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We review two recently developed efficient approaches for the numerical evaluation of 
the electrostatic polarization potential in particle-based simulations. The first is an image-
charge method that can be applied to systems of spherical dielectric objects and provides 
a closed-form solution of Poisson’s equation through multiple image-charge reflections and 
numerical evaluation of the resulting line integrals. The second is a boundary-element 
method that computes the discretized surface bound charge through a combination of 
the generalized minimal residual method (GMRES) and a fast Ewald solver. We compare 
the accuracy and efficiency of both approaches as a function of the pertinent numerical 
parameters. We demonstrate use of the image-charge method in a Monte Carlo simulation 
using the Barnes–Hut octree algorithm and the boundary-element method in a molecular 
dynamics simulation using the Particle–Particle Particle–Mesh (PPPM) Ewald method, and 
present numerical results for the ensemble-averaged induced force between two spherical 
colloids immersed in an electrolyte.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Electrostatic interactions are of fundamental importance for understanding the structure–function relationships of many 
physical and biological systems, including colloidal suspensions, membranes, biopolymers, and energy devices [1–3]. All-
atom computer simulations of such systems are generally prohibitively expensive, due to the required repeated evaluation 
of the forces or internal energies of molecular configurations. Thus, continuum approximations and coarse-grained models 
are often adopted. For example, the solvent is usually treated as an implicit continuum described by a (static) dielectric 
permittivity. The ion distributions in this solvent can be described by mean-field approximations such as the Poisson–
Boltzmann theory and its modifications [4–7]. These continuum models have been widely used, but are only accurate in 
limited parameter regimes, as polarization and many-body effects are often ignored.
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Alternatively, water can be treated in the continuum approximation, whereas the ions are treated as discrete particles, 
incorporating ionic correlations and ion-size effects. This coarse-graining strategy, the so-called primitive model for elec-
trolytes, is commonly employed in particle-based molecular dynamics (MD) or Monte Carlo (MC) simulations (see, e.g., 
[8,9]). Although this is a powerful approach, a formidable computational challenge that remains is the rapid calculation of 
electrostatic polarization due to the dielectric mismatch at material interfaces, such as the dielectric contrast between the 
implicit solvent and the solutes. Polarization is relevant in a wide range of systems, including colloidal suspensions [10–12], 
cloud droplets [13,14], and protein folding and stabilization [15]. Determination of the polarization field through analytical 
solution of Poisson’s equation is very difficult. Closed-form representations, in the form of harmonic series, of the Green’s 
function are known only for specific geometries such as planar, spherical, and cylindrical interfaces [16–19,11,20,21]. More-
over, even if the closed-form Green’s function is employed, the computation of the harmonic series during simulations can 
still be too expensive if large systems are investigated.

For these reasons, methods for the determination of electrostatic polarization at dielectric interfaces have attracted sig-
nificant renewed attention [11,22–25,12]. In certain cases, it is possible to avoid the evaluation of harmonic series via an 
image-charge representation of the closed-form Green’s functions [26–30]. Recently, this image-charge method (ICM) has 
been extended to the treatment of multiple spheres via recursive reflections [31]. This approach not only provides a fast 
approximation to the Green’s function, but also can be easily accelerated by well-known algorithms, because the approxima-
tion is a sum of Coulomb potentials. Alternatively, various approaches to direct numerical solution of the Poisson equation 
using the boundary-element method (BEM) have been proposed [32–39,25]. The BEM offers the advantage that arbitrary ge-
ometries can be handled with relative ease. Moreover, the BEM facilitates the treatment of periodic geometries commonly 
employed in electrostatics problems.

Here, two recently developed adaptations of both approaches are investigated in detail. The BEM for general mobile di-
electric objects was proposed and implemented in [25,12] for MD simulations. The ICM for multiple spheres was presented 
in [31]; here we present its first implementation within a MC simulation. For the BEM, surface bound charge is obtained 
from the solution of a dense linear system via the generalized minimum residual (GMRES) method [40], using a formu-
lation that is particularly well conditioned [41,25]. Moreover, the matrix–vector product required in each GMRES iteration 
is accelerated by a fast Ewald solver, in our implementation the particle–particle particle–mesh (PPPM) method [42,43]
(but note that the BEM is independent of the choice of the solver). This combination of techniques yields a near-linear 
scaling calculation in the number of discrete boundary elements. For the ICM, the single-sphere image-charge formula is 
applied recursively using reflections between spheres. The singular or nearly singular quadrature problem for the image 
line charge integral has been well approximated. The image-charge number is chosen to achieve a specified accuracy at 
minimal cost. Thus, a set of image charges is constructed that represents the polarization potential. The Barnes–Hut octree 
algorithm [44–46] is used to efficiently calculate the interaction of a source charge with other charges, in a manner tailored 
for the single-particle displacements employed in MC simulations [47].

The relevance of polarization problems in wide areas of science makes it pressing to perform a quantitative comparison 
of the BEM and ICM methods in terms of accuracy, efficiency, and performance. To illustrate these algorithm properties, 
we present results for a representative problem, namely the ensemble-averaged mean force between a pair of colloidal 
particles immersed in an electrolyte. The mean force is typically employed to investigate the effective interactions between 
colloids (although typically without taking into account dielectric effects), and has attracted significant interest in recent 
years [48–54], due to its fundamental importance in colloidal science. We demonstrate how the simulations can decompose 
the total mean force into contributions arising from ion–polarization interactions, interactions between bound charges, and 
entropic effects.

This paper is organized as follows. We first describe the formulations of the BEM and ICM in Sections 2 and 3, respec-
tively (with an error analysis of the ICM in Appendix A). Then, their computational complexity is compared in Section 4, 
followed by tests of the accuracy and parameter choices of both algorithms in Section 5. In Section 6, we present a practical 
illustration in the form of MD and MC simulation results for the induced mean force between dielectric colloidal spheres. 
We conclude with a summary in Section 7.

