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‘We introduce a Monte Carlo method for the simulation of spin models with ferromagnetic
long-range interactions in which the amount of time per spin-flip operation is independent
of the system size, in spite of the fact that the interactions between each spin and all other
spins are taken into account. We work out two algorithms for the g-state Potts model
and discuss the generalization to systems with other interactions and to O(n) models.
We illustrate the method with a simulation of the mean-field Ising model, for which we
have also analytically calculated the leading finite-size correction to the dimensionless

amplitude ratio (m2)?/(m*) at the critical temperature.
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1. Introduction

The study of systems with long-range interactions is notoriously difficult, due to the
large number of interactions that has to be taken into account. This has discouraged
the application of Monte Carlo methods, whereas only very few exact solutions are
available for these models. Furthermore, other numerical analyses of these systems
suffer from serious difficulties. They often truncate the interaction beyond a certain
distance, thus introducing errors in the calculation, or are restricted to small system
sizes, which limits the accuracy that can be obtained in a finite-size analysis.! Here,
we present a Monte Carlo method for the simulation of spin models with long-range
interactions which is capable of simulating large systems within a reasonable amount
of computing time. The algorithm, which is based on the well-known Wolff cluster
method,? does not make any approximation except for the inherent statistical errors.
In the process of cluster formation the amount of time per spin visit is independent
of the system size, despite the fact that each spin interacts with all other spins in
the system. This fact, together with the reduction of critical slowing down in cluster
algorithms, makes this algorithm very suitable for the study of critical phenomena in
models with long-range interactions. Therefore it will allow an accurate numerical
analysis of ferromagnetic long-range models.
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The outline of this paper is as follows. In Sec. 2 we start with a brief review of
the Wolff cluster algorithm. In Sec. 3 we discuss two efficient cluster-building algo-
rithms. We illustrate the Monte Carlo method in Sec. 4 with some simulations of
the mean-field Ising model, for which we have also calculated the leading finite-size
correction to the dimensionless amplitude ratio (m2)2/ (m*) at the critical temper-
ature. Section 5 contains generalizations of the algorithm to other systems as well
as our conclusions.

2. Cluster Methods

Cluster algorithms for spin models are based on the Kasteleyn—Fortuin mapping
of the Potts model on a bond percolation model.®* The Potts Hamiltonian Hp is
given by
BHp ==K 650, (0=1,...,09), (1)
(i)
where E(ij) denotes a summation over all nearest-neighbor pairs and ¢ is the
possible number of states for each spin. The partition function is thus given by

ZPotts = Z exp(_ﬂHP) . (2)
{oi}

It can be shown that this is equivalent to the Whitney polynomial,® which gives the
partition function of the random-cluster model,

Zne =) _ g%V, (3)
G

where ), denotes a sum over all graphs on the lattice, ! denotes the number of
bonds in the graph, v = eX —1 and C is the number of connected components in the
graph. A connected component is a cluster of spins connected directly or indirectly
by bonds (a single, isolated spin is regarded as a cluster as well).

The fact that all spins belonging to one connected component are in the same
state and uncorrelated with all other spins in the system forms the basis of the
cluster method. Let us briefly review the Wolff cluster method for the Ising model.
First, a random site is chosen, which contains the first spin of the cluster. Then
bonds are activated between this spin and its neighbors, with probability

v

-K
idjm :66.'0','(1 —€ )a (4)

p(oi, 05) =65
where K is the Potts coupling between neighboring spins. This process is repeated
iteratively by activating bonds between each newly added spin and its neighbors,
thus creating a cluster of spins connected by active bonds. Then all the spins in
this cluster are reversed and a new cluster is formed. The great advantage of the
Wolff cluster algorithm for this system compared to the Metropolis algorithm is the
drastic change in critical slowing down. As an example, for the two-dimensional
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Ising model the dynamical critical exponent z is reduced from z = 2.1 to z & 0.35°
and for the mean-field Ising model it is even suggested that z is reduced from z = 2
to z = 0.7 So, roughly speaking, for a system consisting of L? spins, the amount of
time to reach equilibrium is decreased by a factor O(L?).

