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Institut für Physik, WA 331, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

Erik Luijtena)

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431

~Received 21 May 2001; accepted 1 November 2001!

The liquid–vapor transition in 3He and 4He is investigated by means of path-integral molecular
dynamics and the quantum virial expansion. Both methods are applied to the critical isobar and the
critical isochore. While previous path-integral simulations have mainly considered the lambda
transition and superfluid regime in 4He, wefocuson thevicinity of thecritical point and obtain good
agreement with experimental results for the molar volume and the internal energy down to
subcritical temperatures. We find that an effective classical potential that properly describes the
two-particle radial distribution function exhibits astrong temperature dependence near the critical
temperature. This contrasts with the behavior of essentially classical systems like xenon, where the
effective potential is independent of temperature. It is conjectured that, owing to this difference in
behavior between classical and quantum-mechanical systems, the crossover behavior observed for
helium in the vicinity of the critical point differs qualitatively from that of other simple liquids.
© 2002 American Institute of Physics. @DOI: 10.1063/1.1429957#
I. INTRODUCTION

Crossover phenomena have enjoyed a renewed attention
in recent years, both from the theoretical ~see, e.g., Refs.
1–5! and from the experimental side ~cf. Refs. 6–8!; see also
Ref. 9 and references therein. This concerns in particular the
crossover from mean-field-like to Ising-type critical behavior
upon approach of the critical point. The accurate numerical
determination of crossover scaling functions for the isother-
mal compressibility and the liquid–vapor coexistence
curve10 has motivated the reexamination of experimental
data for 3He and Xe.11 Xenon, with a very high molar mass
and a relatively high critical temperature, is essentially a
classical system, while the critical point for 3He occurs at a
temperature and density where quantum effects are expected
to be non-negligible. This is also expressed by the de Boer
parameter L* .12 For monatomic gases of atomic mass m,
that are described by a Lennard-Jones potential with param-
eters « and s, this parameter is defined as L* 5h/sAm«.
For 3He its value is L* 53.08, compared to L* 50.064 for
xenon.13 Nevertheless, the nature of the critical point itself is
the same for both fluids, because the critical fluctuations
dominate over the quantum-mechanical fluctuations at tem-
peratures sufficiently close to the critical temperature Tc .
Thus, the values of the critical exponents are not affected.
For the crossover region, the situation is less clear-cut. Since
the correlation length now has afinite ~although large! value,
nonuniversal behavior may be expected for different systems
and has actually been observed.7 However, according to
theory, this nonuniversality is largely determined by the so-
called cutoff parameter ~the wave number corresponding to
some microscopic characteristic length! which in most

a!Presently at Department of Materials Science and Engineering, University
of Illinois, Urbana, IL 61801. Electronic mail: luijten@uiuc.edu
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simple fluids has a very similar value.7 Furthermore, also in
numerical simulations of Ising-type systems ahigh degree of
universality has been observed for crossover scaling
functions.14 Thus, it came as quite asurprise that the cross-
over behavior for 3He exhibits amarked difference from that
of xenon.11 Owing to the short range of the interactions,
these systems cannot be expected to complete the full cross-
over to mean-field-like behavior before leaving the critical
region @where t!1, with t[(T2Tc)/Tc] . Nevertheless, for
T.Tc the crossover behavior of the isothermal compress-
ibilit y of xenon turned out to agree very well with the nu-
merical data for the three-dimensional Ising model with
varying interaction range,10 whereas the corresponding ex-
perimental data for 3He seemed to be described by a quali-
tatively different curve. For t*0.01, the compressibility ap-
peared essentially suppressed compared to the crossover
scaling function. In Ref. 11, this difference in behavior was
conjectured to be related to quantum-mechanical effects: The
critical compressibility of 3He would be enhanced due to
quantum fluctuations, which are temperature dependent.
Hence, this contribution is expected to decrease appreciably
within the ~high-temperature! crossover region, effectively
leading to an additional reduction of the compressibility
upon increase of the temperature. Clearly, it is only the com-
pressibility due to the thermal fluctuations which is described
by the various theoretical expressions for the crossover scal-
ing function.