2. Boundary-element method

Starting from the electrostatic field E, we provide a brief derivation of the BEM presented in [25]. At an arbitrary location 
in the domain V ∈ R

3, E satisfies the differential form of Gauss’s law [55],

∇ · E(r) = ρ(r)

ε0
, (1)

and—if no time-dependent magnetic field is present—Faraday’s law,

∇ × E(r) = 0 , (2)

where ρ(r) is the total charge density and ε0 the vacuum permittivity. From the Helmholtz decomposition,

E(r) = −∇�(r) , (3)
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we arrive at Poisson’s equation for the electrostatic potential �(r),

−∇2�(r) = ρ(r)

ε0
. (4)

For convenience, we define the linear operator G = −∇−2, so that the solution of (4) can be represented as

�(r) = Gρ(r)

ε0
=

∫
V

G0(r, r′)ρ(r′)dr′ , (5)

where G0 is the Green’s function for (4), satisfying

−ε0∇2G0(r, r′) = δ(r − r′) . (6)

For free-space boundary conditions, G0 = 1/(4πε0|r − r′|) is simply the Coulomb potential due to a unit source charge, 
whereas for periodic boundary conditions G0 can be treated via the Ewald summation. Combining (3) and (5) we can 
represent the electric field as

E(r) = −∇ Gρ(r)

ε0
. (7)

We restrict ourselves to systems comprised of objects with linear and isotropic dielectric response, i.e., characterized 
by a spatially varying dielectric constant ε(r) or, equivalently, a local electric susceptibility χ(r) = ε(r)/ε0 − 1. The local 
polarization field P induced by the electric field E is then given by the constitutive relation

P(r) = ε0χ(r)E(r) . (8)

As a result, the polarization charge associated with the polarization field reads

ρpol(r) = −∇ · P(r) = −∇ · [ε0χ(r)E(r)] . (9)

Note that the total charge density ρ at location r consists of both free charge density and polarization charge density (also 
referred to as bound charge density),

ρ(r) = ρf(r) + ρpol(r) . (10)

In simulations of dielectric objects, ρf(r) is specified by the particle configuration, whereas the efficient calculation of 
ρpol(r) is our primary objective. In the following, we discuss how to construct a linear operator equation for the bound 
charge density.

Substitution of (3) into (9) yields

ρpol(r) = ε0∇ · [χ(r)∇�(r)]

= ε0χ(r)∇2�(r) + ε0∇χ(r) · ∇�(r) . (11)

This implies that polarization charge may arise in two ways, namely nonzero divergence of the electric field, which corre-
sponds to locations of free charge, and spatial variation of the electric susceptibility. The first term on the right-hand side 
of (11) can be reduced to −χ(r)ρ(r) with (4) and the second term can be rewritten as −∇ε(r) · E(r). Applying (10), we 
obtain

ε(r)

ε0

[
ρf(r) + ρpol(r)

] + ∇ε(r) · E(r) = ρf(r) , (12)

which can be simplified via (1) to

∇ · ε(r)E(r) = ρf(r) . (13)

Here we have two choices for substituting the electric field E. One choice is to substitute (3), resulting in an alternative 
form of Poisson’s equation,

−∇ · ε(r)∇�(r) = ρf(r) . (14)

This formulation differs from (4) in two ways: The source term of this equation is simply the free charge density ρf , thus 
there is no need to solve for ρpol. In exchange, the position-dependent dielectric constant leads to a Green’s function G̃ that 
is no longer in simple Coulomb form like G0. Instead, it satisfies

−∇ · ε(r)∇ G̃(r, r′) = δ(r − r′) . (15)

Thus, the solution for (14) can be represented as

�(r) =
∫

G̃(r, r′)ρf(r′)dr′ . (16)
V
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Here G̃ in the exterior region (i.e., the region outside the dielectric objects, with relative permittivity εm) is a sum of two 
parts,

G̃(r, r′) = G̃Coul(r, r′) + G̃pol(r, r′) , (17)

where G̃Coul(r, r′) = G0(r, r′)/εm is the Coulomb potential of a unit charge in a dielectric medium with permittivity εm and 
the polarization potential G̃pol(r, r′) satisfies the Laplace equation,

∇2G̃pol(r, r′) = 0 . (18)

Obviously, the difficulty in solving (14) lies in obtaining G̃pol, see Section 3.
On the other hand, the BEM employs a different approach to (13). We substitute (7) and define the operator

A = −∇ · ε(r)

ε0
∇G (19)

to arrive at a linear equation linking the polarization charge density and the free charge density,

A ρpol = b , (20)

with

b = (1 − A )ρf , (21)

where we have separated the bound charge from the free charge. Eq. (20) is applicable to general electrostatic problems in 
any isotropic and linear dielectric continuum, i.e., ε(r) can be any spatially varying function. However, its numerical solution 
requires discretization of the entire domain. The computational cost can be greatly reduced by exploiting the observation 
that for many physical systems the dielectric constant varies rapidly only at the interfaces between media. This justifies 
the approximation to confine ourselves to systems with sharp dielectric interfaces, where ∇ε(r) is nonzero only at the 
interfaces.

Consider a model system consisting of P uniform dielectric objects Si (1 ≤ i ≤ P), embedded in a dielectric continuum. 
We assume that all objects are neither touching nor intersecting each other, i.e., Si

⋂
S j = ∅. The domain V can then be 

divided into an interior region � =
P⋃
i=1

Si and an exterior region V \�. Any free charge within � is replaced with free 

charge density σf at the object surfaces that produces the equivalent electric field in the exterior region (cf. [25, Sec. IV.I]). 
In addition, there is a bulk free charge density ρf(r) in the exterior region. The dielectric constant ε(r) is set to be piecewise 
constant, with discontinuities only at the object interfaces,

ε(r) =
{

ε0εi r ∈ Si,

ε0εm r ∈ (V \�)
, (22)

where εi and εm are the relative permittivities of object i and the embedding medium, respectively. The polarization charge 
density ρpol(r) due to variation of the dielectric constant is then only present on the object surfaces and reduces to the 
surface bound charge density σpol(r).

To obtain a linear operator equation for σpol(r) analogous to (20), we first recall the standard boundary condition for the 
electric displacement field at any point r on the object surfaces, as implied by (13),

ε0 [εmEout(r) − εiEin(r)] · n̂ = σf(r) , (23)

where Ein(r) and Eout(r) are the electric field inside and outside the surface at point r, respectively, and n̂ is the outward 
unit normal to the surface at r. Likewise, (1) implies

ε0 [Eout(r) − Ein(r)] · n̂ = σf(r) + σpol(r) . (24)

Combining (23) and (24) and defining the electric field at the surface as E(r) = [Ein(r) + Eout(r)]/2, we obtain

ε̄i
[
σf(r) + σpol(r)

] + ε0
εiE(r) · n̂ = σf(r) , (25)

where ε̄i = (εi + εm)/2 and 
εi = εm − εi . This has the same form as (12), except that it avoids the factor ∇ε(r) which 
is ill-defined at the interface. Observe how free charge not located on the object surfaces enter this equation through the 
electric field E. Finally, (25) is expressed in a linear form equivalent to (20),

Asσpol = bs , (26)

where

Asσpol ≡ ε̄iσpol + ε0
εiEpol · n̂ , (27)

with

Epol(r) =
P∑
i=1

∫
σpol(s′)(r − s′)
4πε0|r − s′|3 ds′ (28)
∂Si
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the polarization field from all surface polarization charge at s′ �= r and

bs = (1 − ε̄i)σf − ε0
εiEf · n̂ , (29)

with

Ef(r) =
P∑
i=1

∫
∂Si

σf(s′)(r − s′)
4πε0|r − s′|3 ds′ +

∫
V \�

ρf(r′)(r − r′)
4πε0εm|r − r′|3 dr′ . (30)

The first term on the right-hand side of (30) represents the contribution from all surface charge at s′ �= r and the second 
term originates from all free charge not at the surfaces (i.e., located in the embedding medium). The fields Epol and Ef are 
evaluated at each surface point.