The Kasteleyn-Fortuin mapping can also be applied to systems with different
interaction strengths by associating a certain type of bond with each type of inter-
action. The corresponding generalization of Eq. (3) is then®

Z= chvl‘v vE L., (5)

where now /; denotes the number of bonds of class i in the graph and v; = e¥i —1
(K is the coupling constant or interaction energy between a spin pair connected by
a bond of class 7).

This allows the application of the Wolff cluster method to spin models with
an arbitrary number of different interactions, in particular long-range interactions.
With each value of the interaction strength, i.e., with each spin distance, we as-
sociate a different bond class. Then, we activate bonds between each spin in the
cluster and all other spins in the system with a probability p of a bond that depends
on the interaction strength between the two spins. Once a complete cluster has been
formed, its spins are reversed and the formation of a new cluster is started. In this
article, we present a method in which the number of operations required to activate
a bond is independent of the number of spins in the system. The efficiency of this
method can be illustrated by the following simple example. If p were equal for each
spin pair, one out of p~! spins would be added to the cluster, and it would take
O(p~') ~ O(L®) operations per spin to update a configuration, compared to O(L?)
operations per spin for a Metropolis algorithm. Taking into account the decrease in
critical slowing down, we see that the efficiency of this method is typically a factor
O(L%*+?) larger than the conventional Monte Carlo algorithm.

3. Building Clusters in Systems with Long-Range Interactions

3.1. Long-range Hamiltonian
In systems with long-range interactions, the Hamiltonian (1) is generalized to
BHLR = =Y Kijbo,0; , (6)
(i)
d+o
8

where the sum runs over all spin pairs. As an example, we will take K;; = f /r
(f > 0), which is one of the most commonly studied long-range 1nteract10ns
Here 7;; denotes the distance between spins ¢; and o;, d is the dimensionality
of the system and o > 0 is a parameter which determines the power-law decay of
the interaction. We have written the exponent as the sum of d and ¢ to emphasize
the fact that the integrated interaction does not converge for o < 0.
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We now have to devise an algorithm to build a cluster of spins, activating bonds
between each pair of spins with a probability given by Eq. (4) with K replaced
by K;;. For simplicity we discuss here a one-dimensional systém. We start with a
spin on a randomly chosen site and activate bonds between this spin and all other
spins in the system with a probability é,,,,pm, Where p,, denotes the probability
of activating a bond between two identical spins at distance m (in units of lattice
spacing). Generalizing Eq. (4), we find pm(0;, 0;) = 1 — exp(—fm~(4+9)) =1 —
exp(—K,,). Each time we activate a bond, the corresponding spin is added to the
cluster. Furthermore, the spin address is placed on the stack. This is a list of
spin addresses from which an address is removed once it has been read. When
all neighbors of the first spin have been considered, we read a new spin from the
stack and repeat the process. This cycle ends when the stack is empty, i.e., if all
neighbors of all spins in the cluster have been considered. The spin from which we
are currently activating bonds will be called the current spin. To avoid considering
each single bond, we introduce the concept of the cumulative bond probability. This
is a quantity from which we can derive the distance of the first spin (with respect
to the current spin) which has to be added to the cluster, assuming that this spin
is identical to the other spins in the cluster. The probability that the first bond is
activated at a distance j from the current spin is given by

PG)=(1-p1)1-p2)--- (1 —pj-1)p;- (7

The cumulative bond probability is defined as

CcG)=>_ Pn). (8)
n=1

Now, if a random number (€ [0, 1)) between C(j — 1) and C(j) is drawn, the first
bond has to be activated between the current spin and the spin at a distance 7,
provided that they are parallel. Since the next bond must be activated between the
current spin and a spin at a distance k > j, we have to shift P as follows:

Pi(k) = (1 = pj+1)(1 — pj+2) -+ (1 — Pre—1)Pk 9)

and Eq. (7) is simply a special case of Eq. (9). The generalized version of Eq. (8)

is given by
k

Ci(k)= ) Fi(n). (10)

n=j+1
Substituting for p,,, which is the bond probability (4) without the Kronecker delta
(which is applied after the selection of the spin), we find:

k
Ci(ky=1-exp|— > Ku.|. (11)

n=j+1
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In the following subsections we consider two possibilities of calculating the bond
distance & from a given C;(k). Let us here mention one detail that we have omitted
in the above discussion. In Egs. (7) and (9), py, denotes the probability of activating
a bond to a spin at distance m. This means that this is the probability of a bond to
the right or to the left. This can be taken into account by doubling the interaction
strength K,,. Once a bond distance m has been obtained, its direction can be
determined by an additional random number. Some care has to be exercised to
ensure that a bond at the same distance but in the opposite direction is still allowed.