In order to gauge the quantum-mechanical contribution
to the compressibility, a comprehensive theoretical descrip-
tion of the critical behavior, including the role of quantum
effects, is required; such a description should encompass the
temperature dependence of this contribution in the vicinity of
Tc . Indeed, for a weakly interacting Bose fluid a scaling
function has been calculated describing the crossover from
1 © 2002 American Institute of Physics
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criticality ~i.e., the lambda point! to ideal Bose-gas
behavior.15,16In particular, it was found that a mapping of th
Hamiltonian for the Bose gas onto a classical spin mo
yields a Landau–Ginzburg–Wilson Hamiltonian with a qu
tic term that has a strongly temperature-depend
coefficient.15 Since this coefficient plays a pivotal role i
crossover scaling functions, a corresponding effect in the
cinity of the liquid–vapor critical point would definitely af
fect the nature of the crossover from Ising-type to me
field-like critical behavior. These considerations ha
motivated us to examine the behavior of helium close to
critical point by means of quantum-mechanical numeri
methods. In particular, it is of interest to see whether
magnitude of quantum effects indeed changes appreci
over the crossover region, as conjectured in Ref. 11. In
present study, we pay some attention to3He, but our main
focus is on4He. Due to the higher mass of4He, quantum
effects are less pronounced, which is only reinforced by
correspondingly higher critical temperature. This facilita
the numerical calculations considerably, as will be outlin
in Sec. II A. At the same time, the quantum effects are s
clearly visible in the crossover region and the isotherm
compressibility indeed exhibits a deviation from the p
dicted crossover curve, similar to that found for3He.11 For
comparison,4He has a de Boer parameterL* 52.67, com-
pared to the above-mentioned valueL* 53.08 for 3He.13

For completeness we remark that4He has been exten
sively studied by means of the path-integral Monte Ca
method, especially in the context of the lambda transit
taking place at 2.17 K; cf. Ref. 17. Also, the high-dens
region has been explored in this way,18 but we are not aware
of numerical studies in the vicinity of the liquid–vapor crit
cal point.

The outline of this paper is as follows. In Sec. II w
introduce the methods that we have applied: Path-inte
molecular dynamics is discussed in Sec. II A, followed
the quantum virial expansion in Sec. II B. Section III co
tains all our main results, namely data for the atomic volu
of 4He and for its kinetic, potential, and internal ener
along the critical isobar, as well as for the kinetic and pot
tial energy of 4He and 3He along their respective critica
isochores. Furthermore, results for the effective pair poten
of 3He in the vicinity of the critical temperature are pr
sented. Our conclusions are summarized in Sec. IV.

II. METHODS

A. Path-integral molecular dynamics

Path-integral Monte Carlo~PIMC!19,20 and path-integral
molecular dynamics~PIMD!21 are well-established method
to calculate thermodynamic properties of many-parti
quantum systems. Path-integral techniques exploit the po
bility to represent the quantum-mechanical partition funct
of point particles as a classical partition function of clos
polymers.17 Neighboring beads in the polymer are coupl
via elastic springs with stiffnessk5mM2/b2\2, wherem is
the mass of the point particle, the so-called Trotter numbeM
represents the number of beads in the polymer, andb
51/kBT. Interaction between polymers only takes place
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tween those monomers that have the same index within
respective polymers to which they belong, and the effect
temperature in the isomorphic classical representation
given by TM. For more details, we refer the reader to t
original literature and review articles.17,19,22,23

Depending on the nature of the problem under stu
Monte Carlo methods are preferable to molecular dynam
or vice versa. PIMC has so far been the method of choice
finite-temperature simulations of condensed helium, in p
ticular when exchange effects played an important role.
away from the superfluid regime, however, exchange effe
can be neglected,17 so that PIMC is not necessarily advant
geous to PIMD for the study of the liquid–vapor transitio
For example, in the gas phase, ballistic trajectories can
realized in PIMD, which allows rapid changes in the co
figuration. In conventional Monte Carlo methods, motio
are constrained to be diffusive and large correlation tim
may be expected. Also, in isobaric simulations volum
moves are done at no extra cost in a molecular dynam
simulation, while Monte Carlo methods require the evalu
tion of the total energy of the system.