To solve (26) numerically, we discretize the interfaces into M finite boundary elements and transform it into a matrix 
equation. Since As has been shown to be well-conditioned [41,25], this method of finding the polarization charge distri-
bution is more suitable than alternative approaches. Direct solution of the matrix form of (26) requires costly [∼O(M3)] 
matrix inversion. This inversion needs to be repeated whenever the dielectric geometry changes—e.g., in each time step in a 
MD simulation of dielectric objects—and even for static dielectric geometries the solution involves dense matrix–vector mul-
tiplication at cost O(M2). A far more efficient technique is the use of an iterative solver, for which we select GMRES [40]. 
GMRES only involves fast matrix–vector products, and aims to minimize the norm of the residual of (26),

r = bs − Asσpol

= σf − ε̄i(σf + σpol) − ε0
εi(Ef + Epol) · n̂ , (31)

where Ef + Epol is the total electric field at each surface patch, which can be computed directly with a fast Ewald solver. 
Thus, for a system containing M boundary elements and N isolated free charges, the residual can be obtained at a cost 
O((M + N) log(M + N)) for PPPM [42,43] or even O(M + N) for the fast multipole method (FMM) [56–59]. In practical MD 
simulations, once convergence has been attained in the first time step, subsequent time steps require less than 4 iterations 
to obtain the surface charge density with a relative error smaller than 10−4 [25,12]. An additional advantage of computing 
the electric field via Ewald summation is that periodic images are automatically taken into account, as is customary for 
simulations of electrostatic systems in bulk geometries.

We note that several additional considerations affect the accuracy and convergence rate. For boundary elements of finite 
size and nonzero curvature, surface charge within an element contributes to the normal component of the electric field and 
thus to the polarization charge. To first approximation, this has been taken into account via a “curvature correction.” We 
approximate the correction term by assuming disk shaped patches with mean curvature, which works well for the spherical 
colloidal system in this paper [60,35]. Higher-order corrections can be applied as well [25, Sec. IV.B]. More sophisticated 
treatments via numerical quadrature are discussed in [61,41,62]. An alternative approach is the so-called “qualocation” 
method, which has been found to yield similar accuracy [63]. We further improve the convergence rate by constraining the 
net charge on dielectric objects per Gauss’s law [25, Sec. IV.H].

3. Image-charge method

If all P dielectric objects Si are of spherical shape, then an alternative method to the BEM is the ICM. In the BEM, 
polarization is characterized by the surface bound charge and the main objective is to efficiently obtain the bound charge 
density σpol. Once this is known, calculations are reduced to simple Coulomb summations according to (5). By contrast, 
in the ICM we instead solve the Poisson equation (14) with discontinuous coefficient by constructing an image-charge 
representation of G̃pol in the presence of multiple dielectric spheres. Once G̃pol is known, we can easily obtain the solution 
of (14) according to (16).

We start with a single dielectric sphere (i.e., P = 1) of radius a and relative permittivity ε1. In this case, the exact 
G̃pol has been obtained both by using spherical harmonics [64,65] (also known as the Kirkwood series) and by using the 
ICM [27]. Here we follow the latter approach. Consider a unit source charge located at rs = (rs, θs, φs) ∈ V \�, expressed in 
spherical coordinates with respect to the center of the sphere. The polarization potential at any position r = (r, θ, φ) outside 
the sphere can be written as the sum of contributions from a Kelvin image qK = −γ a/rs inside the sphere at the inversion 
point rK = rsa2/r2

s and a line image charge distributed along x = xrs/rs with x ∈ [0, rK],

G̃pol(r, rs) = qK

4πε0εm|r − rK| +
rK∫

0

qline(x)

4πε0εm|r − x|dx , (32)

where the line-charge density is given by

qline(x) = γ λ ( rK
)1−λ

. (33)

a x
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Here γ = (ε1 − εm)/(ε1 + εm) and λ = εm/(ε1 + εm). After the first formulation of this line image-charge representation of 
the polarization potential by Neumann in the 19th century [27, pp. 279–282], it was rediscovered several times in various 
application areas; see [28] for a summary.

In MC or MD simulations, the integral over the line charge in (32) is evaluated numerically. However, due to the positive 
exponent 1 − λ in (33), the line integral has an integrable power-law singularity at x = 0. Thus, conventional Gaussian 
quadrature fails to provide high accuracy, especially when λ → 0. This singularity can be removed by setting x = rK( 1−s

2 )1/λ , 
which yields

rK∫
0

qline(x)

4πε0εm|r − x|dx =
1∫

−1

γ a

8πε0εmrs|r − rK( 1−s
2 )1/λ|ds ≡

1∫
−1

f (s)ds . (34)

Thus, the (L − 1)-point Gauss–Legendre quadrature can be used to approximate the line integral, resulting in a total of L
image charges for the polarization potential,

G̃pol(r, rs) =
L∑

l=1

ql

4πε0εm|r − xl| , (35)

where q1 = qK, x1 = rK are the strength and position of the Kelvin image charge, ql = ωl
γ a
2rs

, xl = rK

(
1−sl

2

)1/λ

for 
l = 2, 3, . . . , L the strengths and positions of the (L − 1) discrete point charges approximating the line charge, and the 
coefficients {ωl, sl} (l = 2, 3, . . . , L) are the (L − 1)-point weights and locations on the interval [−1, 1]. The multiple-image 
approximation (35) was first proposed in [66], where it was combined with the FMM to achieve linear scaling. Later, it was 
applied to MC simulation of salt near a dielectric sphere [23].

Eq. (35) usually converges very rapidly when ε1/εm � 1, so L can be small. For the limit λ → 1 an alternative approach 
has been proposed, where the integral in (32) is performed analytically [22]. Evaluation of the potential then involves even 
fewer terms, although the term resulting from the line charge now involves a logarithm, so that efficient Ewald solvers 
cannot be used directly. On the other hand, when ε1/εm � 1, i.e., the exponent 1/λ � 1 in f (s), the integrand becomes 
nearly singular at s = −1. One way to handle this is through subdivision and application of Gaussian quadrature to each 
subdivided interval. Whereas this may improve accuracy, it comes at a computational cost. As an alternative, we observe 
that the dielectric sphere approaches the conducting limit when ε1/εm � 1. Since for a conducting sphere the image charges 
reduce to a Kelvin image charge plus a point charge −qK at the center of the sphere, in this limit we can simply place a 
point charge qK at the sphere center to cancel the singularity,

rK∫
0

qline(x)