3.2. Look-up table

The first possibility is the construction of a look-up table. This means that we carry
out the sum in (11) explicitly for a large number of distances k, up to a certain
cutoff and store the results in a table.* Then, after drawing a random number, we
can derive the corresponding bond distance from this table. This method is very
fast, since we have to calculate all cumulative probabilities only once, but it has two
major drawbacks. First, all bonds beyond the cutoff are neglected, which introduces
an unacceptable error in the case that the interaction decays very slowly, i.e., when
o is small. We address this problem in the next subsection. Secondly, this method
is not feasible in more than one dimension, as the number of distances for which
the cumulative bond probability has to be calculated increases quickly with the
dimensionality of the system (for a fixed cutoff).

3.3. Continuous bond probability

We may also approach the summation problem as follows. The sum in Eq. (11) can
be approximated by an integral:

k k f k+%
— o~ —(d+0)
EKH—an+a~f/j dz z . (12)

-1
3

By replacing the sum by this integral we still have an exact Monte Carlo scheme, but
the interaction has been altered from K;; = f/[i—j]|%+° (discrete) to the continuous
function
li=il+%
K(li—3)=f dz 27+, (13)

i1
li-jl-%

Since both interactions exhibit the same long-range behavior, we expect the same
universal properties, e.g., the same critical exponents. However, their short-range
behavior differs, so all non-universal quantities, such as the critical temperature,

20nly the cumulative probabilities for the case j = 0 have to be calculated, as one can obtain
C;(k) for general j from Co(k) by a simple rescaling.
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will have different values. The cumulative probability of activating a bond to a spin
at a distance between j and k is now given by

k+3
C(j, k) =1—exp (—f/ " dz z—(d+°>) : (14)
i-%

The important feature of Eq. (14) is that the integral can be carried out explicitly,
allowing us to equate C(j, r) to a random number and solve this equation for r
(j is a constant determined by the previously activated bond). We can estimate
the difference between the discrete and the continuous interaction by expanding the
integrand in Eq. (13) in a Taylor series,

m+% f
K(m):/m_% dxm
mti 1
=Km+K,<,3>/ dz —2-(x—m)2+O(K$:))sz+ﬁK,(3). (15)
m—3

So up to leading order in 1/m the relative difference between K, and K(m) is given
by '
1 K2 (d+o)d+o+1)
24K, 24m? ’
The continuous bond probability provides an excellent solution to the first problem
posed in Sec. 3.2. We do not have to neglect the bonds beyond the cutoff, but
can simply calculate the bond distance from Eq. (14), where j is larger than the
cutoff. Since the difference between the discrete and the continuous bond probability
decays quickly with increasing distance, we can make the error in this approximation
arbitrarily small by increasing the cutoff. Furthermore we can apply the method of
the continuocus bond probability for any number of dimensions.

(16)

4, Mean-Field Model

As an illustration of the method described in this article, we have carried out a
Monte Carlo simulation of the mean-field model, described by the Hamiltonian

BHwmr = —% Zzaiaj (o = £1), (17)
P

in which N is the number of spins in the system. This model can be regarded as
an extremely long-range system, since each spin interacts equally with every other
spin. It is equivalent to the system described by Eq. (6) with K;; = f /rff" in
the limit ¢ | 0, where periodic boundary conditions are employed and K;; must
be suitably normalized. It has been solved exactly and exhibits a phase transition
at K = 1 (see, e.g., Ref. 9, Chap. 3; note the difference in the coupling constant
in Eq. (3.1.3) of this reference compared to Eq. (17) above). Furthermore, it has
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classical values for the critical exponents a, 3, v and é. It should be noted that for
this particular model a relatively efficient Monte Carlo simulation can be carried
out even with the Metropolis algorithm, since the total interaction energy between
one spin o; and all the other spins is simply given by