Using an appropriate representation of the internal co
dinates of the chain molecules, it is possible to avoid ine
cient sampling;21 e.g., in the regular representation, whe
each bead in a chain has the same dynamical inertia,
time-step discretization has to be chosen proportiona
M 22. In this study, we have used a representation of
chain molecules in terms of the center-of-mass coordin
and the eigencoordinates of the free particles, defined in
~3! below, which makes it possible to work with time ste
independent ofM. While the ‘‘dynamical’’ center-of-mass
coordinate is chosen to be identical with the real massm,
different massesmq are attributed to each eigenmodeq. An
efficient choice ismq5( k̃1kq)m/ k̃, wherek̃ is an adjustable
parameter andkq is the stiffness associated with the eige
modeq. k̃ is conveniently chosen such that in the conden
phase all modes move on approximately the same time sc

A disadvantage of PIMD is that for a fixeddynamictime
stepDt, errors due to the finiteness ofDt may increase lin-
early with increasing Trotter numberM. In such a case the
round-off errors increase with decreasingimaginary time
stepb/M . While the radial distribution function, the averag
potential energy, and the virial estimator for the kine
energy24 do not suffer noticeably from this effect in ou
PIMD simulations, the so-called primitive estimator for th
kinetic energy,Kprim , does. Thus, the typical systematic err
in Kprim due to finiteDt is M times larger than that in the
virial estimator. An estimator is a function whoseaverage
value corresponds to the expectation value of a property
interest. For anindividual configuration, however, the asso
ciation of the actual value of the estimator with the actu
value of the property is meaningless.Kprim is given by24

Kprim5
3

2
NkBTM22

k

2 (
i 51

N

(
t51

M

~r i t2r i t11!2, ~1!

wherer i t represents the position of thetth monomer in poly-
mer i, and k is the stiffness introduced at the beginning
this section. In addition to the above-mentioned system
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error,Kprim has been shown to have large statistical errors
large Trotter numbersM, even in PIMC simulations.24 How-
ever, a simple trick remedies both of these shortcomings.25 If
3
2NkBTM2 is replaced by the actual ‘‘dynamic’’ kinetic en
ergy, a new estimator can be defined

K̃prim5
1

2 (
i 51

N

(
q51

M

~mqviq8
22kqr iq8

2!, ~2!

whereviq8 denotes the velocity associated with the eigen
ordinate

r iq8 5
1

AM
(
t51

M

r i te
2p iqt/M. ~3!

For methods to perform PIMD simulations at constant pr
sure, we refer to Refs. 25 and 26.

All simulations, as well as the virial expansions, a
based on the Aziz HFD-B potential,27 which is considered
one of the best-known interatomic model potentials.17 It con-
sists of a Hartree–Fock~exponential! short-range repulsive
term and algebraic long-range attractive terms (1/r 6, 1/r 8,
1/r 10). Recently, efforts have been devoted to incorporat
three-body effects into the helium potential energy surfac28

However, even for atomic volumes as small as 25 Å3, there
seems to be little deviation between the Aziz HFD-B pote
tial and the three-body potential of Moroniet al. ~see, e.g.,
the 2% difference for the kinetic energy of solid3He shown
in Fig. 6 of Ref. 25!. We may thus safely assume that t
Aziz HFD-B potential is adequate for the description of le
dense systems, like those studied here. Furthermore, we
that it has been used very successfully in simulations of fl
and superfluid helium, as discussed in the well-known
view of Ceperley.17 The cutoff radius that we used in ou
simulations wasr c510 Å. The particle number in all simu
lations wasN5500 and the Trotter number varied betwe
M51 for classical simulations andM564 for the quantum-
mechanical 4He simulations at the lowest temperature
keepingTM.200 K. The usual corrections of the order
1/M2 were applied to the final data.29 For the 3He simula-
tions, TM.350 K was used with a maximum value ofM
5128. We have used a cubic simulation box with perio
boundary conditions; the length of each simulation amoun
to at least 50 000 time steps.

Note that our simulations mostly address the identifi
tion of quantum effects in the first derivatives of the therm
dynamic potential~internal energy, volume, etc.!, while an
estimation of second derivatives such as the compressib
~discussed in Ref. 11! is not attempted: This would requir
much larger system sizes and is not feasible with our co
puter resources.

