by the same pair potentiaitds, but
due to this increase in density occurs already slightly above g a4 even lower critical temperature, pressure, and density,
TF"“ ”"?‘me'y around .5'5 K, The potenthl energyy, de- entirely due to its lower mass and consequentially larger de
picted in the same figure, Increases with temperature,.%oer paramete?’ Indeed, a quantum-mechanical version of
E.sua.I. We note, Qc.)wever,.that this _telndency of dec.:reasmgje principle of corresponding states can be formulated, in
:Cneglc energy and increasing potentia ene?rg.y upon INCreasfhich all deviations from classical behavior are parametrized
of the temperature ned is not a necessity: A quantum- by this paramete® From this slight digression, we conclude

fmechanr:cal rr?odeldfohr molecu_lar ordznng of rotprs on adsur'that the classical data, as shown in the figure, pertain to an
ace rather showed the opposite trend, wHig,) increased 5, hore that igfor the classicalsystem a subcritical one,

and(\_/m‘) decreased negTrc upon increasing temperat_u_%. which might (in addition to the higher order of the virial

. Figure 4 shows.thenternal energy along the critical expansioh explain the quite reasonable agreement. One re-
isobar, both as obtained from experimérif apd as calcu- __maining point, then, is that this isochore must cross the vapor
lated by means of PIMD. Although the experimental data IIebranch of the coexistence curve at an unknown temperature.
systematically aboye the .numencal ones or-6 K, the Just like along the critical isobar, the PIMD results for
overall agreement is certainly appreciable. the internal energy along the critical isochdFeg. 4) exhibit

Finally, we ment_ion that the a_verag:dassica! p_otential good agreement with the experimental data.
energy(Vpey, Which is not shown in Fig. 3, exhibits a clear

jump, as expected for a first-order transition. C. Critical isochore of  *He
Finally, we considerHe on its critical isochorep 3
=0.013 74 mol/cri.*® Figure 6 shows both the kinetic and
We now turn to the critical isochore, 4,=0.017 399 the potential energy per atom as obtained from PIMD simu-
mol/cn.3* Figure 5 shows both the kinetic and the potentiallations and from the second-order quantum virial expansion.
energy per atom, along with the results of the quantum virialAs for “He, the agreement between both types of calcula-
expansion. As can be seen, the agreement is remarkably gotidns is very good for the kinetic energy and rather poor for
for the kinetic energy, even in the critical region. For thethe potential energy. Also, the overall behavior of both ener-
potential energy, on the other hand, the agreement is not sgies is similar to that found fdtHe, except that in Fig. 6 one
good, even at relatively high temperatures. In the same figeannot observe the formation of a “plateau” ifT,;,) at
ure, we have also included the potential energy for “classicalower temperatures. This is presumably due to the fact that
helium,” as obtained from the second-order and third-ordethe simulations foPHe do not quite reach the critical tem-
virial expansions: Here, the agreement is much better. Howperature, T, 3=3.317 K (see Ref. 35; the value was con-
ever, a remark on the density is in order here. As mentionegterted to theT 4 temperature scale hgrevhere the flatten-
before, quantum fluctuations generally lead to a lower criti-ing of the curve is expected to set in.
cal temperature and hence, at the same pressure, to a higher In principle, one might use the kinetic energy to define
density. However, theritical pressure decreases, and the netan effective, nonlinear temperature scale in which the role of
effect is that fluids in which quantum-mechanical effects arghe quantum fluctuations has been taken into account. By

B. Critical isochore of “He



J. Chem. Phys., Vol. 116, No. 4, 22 January 2002 Liquid—vapor transition in helium 1627

20.0 ferent temperatures, namely=3.125 K (just belowT,), T
w 15.0 F 1 =6.125 K(roughly twiceT.), andT=12.125 K(somewhat
< above the highest temperature studied in Rej. @ne ob-
Z 100r ] serves that the effective potential changes rather dramatically
7 50 O R S under this temperature variation: The depth of the potential
b5 ] well decreases by roughly a factor of 3 when the temperature
-7.0 + . is reduced from 12.125 to 3.125 K, and its width increases
M -75 L e * ° y accordingly. This is in concordance with the observed en-
X 8ol 4 hancement of the compressibility over this temperature re-
= _g5| // ] gion. We note that, in a similar spirit, the effect of a
o SRS R temperature-dependent effective potential has been discussed
2 4 6 - 8 10 12 earlier for a Lennard-Jones fluid*? however, no immediate

connection with the second virial coefficient was made at

FIG. 6. The kinetio(positive valuesand potentialnegative valugsenergy ~ that time.

per atom for®He as a function of temperature, along its critical isochore.