4πε0εm|r − x|dx = γ λ

4πε0εma
r1−λ

K

×
⎡
⎣ rK∫

0

(
1

x1−λ|r − x| − 1

x1−λr

)
dx +

rK∫
0

1

x1−λr
dx

⎤
⎦

= γ λ

4πε0εma
r1−λ

K

rK∫
0

(
1

x1−λ|r − x| − 1

x1−λr

)
dx − qK

4πε0εmr

≡
rK∫

0

g(x)dx − qK

4πε0εmr
. (36)

As before, the integral 
∫ rK

0 g(x)dx can then be handled with (L −2)-point Gauss–Legendre quadrature, again yielding L image 
charges for the polarization potential

G̃pol(r, rs) =
L∑

l=1

q′
l

4πε0εm|r − x′
l |

. (37)

Here q′
1 = qK and x′

1 = rK represent the Kelvin image charge, whereas

q′
l = ω′

l
γ λ

a

(
rK

s′
l

)1−λ

, x′
l = s′

l (l = 2,3, . . . , L − 1) (38)

q′
L = −

L−1∑
ω′

l
γ λ

a

(
rK

s′
l

)1−λ

− qK , x′
L = 0 (39)
l=2
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Fig. 1. Construction of image charges by reflections between dielectric spheres (blue). A source charge q located in the exterior region induces L1 first-level 
image charges (green spheres, here L1 = 3) inside each sphere. Subsequently, each first-level image induces L2 second-level images inside all other spheres. 
In this example L2 = 2 and only the images for the enlarged first-level image are shown (purple spheres). This reflection procedure is performed recursively 
until convergence is reached. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are the strengths and positions of the (L − 1) discrete point charges approximating the line-charge integral (36). The coeffi-
cients {ω′

l , s
′
l} (l = 2, 3, . . . , L − 1) are the (L − 2)-point weights and locations on the interval [0, rK]. The quadrature schemes 

(35) and (37) are appropriate for ε1/εm � 1 and ε1/εm � 1, respectively. In the model investigated in Sections 5 and 6, the 
dielectric ratio is ε1/εm = 0.025, so (35) is used.

When P > 1, the polarization potential can be constructed by a procedure of iterative image-charge reflections [67,31], 
as illustrated in Fig. 1. If a unit charge is located at rs in the exterior region V \�, then L1 image charges are produced in 
each sphere according to the one-sphere formulation (35) or (37). The unit charge together with the set of L1 images in 
sphere Si generate an electric field that satisfies the boundary condition (23) on the surface ∂Si . To satisfy the boundary 
conditions on the other surfaces ∂S j( j �= i), L2 additional (second-level) image charges are generated in S j( j �= i) for each 
of the L1 image charges in Si . Recursive iteration of this procedure yields the polarization potential [31],

G̃pol(r, rs) = 1

4πε0εm

P∑
n1=1

L1∑
l1=1

{
ql1

n1

|r − xl1
n1 |

+
P∑

n2=1
n2 �=n1

L2∑
l2=1

[
ql2l1

n2n1

|r − xl2l1
n2n1 |

+
P∑

n3=1
n3 �=n2

L3∑
l3=1

(
ql3l2l1

n3n2n1

|r − xl3l2l1
n3n2n1 |

+ · · ·
)]}

. (40)

Here q and x with superscripts lili−1 · · · l1 and subscripts nini−1 · · ·n1 are the next-level image charges of the charges with 
indices li−1 · · · l1 and ni−1 · · ·n1. Their strengths and locations are determined according to the one-sphere formulation. 
Eq. (40) generalizes the result of [31] by introducing a variable number of image charges at different levels, permitting opti-
mization of the parameters Li . If we estimate G̃pol by truncating (40) at reflection level R , the number of image charges I
for each source charge is

I = P

R∑
i=1

[
(P − 1)i−1

i∏
j=1

L j

]
. (41)

Thus I increases exponentially with R . Fortunately, the truncation error in G̃pol decreases rapidly [67,31] (see also Ap-
pendix A.1). Moreover, analysis of the quadrature error (Appendix A.2), shows that for higher reflection levels i > 1, Li
may be reduced without loss of accuracy. Finally, since the polarization energy now is comprised of Coulombic interac-
tions between image and source charges, it can be evaluated via fast algorithms such as the FMM [56–59] or treecode 
algorithms [44–46].

Although the ICM avoids the need to calculate surface bound charge, it can be obtained directly once the electrostatic 
potential in the exterior region �out(r) or the electric field has been computed from the free and image charges. This explicit 
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evaluation is useful, e.g., for comparison with the BEM. If Eout(r) denotes the electric field in the exterior region (relative 
permittivity εm), then the normal component of this field at position r on an interface with a dielectric object (relative 
permittivity εi ) is

Eout(r) · n̂ = −∂�out(r)

∂n
, (42)

where n̂ is the outward normal. The normal component of the interior electric field in the dielectric, at the same surface 
position, then follows from (23) and can be substituted in (24) to obtain the bound charge density

σpol(r) = 1

εi

[
(εi − εm)ε0Eout(r) · n̂ − (εi − 1)σf(r)

]
. (43)

We illustrate this with a practical example in Section 5.3.

4. Efficiency comparison

To compare the computational complexity of both methods, we consider geometries that are amenable to both ap-
proaches, e.g., configurations of spheres. Even though the efficiency will depend on implementation and also on the physical 
system considered, general observations can be made. Specifically, the computational cost of both methods is dominated by 
the electrostatic solver and hence determined by the total number of charges that contribute to the electrostatic potential.

Consider a system of N free point charges placed outside P neutral spherical dielectric objects. In the BEM, if a total of 
M surface elements are required to achieve a certain accuracy, the total number of charges is N + M . For the PPPM method 
employed in [25,12], the computational cost of a single time step is thus O((N + M) log(N + M)), although (as noted in [25]) 
the FMM may be better suited to the nonuniform distributions typical of the BEM. For dielectric systems containing objects 
of similar size, M ∝ P , so that the BEM has a nearly linear dependence on both the number of source charges N and the 
number of dielectric object P . It must be noted, however, that M may have to be increased if point charges approach a 
dielectric interface very closely, or if multiple dielectric objects aggregate. In addition, we remark that in each time step 
GMRES typically requires 4 evaluations of the electrostatic potential to reach convergence.

For the ICM, the same system consists of N source charges and NI image charges. In the Barnes–Hut octree algo-
rithm [44–46], the computational complexity of an MC cycle scales as O(NI log(NI )) [68]. Not only does I increase 
as a power law of P , cf. (41), it also is comparable in magnitude to M (see Section 5.2). However, whereas for the BEM 
it appears additive to N in the computational cost, for the ICM it appears multiplicatively. Thus, for large N or P , the 
BEM generally outperforms the ICM. An important advantage of the ICM, on the other hand, is that geometric singularities 
are naturally avoided, as it employs a closed-form expression for the Green’s function. In addition, the number of image 
charges in the ICM does not depend on the colloidal size, making it advantageous for the simulation of large colloids. More-
over, the efficiency can be increased by dynamically tuning I based upon the geometry, e.g., when dielectric objects are 
spaced far apart or source charges are not close to an object. Also, since the image charges are distributed nonuniformly 
within the spheres, the computational cost can be reduced by decreasing the number of clusters in the Barnes–Hut octree 
algorithm.