Exchange effects were neglected in our study. This le
to significant errors in the energy of the liquid in the sup
fluid phase and its vicinity. The order of magnitude of the
errors may be estimated by integrating thel peak in the
specific heat, which yields an energy of about 1 K. Howev
near the critical temperature, exchange effects will
smaller and we follow an alternative route to estimate th
by calculating the virial coefficientB2 ~see Sec. II B for
more details!. It turns out that in the temperature regim
r
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investigated,B2 is larger for the bosonic case than if two4He
atoms are treated as distinguishable. The bosonic case ca
treated by restricting the evaluation of Eq.~9! to even angu-
lar momenta. The effect inB2 ~and ]B2 /]b) is approxi-
mately 14% atT53 K and approximately 10% atT57 K.
Therefore, in this temperature regime the difference betw
bosonic4He and ‘‘distinguishable’’4He in the leading cor-
rections to the ideal-gas behavior is of the order of 10%.

Its lower mass and lower liquid–gas transition tempe
ture will make exchange effects more important for3He than
for 4He. On the other hand, there is significant cancellat
of exchange effects in3He: If two spin-up3He atoms form a
dimer, the spin wave function will be symmetric while th
real-space wave function will be antisymmetric~fermionic!.
However, if a spin-up3He and a spin-down3He form a
dimer, the opposite will happen: The spin wave function w
be antisymmetric and the real-space wave function will
symmetric~bosonic!. At finite temperatures, these competin
exchange effects in the real-space wave function may ca
to a significant extent in the case of spin-1

2 fermions. More-
over, the critical molar volume is larger for3He than for
4He, which also tends to reduce the importance of excha
in 3He.

Besides the neglect of exchange effects, there are t
additional sources of errors that need to be addressed: s
tical errors, finite time-step discretization errors, and err
due to finite Trotter numbers. For all figures presented
Sec. III, these errors are smaller than or at most of the o
of the symbol size. Typically, the statistical errors are sma
than 1% in both volume and energy. In the immediate vic
ity of the phase transition, the statistical errors are about
times larger. The extrapolationM→` adds another 0.5% o
uncertainty, again increased by a factor of 5 in the immed
vicinity of the phase transition. The time-step discretizati
error was found to be much smaller than the statistical e
at both the lowest and the highest investigated temperatu
Indeed, these two limiting cases impose the most severe
straints onDt: At low temperatures, in the isobaric en
semble, the density and hence the elastic modulus are
tively large, leading to large ‘‘Debye frequencies,’’ thu
requiring small time steps. At high temperatures, small ti
steps are required by the strong collisions, because the a
deeply penetrate the repulsive parts of the potential, lead
to sudden changes in the trajectories. SinceDt is sufficiently
small in either case, we can safely assume it to be so ove
entire temperature range. In summary, when it comes
comparison to experiment, we expect that, apart from fin
size effects near criticality, the neglect of exchange inter
tions introduces the largest errors.

B. Virial expansion

An alternative method for calculating thermodynam
properties of quantum gases is by means of the quan
virial expansion. In the original approach~see Ref. 13, Chap
6 and references therein!, a series expansion in\ is obtained
for every virial coefficient. Here, a more efficient techniq
is used,30–32 which is briefly outlined below.

The first correction to the internal energy of an ideal g
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arises from the pair interactionu12(b,V) of ~quantum-
mechanical! particles. A pair of particles is described by
center of mass mode, which can be treated classically in
second-order virial expansion, and the relative coordinatr ,
which is confined to a~spherical! volumeV. Throughout the
derivation, finite-volume corrections are ignored. ForN2/2
particle pairs,U(N,V,b) becomes17

U~N,V,b!5
3N

2b
1

N2

2
u12~b,V!1OH NS N

VD 2J , ~4!

whereu12(b,V) is calculated according to

u12~b,V!52
]

]b
logE

V
d3r ^r ue2b( t̂ rel1 v̂12)ur &

1
]

]b
logE

V
d3r ^r ue2b t̂ relur &, ~5!

where t̂ rel denotes the operator for the kinetic energy asso
ated with therelativemotion of two particles andv12 is their
potential energy. The two integrands on the right-hand s
of Eq. ~5! are the diagonal elements of the density mat
r(r ,r 8,b)

r~r ,r 8,b!5^r uexp@2b~ t̂ rel1 v̂12!#ur 8&, ~6!

and of its noninteracting counterpart.
Up to a normalization factor, which is irrelevant for th

calculation of u12(b,V) in Eq. ~5!, the radial distribution
function g(r ) is given by the diagonal elements o
r(r ,r 8,b). Taking into account that*Vd3r g(r )→V in the
thermodynamic limit, it is possible to rewrite Eq.~5! in the
more familiar form

u12~b,V!5
2

V

]B2~b!