The closed circles were obtained by means of simulations and the solid

curves represent second-order virial expansions. IV. DISCUSSION AND CONCLUSION

In this paper, we have presented the results of a numeri-
cal study of*He and®He in the vicinity of their respective

studying the crossover scaling function for, e.g., the com iquid—vapor critical points. Both path-integral molecular dy-
pressibility on such a redefined temperature scale, one c0u|c9 . b poIN'S. pa 9 ay
namics and quantum virial expansions have been applied.

examine the role of quantum effects in the deviations ob- For *He, we have shown that the Aziz poterfiagm-

served in Ref. 11. However, the definition of such a tempera- . . .
. ' .8oned in the PIMD calculations yields very good agreement
ture scale requires a very accurate knowledge of the kineti

) : . with experimental result§3® for the atomic volume at the
energy, in particular for temperatures very closd to since

crossover scaling functions are studied on a logarithmic scal(érItICaI isobar overa W.'de temperature range, including tem-
in the reduced temperatute Unfortunately, the numerical peratures that lie considerably below the critical temperature.

accuracy of our PIMD data did not warrant a meaningful,sgg:rlllg_g?é):r agl;:lﬁ:];mvli?i;?uer;d ;?,rstigﬁ '2:19(;\22' egg;g); 1;22_
direct reexamination of the crossover scaling functions. As q P 9 9

an alternative, we provide here qualitative evidence justify-rnent for the atomic volume down to roughly 2 K above the

. ; . critical temperature. The simulations also demonstrate the
ing the conjecture of Ref. 11 that the influence of quantum . o .

. L . importance of quantum effects ftHe in the vicinity of its
effects changes appreciably within the crossover regime. To

this end, we have considered the effective potenfial as critical point: A classical system with the same potential has

defined b a critical temperature that is more than twice as high.
y In addition, we have studied the kinetic and potential
e AVerlN=g(r), (10 energy of*He and®He along their critical isochores. For the

whereg(r) is the two-particle correlation function. The latter kinetic energy, there is good agreement between the quantum

quantity, in turn, can be obtained from the virial expansion.Virial expansion and the simulation results in both cases,

Both V¢t andg(r) are temperature-dependent quantities. ThedhOWn to quite I(_)W temperatlijre;,_ tht fordthe potenfualhene_rgyl
resulting effective potential is shown in Fig. 7 for three dif- (e agreement is not so good. Higher-order terms in the viria
expansion would probably alleviate the discrepancy, but are

tedious to calculate. On the other hand, simulation results for

: the isochoric internal energy 8He agree well with experi-

g mental results.

! — I=3135K One of our original goals was the definition of an effec-
e T=6.125K , X ot ar

2 L TS2155K 1 tive, nonlinear temperature scale based on the kinetic energy.
*al Such a temperature scale might prove useful for the reexami-

nation of the crossover scaling functions of helium, which

were experimentally observed to differ qualitatively from

their counterparts for other simple liquids; these deviations

Vel kK
o
T

o 4 have been conjectured to originate from quantum-
mechanical effects: Indeed, since(part of these effects
would now be incorporated in the new temperature scale, the

-4 5 4'( ‘ é ‘ é 10 crossover scaling functions should exhibit a better agreement

A with the (classical prediction if the conjecture were correct.
However, it is very difficult to reach the required numerical
FIG. 7._ Effective potgntlal forHe as obtained from the quantum V|r_|aI accuracy in the kinetic energy; in addition, very large particle
expansion, for three different temperatures. One observes the deepening aﬂ(ljjmbers are needed in the immediate vicinity of the critical
narrowing of the potential well when the temperature is increased from . . . o ) Yy
~T,3t0 T=4T, ;. The Aziz HFD-B potentialRef. 27 takes its minimum point, in order to circumvent finite-size effects. Thus, we

atr=2.963 A. have opted for a different strategy, namely the calculation of
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the effective pair potential fotHe by means of the quantum EJ de Boer, PhysiceAmsterdam 14, 139(1948.
virial expansion evaluated on the critical isochore. We find J; ©: Hirschfelder, C. F. Curtiss, and R. Byron BiMolecular Theory of

. . . . L. . Gases and LiquidéWiley, New York, 1954.
that this pair potential exhibits a strong variation with tem-1g | iten and K. Binder, Europhys. Let7, 311 (1999.

perature in the crossover region. This is in good accord with®m. Rasolt, M. J. Stephen, M. E. Fisher, and P. B. Weichman, Phys. Rev.
the conjecture of Ref. 11: Namely, not only are there strong Lett. 53, 798 (1984. _
quantum effects in3He close to its quuid—vapor critical P. B. Weichman, M. Rasolt, M. E. Fisher, and M. J. Stephen, Phys. Rev. B

. : ., 33,4632(1986.
point, as was already evident from the values of the criticaly ), Ce(per& Rev. Mod. Phy&7, 279 (1995.

amplitudeg(cf., e.g., Ref. 3h but these quantum effects also 8p. M. Ceperley, R. O. Simmons, and R. C. Blasdell, Phys. Rev. Z&it.
vary considerably within the crossover region. Such a varia—19115(1996- _ _ o
tion might then explain the observed apparent depressionD' M. Ceperley and M. H. Kalos, iiMonte Carlo Methods in Statistical

. . . . Physics Topics Curr. Phys. Vol. 7, edited by K. BindéBpringer, Berlin,
(relative to the predicted crossover scaling functioh the 19%/9. 5P Y Y #pring

compressibility abov@ . when the temperature is increased. K. E. Schmidt and D. M. Ceperley, ifihe Monte Carlo Method in Con-
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