If the dielectric objects have arbitrary (nonuniform) surface charge density, no additional computational expense is in-
curred in the BEM, as this charge can be distributed across the boundary patches. On the other hand, in the ICM this surface 
discretization is generally costly, as it increases the number of source charges. For immobile objects, the potential gener-
ated by these charges and their image charges is constant and can be precomputed within a simulation, but for dynamic 
dielectric objects this is not the case.

As a concrete comparison between the BEM and ICM we consider the system of two colloids immersed in an electrolyte, 
described in Section 6 below (all technical parameters are described there as well). We determine the time it takes to 
obtain an independent sample for the net force on one of the colloids from the integrated autocorrelation time [69]. Using 
the BEM, this requires 120 MD time steps, corresponding to 45 seconds of CPU time (Intel Xeon E5-2620 v3, 2.40 GHz). 
When interpreting this time requirement, it is important to note that the system contains N = 702 ions as well as M = 2944
surface elements. On the other hand, in the ICM an independent sample is obtained after every 1000 MC cycles, where a 
cycle corresponds to one proposed move per ion (on average). For the parameter choice adopted in Section 6 (I = 310
image charges, reflection level “5332” as described in Section 5.2) this corresponds to 50 seconds of CPU time, although 
this can be reduced to 40 seconds by choosing I = 248 image charges (reflection level “4332”) while retaining a sufficient 
precision, cf. Section 5.2. In comparing these numbers, it should be noted that the cylindrical simulation cell adopted for the 
ICM contains only 276 ions, 2.5 times less than the periodic cell employed in the BEM (the larger cell in the BEM is chosen 
to avoid artificial periodicity effects). A final practical point is that the net force follows directly in the MD simulation, 
whereas relatively costly numerical differentiation [Eq. (49)] is required in the MC simulation. Given the slow decorrelation 
of the system it is important to avoid performing this derivative unnecessarily often.
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Fig. 2. Two-dimensional illustration of the so-called primitive model of two dielectric colloids surrounded by an electrolyte.

5. Numerical results: static configurations

5.1. Model setup

To test the performance of these two algorithms, we apply them to a system of two dielectric colloids immersed in 
an electrolyte (Fig. 2). The solvent is treated implicitly as a dielectric continuum with relative permittivity εm and the 
colloids and ions are represented explicitly by spheres with a soft repulsive potential. The colloidal particles (“macroions”) 
have radius a and are placed at a surface-to-surface separation D . They both carry a total free charge Q = Ze distributed 
uniformly on their surface and have an internal dielectric constant εin. The ions are of diameter τ with charge q = ze
and are considered non-polarizable, although their effective charge is reduced by a factor 1/εm due to polarization of the 
surrounding medium.

The potential energy of the system V tot can be expressed as a sum of three contributions

V tot = V LJ + V Coul + V pol , (44)

where V LJ represents the non-electrostatic repulsions, V Coul the pairwise electrostatic interactions between the free charges, 
and V pol the polarization energy arising from the interactions involving bound charges. The repulsive interaction between 
any two particles i and j is modeled via a shifted-truncated Lennard–Jones (LJ) potential

βuLJ(ri j) =

⎧⎪⎪⎨
⎪⎪⎩

∞ if ri j ≤ 
i j

4
[
( c

ri j−
i j
)12 − ( c

ri j−
i j
)6

]
+ 1 if 
i j < ri j < 
i j + 2

1
6 c

0 if ri j ≥ 
i j + 2
1
6 c

, (45)

where β = 1/(kBT ) is the inverse thermal energy (with kB Boltzmann’s constant and T the absolute temperature), ri j the 
distance between the particle centers, and 
i j = (di + d j)/2 − c the hard-core distance. Here, di and d j are the diameters of 
particles i and j, respectively, and c is set to be the diameter of the mobile ions, c = τ . Thus, at contact (D = 0, r = 2a = dM) 
the two colloids have a repulsive Lennard–Jones interaction energy uLJ = kBT . To avoid the singularity that would arise if 
the position of an ion would coincide with a surface element, the surface elements are placed at the divergence of the 
sphere–ion shifted-truncated LJ potential, i.e., at a radius a − τ/2, indicated by the dashed circles in Fig. 2.

The central force F tot(D) = −∂V tot/∂ D between the two colloids thus comprises two contributions

F tot(D) = FLJ(D) + Fele(D) , (46)

where we only consider the component parallel to their center-to-center axis, and FLJ(D) is the force originating from the LJ 
interactions and Fele(D) the electrostatic force. Whereas the former is straightforward to obtain, the evaluation of Fele(D) is 
nontrivial. As derived in [25] by differentiation of the total energy, the total electrostatic force on a rigid dielectric object Si
is

Fele(D) =
∫
Si

f ′(r)dr , (47)

where f ′(r) is the parallel component of

f(r) = εm
[
ρf(r) + ρpol(r)

]
E(r) , (48)

In the BEM-based calculations, we thus compute the total electrostatic force via summation over all boundary elements.
On the other hand, when using the ICM, we evaluate Fele(D) through numerical differentiation of the energy,

Fele(D) ≈ − V ele(D + δD) − V ele(D)
. (49)
δD
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Fig. 3. Comparison of the radial distribution of divalent ions around an isolated dielectric colloid (radius a = 20 Å) placed in a periodic box of linear size 
180 Å (“PBC”) and in a spherical cell (radius 72.65 Å) with hard-core boundary conditions (“HCBC”). Whereas the periodic box shows a constant salt 
concentration away from the colloidal surface, the system with the spherical hard wall exhibits significant depletion of salt near the wall (location marked 
by the dashed vertical line), which in turn gives rise to a spurious increase of the bulk concentration [indicated by the curve “HCBC (not adjusted)”]. To 
account for this effect, we adjust the number of ions such that both systems have the same effective bulk salt concentration (curve “HCBC”).

For a given configuration, we first evaluate the total electrostatic energy V ele = V Coul + V pol, and then displace one colloid 
by δD along the vector connecting the centers of the two colloids. Since this entails a change in ε(r), recalculation of V ele
requires the reconstruction of all image charges. For the system specified below, we choose δD = 2 × 10−5 Å.