]b
, ~7!

where, like for classical systems, the second virial coeffici
B2(b) can be expressed in terms ofg(r )

B2~b!522pE
0

`

dr r 2 @g12~r !2g0~r !#. ~8!

Here,g12(r ) andg0(r ) denote the radial distribution functio
in the interacting and noninteracting case, respectively.

The diagonal elementsr(r ,r ,b) can be calculated by
exploiting the semigroup property of the density operator

r~r ,r 8,2b!5E d3r 9r~r ,r 9,b!r~r 9,r 8,b!. ~9!

Thus, we can obtain the low-temperature density matrix
temperatureT by squaring the density matrix at temperatu
2T. For n iterations, the starting temperature has to be c
sen as 2nT. For the highest temperature of the iteration p
cess, it is possible to use the so-called primitive decomp
tion for r(r ,r 8,b/M ), which underlies the path-integra
simulations presented in this paper as well as most o
path-integral simulations. One of the advantages of
squaring procedure over path-integral simulations is that
required numerical effort scales only logarithmically with i
verse temperature. Hence, it is easy to minimize discret
tion errors ~for two-particle systems! using squaring tech
he
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niques at low temperatures. At a given~high! temperature,
the systematic error is proportional to 1/M2, just as in path-
integral simulations.29

For spherically symmetrical potentials, Eq.~9! can be
reduced to a sum of one-dimensional integrations by dec
posing the density matrix into contributions belonging to d
ferent angular momenta.30,31 In practice, the squaring is don
in terms of simple matrix multiplication by discretizing th
variable r. Of course, a cutoffr c has to be introduced at
reasonably large value ofr. This induces artificial behavior a
the boundary not found in an infinitely large system, nam
that g0(r ) tends to zero asr approachesr c . Therefore, the
integration in Eq.~8! has to be confined to the region whe
boundary effects are negligible. Alternatively, one may n
malize the integrand in Eq.~8! by g0(r ), which results in a
fast convergence ofB2 with r c .

Quantum effects in the calculation ofB2(b) will become
important when the thermal wavelengthl(b)
5h/A2pmkBT of the free particle is of the order of or large
than the distance at which the interatomic potential is m
mum. However, this is a rather qualitative criterion, and o
might argue that quantum effects become important alre
whenl(b) is of the order of the hard-sphere diameter, i.e.
four times higher temperatures. We illustrate this in the c
of 4He at a temperatureT510 K, wherel'2.8 Å. In Fig. 1,
the two-particle radial distribution functiong(r ) is shown for
a pair of ‘‘classical’’ helium atoms and a pair of4He atoms.
The maximum ing(r ) for the quantum-mechanical calcula
tion is shifted by about 0.59 Å with respect to the classi
equilibrium distance and the height of the maximum~relative
to g051) is decreased by a factor of about 5.8. Thus,
effective classical potentialVeff(r ) that would result in a
similar g(r ) of 4He atT510 K as the quantum-mechanic
calculation would have a strongly reduced binding ene
with respect to the original Aziz potential and an equilibriu
distance shifted by 0.59 Å. Note that also the curvature of
effective potential would be different from the origina
potential.

In Fig. 1, PIMD simulation results, taken at the sam

FIG. 1. Radial distribution functiong(r ) for 4He at temperatureT510 K
and pressureP50.227 46 MPa, as obtained from both classical a
quantum-mechanical calculations. The points result from simulations, w
lines indicate second-order virial expansions. For clarity, the classical cu
have been raised by 0.5.
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temperature and the critical pressurePc,450.227 46 MPa,33

are included as well. The agreement between the virial
pansion and the simulation is very good. For the class
system, small differences ing(r ) can be seen between bo
methods that can be attributed to three-body effects, wh
are neglected in the second-order virial expansion.