K K
—E-N‘ZUj:‘E-N—(M—U,;). (18)
J#i

Here M =Nm =3 ;05 is the total magnetization. Of course, this is only possible
because the coupling between all spin pairs is equal in this model. In our simulations,
which serve purely as a test for the algorithm described above, we have not used the
total magnetization. We have carried out Monte Carlo simulations for systems with
sizes in the range 4—64000, constructing 108 Wolff clusters per simulation. This took
less than 30 hours of CPU-time on a modest workstation, of which approximately
20 hours were spent on the two largest system sizes, consisting of 32000 and 64000
spins, respectively. We have sampled the dimensionless amplitude ratio

(19)

which is related to the fourth-order cumulant introduced by Binder.!° In the ther-
modynamic limit, at T = T, this ratio is equal to 4I'(3/4)%/T'(1/4)? ~ 0.456947.
In the appendix, we derive an expression for Q(T.) for finite systems to order 1/N
by expansion of the partition function. The form of this expansion (A.11) agrees
with the expression for Qy obtained from finite-size scaling,!

QN = Qoo + A1 N¥ + ag N 4 agN3% 4 g tN¥ + a5(EN¥)? + ... . (20)

Here y; is the leading irrelevant exponent (which is derived in the appendix as well),
¥ is the temperature exponent and ¢ represents the temperature field, in which we
have also included an irrelevant term,

t=(K — K.)[1+ agN¥], (21)

where K denotes the critical coupling. Note that we have expressed the scaling
function in terms of N. If one prefers to identify the mean-field model with an Ising
model at its upper critical dimension d = 4, one should replace N by L*.

The Monte Carlo data for Q(T.) as function of the system size are shown together
with the exactly calculated values in Fig. 1. In Fig. 2, Q is plotted against the
coupling for a range of system sizes. Fitting our data to expression (20), we have
obtained the following results.
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” Theory I MC
Qo || 0456947 | 0.4565(5)
K. 1.0 0.99998(3)
Yt 0.5 0.498(4)
Y —0.52(4)
ay 0.214002 0.219(6)

Here the theoretical values of the critical coupling, the temperature exponent and
the irrelevant exponent are understood to be exact values. The numbers in paren-
theses represent the error in the last decimal. In order to obtain maximum accuracy
we have only varied one parameter at a time in our fitting procedure, fixing the re-
maining parameters at their theoretical values. Varying several parameters simul-
taneously yields comparable results, but with larger errorbars. Given the amount
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Fig. 1. Comparison between exact (dashed line) and Monte Carlo data for the dimensionless
amplitude ratio Q at the critical temperature for system sizes in the range 2-64000. For most

systems, the size of the errorbars does not exceed the symbol size. The exact data for system

sizes smaller than 10000 were obtained by explicit summation over all values of the magnetization,
whereas the data for larger systems were calculated from Eq. (A.11).
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Fig. 2. The dimensionless amplitude ratio Q as function of temperature for several system sizes.
For clarity the following system sizes that were used in the finite-size analysis have been omitted
from the figure: N = 6,10,14,16,18,24,28. The size of the errorbars does not exceed the symbol
size. Note the large corrections to scaling for small systems.

of computer time invested, the accuracy of the Monte Carlo data is very good and
the agreement between the theoretical values and the results of the Monte Carlo
simulations is quite satisfactory.

5. Generalizations and Conclusions

The algorithm described in Sec. 3 can be generalized in several ways. First, the
form of the interaction may be modified. As long as the interaction is an integrable
function of the distance, this generalization is completely straightforward. If the
interaction is not integrable, one can use a look-up table in the one-dimensional
case, whereas an approximation scheme may be devised for a system of higher
dimensionality. Secondly, the algorithm may also be applied to long-range XY and
Heisenberg models. The generalization to these systems is as follows. First, for each
new cluster a spin-flip direction ¢ is chosen at random. Then each spin which may
be added to the cluster is selected just as in the case of the Potts model, i.e., with a
probability 1 —exp(—~K), where K is the Potts coupling of the model. However, the
condition in the Potts model that only bonds between identical spins are activated,
which is expressed by the Kronecker delta in Eq. (6), must be replaced by the
condition that the bond between o, and o5 is activated with probability
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1 — exp (min[0, Koy,;02,))