In the numerical comparisons presented here, we set the solvent conditions to represent water at room temperature, 
i.e., T = 298 K and εm = 80, resulting in a Bjerrum length �B = e2/(4πε0εmkBT ) = 7.14 Å. The colloids have dielectric 
constant εin = 2 and diameter dM = 40 Å. The electrolyte consists of Cs = 100 mM 2:2 salt (ion diameter τ = 4.5 Å), which 
corresponds to a Debye length �D = √

ε0εmkBT /(8Cse2) = 4.81 Å. We focus on dielectric effects by choosing Q = 0 (or, 
equivalently, σf = 0), so that the electrostatic force acting on the two colloids arises solely from the interactions of the 
polarization charge induced on either colloid with the salt ions and with the induced charge on the other colloid. We 
choose divalent salt, since the dielectric forces scale as z2.

For calculations involving the ICM we employ a cylindrical cell [70], where the ions are confined by hard walls (both 
the cylindrical shell and its top and bottom), such that an ion acquires infinite energy if its center is moved outside of the 
cylinder. The colloids are fixed on the cylinder axis, while the mobile ions can move freely within the cylinder. The cylinder 
radius (65 Å) and length (190 Å) are chosen to be much larger than the Debye screening length. For the BEM we instead 
employ a cubic, periodically replicated box. In Section 5.2, we use configurations that are produced by the ICM, but for the 
comparison calculations performed with the BEM we place these configurations (which contain 300 ions) in a box of much 
larger volume (linear dimension 4500 Å) than the cylindrical cell, to suppress effects of the periodic boundary conditions. 
On the other hand, for the equilibrium results in Section 6 we find that the cylindrical volume suffers from significant 
boundary effects. Ions near the cylinder walls lack a symmetric shell of screening counterions, which in turns leads to a 
depletion of ions at the wall [71]. Fig. 3 illustrates this effect for a spherical cell. If the number of ions is not adjusted 
to account for this effect, the concentration in the remainder of the cylinder will be significantly increased, hindering an 
accurate comparison with the BEM results. In the BEM we realize a salt concentration of 100 mM by placing 702 ions in a 
box of linear dimension 180 Å, which due to the excluded volume of the colloids results in an effective (bulk) concentration 
of ∼101 mM. On the other hand, in the ICM we must reduce the number of ions from 300 to 276 to achieve the same 
concentration in the bulk, as confirmed in Fig. 3 for the spherical system. Whereas it also would have been possible to 
eliminate this effect via an attractive surface potential, we demonstrate in Section 6 that a proper bulk salt concentration 
surrounding the colloids is sufficient to reproduce the correct mean colloidal force.

5.2. Parameter dependence for the BEM and the ICM

We first examine the accuracy of both methods as a function of parameter choice (surface discretization for the BEM and 
number of images and level of reflection for the ICM). For each of 14 surface separations D (3–16 Å, in steps of 1 Å) we 
perform a simulation of the system described above (cylindrical cell, 300 ions) to produce 100 independent configurations 
corresponding to thermodynamic equilibrium. For each of these configurations, we then compute the force on one of the 
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Fig. 4. Accuracy of the electrostatic force between two neutral colloids immersed in an electrolyte, as a function of surface separation, D = 3–16 Å. Physical 
parameters are described in the main text. Panels (a) and (b) show the ensemble-averaged absolute error in the component of the absolute force along the 
center-to-center axis between the colloids for (a) the BEM at different surface discretizations (numbers in the key indicate the number of surface elements 
per sphere) and (b) the ICM at different reflection levels R and numbers of image charges Li (numbers in the key indicate the number of image charges per 
reflection level). It is important to note that these estimates significantly overestimate the error obtained in a typical simulation, by averaging the absolute 
values of the deviations. Panels (c) and (d) show the same data as panels (a) and (b), respectively, but normalized by the magnitude of the force obtained 
in the simulations of Section 6 (electrostatic force in Fig. 6a). The increase of these relative uncertainties with increasing D simply reflects the fact that 
the induced forces become very small at larger colloid separations. The exception to this trend are the ICM data [panel (d)] for the “5332” and “5555” 
parameters; here the relative deviation remains mostly flat since the effect of the decreasing force is partly negated by the decrease in the truncation error 
with increasing D [cf. panel (b) and derivation in Appendix A.1]. Force unit is kB T /�B. Ensemble averages are obtained from 100 independent equilibrium 
configurations, where the same set of configurations is employed for the BEM and ICM calculations.

colloids using the ICM with L = 5, R = 6 and direct pairwise summation. These parameters yield an absolute accuracy of 
10−7 and the results serve as the reference values.

Fig. 4 shows, for each separation D , the absolute error in the force on a single colloid averaged over the 100 configura-
tions as computed with the BEM and ICM for various parameter choices, along with the relative errors.

For the BEM we focus on the number of surface elements. Thus, we choose a sufficiently small convergence criterion 
for GMRES and high enough accuracy for the Ewald solver (relative error 10−4 for both GMRES and Ewald) to ensure that 
errors resulting from these two factors are small compared to the discretization error. As shown in Fig. 4(a), for systems 
with 372 to 3002 patches per colloid, the ensemble-averaged absolute errors in the forces are less than 0.003kB T /�B for 
all 14 separations. Moreover, they decrease monotonically with increasing number of boundary elements, improving by 
an order of magnitude between the coarsest and the finest grids. We also investigate the role of the orientation of the 
surface grid [data labeled “1472*”]. Whereas all other grids are oriented such that for both colloids a grid point (center of 
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Fig. 5. Comparison of the BEM and the ICM for the surface bound charge density σpol induced by a monovalent positive ion at x = 60 Å on two colloids 
(εin = 2) at x = 21.5 Å (“near”) and x = −21.5 Å (“far”) in water (εm = 80). The azimuthal symmetry makes it possible to parametrize σpol by the polar 
angle θ between the positive x-axis and the surface points. The results from both methods are in excellent agreement. The curve labeled “ICM single” 
represents the bound charge density on the “far” colloid in the absence of the intervening “near” colloid, illustrating the screening effect of the latter.

a surface element) lies on their center-to-center axis, for “1472*” the grid is oriented such that this axis passes through 
the edge of a surface element. The grid orientation can have a significant effect in individual configurations, depending on 
whether an ion resides close to a surface element, but we find that such differences vanish in the ensemble averages, as 
expected. In practical simulations (Section 6), we employ 1472 surface elements per colloid, which yields an absolute error 
less than 10−3kBT /�B. We note that the absolute deviations provide an upper bound for the systematic errors incurred in 
the simulations. Fig. 4(c) shows the same data as panel (a), but normalized by the magnitude of the force. As this force 
becomes small when D increases, the relative deviations display an increasing trend.

Figs. 4(b) and (d) show the absolute deviations in the force as well as the relative values of these errors for the same 
configurations as employed in panels (a) and (c), but now calculated by the ICM. To study the convergence of the polariza-
tion potential (40), we vary both the maximum reflection level R and the number of image charges Li for each level. The 
different choices are labeled “L1 L2 · · · LR ” and show a decrease in the absolute error by at least two orders of magnitude be-
tween “333” and “5555”. Interestingly, the results in Fig. 4(b) show that the number of images at the higher reflection levels 
can be decreased without consequences for the accuracy, with excellent agreement between “4444” and “4332,” and quite 
close agreement between “5555” and “5332”. This approach can significantly reduce the computational cost. For example, 
“5332” requires I = 310 image charges per source charge (ion), five times less than “5555” (I = 1560). The decreasing 
error with increasing D in panel (b) arises from the decreasing truncation error, see Appendix A.1.