III. RESULTS

A. Critical isobar of 4He

As a first test of the PIMD simulation and the viria
expansion, we have calculated the atomic volume as a fu
tion of temperature on the critical isobar,Pc,450.227 46
MPa.34 While for 3He the diameterrd5(r liq1rvapor)/2 has a
slope that is almost zero,35 for 4He it has a clearly positive
slope. Thus, while the isobaric thermal expansion coeffic
V21(]V/]T)P only has a finite peak as a function of tem
perature forP.Pc , it diverges at the liquid–vapor transitio
temperature for P<Pc . The results for classical an
quantum-mechanical calculations are presented in Fig. 2
comparison is made to a phenomenological wide-range e
tion of state based on experimental data.34,36As can be seen
the overall agreement between the experimental results
the quantum-mechanical simulations is very good. Inde

FIG. 2. ~a! VolumeV per atom for4He ~experiments correspond to the sol
line, PIMD data to the circles, and the second-order quantum-mecha
virial expansion to the diamonds! and for ‘‘classical helium’’~classical MD
data correspond to the open squares and the classical virial expansion
dashed line! as a function of temperature at the critical isobar of4He (Pc,4

50.227 46 MPa!. ~b! The same symbols as in~a!, but now the difference
between the ideal gas volumeVideal5kBT/P and the actual volume per atom
is shown as a function of temperature.
x-
al

h

c-

t

nd
a-

nd
d,

the discrepancies are considerably smaller than one m
have inferred from the discussion in Sec. II A, and it cann
be excluded that to some extent there is a fortuitous can
lation of errors arising from the finite system size, the intr
duction of a cutoff radius, and imperfections in the potent
Only near the critical temperature,Tc,455.1953 K,34 small
systematic deviations occur, which however may be ten
tively attributed to finite-size effects in the simulations.
addition, the performance of the phenomenological equa
of state itself might deteriorate in the critical region. Th
second-order quantum virial expansion, included in the sa
figure, exhibits deviations from the experimental curve b
low a temperature of approximately 7 K.

For comparison, data for ‘‘classical helium’’ are include
in Fig. 2 as well. The absence of quantum fluctuations le
one to expect an increase in both the critical temperature
the critical pressure. Thus, the classical system should
dergo a first-order phase transition at the critical press
Pc,4 , as is indeed borne out by the numerical data. The c
responding transition temperatureT1 could be located at ap
proximately 10 K; here, both the fluid and the gas pha
were stable for the duration of the simulation. Hystere
effects and, possibly, slowing down owing to the vicinity
the critical point, may have affected the accuracy of t
estimate. Since neither the pressurePc,4 nor the correspond-
ing transition temperature play a particular role for the cl
sical system, no further attempts were made to improve
estimate ofT1 . We note only that thecritical temperature
Tc

class.Tc,4 of the classical system will be even higher th
T1 . The magnitude of the shift of the transition temperatu
is a clear indication of the importance of quantum
mechanical effects in the vicinity of the critical point. In
deed, from the principle of corresponding states13 one finds
~approximating the interaction potential by a Lennard-Jo
potential with s52.56 Å and «/kB510.22 K, Ref. 13!
Tc

class513 K andPc
class51.1 MPa.

An interesting effect can be observed in the kinetic e
ergy Tkin for 4He, shown in Fig. 3. Upon lowering the tem
perature,Tkin suddenly rises in the vicinity of the critica
temperature. This rise is purely related to the increase in

al

the

FIG. 3. Kinetic energy~positive values! and potential energy~negative val-
ues! for 4He as a function of temperatureT, at a pressureP50.227 46 MPa.
Points result from simulations, while the solid curves result from
second-order virial expansion. The dashed line indicates the classical ki
energy.
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density of the system. It should be noted that the behavio
Tkin close toTc is likely to be affected by finite-size effects
as these effects generally shift the top of the coexiste
curve toward temperaturesabove the true critical tempera
ture. The breakdown of the second-order virial expans
due to this increase in density occurs already slightly ab
Tc,4 , namely around 5.5 K. The potential energyVpot, de-
picted in the same figure, increases with temperature
usual. We note, however, that this tendency of decrea
kinetic energy and increasing potential energy upon incre
of the temperature nearTc is not a necessity: A quantum
mechanical model for molecular ordering of rotors on a s
face rather showed the opposite trend, where^Tkin& increased
and^Vpot& decreased nearTc upon increasing temperature.37

Figure 4 shows theinternal energy along the critica
isobar, both as obtained from experiment34,36 and as calcu-
lated by means of PIMD. Although the experimental data
systematically above the numerical ones forT.6 K, the
overall agreement is certainly appreciable.