1 — exp(—K) ’
The numerator in this expression is equal to that derived by Wolff [Eq. (5) in Ref. 2],
where oy, ; refers to the projection in direction 4 of spin . It should be noted that
the spin from which we are currently activating bonds, o, has already been flipped,
which explains the absence of a minus sign in front of K. The denominator comes
from the fact that we have selected spin &2 with a probability 1 —exp(—K). So once
a spin has been selected, its component in direction i is reversed with a probability
given by Eq. (22). Thus the algorithm described above can be extended to general
O(n) models, just as the original Wolff algorithm.

In conclusion we can summarize this paper as follows. We have introduced a
Monte Carlo cluster method for the efficient simulation of spin models with long-
range interactions. We have worked out the algorithm for algebraically decaying
interactions, which is the most commonly studied case. Extensive simulations for
this case will be presented elsewhere. Here we have illustrated the feasibility of our
method by carrying out simulations for the exactly solved mean-field Ising model.
Finally we have indicated how the method can be applied to models with other
interactions and to general spin models.

(22)
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Appendix A. Calculation of the Dimensionless Critical-Point
Amplitude Ratio (m?)?/(m*) in the Mean-Field
Model

Denoting the number of spins in the system by N and the number of down spins
by r, the partition function of the mean-field model is

r=N

Z=3 cr), (A1)

r=0
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with

— 2 _
ofr) = T'(Nil‘?ﬁ exp <%KW) : (A.2)

The average magnetization per spin is given by m = (N —2r)/N. Replacing the sum
in Eq. (A.1) by an integral (which introduces an error of order 1/N) and changing
the integration variable from r to m we find

N +1
z=7 | dmem)t+0(/N), (A.3)

with
N!
T EANQ-m)[EANQ+m

1
é(m) T exp <§K(Nm2 - 1)) : (A.4)
The factor N/2 in Eq. (A.3) comes from the Jacobian which appears due to the
change of variables. Likewise, we can write expressions for the average square
magnetization and the average of the fourth power of the magnetization,

o _ N [T 2,
(m®) = 57 dm m*&(m)[1+ O(1/N)], (A.5)
-1
W Nt
(m*) 57 dm m*&(m)[1 + O(1/N)]. (A.6)
-1

To find the behavior of these quantities for large N, we can expand In[é(m)] using
Stirling’s formula, which yields

In[é(m)] = —%[N(l —m)+1]In [%N(l - m)}
—%[N(l +m)+ 1]l [%N(l + m)]

+%Nm2 +f+0Q/N), (A7)

where f contains all terms not depending on m and we have set K = 1, because we
want to evaluate all quantities at 7.. Expanding in m we find (f is a new constant
equal to f plus additional terms not depending on m)

1 1 1 1 1 1 2
nlé = ——Nm*= —Nmf — —NmB+=m?+-m*+-mb oo (A
n[E(m)] = -5 Nm* — == Nm sgNm’ +5m? + 7mf +em® + f+ (A.8)

Substituting this for &(m) in Eq. (A.3) and expanding the exponentials yields

N ; [t i 1 1 1
Z= —ef/ dm e~ 1zN™ (1 - —Nmb + —m2) 1+0(1/N), (A.9)
2° ) o 30 2
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where we have also extended the integral boundaries to +0o0, which introduces an
error which decays exponentially with N. For the evaluation of Eq. (A.9) we use

toeo 1 12\ ¥F1_ (k+1
— k —— 4 = — — —_—
I —/_oo dmm exp( 12Nm > <N> 21"( ) ) . (A.10)
Thus, each factor m in the integrand yields an extra factor N~1/4 in the result

and terms of the form NmF*t4 are of the same order as terms of the form m¥.

Therefore we retain only the terms up to order m? and Nm® in Eq. (A.8). After
some elementary calculations we find for the dimensionless ratio (19)

i) v +e ()

1 1
= 0.456947 + 0.214002— + O (-——) . A1l
7w TO\w (4.11)

2

oo -4