5.3. Induced surface charge density

It is instructive to compare the polarization charge as computed by the BEM and the ICM. We center the two spherical 
colloids at (±21.5, 0, 0) Å (i.e., at a surface separation D = 3 Å), and place a single positive monovalent ion at (60, 0, 0) Å. 
Even this simple configuration is not easy to treat analytically, due to the interaction between polarization charges on 
different spheres. For both colloids, we determine σpol as a function of the polar angle θ . In the BEM, we use 1472 surface 
elements per colloid. For the ICM, we use “5555” [i.e., R = 4 and Li = 5 (i = 1, . . . , 4)] and exploit (43) to determine σpol for 
arbitrary θ . As shown in Fig. 5, the results obtained by both methods are in excellent agreement.

We note some interesting physical aspects of the induced polarization. Since the permittivity of the colloids (εin = 2) 
is lower than of the surrounding medium (εm = 80), positive bound charge accumulates near θ = 0, i.e., the region facing 
the ion. This positive charge is then compensated by a gradually varying negative bound charge density over the rest of 
the colloidal surfaces, such that the neutrality condition is satisfied for the total bound charge on each colloid. In the BEM, 
we also constrain the net bound charge to be zero after each iteration to facilitate convergence and accuracy. In addition, 
σpol for the “far” sphere (positioned on the negative x-axis) has much lower bound charge density than the “near” sphere 
(positioned on the positive x-axis). This is not only due to its larger distance from the ion, but also due to the screening 
effect of the bound charges on the “near” sphere, which can be approximated as a dipole with its dipole moment pointing 
towards the positive source charge, partially canceling the source charge field. This is confirmed by the curve labeled “ICM 
single” in Fig. 5, which shows the surface bound charge density on the sphere on the negative x-axis in the absence of the 
dielectric sphere on the positive x-axis. The induced charge density is then significantly higher, especially at small θ .
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Fig. 6. Mean force between two neutral dielectric colloids induced by a divalent aqueous electrolyte (100 mM). BEM data are obtained via a MD simulation 
incorporating the boundary-element method, whereas the ICM data are calculated in a MC simulation with iteratively reflected image charges. (a) Mean 
electrostatic and excluded-volume force. Note that both forces are attractive and have a similar range. (b) Decomposition of the electrostatic force into an 
attractive contribution due to ion–bound charge forces (green diamonds) and a repulsive contribution due to the forces between bound charges induced 
on different colloids (purple triangles; error bars smaller than the symbol size). Note that the blue circles correspond to the same symbols as shown in 
panel (a), and represent the sum of the bound–bound forces and the bound–ion forces. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

6. Numerical results: thermodynamic equilibrium

Having verified the accuracy of both methods and the required parameter choices, we now proceed to evaluate their 
performance in practical simulations of thermodynamic properties. As a model system, we consider the ensemble-averaged 
force between two neutral dielectric colloids induced by a symmetric divalent aqueous electrolyte. As noted in (46), this 
force has two contributions: (i) the short-range excluded-volume repulsions that result in a depletion-type [72,73] force 
that is ultimately entropic in nature and (ii) an electrostatic contribution involving polarization charges induced by ions. The 
ensemble-average of even the first contribution is not easily obtained by other means, given that the ionic arrangements 
are influenced by ion–ion interactions as well as ion–polarization interactions, where the polarization charges in turn are 
determined by the ionic configurations. For the second contribution, already the force in a single sample, (47) and (48), 
requires careful consideration.

For the BEM, we perform MD simulations that start from 702 ions randomly arranged around the two colloids. We 
employ the velocity Verlet algorithm with a Langevin thermostat (damping parameter time 20t0, where t0 = (mτ 2β)1/2 is 
the LJ unit time with τ the ion diameter and m the ion mass). The RMS relative error of the PPPM method is chosen to 
be O(10−4) with real space cutoff 4.0τ . Starting from a small time step (to remove particle overlaps) we gradually increase 
the time step to 0.3t0. After 6 × 104 time steps (corresponding to 3700t0 due to the varying time step size) we commence 
sampling and continue for 15 × 104 time steps (45 000t0). The electrostatic force on each of the colloids is sampled after 
every 150 steps, whereas the shifted-truncated LJ repulsions (which exhibit a large variance and decorrelate rapidly) are 
sampled 30 times more frequently. For each separation, we perform 200 independent runs, resulting in a total of 4 × 105

independent samples per separation for the electrostatic force and 1.2 × 107 samples for the depletion force.
The ICM is incorporated within canonical MC simulations employing single-particle moves with a maximum displace-

ment �B, resulting in an acceptance rate ∼47%. To realize the efficiency of the Barnes–Hut octree algorithm for the evaluation 
of the energy change resulting from a single displacement, we use a tailored variant of the octree routine [47]. The treecode 
parameters are set to be MAC = 0.1 and p = 3, which guarantees a relative error of less than 1.4 × 10−5. From a random 
configuration with 276 ions, we perform simulated annealing over 105 cycles (a single cycle corresponds to one move per 
particle on average), lowering the temperature from T = 2100 K to T = 298 K. After another 105 equilibration cycles, we 
continue for 107 production cycles (100 independent runs of 105 cycles per separation), sampling every full cycle. Per sep-
aration, this yields 5 × 104 independent samples for the electrostatic force and 2 × 106 samples for the depletion force. The 
force on one colloid is computed through numerical differentiation, Eq. (49).

Fig. 6(a) shows the mean electrostatic and excluded-volume force as a function of colloid surface separation. We choose 
M = 2 × 1472 curved surface elements in the BEM and four levels of reflection (“5332”) for the ICM, which has 310 image 
charges per ion (10 first-level images, 30 second-level, 90 third-level, and 180 fourth-level). We note that Fig. 4(b) indicates 
that already with parameter choice “4332” the ICM could have achieved an accuracy comparable to that of the BEM for 
1472 patches per colloid, although this would have reduced the number of image charges by only 20%. For all separations 
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the BEM/MD and ICM/MC data agree within the statistical uncertainties. These results also demonstrate the importance 
of polarization effects in the induced colloidal attraction: The electrostatic force has a magnitude of around 40% of the 
excluded-volume forces. Using the BEM, we can easily decompose the polarization forces into interactions between bound 
charges residing on separate colloids and interactions between bound charges and ions [Fig. 6(b)]. We note that the time-
averaged polarization charge vanishes, owing to the anion–cation symmetry of the salt. However, the instantaneous force of 
a bound charge on the ion that induces it is always repulsive, and this effect is stronger in the region between both colloids, 
as the ion there will experience a repulsive force from bound charges it induces on both colloids. This leads to a depletion 
of ions in this region, so that the average net ion–bound charge force between the colloids is attractive, reinforcing the de-
pletion attraction induced by the excluded-volume interactions. On the other hand, the bound–bound interaction between 
the two colloids is repulsive for symmetry reasons.