Finally, we mention that the averageclassicalpotential
energy^Vpot&, which is not shown in Fig. 3, exhibits a clea
jump, as expected for a first-order transition.

B. Critical isochore of 4He

We now turn to the critical isochore,rc,450.017 399
mol/cm3.34 Figure 5 shows both the kinetic and the potent
energy per atom, along with the results of the quantum vi
expansion. As can be seen, the agreement is remarkably
for the kinetic energy, even in the critical region. For t
potential energy, on the other hand, the agreement is no
good, even at relatively high temperatures. In the same
ure, we have also included the potential energy for ‘‘class
helium,’’ as obtained from the second-order and third-or
virial expansions: Here, the agreement is much better. H
ever, a remark on the density is in order here. As mentio
before, quantum fluctuations generally lead to a lower cr
cal temperature and hence, at the same pressure, to a h
density. However, thecritical pressure decreases, and the
effect is that fluids in which quantum-mechanical effects

FIG. 4. A comparison of experimental and numerical results for the inte
energy of4He as a function of temperature, both along the critical iso
~solid curve and closed circles, respectively! and along the critical isochore
~dashed line and open circles, respectively!. In both cases, the agreement
good.
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non-negligible have alower critical density than would be
expected from the principle of corresponding states.13 This is
also nicely illustrated by the critical properties of3He, which
is basically described by the same pair potential as4He, but
has an even lower critical temperature, pressure, and den
entirely due to its lower mass and consequentially larger
Boer parameter.12 Indeed, a quantum-mechanical version
the principle of corresponding states can be formulated
which all deviations from classical behavior are parametriz
by this parameter.13 From this slight digression, we conclud
that the classical data, as shown in the figure, pertain to
isochore that is~for the classicalsystem! a subcritical one,
which might ~in addition to the higher order of the viria
expansion! explain the quite reasonable agreement. One
maining point, then, is that this isochore must cross the va
branch of the coexistence curve at an unknown temperat

Just like along the critical isobar, the PIMD results f
the internal energy along the critical isochore~Fig. 4! exhibit
good agreement with the experimental data.

C. Critical isochore of 3He

Finally, we consider3He on its critical isochore,rc,3

50.013 74 mol/cm3.35 Figure 6 shows both the kinetic an
the potential energy per atom as obtained from PIMD sim
lations and from the second-order quantum virial expans
As for 4He, the agreement between both types of calcu
tions is very good for the kinetic energy and rather poor
the potential energy. Also, the overall behavior of both en
gies is similar to that found for4He, except that in Fig. 6 one
cannot observe the formation of a ‘‘plateau’’ in̂Tkin& at
lower temperatures. This is presumably due to the fact
the simulations for3He do not quite reach the critical tem
perature,Tc,353.317 K ~see Ref. 35; the value was con
verted to theT90 temperature scale here!, where the flatten-
ing of the curve is expected to set in.

In principle, one might use the kinetic energy to defi
an effective, nonlinear temperature scale in which the role
the quantum fluctuations has been taken into account.

al
r
FIG. 5. The kinetic~positive values! and potential~negative values! energy
per atom for4He as a function of temperatureT, along its critical isochore.
Points result from simulations~closed circles for the quantum-mechanic
calculations and open squares for the classical ones!, while the solid curves
result from second-order virial expansions. The dotted and the da
curves indicate second- and third-order virial expansions, respectively
the classical potential energy.
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studying the crossover scaling function for, e.g., the co
pressibility on such a redefined temperature scale, one c
examine the role of quantum effects in the deviations
served in Ref. 11. However, the definition of such a tempe
ture scale requires a very accurate knowledge of the kin
energy, in particular for temperatures very close toTc , since
crossover scaling functions are studied on a logarithmic s
in the reduced temperaturet. Unfortunately, the numerica
accuracy of our PIMD data did not warrant a meaningf
direct reexamination of the crossover scaling functions.
an alternative, we provide here qualitative evidence just
ing the conjecture of Ref. 11 that the influence of quant
effects changes appreciably within the crossover regime
this end, we have considered the effective potentialVeff as
defined by

e2bVeff(r )[g~r !, ~10!

whereg(r ) is the two-particle correlation function. The latte
quantity, in turn, can be obtained from the virial expansio
Both Veff andg(r ) are temperature-dependent quantities. T
resulting effective potential is shown in Fig. 7 for three d

FIG. 6. The kinetic~positive values! and potential~negative values! energy
per atom for3He as a function of temperature, along its critical isocho
The closed circles were obtained by means of simulations and the
curves represent second-order virial expansions.