7. Summary

We have reviewed two numerical approaches for solving the Poisson equation in systems with discontinuous dielectric 
constant, namely a method based upon image charges and a method based upon discretization of dielectric interfaces. 
Specifically, both methods are applied to systems comprised of multiple dielectric objects. The BEM can be applied to 
arbitrary geometries. The ICM avoids the need for surface discretization by exploiting a closed-form representation of the 
Green’s function, but is restricted to assemblies of spherical objects. We have analyzed the computational complexity of both 
approaches and through direct comparison have demonstrated how, for a given accuracy, the number of image charges can 
be reduced at higher reflection levels. We have implemented both methods in particle-based simulations, the BEM within 
a MD simulation and the ICM within a MC simulation. As a practical demonstration, we have used these simulations to 
determine the salt-induced attractive effective force between two neutral dielectric colloidal particles.
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Appendix A. Error analysis of the ICM in a limiting case

This appendix provides an error analysis of the polarization potential (40) calculated by the ICM. The total error is 
composed of the error ET due to truncation of (40) at reflection level R and the Gaussian quadrature error EQ, which is the 
sum of individual errors at each reflection level. Here, we estimate these errors for the self energy of a unit charge in the 
presence of two dielectric spheres. In dimensionless units, this is equivalent to analyzing �self = Gpol(r, r). The estimation 
of ET follows [31] and is included here for completeness.

A.1. Truncation error

We place two dielectric spheres of radius a at o1 and o2, respectively, so that r12 = |o1 − o2| is their center-to-center 
distance and D = r12 − 2a their surface separation. We consider the extreme case in which the unit source charge is located 
at the midpoint of o1o2. Any deviation from this point will lead to a faster convergence of the image-charge approximation, 
because at this point the higher-order image multipoles reduce to image dipoles. Thus, this case provides an upper bound 
to the truncation error. We study the case L = 2, for which each reflection of a charge will result in a dipole, and calculate 
the ratio of contributions to the potential from successive reflections. Consider an nth-level image charge qn within one 
sphere, at a distance rn to the sphere center, and its image dipole produced within the other sphere at reflection level n + 1. 
From (35), the potentials, at the source point, of qn and its image charges are

�n = qn

4πε0εm

1

a + D/2 − rn
, (A.1)

�n+1 = qn+1

4πε0εm

(
1

a + D/2 − rn+1
− 1

a + D/2 − ωrn+1

)
, (A.2)

where ω = ( 1
2 )

1
λ , qn+1 = −γ aqn/rs, and rn+1 = a2/rs, with rs = r12 − rn the source-charge location for the next-level image 

dipole. Defining ν = rs/a, ζ = D/a, and μ = 1 + ζ/2, we can write the absolute ratio between the two potentials ϑ =
|�n/�n+1| as

ϑ = (μν − 1)(μν − ω)
. (A.3)
|γ |(1 − ω)(ν − μ)
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Thus, if we only retain terms up to level R in (35), we incur an error ‖ET‖∞ ∼ �1/ϑ
R . Note that ν satisfies the inequality 

2μ2 − 1 ≤ μν ≤ 2μ2, so that

ϑ ≥ 2μ
√

(μ2 − 1)(μ2 − ω) + μ(2μ2 − 1 − ω)

|γ |(1 − ω)
. (A.4)

Therefore the truncation error depends on μ or, equivalently, ζ , embodying the effect of the contact distance between the 
two spheres: Larger ζ will lead to a smaller truncation error.

The truncation error for (37) can be estimated in a similar manner, resulting in a lower bound for the potential ratio

ϑ ′ ≥ 2μ2
√

μ2 − 1 + μ(2μ2 − 1)

|γ | . (A.5)

Comparison of (A.4) and (A.5) shows that the estimates coincide in the conducting limit (ε1 � εm, i.e., λ → 0, ω → 0).

A.2. Quadrature error

We analyze the Gaussian-quadrature error ‖EQ‖∞ for the system considered in Appendix A.1. For the line charge induced 
by the nth image charge qn the integrand in (34) then is

f (x) = γ a

8πε0εmrs

[
a + D

2 − a2

rs
( 1−x

2 )1/λ
] . (A.6)

Estimation of (34) via p-point Gauss–Legendre quadrature yields the residue

En = f (2p)(ξ)qn

(2p)!
1∫

−1

K 2(x)dx , (A.7)

where K (x) = ∏p−1
k=0 (x − xk) and ξ ∈ [−1, 1]. Since |x − xk| ≤ 2, we find, denoting α2p = max−1≤ξ≤1

[| f (2p)(ξ)|],

|En| ≤ α2p

(2p)!22p+1|qn| . (A.8)

The limiting cases λ → 0 and λ → 1 are the easiest to evaluate. Since the former corresponds to the conducting limit where 
the line charge reduces to a point charge, we consider λ → 1. The (2p)th derivative of f (x) is

f (2p)(x) = − 1

4πε0εma
(2p)!

(
x + 2rs

a
+ rs D

a2
− 1

)(−2p−1)

, (A.9)

and then

α2p = 1

4πε0εma
(2p)!

(
a2/rs

2a + D − 2a2/rs

)(2p+1)

. (A.10)

This yields an upper bound for the quadrature error in the nth-level line charge,

|En| ≤ |qn|
4πε0εma

(
a2/rs

a + D/2 − a2/rs

)(2p+1)

. (A.11)

Similarly, the quadrature error for the next-level line charges induced by the p + 1 image charges of qn inside the other 
sphere is bounded by

|En+1| ≤ |qn+1|
4πε0εma

[(
a2/r′

s

a + D/2 − a2/r′
s

)(2p+1)

−
(

a2/r12

a + D/2 − a2/r12

)(2p+1)]
, (A.12)

where r′
s = r12 − rn+1 is the distance of the Kelvin image charge to the other sphere, rn+1 = a2/rs, and r12 is the maximum 

distance of the remaining p image charges (which sum up −qn+1) to the other sphere. Let |En|max be the maximum 
quadrature error at level n. Comparing (A.11) and (A.12), we note that |En|max varies only weakly with n for a general 
reflection level n ≥ 1. On the other hand, for n = 0, i.e., for the initial source charge at r0 = a + D/2, there is a significant 
difference between |E0|max and |E1|max,

|E0|max

|E1|max
≥

(
2μ − 1

μ

)
22p+1 . (A.13)

Thus, for the higher-level image reflections the number of image charges used to approximate the line charge can be reduced 
without much effect on the accuracy.
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