FIG. 7. Effective potential for3He as obtained from the quantum viria
expansion, for three different temperatures. One observes the deepenin
narrowing of the potential well when the temperature is increased fromT
.Tc,3 to T.4Tc,3 . The Aziz HFD-B potential~Ref. 27! takes its minimum
at r 52.963 Å.
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ferent temperatures, namelyT53.125 K ~just belowTc), T
56.125 K ~roughly twiceTc), andT512.125 K~somewhat
above the highest temperature studied in Ref. 11!. One ob-
serves that the effective potential changes rather dramatic
under this temperature variation: The depth of the poten
well decreases by roughly a factor of 3 when the tempera
is reduced from 12.125 to 3.125 K, and its width increas
accordingly. This is in concordance with the observed
hancement of the compressibility over this temperature
gion. We note that, in a similar spirit, the effect of
temperature-dependent effective potential has been discu
earlier for a Lennard-Jones fluid;31,32however, no immediate
connection with the second virial coefficient was made
that time.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented the results of a num
cal study of4He and3He in the vicinity of their respective
liquid–vapor critical points. Both path-integral molecular d
namics and quantum virial expansions have been applie

For 4He, we have shown that the Aziz potential27 em-
ployed in the PIMD calculations yields very good agreem
with experimental results34,36 for the atomic volume at the
critical isobar over a wide temperature range, including te
peratures that lie considerably below the critical temperatu
Equally good agreement is found for the internal energy. T
second-order quantum virial expansion shows good ag
ment for the atomic volume down to roughly 2 K above t
critical temperature. The simulations also demonstrate
importance of quantum effects in4He in the vicinity of its
critical point: A classical system with the same potential h
a critical temperature that is more than twice as high.

In addition, we have studied the kinetic and potent
energy of4He and3He along their critical isochores. For th
kinetic energy, there is good agreement between the quan
virial expansion and the simulation results in both cas
down to quite low temperatures, but for the potential ene
the agreement is not so good. Higher-order terms in the v
expansion would probably alleviate the discrepancy, but
tedious to calculate. On the other hand, simulation results
the isochoric internal energy of4He agree well with experi-
mental results.

One of our original goals was the definition of an effe
tive, nonlinear temperature scale based on the kinetic ene
Such a temperature scale might prove useful for the reexa
nation of the crossover scaling functions of helium, whi
were experimentally observed to differ qualitatively fro
their counterparts for other simple liquids; these deviatio
have been conjectured to originate from quantu
mechanical effects.11 Indeed, since~part of! these effects
would now be incorporated in the new temperature scale,
crossover scaling functions should exhibit a better agreem
with the ~classical! prediction if the conjecture were correc
However, it is very difficult to reach the required numeric
accuracy in the kinetic energy; in addition, very large parti
numbers are needed in the immediate vicinity of the criti
point, in order to circumvent finite-size effects. Thus, w
have opted for a different strategy, namely the calculation

.
lid
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the effective pair potential for3He by means of the quantum
virial expansion evaluated on the critical isochore. We fi
that this pair potential exhibits a strong variation with te
perature in the crossover region. This is in good accord w
the conjecture of Ref. 11: Namely, not only are there stro
quantum effects in3He close to its liquid–vapor critica
point, as was already evident from the values of the criti
amplitudes~cf., e.g., Ref. 35!, but these quantum effects als
vary considerably within the crossover region. Such a va
tion might then explain the observed apparent depres
~relative to the predicted crossover scaling function! of the
compressibility aboveTc when the temperature is increase
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23D. Marx and M. H. Müser, J. Phys.: Condens. Matter11, R117~1999!.
24M. Herman, E. F. Bruskin, and B. J. Berne, J. Chem. Phys.76, 5150

~1982!.
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